精选最新高中数学单元测试试题-统计专题考试题库(含标准答案)

合集下载

新人教版高中数学选修三第三单元《成对数据的统计分析》测试题(有答案解析)

新人教版高中数学选修三第三单元《成对数据的统计分析》测试题(有答案解析)
A.-1B.-6C.1D.6
4.广告投入对商品的销售额有较大影响,某电商对连续5个年度的广告费x和销售额y进行统计,得到统计数据如表(单位:万元):
广告费x
2
3
4
5
6
销售额y
29
41
50
59
71
由上表可得回归方程为 ,又已知生产该商品的成本(不含广告费)为 (单位:万元),据此模型预测最大的纯利润为( )
(1)完成 列联表,并回答能否有 的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣
没兴趣
合计

55

合计
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
0.150
0.100
0.050
0.025
0.010
2.072
④对分类变量 与 的随机变量K2的观测值k来说,k越小,判断“ 与 有关系”的把握越大.其中真命题的序号为( )
A.①④B.②④C.①③D.②③
9.在一组样本数据 , ,…, ( , , … 不全相等)的散点图中,若所有样本点 都在直线 上,则这组样本数据的样本相关系数为()
A.-3B.0C.-1D.1
④不能在犯错误的概率不超过 的前提下认为药物有效
A. B. C. D.
第II卷(非选择题)
请点击修改第II卷的文字说明
参考答案
13.为了解某高校学生使用手机支付和现金支付的情况,抽取了部分学生作为样本,统计其喜欢的支付方式,并制作出如下等高条形图:
根据图中的信息,下列结论中不正确的是()
A.样本中的男生数量多于女生数量B.样本中喜欢手机支付的数量多于现金支付的数量

