风力机分类

合集下载

风力发电机的分类

风力发电机的分类

,风力发电机按叶片分类.按照风力发电机主轴地方向分类可分为水平轴风力发电机和垂直轴风力发电机.()水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平地风力发电机. 水平轴风力发电机相对于垂直轴发电机地优点;叶片旋转空间大,转速高.适合于大型风力发电厂.水平轴风力发电机组地发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高.到目前为止,用于发电地风力发电机都为水平轴,还没有商业化地垂直轴地风力发电机组. 资料个人收集整理,勿做商业用途()垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直地风力发电机.垂直轴风力发电机相对于水平轴发电机地优点在于;发电效率高,对风地转向没有要求,叶片转动空间小,抗风能力强(可抗级台风),启动风速小维修保养简单. 垂直轴与水平式地风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式地要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式地更加安全稳定;另外,国内外大量地案例证明,水平式地风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故.资料个人收集整理,勿做商业用途按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机.凡属轴流风扇地叶片数目往往是奇数设计. 这是由于若采用偶数片形状对称地扇叶,不易调整平衡.还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生地疲劳,将会使叶片或心轴发生断裂. 因此设计多为轴心不对称地奇数片扇叶设计.对于轴心不对称地奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内地各种扇叶设计中.包括家庭使用地电风扇都是个叶片地,叶片形状是鸟翼型(设计术语),这样地叶片流量大,噪声低,符合流体力学原理.所以绝大多数风扇都是三片叶地.三片叶有较好地动平衡,不易产生振荡,减少轴承地磨损.降低维修成本.资料个人收集整理,勿做商业用途按照风机接受风地方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型.资料个人收集整理,勿做商业用途上风向风机一般需要有某种调向装置来保持叶轮迎风.而下风向风机则能够自动对准风向, 从而免除了调向装置.但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片地气流而形成所谓塔影效应,使性能有所降低.资料个人收集整理,勿做商业用途,按照风力发电机地输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列.()小型风力发电机是指发电机容量为地风力发电机.()中型风力发电机是指发电机容量为地风力发电机.()大型风力发电机是指发电机容量为地风力发电机.兆瓦级风力发电机是指发电机容量为以上地风力发电机.,按功率调节方式分类.可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机.()定桨距失速型风机;桨叶于轮毂固定连接,桨叶地迎风角度不随风速而变化.依靠桨叶地气动特性自动失速,即当风速大于额定风速时依靠叶片地失速特性保持输入功率基本恒定.资料个人收集整理,勿做商业用途()变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内.资料个人收集整理,勿做商业用途()主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加资料个人收集整理,勿做商业用途()独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同地位置,受力状况也是不同地故叶片中立对风轮力矩地影响也是不可忽略地.通过对三个叶片进行独立地控制,可以大大减小风力机叶片负载地波动及转矩地波动,进而减小传动机构与齿轮箱地疲劳度,减小塔架地震动,输出功率基本恒定在额定功率附近.资料个人收集整理,勿做商业用途,按机械形式分类:按照风机组机构中是否包括齿轮箱,可分为有齿轮箱地风力机,无齿轮地风力机和混合驱动型风力机.资料个人收集整理,勿做商业用途带齿轮箱地风力发电机:由于叶尖速度地限制,风轮旋转速度一般较慢.风轮直径在以上时,风轮转速在或更低.为了使发电机地体积变小,就必须是发电机输入转速更高,这时就必须使用变速箱体搞转速使得发动机输入转速在或者这样,发电机体积就可以设计地尽可能小.资料个人收集整理,勿做商业用途无齿轮箱发电机:将叶轮和发电机直接连接在一起结构地风力发电机成为无齿轮箱使风力发电机.这种发电机由于没有齿轮箱,所以结构简单,制造方便,维护方便故无齿轮箱地风力发电机将来有可能发展与海上风力发电机上使用.资料个人收集整理,勿做商业用途混合驱动型风力发电机:混合驱动型风力发电机采用一级齿轮进行传动,齿轮箱结构简单效率高.由于增加了点击转速点击尺寸和重量比一般地直趋机组地电机尺寸小,重量也比较轻.所以这种风力发电机具有直趋风力发电机地特点也有体积小,重量轻地有点,逐渐成为以上地大型风机组设计开发地一种趋势资料个人收集整理,勿做商业用途,根据风力发电机组地发电机类型分类,可分为异步型风力发电机和同步型风力发电机.()异步发电机按其转子结构不同又可分为:() 笼型异步发电机――转子为笼型.由于结构简单可靠、廉价、易于接入电网,而在小、中型机组中得到大量地使用;资料个人收集整理,勿做商业用途() 绕线式双馈异步发电机――转子为线绕型.定子与电网直接连接输送电能,同时绕线式转子也经过变频器控制向电网输送有功或无功功率.资料个人收集整理,勿做商业用途()同步发电机型按其产生旋转磁场地磁极地类型又可分为:() 电励磁同步发电机――转子为线绕凸极式磁极,由外接直流电流激磁来产生磁场.() 永磁同步发电机――转子为铁氧体材料制造地永磁体磁极,通常为低速多极式,不用外界激磁,简化了发电机结构,因而具有多种优势.资料个人收集整理,勿做商业用途,主轴,齿轮箱和发电机相对位置可分为紧凑型和长轴布置型.紧凑型风力发电机地风轮直接与齿轮箱低速轴相连,齿轮高速轴输出端通过弹性联轴节与发电机连接,发电机与齿轮箱外壳连接.这种结构齿轮箱使专门设计地,由于结构紧凑,可以节省材料和相对地费用.作用在风轮和发电机上地力都是通过齿轮箱外壳体传递到主框架上地.紧凑型风力发电机地结构主轴与发电机轴在同一平面内,在齿轮箱损坏是,需要将风轮,齿轮箱,发电机一块拆下来进行修理,比较麻烦.资料个人收集整理,勿做商业用途长轴布置型风力发电机:通过固定在机舱主框架地主轴,与齿轮箱低速轴连接.长轴布置型风力发电机地主轴是单独地,有单独地轴承支撑.这种结构地优点是风轮没有直接作用在齿轮箱地低速轴上,齿轮箱可以采用标准结构,减小齿轮箱低速轴收到地复杂力矩,降低了费用,减少了齿轮箱受损地可能性.资料个人收集整理,勿做商业用途,按照发电机地转速及并网方式可以将发电机分为定速风机和变速风机.定速型风力发电机:定速风力机一般采用时速控制地桨叶控制方式,使用直接与电网相连地异步感应电动机,由于风能地随机性,驱动异步发电机地风力机低于额定运行地时间占全年运行时间地.为了充分利用低风速地风能,增加发电量,广泛应用双速异步发电机,设计成级和级绕组.在低速运转时,双速异步发电机地效率比氮素异步发电机搞,滑差损耗小,当风力发电机组在低风速运行时,不仅桨叶具备有较高地启动效率,发电机效率也能保持在较高地水平.资料个人收集整理,勿做商业用途变速风力机:变速风力机一般配备变桨距功率调节方式.风力机必须有一套控制系统来调节,限制转速和功率.调速与功率调节装置地首要任务是使风力机在大风,运行发生故障和过载荷是得到保护:其次,使风电机组能够在启动时顺利切入运行,电能质量符合公共电网要求.资料个人收集整理,勿做商业用途,按照塔架地不同可分为塔筒式风力机和桁架式风力机.塔架式风力发电机:国内及国外绝大多数风力发电机组采用塔筒式结构,这种结构地优点是刚性好,冬季人员登塔安全,连接部分地螺栓与桁架塔相比要少得多,维护工作两少,便于安装和调节.资料个人收集整理,勿做商业用途桁架式风力机:桁架式采用类似电力塔地结构形式.这种结构风阻小,便于运输.但组装复杂,需要每年对他家地螺栓进行紧固,工作量很大,而且冬季爬塔架地条件恶劣.在我国,这种结构地机型更适合南方海岛使用,特别是阵风达,风向不稳定地风场,桁架塔更能吸收手机组运行时产生地扭矩和震动.资料个人收集整理,勿做商业用途。