人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。

高中数学 集合单元测试题

高中数学 集合单元测试题

集合单元测试题单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明一、选择题1.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},那么以下图中阴影表示的集合为〔 〕A .{2}B .{3}C .{-3,2}D .{-2,3} 2.当x ∈R ,以下四个集合中是空集的是〔 〕 A. {x|x 2-3x+2=0} B. {x|x 2<x} C. {x|x 2-2x+3=0} C. {x|sinx+cosx=65} 3.设集合{}25, log (3)A a =+,集合{, }B a b =,假设{2}AB =, 那么A B 等于〔 〕 A.{}1,2,5 B.{}1,2,5- C.{}2,5,7 D.{}7,2,5- 4.设集合{}2|1A y y x ==-,{}2|1B x y x ==-,那么以下关系中正确的选项是〔 〕A .AB = B .A B ⊆C .B A ⊆D .[1,)A B ⋂=+∞5.设M ,P 是两个非空集合,定义M 与P 的差集为M-P={x|x ∈M 且x ∉p},那么M-〔M-P 〕等于〔 〕 A. P B. MP C. MP D. M6.{}{}2230,A x x x B x x a =--<=<, 假设A ⊆/B , 那么实数a 的取值范围是( ) A. (1,)-+∞ B. [3,)+∞ C. (3,)+∞ D. (,3]-∞ 7.集合M ={x |x =sin 3πn ,n ∈Z},N ={ x |x =cos 2πn ,n ∈Z },M ∩N = 〔 〕A .}{1,0,1- B .}{0,1 C .{0} D .∅8.集合M ={x |Z k k x ∈+=,412},N ={x │Z k k x ∈+=,214},那么〔 〕A .M =NB .M NC .M ND .M ⋂N =φ9. 设全集∪={x |1≤x <9,x ∈N},那么满足{}{}1,3,5,7,81,3,5,7U C B ⋂=的所有集合B的个数有 〔 〕A .1个B .4个C .5个D .8个 10.集合M ={(x ,y )︱y =29x -},N ={(x ,y )︱y =x +b },且M ∩N =∅,那么实数b 应满足的条件是〔 〕 A .︱b ︱≥23 B .0<b <2C .-3≤b ≤23D .b >23或者b <-3 二、填空题11.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,那么实数k 的取值范围是 . 12.设全集U=R ,A=(2){|21},{|ln(1)}x x x B x y x -<==-,那么右图中阴影局部表示的集合为 .13.集合A={}4,3,2,1,那么A 的真子集的个数是 .14.假设集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈-⎪⎭⎫ ⎝⎛==R x ,121y |y S x,{}1x ),1x (log y |y T 2->+==,那么T S 等于 . 15.满足{}0,1,2{0,1,2,3,4,5}A ⊆的集合A 的个数是_______个.16.集合1{|3}2P x x =≤≤,函数22()log (22)f x ax x =-+的定义域为Q. 〔1〕假设12[,),(2,3]23P Q P Q ==-,那么实数a 的值是 ;〔2〕假设P Q φ=,那么实数a 的取值范围为 .三、解答题17.函数1()2x f x x +=-的定义域集合是A,函数22()lg[(21)]g x x a x a a =-+++的定义域集合是B〔1〕求集合A 、B 〔2〕假设A B=B,务实数a 的取值范围.18.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;假设φ=B A C U )(,求m 的值.19.设集合}4232/1{≤≤=-xx A ,{}012322<--+-=m m mx x x B . (1)当Z x ∈时,求A 的非空真子集的个数;(2)假设B=φ,求m 的取值范围;(3)假设B A ⊇,求m 的取值范围.20. 对于函数f(x),假设f(x)=x ,那么称x 为f(x)的“不动点〞,假设x x f f =))((,那么称x为f(x)的“稳定点〞,函数f(x)的“不动点〞和“稳定点〞的集合分别记为A和B,即xxfxA==)(|{},})]([|{xxffxB==.(1) 求证:A⊆B(2) 假设2()1(,)f x ax a R x R=-∈∈,且A B=≠φ,务实数a的取值范围.单元测试参考答案一、选择题1.答案:A 2.答案:C 3.答案:A 4.提示:{|0}A y y =≥,{|11}B x x x =≥≤-或.答案: D5.答案:B 6.答案:B 7. 由3πn 与2πn 的终边位置知M ={23-,0,23},N ={-1,0,1},应选C.8.C 9.D 10.D 11.提示:2121k k -<+, ∴B ≠∅,答案:112k -≤≤12.答案:(0,2),(,1)A B ==-∞,图中阴影局部表示的集合为[1,2)UAB =,13.答案:15 14. 答案:{|1}y y ≥- 15. 答案:7 16. 答案:32a =-;(,4]a ∈-∞- 17. 解:〔1〕A ={}|12x x x ≤->或B ={}|1x x a x a <>+或〔2〕由A B =B 得A⊂B ,因此112a a >-⎧⎨+≤⎩所以11a -<≤,所以实数a的取值范围是(]1,1-18. 解:{}2,1A =--,由(),U C A B B A φ=⊆得,当1m =时,{}1B =-,符合B A ⊆;当1m ≠时,{}1,B m =--,而B A ⊆,∴2m -=-,即2m =∴1m =或者2.19. 解:化简集合A={}52≤≤-x x ,集合B 可写为{}0)12)(1(<--+-=m x m x x B (1){}5,4,3,2,1,0,1,2,--=∴∈A Z x ,即A 中含有8个元素,∴A 的非空真子集数为254228=-〔个〕.(1)显然只有当m-1=2m+1即m=--2时,B=φ. (2)当B=φ即m=-2时,A B ⊆=φ;当B φ≠即2-≠m 时〔ⅰ〕当m<-2 时,B=(2m-1,m+1),要A B ⊆只要⎩⎨⎧≤≤-⇒≤--≥+62351212m m m ,所以m 的值不存在;〔ⅱ〕当m>-2 时,B=〔m-1,2m+1〕,要A B ⊆只要⎩⎨⎧≤≤-⇒≤+-≥-2151221m m m .综合,知m 的取值范围是:m=-2或者.21≤≤-m20.证明(1).假设A =ϕ,那么A ⊆B 显然成立;假设A ≠ϕ,设t ∈A ,那么f(t)=t ,f(f(t))=f(t)=t ,即t ∈B ,从而 A ⊆B.解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠ϕ,知 a =0 或者 ⎩⎨⎧≥+=∆≠0410a a即41-≥aB 中元素是方程 x ax a =--1)1(22即 0122243=-+--a x x a x a 的实根由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为0)1)(1(222=+-+--a ax x a x ax因此,要A =B ,即要方程0122=+-+a ax x a ①要么没有实根,要么实根是方程012=--x ax ②的根.假设①没有实根,那么0)1(4222<--=∆a a a ,由此解得43<a假设①有实根且①的实根是②的实根,那么由②有 a ax x a +=22,代入①有 2ax +1=0.由此解得a x 21-=,再代入②得 ,012141=-+a a 由此解得43=a .故 a 的取值范围是 ]43,41[-。

精选高中数学单元测试试题-统计专题考核题库(含标准答案)

精选高中数学单元测试试题-统计专题考核题库(含标准答案)

2019年高中数学单元测试试题 统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生( )(A )30人,30人,30人 (B )30人,45人,15人(C )20人,30人,10人 (D )30人,50人,10人 (2006四川文) 3.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则 [B](A) A x >B x ,sA >sB (B)A x <B x ,sA >sB(C) A x >B x ,sA <sB(D) A x <B x ,sA <sB (2010陕西文数)4.4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是( ). A.90 B.75 C. 60 D.45(2009山东卷理)【解析】:产品净重小于100克的概率为(0.050+0.100)×2=0.300, 已知样本中产品净重小于100克的个数是36,设样本容量为n , 则300.036=n,所以120=n ,净重大于或等于98克并且小于 104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本 中净重大于或等于98克并且小于104克的产品的个数是 120×0.75=90.故选A.第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题5.某校高一、高二、高三学生共有3200名,其中高三800名,如果通过分层抽样的方法从全体学生中抽取一个160人的样本,那么应当从高三的学生抽取的人数是 ▲6.某单位为了了解用电量y (度)与气温x (°C )之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程ˆybx a =+中2b =-,预测当气温为4C -︒时,用电量的度数约为 .第8题图7.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份x 1 2 3 4 用水量y 4.5432.5由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是 .8.若施肥量x 千克与水稻产量y 千克的线性回归方程为ˆ5250,yx =+ 则当施肥量x 为80千克时,预计水稻产量为 ▲ 千克.9.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,考虑采用系统抽样,则分段的间隔k 为___30_________10.某校有高中生1200人,初中生900人,老师120人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从初中生中抽取人数为60人,那么n =___148 ___________11.有一容量为10的样本:2,4,7,6,5,9,7,10,3,8,则数据落在[)5.5,7.5内的频率为 ▲ . 5u.k.s12.调查某单位职工健康状况,其青年人数为300,中年人数为150,老年人数为100,现考虑采用分层抽样,抽取容量为22的样本,则青年、中年、老年各层中应抽取的个体数分别为_____________ 〖解〗12、6、413.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家。

精选新版高一数学单元测试题-集合完整考题库(含标准答案)

精选新版高一数学单元测试题-集合完整考题库(含标准答案)

2019年高中数学单元测试试题 集合(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.若U ={1,2,3,4,},M={1,2},N={2,3},则Cu(M ∪N) 是 。

2.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 ( )A .A ⊂≠B B .B ⊂≠AC .A=BD .A∩B=∅(2012课标文)3.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()U UAB B A 痧=( )(A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或(2008浙江理) (2)4.若集合{}20A x x x =|-<,{|03}B x x =<<,则AB 等于( )A .{}01x x |<<B .{}03x x |<<C .{}13x x |<<D .∅(2008福建文)(1)5.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A.{}|34x x x ≤>或 B .{}|13x x -<≤C.{}|34x x ≤<D .{}|21x x -≤-<(2008北京文)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题6.已知集合{124}A =,,,{246}B =,,,则A B = ▲ .7.已知全集U={1,2,3,4,5,6},集合A={l ,3,5},B={l ,2},则(СU A)∩B = ▲ .8.以下六个关系式:①{}00∈,②{}0⊇∅,③Q ∉3.0, ④N ∈0, ⑤{}{}a b b a ,,⊆,⑥{}2|20,x x x Z -=∈是空集,其中错误的个数是 个9.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 10.期中考试,某班数学优秀率为70%,语文优秀率为75%.则上述两门学科都优秀的百分率至少为45%。

精选最新高中数学单元测试试题-统计专题考核题库完整版(含答案)

精选最新高中数学单元测试试题-统计专题考核题库完整版(含答案)