风力发电机组的分类介绍

风力发电机组的分类介绍

风力发电机组的分类介绍风力发电机一般按风轮轴安装形式、功率控制方式、风轮转速调节、主传动驱动方式等进行分类。

1、风轮轴安装形式按照风轮轴安装形式可分为水平轴风力机和垂直轴风力机。

(1)水平轴风力机风轮的旋转轴线与风向平行。

水平轴风力机必须具有对风装置,跟随风向的变化而转动,以便吸收来自各个方向的风能。

对于小型风力机,这种对风装置常采用尾舵,而对于大型风力机,则利用风向传感器测量风向,经微处理器调整后控制偏航系统进行对风。

水平轴风力机按照风轮相对于塔架的位置可分为上风向风力机和下风向风力机。

风轮位于塔架前面的为上风向风力机,风轮位于塔架后面的为下风向风力机。

目前风电场采用并网型风力发电机组多为上风向水平轴风力机。

(2)垂直轴风力机风轮的旋转轴线垂直于地面或气流方向。

垂直轴风力机能吸收来自各个方向的风能,无需对风装置,这是相对于水平轴风力机的一大优点,并且传动装置和发电设备均安装在地面,便于维护;但是受叶片制造工艺的限制及拉线式塔架占用大量土地面积等因素,垂直轴风力机一直未得到发展。

2、功率控制方式按照功率控制方式可分为定桨距风力机、变桨距风力机和主动失速风力机。

(1)定桨距风力机叶片与轮毂固定连接。

在风轮转速恒定的条件下,风速增加超过额定风速时,随着叶片攻角的增加,气流与叶片表面分离,叶片将处于失速状态,叶片吸收的风能不但不会增加,反而有所下降,以确保风轮输出功率在额定范围以内。

定桨距风力机的特点:结构简单不需要变桨机构,同时控制系统也较简单。

但风轮吸收风能的效率较低,特别在风速超过额定风速后,由于叶片的失速作用,输出功率还会有所下降;机组承受的载荷大;机组重量比同类型变桨距风力机重。

(2)变桨距风力机叶片与轮毂通过变桨轴承连接,可以通过变桨系统控制叶片的安装角。

当风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片的攻角,保证输出功率在额定范围内。

变桨距风力机的特点:结构复杂,需要增加变桨轴承和一套变桨驱动装置,同时控制系统也变得很复杂。

风力机的分类

风力机的分类

风力机的分类以下是 6 条关于风力机分类的内容:1. 哎呀呀,你知道风力机有水平轴风力机和垂直轴风力机这两大类吗?就好像车子有轿车和越野车一样。

比如说水平轴风力机,那在广阔的平原上,它就像个不知疲倦的大力士,呼呼地转着,不停地为我们发电呢!而垂直轴风力机呢,造型独特,在一些特殊的地方也能发挥大作用。

你说是不是很有意思呀?2. 嘿,你想过没,风力机还可以按照功率大小来分呢!就像人有高矮胖瘦一样。

小功率的风力机,就像是一个小巧玲珑的精灵,给小地方提供着能源。

而大功率的呢,那可就是个超级巨无霸呀,能为一大片区域提供强大的电力支持!比如说在海上的那些大型风力机,多壮观呀,这难道不让你惊叹吗?3. 哇塞,风力机还能根据叶片数量来划分呢!有的只有几个叶片,就像精简的战士,简洁而高效。

就好比三叶风力机,常见又实用。

而有的呢有很多叶片,像个密密麻麻的大扇子,难道不是很神奇吗?它们在风中摇摆,各有各的特点和魅力呀。

4. 嘿哟,还有按应用场景来分的风力机呢!在陆地上的,就如同脚踏实地的守护者,稳稳地工作着。

像是在山顶上的风力机,那可真是威风凛凛呀。

而在海上的呢,它们就像是勇敢的航海家,迎着风浪前行。

你想想,它们为我们的生活带来了多大的便利呀,你能不佩服它们吗?5. 哎呀呀,还有个分类呢,就是按控制方式来。

有的风力机就像个乖巧的孩子,很听话,能根据环境自动调整。

而有些呢,就需要人们精心地去调控。

这就好像你养宠物,有的很温顺好打理,有的就需要你多费点心思。

每种控制方式的风力机都有它们独特的用处呢,你说神奇不神奇?6. 你知道吗,风力机还可以从结构上来分哟!有的结构简单明了,一目了然,就像一个直爽的朋友。

而有的结构比较复杂精细,就如同一个心思缜密的智者。

比如那种有着复杂传动装置的风力机,那可真是蕴含着无穷的智慧呀!你难道不想深入了解一下它们吗?我觉得风力机的分类真的很丰富多样,各有各的奇妙之处,为我们的生活和能源利用做出了巨大的贡献呀!。

风力发电机的分类总结

风力发电机的分类总结

风力发电机的分类总结一、首先,风力发电机分类有许多种。

国内外风力机的结构形式繁多,从不一致的角度有多种分类方法:①(按风轮轴与地面的相对位置,分为水平轴式风力机与垂直轴(立轴)式风力机。

②按叶片工作原理,分为升力型风力机与阻力型风力机。

③按风力机的用途分类,有风力发电机、风力提水机、风力铡草机、风力脱谷机等。

④按风轮叶片的叶尖线速度与吹来的风速之比的大小来分,有高速风力机(比值大于3)与低速风力机(比值小于3);也有把该比值2~5者称之中速风力机。

⑤按风机容量大小分类:国际上通常将风力机组分为小型(100kw下列)、中型(100~1000kw)与大型(1000kw以上)3种;我国则分成微型(1kw下列)、小型(1~10kw)、中型(10~100k w)与大型(100kw以上)4种;也有的将1000kw以上的风机称之巨型风力机。

⑥按风轮的叶片数量,分单叶片、双叶片、三叶片、四叶片及多叶片式风力机。

二、又由于叶片工作原理不一致,水平轴与垂直轴风力发电机又可细分为:升力型水平轴风力发电机,阻力型水平轴风力发电机;升力型垂直轴风力发电机,阻力型垂直轴风力发电机。

下列就是各类风力发电机的种类与特征概述:1、风力机的种类及特征:垂直轴风力机(1)桨叶式风力机桨叶式风力机是一种阻力型风力机,因它的叶片形状而得名。

这种风力机的关键集中在如何减少逆风方向叶片的阻力,对此有许多设计方案。

使用遮风板的,也有改变迎风角的,只是桨叶式风力机的效率很低,除了在日本局部地区曾经使用过外,实际上几乎没有制造与使用的实例。

通常来说,这种风力机归类为垂直轴型,但是也有把它设计成水平轴的。

(2)萨布纽斯式风力机萨布纽斯式风力机是20年代发明的垂直轴风力机,它以发明者萨布纽斯的名字命名(我国有的时候称它为s型风力机)。

这种风力机通常由两枚半圆筒形的叶片所构成,也有用三一四枚的。

这种风力机往往上下重叠多层。

效率最大不超过10%,能产生很大的扭矩。

风力发电机的分类

风力发电机的分类

1,风力收电机按叶片分类.之阳早格格创做依照风力收电机主轴的目标分类可分为火仄轴风力收电机战笔曲轴风力收电机.(1)火仄轴风力收电机:转化轴与叶片笔曲,普遍与大天仄止,转化轴处于火仄的风力收电机.火仄轴风力收电机相对付于笔曲轴收电机的便宜;叶片转化空间大,转速下.切合于庞大风力收电厂.火仄轴风力收电机组的死少履历较少,已经实足达到工业化死产,结构简朴,效用比笔曲轴风力收电机组下.到暂时为止,用于收电的风力收电机皆为火仄轴,还不商业化的笔曲轴的风力收电机组.(2)笔曲轴风力收电机:转化轴与叶片仄止,普遍与大天吹笔曲,转化轴处于笔曲的风力收电机.笔曲轴风力收电机相对付于火仄轴收电机的便宜正在于;收电效用下,对付风的转背不央供,叶片转化空间小,抗风本领强(可抗12-14级台风),开用风速小维建调养简朴.笔曲轴与火仄式的风力收电机对付比,有二大劣势:一、共等风速条件下笔曲轴收电效用比火仄式的要下,特天是矮风速天区;二、正在下风速天区,笔曲轴风力收电秘密比火仄式的越收仄稳牢固;其余,海内中洪量的案例说明,火仄式的风力收电机正在皆会天区时常不转化,正在北圆、西北等下风速天区又时常简单出现风机合断、脱降等问题,伤及路上止人与车辆等伤害事变.依照桨叶数量分类可分为“单叶片”﹑“单叶片”﹑“三叶片”战“多叶片”型风机.凡是属轴流风扇的叶片数目往往是奇数安排. 那是由于若采与奇数片形状对付称的扇叶,阻挡易安排仄稳.还很简单使系统爆收共振,倘叶片材量又无法抵挡振荡爆收的疲倦,将会使叶片大概心轴爆收断裂. 果此安排多为轴心分歧过得称的奇数片扇叶安排.对付于轴心分歧过得称的奇数片扇叶,那一准则一致应用于庞大风机以及包罗部分曲降机螺旋桨正在内的百般扇叶安排中.包罗家庭使用的电风扇皆是3个叶片的,叶片形状是鸟翼型(安排术语),那样的叶片流量大,噪声矮,切合流体力教本理.所以绝大普遍风扇皆是三片叶的.三片叶有较好的动仄稳,阻挡易爆收振荡,缩小轴启的磨益.降矮维建成本.依照风机交受风的目标分类,则有“上风背型”――叶轮正里迎着风背战“下风背型”――叶轮背逆着风背,二种典型.上风背风机普遍需要有某种调背拆置去脆持叶轮迎风.而下风背风机则不妨自动对付准风背, 从而免除了调背拆置.但是对付于下风背风机, 由于一部分气氛通过塔架后再吹背叶轮, 那样, 塔架便搞扰了流过叶片的气流而产死所谓塔影效力,使本能有所降矮.2,依照风力收电机的输出容量可将风力收电机分为小型,中型,庞大,兆瓦级系列.(1)小型风力收电机是指收电机容量为0.1~1kw的风力收电机.(2)中型风力收电机是指收电机容量为1~100kw的风力收电机.(3)庞大风力收电机是指收电机容量为100~1000kw的风力收电机.(4)兆瓦级风力收电机是指收电机容量为1000以上的风力收电机. 3,按功率安排办法分类.可分为定桨距时速安排型,变桨距型,主动得速型战独力变桨型风力收电机.(1)定桨距得速型风机;桨叶于轮毂牢固连交,桨叶的迎风角度不随风速而变更.依赖桨叶的气动个性自动得速,即当风速大于额定风速时依赖叶片的得速个性脆持输进功率基础恒定.(2)变桨距安排:风速矮于额定风速时,包管叶片正在最好攻角状态,以赢得最大风能;当风速超出额定风速后,变桨系统减小叶片攻角,包管输出功率正在额定范畴内.(3)主动得速安排:风速矮于额定风速时,统制系统根据风速分几级统制,统制粗度矮于变桨距统制;当风速超出额定风速后,变桨系统通过减少叶片攻角,使叶片“得速”,节制风轮吸支功率减少(4)独力变桨统制风力机:由于叶片尺寸较大,每个叶片有十几吨以至几十吨,叶片运止正在分歧的位子,受力情景也是分歧的故叶片中坐对付风轮力矩的效用也是不可忽略的.通过对付三个叶片举止独力的统制,不妨大大减小风力机叶片背载的动摇及转矩的动摇,从而减小传效果构与齿轮箱的疲倦度,减小塔架的振动,输出功率基础恒定正在额定功率附近.4,按板滞形式分类:依照风机组机构中是可包罗齿轮箱,可分为有齿轮箱的风力机,无齿轮的风力机战混同启动型风力机.(1)戴齿轮箱的风力收电机:由于叶尖速度的节制,风轮转化速度普遍较缓.风轮曲径正在100m以上时,风轮转速正在15r/min大概更矮.为了使收电机的体积变小,便必须是收电机输进转速更下,那时便必须使用变速箱体搞转速使得收效果输进转速正在1500/min 大概者3000/min那样,收电肌体积便不妨安排的尽大概小.(2)无齿轮箱收电机:将叶轮战收电机曲交连交正在所有结构的风力收电机成为无齿轮箱使风力收电机.那种收电机由于不齿轮箱,所以结构简朴,制制便当,维护便当故无齿轮箱的风力收电机将去有大概死少与海上风力收电机上使用.(3)混同启动型风力收电机:混同启动型风力收电机采与一级齿轮举止传动,齿轮箱结构简朴效用下.由于减少了面打转速面打尺寸战沉量比普遍的曲趋机组的电机尺寸小,沉量也比较沉.所以那种风力收电机具备曲趋风力收电机的个性也有体积小,沉量沉的有面,渐渐成为3GW以上的庞大风机组安排开垦的一种趋势5,根据风力收电机组的收电机典型分类,可分为同步型风力收电机战共步型风力收电机.(1)同步收电机按其转子结构分歧又可分为:(a) 笼型同步收电机――转子为笼型.由于结构简朴稳当、廉价、易于交进电网,而正在小、中型机组中得到洪量的使用;(b) 绕线式单馈同步收电机――转子为线绕型.定子与电网曲交连交输支电能,共时绕线式转子也通过变频器统制背电网输支有功大概无功功率.(2)共步收电机型按其爆收转化磁场的磁极的典型又可分为:(a) 电励磁共步收电机――转子为线绕凸极式磁极,由中交曲流电流激磁去爆收磁场.(b) 永磁共步收电机――转子为铁氧体资料制制的永磁体磁极,常常为矮速多极式,不必中界激磁,简化了收电机结构,果而具备多种劣势.6,主轴,齿轮箱战收电机相对付位子可分为紧密型战少轴安插型.(1)紧密型风力收电机的风轮曲交与齿轮箱矮速轴贯串,齿轮下速轴输出端通过弹性联轴节与收电机连交,收电机与齿轮箱中壳连交.那种结构齿轮箱使博门安排的,由于结构紧密,不妨节省资料战相对付的费用.效用正在风轮战收电机上的力皆是通过齿轮箱中壳体传播到主框架上的.紧密型风力收电机的结构主轴与收电机轴正在共一仄里内,正在齿轮箱益坏是,需要将风轮,齿轮箱,收电机一齐拆下去举止建理,比较贫苦.(2)少轴安插型风力收电机:通过牢固正在机舱主框架的主轴,与齿轮箱矮速轴连交.少轴安插型风力收电机的主轴是单独的,有单独的轴启支撑.那种结构的便宜是风轮不曲交效用正在齿轮箱的矮速轴上,齿轮箱不妨采与尺度结构,减小齿轮箱矮速轴支到的搀纯力矩,降矮了费用,缩小了齿轮箱受益的大概性.7,依照收电机的转速及并网办法不妨将收电机分为定速风机战变速风机.(3)定速型风力收电机:定速风力机普遍采与时速统制的桨叶统制办法,使用曲交与电网贯串的同步感触电效果,由于风能的随机性,启动同步收电机的风力机矮于额定运止的时间占终年运止时间的60%~70%.为了充分利用矮风速的风能,减少收电量,广大应用单速同步收电机,安排成4级战6级绕组.正在矮速运止时,单速同步收电机的效用比氮素同步收电机搞,滑好耗费小,当风力收电机组正在矮风速运止时,不但是桨叶具备有较下的开用效用,收电机效用也能脆持正在较下的火仄.(4)变速风力机:变速风力机一班配备变桨距功率安排办法.风力机必须有一套统制系统去安排,节制转速战功率.调速与功率安排拆置的主要任务是使风力机正在大风,运止爆收障碍战过载荷是得到呵护:其次,使风电机组不妨正在开用时成功切进运止,电能品量切合大众电网央供.8,依照塔架的分歧可分为塔筒式风力机战桁架式风力机.(1)塔架式风力收电机:海内及海中绝大普遍风力收电机组采与塔筒式结构,那种结构的便宜是刚刚性好,冬季人员登塔仄安,连交部分的螺栓与桁架塔相比要少得多,维护处事二少,便于拆置战安排.(2)桁架式风力机:桁架式采与类似电力塔的结构形式.那种结构风阻小,便于输支.但是组拆搀纯,需要每年对付他家的螺栓举止紧固,处事量很大,而且冬季爬塔架的条件恶劣.正在尔国,那种结构的机型更切合北圆海岛使用,特天是阵风达,风背不宁静的风场,桁架塔更能吸支脚机组运止时爆收的扭矩战振动.。