2019年高中数学单元测试试题 统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.某校共有学生2000名,各年级男、女学生人数如右表示,已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三年级中抽取的学生人数为 ▲ .2.(2009宁夏海南理)对变量x ,y 观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断.( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 用散点图可以判断变量x 与y 负相关,u 与v 正相关.3.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法(2004湖南理)4.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则 [B](A) A x >B x ,sA >sB (B) A x <B x ,sA >sB (C) A x >B x ,sA <sB (D)A x <B x ,sA <sB (2010陕西文数)4.5.一个容量100的样本,其数据的分组与各组的频数如下表则样本数据落在(10,40)上的频率为A. 0.13B. 0.39C. 0.52D. 0.64(2009福建文)解析 由题意可知频数在(]10,40的有:13+24+15=52,由频率=频数÷总数可得0.52.故选C. 16.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。

(压轴题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)(1)

(压轴题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)(1)

一、选择题1.把5名同学分配到图书馆、食堂、学生活动中心做志愿者,每个地方至少去一个同学,不同的安排方法共有( )种. A .60B .72C .96D .1502.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .5113.已知()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-,则展开式中的常数项为( ) A .80B .80-C .40D .40-4.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( )A .448B .448-C .672D .672-5.已知231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*n N ∈,则n 的值可以是( )A .5B .6C .7D .86.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7B .8C .11D .147.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种8.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4809.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .27B .81C .54D .10810.212nx x ⎛⎫ ⎪⎝⎭-的展开式中二项式系数之和是64,含6x 项的系数为a ,含3x 项系数为b ,则a b -=( )A .200B .400C .-200D .-40011.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .312.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .24 B .48 C .72D .120二、填空题13.化简:()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++=______.14.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______.15.已知x 、y 满足组合数方程21717x yC C =,则xy 的最大值是_____________. 16.若348,n n A C =则n 的值为_______.17.设0(cos sin )a x x dx π=-⎰,则二项式6(a x x的展开式中含2x 项的系数为______.18.已知33210n n A A =,那么n =__________.19.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.20.()()611ax x -+的展开式中,3x 项的系数为10-,则实数a =___________.三、解答题21.在二项式()32nx -的展开式中.(1)若前3项的二项式系数和等于67,求二项式系数最大的项; (2)若第3项的二项式系数等于第18项的二项式系数,求奇次项系数和.22.已知()*3n x n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是1∶3, (1)求n 的值;(2)求二项展开式中各项二项式系数和以及各项系数和; (3)求展开式中系数的绝对值最大的项.23.(1)解不等式:222213A 12A 11A x x x +++≤; (2)已知2*012(21)(N )n n n x a a x a x a x n -=++++∈,且284a =-.求0246a a a a +++的值.24.已知n的展开式的各项系数之和等于5⎛⎝展开式中的常数项,求n展开式中含1a -的项的二项式系数. 25.在2(n x+的展开式中,第4项的系数与倒数第4项的系数之比为12.(1)求n 的值;(2)求展开式中所有的有理项; (3)求展开式中系数最大的项.26.已知二项式n⎛⎝的展开式中各项二项式系数的和为256,其中实数a 为常数.(1)求n 的值;(2)若展开式中二项式系数最大的项的系数为70,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先把5名同学分成3组,有113,122++++两种情况,再将他们分配下去即可求出.【详解】5名同学分成3组,有113,122++++两种情况,故共有1235452225C C C A +=种分组方式,再将他们分配到图书馆、食堂、学生活动中心有336A =种方式,根据分步乘法计数原理可知,不同的安排方法共有256150⨯=种. 故选:D . 【点睛】本题主要考查有限制条件的排列组合问题的解法应用,解题关键是对“至少”的处理,属于中档题.