风力发电机的分类

风力发电机的分类

o根据风力发电机旋转轴的区别,风力发电机可以分为水平轴风力发电机和垂直轴风力发电机。

1、水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。

2、垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。

垂直轴风力发电机目前占市场主流的是水平轴风力发电机,平时说的风力发电机通常也是指水平轴风力发电机。

目前水平轴风力发电机的功率最大已经做到了5wm左右。

垂直轴风力发电机虽然最早被人类利用,但是用来发电还是近10多年的事。

与传统的水平轴风力发电机相比,垂直轴风力发电机具有不用对风向,转速低,无噪音等优点,但同时也存在起动风速高,结构复杂等缺点,这都制约了垂直轴风力发电机的应用。

根据定桨矩失速型风机和变速恒频变桨矩风机的特点,国内目前装机的电机一般分为二类:1、异步型(1)笼型异步发电机;功率为600/125kW750kW 800kW 1250180kW定子向电网输送不同功率的50Hz交流电;(2)绕线式双馈异步发电机;功率为1500kW定子向电网输送50Hz交流电,转子由变频器控制,向电网间接输送有功或无功功率。

2、同步型(1)永磁同步发电机;功率为750kW 1200kW 1500kW 由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电。

(2)电励磁同步发电机;由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电。

∙风力发电机的图解o一、风力发电机分解图1.风机总成2.叶片3.轮毂般4.前罩5.螺栓6.平垫圈7.防松螺母8.螺母9.弹簧垫10.法兰11.螺栓12.防松螺母13.避雷针14.减震器二、风力发电机应用系统结构图∙风力发电机的特点o1、高效率2、微风启动3、长寿命4、免维护5、防锈6、防腐蚀6、防潮7、防水8、防风沙风力发电机的原理o风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网.如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电.最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机. 最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值.为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等.齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分).同时也使得发电机易于控制,实现稳定的频率和电压输出.偏航系统可以使风轮扫掠面积总是垂直于主风向.要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度.风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距.对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距.在停机时,叶片要顺桨,以便形成阻尼刹车.早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距.就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率.然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机.现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏.理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒.风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元.∙风力发电机的维修o风机叶片的维修维护在保证风机叶片20年使用寿命中将起到至关重要的作用。