方法点睛:常见排列问题的求法有: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.C解析:C 【分析】对甲分甲选牛或羊作礼物、甲选马作礼物,利用分步计数原理和分类计数原理计算出事件“三位同学都选取了满意的礼物”所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】若甲选牛或羊作礼物,则乙有3种选择,丙同学有10种选择,此时共有231060⨯⨯=种;若甲选马作礼物,则乙有4种选择,丙同学有10种选择,此时共有141040⨯⨯=种. 因此,让三位同学选取的礼物都满意的概率为31260401005132066A +==. 故选:C. 【点睛】本题考查古典概型概率的计算,同时也涉及了分类计数和分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.3.B解析:B 【分析】令1x =,由展开式中所有项的系数和为2-,列出方程并求出a 的值,得出展开式中常数项为52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和,然后利用二项展开式的通项公式求解. 【详解】解:由题可知,()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-, 令1x =,则所有项的系数和为()()5211121a a ⎛⎫+-=-+=- ⎪⎝⎭,解得:1a =,()()555522221x a x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫∴+-=+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为: 52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和, 由于52x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()5515522rr r r r r r T C x C x x --+⎛⎫=⋅-=⋅-⋅ ⎪⎝⎭,当521r -=-时,即3r =时,52x x ⎛⎫- ⎪⎝⎭中1x -的系数为:()335280C ⨯-=-,当520r -=时,无整数解,所以()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为80-.故选:B. 【点睛】本题考查二项式定理的应用,考查利用赋值法求二项展开式所有项的系数和,以及二项展开式的通项公式,属于中档题.4.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rrr r r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.5.C解析:C 【分析】将条件转化为31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项,然后写出31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,即可分析出答案. 【详解】因为231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项, 所以31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项为:4131,0,1,2,,rr n r r n r r n n T C x C x r n x --+⎛⎫=== ⎪⎝⎭所以当n 取5,6,7,8时,方程40,41,42n r n r n r -=-=-=无解检验可得7n = 故选:C 【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.6.A解析:A 【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果. 【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号, 此时有1种方法; 第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有1337++=种方式. 故选:A. 【点睛】本题考查分类加法计数原理,属于中档题.7.D解析:D 【分析】根据(1)(2)(3)(4)f f f f ≤≤≤中等号所取个数分类讨论,利用组合知识求出即可. 【详解】解:当(1)(2)(3)(4)f f f f ≤≤≤中全部取等号时,情况有155C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有两个取等号,一个不取等号时,情况有215330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有一个取等号,两个不取等号时,情况有315330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中都不取等号时,情况有455C =种;共560+60+5=70+种. 故选:D. 【点睛】本题考查分类讨论研究组合问题,关键是要找准分类标准,是中档题.8.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.9.B解析:B以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果. 【详解】甲在五楼有33种情况,甲不在五楼且不在二楼有11232354C C ⨯=种情况,由分类加法计数原理知共有542781+=种不同的情况, 故选B. 【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.10.B解析:B 【分析】由展开式二项式系数和得n =6,写出展开式的通项公式,令r=2和r=3分别可计算出a 和b 的值,从而得到答案. 【详解】由题意可得二项式系数和2n =64,解得n =6.∴212n x x ⎛⎫ ⎪⎝⎭-的通项公式为:()()6261231661212rr r r r r rr T C x C x x ---+⎛⎫=-=- ⎪⎝⎭, ∴当r=2时,含x 6项的系数为()2262612240C a --==, 当r=3时,含x 3项的系数为()3363612160C b --=-=,则400a b -=, 故选B . 【点睛】本题考查二项式定理的通项公式及其性质,考查推理能力与计算能力,属于基础题.11.C解析:C 【分析】由二项式定理展开项可得1ab =,再22022abxdx xdx a b +=+⎰⎰利用基本不等式可得结果.【详解】二项式()6ax+b 的展开式的通项为6616r r r r r T C a b x --+=当63,3r r -==时,二次项系数为3336201C a b ab =∴=而定积分2202222abxdx xdx a b ab +=+≥=⎰⎰当且仅当a b =时取等号 故选C本题考查了二项式定理,定积分和基本不等式综合,熟悉每一个知识点是解题的关键,属于中档题.12.C解析:C 【分析】根据题意,分2种情况讨论: ①A 不参加任何竞赛,此时只需要将,,,B C D E 四个人全排列,对应参加四科竞赛即可;②A 参加竞赛,依次分析A 与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论. 【详解】A 参加时参赛方案有31342348C A A = (种),A 不参加时参赛方案有4424A = (种),所以不同的参赛方案共72种,故选C. 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.二、填空题13.【分析】由将原式转化为再由二项式定理可得答案【详解】∴故答案为:【点睛】本题考查组合数公式和二项式定理的应用考查转化思想属于中档题 解析:np【分析】由11=kk n n kC nC --将原式转化为()()()1232311110121111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++,再由二项式定理可得答案. 【详解】()()()()111!1!!=!()!1!()!1!()!kk n n nk n n n kn kC nC k n k k k n k k n k ----===-----,∴()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++()()()123212311111=111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++()()11211111=11n n n n n n n np C p C p C p p -------+⎦+⎡⎤-+-⎣1[(1)]n np p p -=-+11n np -=⋅np =故答案为:np 【点睛】本题考查组合数公式和二项式定理的应用,考查转化思想,属于中档题.14.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.15.【分析】由组合数的性质得出或然后利用二次函数的性质或基本不等式求出的最大值并比较大小可得出结论【详解】满足组合数方程或当时则;当时因此当时取得最大值故答案为【点睛】本题考查组合数基本性质的应用同时也 解析:128【分析】由组合数的性质得出()208y x x =≤≤或217x y +=,然后利用二次函数的性质或基本不等式求出xy 的最大值,并比较大小可得出结论. 【详解】x 、y 满足组合数方程21717x yC C =,()208y xx ∴=≤≤或217x y +=,当2y x =时,则[]220,128xy x =∈;当217x y +=时,222172892224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭. 因此,当216x y ==时,xy 取得最大值128.故答案为128. 【点睛】本题考查组合数基本性质的应用,同时也考查了两数乘积最大值的计算,考查了二次函数的基本性质的应用以及基本不等式的应用,考查运算求解能力,属于中等题.16.【分析】由排列数和组合数展开可解得n=6【详解】由排列数和组合数可知化简得所以n=6经检验符合所以填6【点睛】本题考查排列数组合数方程一般用公式展开或用排列数组合公式化简求得n 注意n 取正整数且有范围 解析:6【分析】由排列数和组合数展开可解得n=6. 【详解】由排列数和组合数可知(1)(2)(3)(1)(2)8()4321n n n n n n n -----=⨯⨯⨯,化简得313n -=,所以n=6,经检验符合,所以填6. 【点睛】本题考查排列数组合数方程,一般用公式展开或用排列数组合公式化简,求得n,注意n 取正整数且有范围限制.17.192【分析】根据微积分基本定理首先求出的值然后再根据二项式的通项公式求出的值问题得以解决【详解】的通项公式为令故含项的系数为故答案为【点睛】本题主要考查定积分二项式定理的应用二项式展开式的通项公式解析:192 【分析】根据微积分基本定理首先求出a 的值,然后再根据二项式的通项公式求出r 的值,问题得以解决. 【详解】()()sin cos 1120a cosx sinx dx x x ππ=-=+=--=-⎰66⎛⎛∴-= ⎝⎝的通项公式为63162r r r r T C x --+= 令32r -=,1r = 故含2x 项的系数为61162192C -=故答案为192 【点睛】本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.18.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.19.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15 【解析】二项式nx⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.20.【分析】由分别写出和的展开式通项分别令的指数为求出对应的参数值代入通项可得出关于的等式进而可求得实数的值【详解】的展开式通项为所以的展开式通项为令可得由题意可得解得故答案为:【点睛】方法点睛:对于求 解析:2【分析】由()()()()6661111ax x x ax x -+=+-+,分别写出()61x +和()61ax x +的展开式通项,分别令x 的指数为3,求出对应的参数值,代入通项可得出关于a 的等式,进而可求得实数a 的值. 【详解】()()()()6661111ax x x ax x -+=+-+,()61x +的展开式通项为16kkk T C x +=⋅,所以,()61ax x +的展开式通项为1166r r r r r A axC x aC x ++=⋅=⋅,令313k r =⎧⎨+=⎩,可得32k r =⎧⎨=⎩,由题意可得3266201510C aC a -=-=-,解得2a =. 故答案为:2. 【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解.三、解答题21.(1)5610777536T x =-,677185024T x =;(2)19152+.【分析】(1)由题意得01267n n n C C C ++=,化简为21320n n +-=,解得n 的值,可以写出结果;(2)由题意得217n n C C =,解得n =19,在()1932x -的展开式中,分别令1x =和1x =-,得到2个式子,相减可得要求式子的值. 【详解】(1)在二项式()32nx -的展开式中,前3项的二项式系数和为01267n n n C C C ++=,化简为21320n n +-=,解得11n =或12n =-(舍),二项式为()1132x -,展开式共有12项,∴则展开式中二项式系数最大的项为第6和第7项,()55656113210777536T C x x =-=-和()6656711327185024T C x x =-=.