风力机分类

风力机分类

P130-26
三叶片风轮的性能比较好,目前,水平轴风电机组一般 采用两叶片或三叶片风轮,其中以三叶片风轮为主。我国安 装投运的大型并网风电机组几乎全部采用三叶片风轮。 叶片数量减少,将使风轮制造成本降低,但也会带来很 多不利的因素,在选择风轮叶片数时要综合考虑。两叶片风 轮上的脉动载荷大于三叶片风轮。另外,由于两叶片风轮转 速高,在旋转时将产生较大的空气动力噪声,对环境产生不 利影响,而且风轮转速快视觉效果也不好。 风轮实度:风轮叶片总面积与风轮扫掠面积的比值,常 用于反映风轮的风能转换性能。 风轮的叶片数多,风轮的实度大,功率系数比较大,但 功率曲线较窄,对叶尖速比的变化敏感。叶片数减小,风轮 实度下降,其最大功率系数相应降低,但功率曲线也越平坦, 对叶尖速比变化越不敏感。
P130-11
2)风电机组安全可靠性要求更高。海上风电场遭遇极端气象 条件的可能性大,强阵风、台风和巨浪等极端恶劣天气条件都 会对机组造成严重破坏。海上风电场与海浪、潮汐具有较强的 耦合作用,使得风电机组运行在海浪干扰下的随机风场中,载 荷条件比较复杂。海上风电机组长期处在含盐湿热雾腐蚀环境 中,加之海上风电机组安装、运行、操作和维护等方面都比陆 地风场困难。因此,海上风电机组结构,尤其是叶片材料的耐 久性问题极为重要。 3)基础形式与陆地风电机组有巨大差别。由于不同海域的水 下情况复杂、基础建造需要综合考虑海床地质结构、离岸距离、 风浪等级、海流情况等多方面影响,因此海上风电机组复杂, 用于基础的建设费用也占较大比例。 海上风电在风资源评估、机组安装、运行维护、设备监控、 电力输送等许多方面都与陆地风电存在差异,技术难度大、建 设成本高。
P130-18
• H形风轮结构简单,但离心力使叶片在其连接点处产生严 重的弯曲应力。直叶片借助支撑件或拉索来支撑,这些支 撑产生气动阻力,降低了风力机的效率。 • φ形风轮所采用的弯叶片只承受张力,不承受离心力载荷, 使弯曲应力减至最小。由于材料可承受的张力比弯曲应力 要强,对于相同的总强度,φ形叶片比较轻,且比直叶片 可以更高的速度运行。但φ形叶片不便采用变浆距方法来 实现自起动和控制转速。对于高度和直径相同的风轮,φ 形转子比H形转子的扫掠面积要小一些。

风力发电机的分类

风力发电机的分类

风力发电机的分类风力发电机是一种利用风能转化为电能的设备。

根据不同的特点和结构,风力发电机可以分为多种不同类型。

1. 垂直轴风力发电机垂直轴风力发电机是一种将转子轴垂直于地面的发电机。

它的转子通常由多个垂直安装的叶片组成,可以在任何风向下捕捉风能。

这种发电机的优点是结构简单,不受风向限制,适合于城市等空间有限的地方使用。

然而,由于叶片在运转过程中会相互遮挡,效率相对较低。

2. 水平轴风力发电机水平轴风力发电机是一种将转子轴水平安装的发电机。

它的转子通常由三个或更多水平安装的叶片组成,可以根据风向调整转子的角度。

这种发电机的优点是效率较高,适合在大型风电场使用。

然而,由于叶片需要根据风向调整角度,所以在风向变化频繁的地区使用效果较差。

3. 细长型风力发电机细长型风力发电机是一种外形细长的风力发电机。

它通常由一个细长的塔和一个顶部安装的转子组成。

这种发电机的优点是能够在低风速下产生较高的功率,适合在山区或低风速地区使用。

然而,由于塔的高度较高,安装和维护较为困难。

4. 低速风力发电机低速风力发电机是一种在低风速下也能产生较高功率的发电机。

它通常采用较大的转子和较低的转速,以提高发电效率。

这种发电机的优点是适合在低风速地区使用,但由于转子较大,所以需要较大的空间进行安装。

5. 高速风力发电机高速风力发电机是一种在高风速下能够产生较高功率的发电机。

它通常采用较小的转子和较高的转速,以提高发电效率。

这种发电机的优点是适合在高风速地区使用,但由于转子较小,所以需要较小的空间进行安装。

6. 海上风力发电机海上风力发电机是一种安装在海上的风力发电机。

由于海上风速较高且稳定,海上风力发电机具有较高的发电效率。

然而,由于安装和维护难度较大,成本较高。

总结起来,风力发电机可以根据结构和特点的不同分为垂直轴风力发电机、水平轴风力发电机、细长型风力发电机、低速风力发电机、高速风力发电机和海上风力发电机等多种类型。

每种类型都有其适用的场景和优缺点,我们可以根据具体需求选择合适的风力发电机类型来提高发电效率。

风力发电设备

风力发电设备

1、风力发电设备的分类1.1、按安装场地分为:陆上风电机组和海上风电机组。

1.2、按叶片数量分为:单叶片风电机组、双叶片风电机组、三叶片风电机组和多叶片风电机组。

目前安装最多的是三叶片风电机组。

1.3、按驱动方式分为:直驱式风电机组和双馈式风电机组。

直驱式风电机组:直驱式风电机组没有齿轮箱,叶轮直接带动发电机转子旋转。

相对双馈机组少了齿轮箱,降低了风机机械故障率。

直驱机具有结构简单、可靠性强、效率高、维护成本低等优点。

并且直驱式风电机组在低风速运转时性能良好,特别适合在国内三类风区安装使用。

由于直驱式发电机永磁材料在振动、冲击、高温情况下容易出现失磁现象;同时由于永磁材料存在永久的强磁场,无法在现场条件下检修,所以一旦出现问题只有返厂维修。

双馈式风电机组:双馈式机组是在叶轮与发电机之间增加了变速箱,避免了发电机直接与叶轮直接连接而增加叶片的冲击载荷,并且将其直接传递到发电机上,降低了发电机的故障率。

1.4、按风叶的可调性分为:定桨距风电机组和变桨距风电机组定桨距风电机组:浆叶与轮毂固定连接,浆叶的迎风角度不随风速变化,依靠浆叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本稳定,以及通过叶尖扰流器(即风轮制动)来实现极端情况下的安全停机问题。