(2)当第3项的二项式系数等于第18项的二项式系数,得217n n C C =,计算得19n =,二项式为()1932x -.在()192319012319..32.a a x a x a x x a x =+++++-中, 令1x =,则0123191...a a a a a =+++++,①令1x =-,则190123195...a a a a a =-+-+-,②①+②得()1902418152...a a a a +=++++,奇次项系数和为19152+.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,展开式的奇次项系数和,属于中档题.22.(1)7n =;(2)二项式系数和为128,各项系数和为1;(3)展开式中系数的绝对值最大的项为5222680x -. 【分析】(1由已知得12:1:3n n C C =,解得可得7n =;(2)由(1)将原式化为73x ⎛- ⎝,求得二项展开式中各项二项式系数和为72,令1x =时,可得二项展开式中各项系数和;(3)设第+1r 项的系数的绝对值最大,设()7732rrr f r C -=⨯⨯,建立不等式组()()()()+11f r f r f r f r ⎧≥⎪⎨≥-⎪⎩,解之求得以3r =,从而可得答案. 【详解】(1)()*3nx n N ⎛∈ ⎝的展开式的通项为:()()321332rrn n rr rr n r r n n T C x C x---+⎛==⨯⨯- ⎝, 又展开式中第2项与第3项的二项式系数之比是1∶3,所以12:1:3n n C C =,解得7n =;(2)由(1)得原式为73x ⎛- ⎝,所以二项展开式中各项二项式系数和为72128=, 令1x =,得二项展开式中各项系数和为7131⎛⨯ ⎝=;(3)73x ⎛ ⎝展开式的通项为()()37772177332rrr r r r r r T C x C x---+⎛==⨯⨯- ⎝,设第+1r 项的系数的绝对值最大, 设()7732r rrf r C -=⨯⨯,则()()()()+11f r f r f r f r ⎧≥⎪⎨≥-⎪⎩,即7+16+17771817732323232r r r r r r r r r r r r C C C C ------⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得131855r ≤≤,又r N *∈,所以3r =, 所以展开式中系数的绝对值最大的项为()3357337322473222680T C xx ⨯--=⨯⨯-=-.【点睛】本题考查二项式展开的通项,二项式系数,系数,二项式系数和,各项系数和,属于中档题.23.(1){}23,;(2)1093-. 【分析】(1)由排列数公式转化已知,再解一元二次不等式,最后注意排列数公式中n m ≥; (2)由二项展开式的通项公式表示2x 的系数,从而求得n ,最后由赋值法分别赋值1x =与x =-1再相加除以2即可. 【详解】(1)由题得()()()()321121111x x x x x x +++-≤+, 化简得22730x x -+≤,即()()2130x x --≤,所以132x ≤≤. 因为2x ≥,且*x N ∈所以不等式的解集为{}23,. (2)二项式展开中2x 的系数为()222C 12n n --,所以()222C 1284n n --=-,化简得2420n n --=,即()()760n n -+=, 因为*n N ∈,所以7n =.所以()72345670123456721x a a x a x a x a x a x a x a x -=+++++++, 当012345671,1x a a a a a a a a =+++++++=① 当1x =-,012345672187a a a a a a a a -+-+-+-=-②①+②得()024622186a a a a +++=-,所以02461093a a a a +++=-. 【点睛】本题考查运用排列数公式求参数取值范围,还考查了二项展开式中由指定项系数求参数并利用赋值法求系数和问题,属于中档题. 24.35 【分析】先研究5的展开式的通项为105556155((4,(0,1,2,3,4,5)r r rrr rr r T C C br ---+===.求出n 的展开式的各项系数之和,解方程求出n ,再由二项展开式的通项公式求得1a -的项是第4项 【详解】设5⎛⎝的展开式中的通项为1055561554,(0,1,2,3,4,5)rrrrrr r r T C C br ---+⎛⎛==⋅⋅= ⎝⎝.若求常数项,则令1050,26rr-=∴=,代入上式732T∴=.即常数项是72,又n的展开式的各项系数之和为722n=,∴7n=,而7的通项公式(()77177526731r rr r r rrrT C aC---++==-,令75126r-+=-,解得3r=,即二项式系数是3735C=【点睛】本题考查二项式的系数的性质,解题的关键是熟练掌握二项式的性质,考查了利用二项式的性质进行变形,属于中档题,25.(1)7n=;(2)14x,984x,4560x,1448x-; (3)32672x.【分析】(1)由二项展开式的通项公式分别求出第4项的系数与倒数第4项的系数,然后计算出结果(2)由通项公式分别计算当0246r=、、、时的有理项(3)设展开式中第1r+项的系数最大,列出不等式求出结果【详解】(1)由题意知:52212n rr rr nT C x-+=,则第4项的系数为332n C,倒数第4项的系数为332n nnC--,则有33332122nn nnCC--=即61122n-=,7n∴=.(2)由(1)可得()51421720,1,,7rr rrT C x r-+==,当0,2,4,6r=时所有的有理项为1357,,,T T T T即001414172T C x x==,229937284T C x x==,4444572560T C x x==,6611772448T C x x--==.(3)设展开式中第1r+项的系数最大,则117711772222r r r rr r r rC CC C++--⎧≥⇒⎨≥⎩()()12728r rr r⎧+≥-⎪⎨-≥⎪⎩131633r⇒≤≤,5r∴=,故系数最大项为335522672672T C x x==.【点睛】本题考查了二项式定理的展开式,尤其是通项公式来解题时的运用一定要非常熟练,针对每一问求出结果,需要掌握解题方法.26.(1)8n =;(2)12a =±. 【分析】(1)根据二项式系数和列方程,解方程求得n 的值.(2)根据二项式系数最大项为70,结合二项式展开式的通项公式列方程,解方程求得a 的值. 【详解】(1)由题知,二项式系数和1202256n n n n n n C C C C ++++==,故8n =;(2)二项式系数分别为01288888,,,,C C C C ,根据其单调性知其中48C 最大,即为展开式中第5项,∴44482()70C a -⋅⋅=,即12a =±. 【点睛】本小题主要考查二项式展开式有关计算,属于中档题.。