变桨距风电机组:浆叶可在轮毂上自由转动,通过改变桨距角实现风电机组从风中吸收功率。

2、风力发电机组的组成2.1、直驱式风电机组:主要由塔筒(支撑塔)、机舱总成、发电机、叶轮总成、测风系统、电控系统和防雷保护系统组成。

发电机位于机舱与轮毂之间。

直驱式风电机组机舱里面取消了发电机、齿轮变速系统,将发电机直接外置到轮毂连接部分。

2.2、双馈式风电机组:主要由塔筒、机舱、叶轮组成。

机舱内集成了发电机系统、齿轮变速系统、制动系统、偏航系统、冷却系统等。

3、风力发电机组的性能风力发电机组是将风能转化为电能的设备。

风力发电机组的性能参数很多,其中额定功率和叶轮直径是风力发电机组的最重要的参数。

风力发电机组的分类

风力发电机组的分类

按风轮桨叶分类:•失速型:高风速时,因桨叶形状或因叶尖处的扰流器动作,限制风力机的输出转矩与功率;•变桨型:高风速时通过调整桨距角,限制输出转矩与功率。

按风轮转速分类:•定速型:风轮保持一定转速运行,风能转换率较低,与恒速发电机对应;•变速型:(1)双速型:可在两个设定转速运行,改善风能转换率,与双速发电机对应;(2)连续变速型:在一段转速范围内连续可调,可捕捉最大风能功率,与变速发电机对应。

按传动机构分类:•齿轮箱升速型:用齿轮箱连接低速风力机和高速发电机;(减小发电机体积重量,降低电气系统成本)•直驱型:直接连接低速风力机和低速发电机。

(避免齿轮箱故障)按发电机分类:•异步型:(1)笼型单速异步发电机;(2)笼型双速变极异步发电机;(3)绕线式双馈异步发电机;•同步型:(1)电励磁同步发电机;(2)永磁同步发电机。

按并网方式分类:•并网型:并入电网,可省却储能环节。

•离网型:一般需配蓄电池等直流储能环节,可带交、直流负载。

或与柴油发电机、光伏电池并联运行。

典型风力发电机系统笼型异步发电机的运行特点(1)发电机励磁消耗无功功率,皆取自电网。

应选用较高功率因数发电机,并在机端并联电容;(2)绝大部分时间处于轻载状态,要求在中低负载区效率较高,希望发电机的效率曲线平坦;(3)风速不稳,易受冲击机械应力,希望发电机有较软的机械特性曲线,Smax绝对值要大;(4)并网瞬间与电动机起动相似,存在很大的冲击电流,应在接近同步转速时并网,并加装软起动限流装置;转子电流受控的异步风力发电机系统(Rotor Current Control,RCC)定义:转子电流控制技术是指通过电力电子开关和脉宽调制(PWM)来控制绕线型异步发电机转子电流的一项技术。

系统的结构特征:(1)采用变桨风力机;(2)采用绕线型异步发电机,但没有滑环;(3)采用旋转开关器件斩波控制转子电流,动态调整发电机的机械特性。

原理:控制附加电阻的接入时间,从而控制转子电流RCC异步风力发电机系统的特点优点:(1)风速变化引起风轮转矩脉动的低频分量由变桨调速机构调节,其高频分量由RCC调节,可明显减轻桨叶应力,平滑输出电功率;(2)利用风轮作为惯性储能元件,吞吐伴随转子转速变化形成的动能,提高风能利用率;(3)电力电子主回路结构简单,不需要大功率电源。

风力发电复习资料

风力发电复习资料

第二章风力机基础理论2.2风力机的分类国内外风力机的结构形式繁多,从不同的角度有多种分类方法。

①按风轮轴与地面的相对位置,分为水平轴式风力机和垂直轴(立轴)式风力机。

②按叶片工作原理,分为升力型风力机和阻力型风力机。

③按风力机的用途分类,有风力发电机、风力提水机、风力铡草机、风力脱谷机等。

④按风轮叶片的叶尖线速度与吹来的风速之比的大小来分,有高速风力机(比值大3)和低速风力机(比值小3);也有把该比值2~5者称为中速风力机。

⑤按风力机容量大小分类:国际上通常将风力机组分为小型(100 kW 以下)、中型(100~1000kW)和大型(1 000 kW 以上)3种;我国则分成微型(1 kW2.1 以下)、小型(1~10 kW)、中型(10~100 kW)和大型(100 kW 以上)4种;也有的将l 000kW 以上的风机称为巨型风力机。

⑥按风轮相对于塔架的位置,分为上风式(前置式)风力机和下风式(后置式)风力机。

⑦按风轮的叶片数量,分单叶片、双叶片、三叶片、四叶片及多叶片式风力机。

现在各国应用较多的是水平轴、升力型和少叶式的风力发电机(多数为2—3个叶片) 风力机翼型的概念2.3 翼型的几何参数及气动特性2.3.1翼型的几何参数翼型定义:叶片展向长度趋于无穷小时叫翼型。

常见的翼型形状有如图所示几种:对称翼型双凸翼型S型翼型平凸翼型下图为一任意形状的翼,其几何尺寸和参数如下:1.弦长(即翼弦)b翼型最前点(前缘)与最后点(后缘)的连钱称翼弦,它的长度称弦长用b 表示。

当前、后缘厚度不为0时,翼弦定义为前缘中点与后缘中点的连线。

2.厚度(指最大厚度)c是上、下翼面在垂直于翼弦方向的距离,其中最大者称最大厚度,用c 表示。

3.相对厚度c最大厚度c 与弦长b 的比值,用cc b=表示。

4.最大厚度位置c σ指最大厚度线到前线点的弦向距离记作c σ。

5.最大厚度相对位置c σ指最大厚度位置c σ与弦长b 的比值,用c c bσσ=表示。

风力发电机组

风力发电机组

风力发电机1)、设备概述:简介:风力发电机是将风能转换为机械功,机械功带动转子旋转,最终输出交流电的电力设备。

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

依据目前的风力发电机技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。

2)、设备分类:分类:风力发电机组的分类一般有3种。

(1)按风轮轴的安装型式:水平轴风力发电机组垂直轴风力发电机组(2)按叶片的数目:单片式、双片式、三片式、多片式。

(3)按风力发电机的功率:微型(额定功率50~1000W)小型(额定功率1.0~10kW)中型(额定功率10~100kW)大型(额定功率大于100kW)(4)按运行方式:独立运行、并网运行。

风力机又称为风轮,主要有水平轴风力机和垂直轴风力机。

(1)水平轴风机:a.荷兰式b .农庄式c.自行车式d.桨叶式a)c)b)d)(2)垂直轴风力机:a)b)c)a.萨窝纽斯式b.达里厄式c.旋翼式(3)、设备结构:风机的主要结构叶轮是由叶片和轮毂组成,其功能是将风能转换为机械能。

其中,叶片是风力机的关键部件之一,其主要作用是将风能转化为机械能,其良好的设计、可靠的质量和优越的性能是保证风力机正常稳定运行的决定因素。

传动系统一般包括低速轴、高速轴、增速齿轮箱、联轴节和制动器等。

齿轮箱是将风力机轴上的低速旋转输入转变为高速旋转输出,以便与发电机运转所需要的转速相匹配。

偏航系统的功能是跟踪风向变化,驱动机舱围绕塔架中心线旋转,使风轮扫掠面与风向保持垂直。

控制系统是风力机在各种自然条件与工况下正常运行的保障,包括调速、调向和安全控制。

发电机是将风轮的机械能转换为电能。

机舱由底盘和机舱罩组成,底盘上安装除了控制器以外的主要部件。

塔架支撑叶轮达到所需要的高度,它除了要承受风力机的重力外,还要承受吹向风力机和塔架的风压,以及风力机运行的动载荷。

风力发电机组中,水平轴式风力发电机组是目前技术最成熟、产量最大的形式,达98%以上;垂直轴风力发电机组因其效率低、需起动设备等技术原因应用较少,因此下面主要介绍水平轴风力发电机组的结构。

风力发电机的分类

风力发电机的分类

1,风力发电机按叶片分类。

按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。

(1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。

水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。

适合于大型风力发电厂。

水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。

到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。

(2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。

垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。

垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。

按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。

凡属轴流风扇的叶片数目往往是奇数设计。

这是由于若采用偶数片形状对称的扇叶,不易调整平衡。

还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。

因此设计多为轴心不对称的奇数片扇叶设计。

对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。

包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。

所以绝大多数风扇都是三片叶的。

三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。

降低维修成本。

按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。

风力发电机的分类

风力发电机的分类

.1,风力发电机按叶片分类。

按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。

水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发(1)水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。

适合于大型风电机。

力发电厂。

水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。

到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。

垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力2)(发电机。

垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,垂直轴与水平式12-14级台风),启动风速小维修保养简单。

叶片转动空间小,抗风能力强(可抗的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。

按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。

这是由于若采用偶数片形状对称的扇叶,不易调凡属轴流风扇的叶片数目往往是奇数设计。

整平衡。

还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴因此设计多为轴心不对称的奇数片扇叶设计。

对于轴心不对称的奇数片扇叶,这一原发生断裂。

则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。

包括家庭使用的电风,这样的叶片流量大,噪声低,符合流体力学个叶片的,叶片形状是鸟翼型(设计术语)扇都是3原理。

所以绝大多数风扇都是三片叶的。

三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。

降低维修成本。

按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P130-26
三叶片风轮的性能比较好,目前,水平轴风电机组一般 采用两叶片或三叶片风轮,其中以三叶片风轮为主。我国安 装投运的大型并网风电机组几乎全部采用三叶片风轮。 叶片数量减少,将使风轮制造成本降低,但也会带来很 多不利的因素,在选择风轮叶片数时要综合考虑。两叶片风 轮上的脉动载荷大于三叶片风轮。另外,由于两叶片风轮转 速高,在旋转时将产生较大的空气动力噪声,对环境产生不 利影响,而且风轮转速快视觉效果也不好。 风轮实度:风轮叶片总面积与风轮扫掠面积的比值,常 用于反映风轮的风能转换性能。 风轮的叶片数多,风轮的实度大,功率系数比较大,但 功率曲线较窄,对叶尖速比的变化敏感。叶片数减小,风轮 实度下降,其最大功率系数相应降低,但功率曲线也越平坦, 对叶尖速比变化越不敏感。
P130-27
风轮转速、叶尖速比
叶尖速比为风轮叶片尖端线速度与风速之比,是描述 风电机组风轮特性的一个重要的无量纲量。 wR r
P130-18
• H形风轮结构简单,但离心力使叶片在其连接点处产生严 重的弯曲应力。直叶片借助支撑件或拉索来支撑,这些支 撑产生气动阻力,降低了风力机的效率。 • φ形风轮所采用的弯叶片只承受张力,不承受离心力载荷, 使弯曲应力减至最小。由于材料可承受的张力比弯曲应力 要强,对于相同的总强度,φ形叶片比较轻,且比直叶片 可以更高的速度运行。但φ形叶片不便采用变浆距方法来 实现自起动和控制转速。对于高度和直径相同的风轮,φ 形转子比H形转子的扫掠面积要小一些。
P130-19
§3-2 风电机组主要参数及设计级别
风电机组的性能和技术规格可以通过一些主要参数反映。
P130-20
一. 主要参数 风轮直径与扫掠面积
风轮直径是风轮旋转时的外圆直径,用D表示。风 轮直径大小决定了风轮扫掠面积的大小以及叶片的长度, 是影响机组容量大小和机组性价比的主要因素之一。 根据贝茨理论,风轮从自然风中获取的功率为 1 P SC P 3 2 式中,S为风轮的扫掠面积,S 4 D增加,则其扫掠面积与D2成比例增加,其获取的 风功率也相应增加。
P130-21
D2
风电机组风轮直径和相应功率的发展变化情况。 早期的风电机组直径很小,额定功率也相对较低,大 型兆瓦机组的风轮直径在70~80m范围,目前风轮直径 超过100m、额定功率超过若干兆瓦的风电机组投入商 业运行。
P130-22
轮毂高度 风轮高度是指风轮轮毂中心离地面的高度,是风电机 组设计时要考虑的一个重要参数。 由于风剪切特性,离地面越高,风速越大,具有的风 能也越大,因此大型风电机组的发展趋势是轮毂高度越来 越高。但是轮毂高度增加,所需要的塔架高度也相应增加, 当塔架高度达到一定水平时,设计、制造、运输和安装等 方面都将产生新的问题,也导致风电机组成本相应增加。
P130-7
按传动形式划分
高传动比齿轮箱型: 优点:由于极对数小,结构简单,体积小; 缺点:传动系统结构复杂,齿轮箱设计、运行维护复 杂,容易出故障。
直接驱动型:采用多级同步风力发电机,让风轮直接 带动发电机低速旋转。 优点:没有了齿轮箱所带来的噪声、故障率高和维护 成本大等,提高了运行可靠性。 缺点:发电机极对数高,体积比较大,结构复杂。
P130-12
一、水平轴风力发电机
水平轴风力机的叶片围绕一个水平轴旋转,旋转平面与 风向垂直。叶片径向安置于风轮上,与旋转轴垂直或近似 垂直。风轮叶片数目视风力机用途而定,用于风力发电的 风力机的叶片数一般取1~3片,用于风力提水的风力机叶 片数一般取12~24片。
P130-13
按风轮转速的快慢划分,可分为高速风力机和低速风力 机。 高速风力机叶片数较少,1~3片应用得较多,其最佳转 速对应的风轮叶尖线速度为5~15倍风速。在高速运行时, 高速风力机有较高的风能利用系数。由于叶片数较少,在 输出功率相同的条件下,比低速风轮要轻得多,因此适用 于发电。 叶片数较多的风力机的最佳转速较低,为高速风力机的 一半甚至更低,风能利用率也较高速风轮的低,通常称为 低速风力机。起动力矩大,起动风速低。低速运行产生较 高的转矩,因而适用于提水。
P130-6
通过传动系统连接风轮和发电机,使发电机转子达 到所需要的转速。并网风电机组所用交流发电机的同步 转速为 60 f
n p (r / min)
p为发电机磁极对数;为电网频率, f 50Hz。 风轮转速较低,约10~20r/min,而发电机要输出 50Hz的交流电功率,当发电机的磁极对数不同时,要求 转子的转速也不同。如当磁极对数为2时,要求发电机其 转子转速在1500r/min左右,这时需要在风轮与发电机组 之间用齿轮箱进行增速。如果发电机组的极对数足够大, 使得发电机转速与风轮转速接近,就不需要增速齿轮箱。
P130-10
陆地风电机组 海上风电机组
沿海风场风况和环境条件与陆地风场存在差别,海上风 电机组具有一些特殊性: 1)适合选用大容量风电机组。海上风速通常比沿岸陆地 高,风速比较稳定,不受地形影响,风湍流强度和风切变 都比较小,并且具有稳定的主导风向。在相同容量下,海 上风电机组的塔架高度比陆地机组低。
P130-11
2)风电机组安全可靠性要求更高。海上风电场遭遇极端气象 条件的可能性大,强阵风、台风和巨浪等极端恶劣天气条件都 会对机组造成严重破坏。海上风电场与海浪、潮汐具有较强的 耦合作用,使得风电机组运行在海浪干扰下的随机风场中,载 荷条件比较复杂。海上风电机组长期处在含盐湿热雾腐蚀环境 中,加之海上风电机组安装、运行、操作和维护等方面都比陆 地风场困难。因此,海上风电机组结构,尤其是叶片材料的耐 久性问题极为重要。 3)基础形式与陆地风电机组有巨大差别。由于不同海域的水 下情况复杂、基础建造需要综合考虑海床地质结构、离岸距离、 风浪等级、海流情况等多方面影响,因此海上风电机组复杂, 用于基础的建设费用也占较大比例。 海上风电在风资源评估、机组安装、运行维护、设备监控、 电力输送等许多方面都与陆地风电存在差异,技术难度大、建 设成本高。
定桨距风力机
按功率调节方式划分
变桨距风力机 主动失速型风力机
P130-4
定桨距风力机:叶片固定在轮毂上,桨距角不变,风力 机的功率调节完全依靠叶片的失速性能。当风速超过 额定风速时,在叶片后端将形成边界层分离,使升力 系数下降,阻力系数增加,从而限制了机组功率的进 一步增加。 优点:结构简单。 缺点:不能保证超过额定风速区段的输出功率恒定,并 且由于阻力增大,导致叶片和塔架等部件承受的载荷相 应增大。此外,由于桨距角不能调整,没有气动制动 功能,因此定桨距叶片在叶尖部位需要设计专门的制 动机构。
P130-5
变桨距风力机:叶片和轮毂不是固定连接,叶片桨距角可调。 在超过额定风速范围时,通过增大叶片桨距角,使攻角减小, 以改变叶片升力与阻力的比例,达到限制风轮功率的目的, 使机组能够在额定功率附近输出电能。 优点:高于额定风速区域可以获得稳定的功率输出。 缺点:需要变桨距调节机构,设备结构复杂,可靠性降低。 目前的大型兆瓦级风电机组普遍采用变桨距控制技术。 主动失速型风力机:工作原理相当于以上两种形式的组合。 利用叶片的失速特性实现功率调节,叶片与轮毂不是固定连 接,叶片可以相对轮毂转动,实现桨距角调节。当机组达到 额定功率后,使叶片向桨距角减小的方向转过一个角度,增 大来风攻角,使叶片主动进入失速状态,从而限制功率。 优点:改善了被动失速机组功率调节的不稳定性。 缺点:增加了桨距调节机构,使设备变得复杂。
P130-15
二、垂直轴风力发电机
定义:垂直轴风力机的风轮围绕一个垂直轴进行旋转。 特点:①无需调风向装置,可接受来自任何方向的风, 风向改变时无需对风。②齿轮箱和发电机均可安装在地 面上或风轮下,运行维修简便,费用较低。③叶片结构 简单,制造方便,设计费用较低。 分类:阻力型风力机:利用空气对叶片的阻力做功。 升力型风力机:利用翼型升力做功。
P130-17
升力型:达里厄型风力机是水平轴风力机的主要竞争者。 形式:有φ形、H形、△形、Y形和菱形等。根据叶片结构 形状,可简单地归纳为直叶片和弯叶片两种。
H形风轮和φ形风轮应用最为广 泛。叶片具有翼型剖面,空气绕叶 片流动而产生的合力形成转矩,因 此叶片几乎在旋转一周内的任何角 度都有升力产生。达里厄风力机最 佳转速较水平轴的慢,但比S形风 轮快很多,其风能利用系数与水平 轴风力机相当。
P130-14
按照风轮与塔架相风式风力机 以空气流向作为参考,风轮在塔架前迎风旋转的风力机为 逆风式风力机。需要调风装置,使风轮迎风面正对风向。
顺风式风力机
风轮在塔架的下风位置旋转的风力机。能够自动对准风向, 不需要调向装置。缺点:空气流先通过塔架然后再流向风 轮,会造成塔影效应,风力机性能降低。
P130-23
叶片数 组成风轮的叶片个数,用B表示。 选择风轮叶片数时要考虑风电机组的性能和载荷、风轮 和传动系统的成本、风力机气动噪声及景观效果等因素。
采用不同的叶片数,对风电机组的气动性能和结构设计都将 产生不同的影响。风轮的风能转换效率取决于风轮的功率系数。
P130-24
多叶片风车的最佳 叶尖速比较低,风轮 转速可以很慢,因此 也称为慢速风轮。当 然多叶片风轮由于功 率系数很低,因而很 少用于现代风电机组。
第三章
风力机分类和构成
风力机的类型
风电机组主要参数及设计级别 水平轴风力机构造
§3-1 风力机的类型
按容量划分
小型风力机:容量小于60kW 中型风力机:容量为70~600kW 大型风力机:容量为600~1000kW(1MW) 巨型风力机:容量大于1000kW。 单机容量越大,桨叶越长。2MW风力机叶片的直 径已经达到72m,最长的叶片已经做到50m,且随着机 组容量的增加会更长。
P130-25
风轮的作用是将风能转换成推动风轮旋转的机械转矩。 衡量风轮转矩性能重要参数: 转矩系数:功率系数除以叶尖速比。 转矩系数决定了传动系统中主轴及齿轮箱的设计。现代并网 风电机组希望转矩系数小,以降低传动系统的设计费用。
相关文档
最新文档