精选新版高中数学单元测试试题-统计专题考核题库完整版(含标准答案)

精选新版高中数学单元测试试题-统计专题考核题库完整版(含标准答案)

2019年高中数学单元测试试题统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.1 .(2012湖北文)容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40)的频率为()A.0.35B.0.45C.0.55D.0.652.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[)5.64,5.56的学生人数是()(A)20 (B)30 (C)40 (D)50(2006重庆理)3.(2004江苏)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时时间(小时)4.(2005浙江文)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题5.某公司为了改善职工的出行条件,随机抽取100名职工,调查了他们的居住地与公司间的距离d (单位:千米).由其数据绘制的频率分布直方图如图所示,则样本中职工居住地与公司间的距离不超过4千米的人数为 .6.从某项综合能力测试中抽取100人的成绩,统计如下表,则这100人成绩的标准差为 .7.某校有高中生1200人,初中生900人,老师120人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从初中生中抽取人数为60人,那么n =___148 ___________8.为了解高三女生的身高情况,从高三女生中选取容量为60的样本(60名女生身高,单位:cm ),分组情况如下:则a = ▲ .9.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,下图是根据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50,70),[70,90), [90,110),[110,130),[130,150],已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数大于或等于70个并且小于130个的人数是 .10.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 .15011.某学校有小学生125人,初中生280人,高中生95人,为了调查学生的身体状况,需要从他们当中抽取一个容量为100的样本,采用_______________方法较为恰当。

精选最新高中数学单元测试试题-统计专题考核题库完整版(含参考答案)

精选最新高中数学单元测试试题-统计专题考核题库完整版(含参考答案)

2019年高中数学单元测试试题 统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602.(2013年高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .013.1 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是(B)(A)(C)(D)4.样本(x 1,x 2,x n )的平均数为x,样本(y 1,y 2,,y n )的平均数为()y x y ≠.若样本(x 1,x 2,x n ,y 1,y 2,,y n )的平均数(1)z ax a y =+-,其中0<α<12,则n,m 的大小关系为 ( )A .n<mB .n>mC .n=mD.不能确定(2012江西理)5.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )(A)计算机行业好于化工行业. (B) 建筑行业好于物流行业.(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张. (2004上海理)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题6.某同学五次考试的数学成绩分别是120,129,121,125,130,则这五次考试成绩的方差是 。

高中数学统计试题及答案

高中数学统计试题及答案

高中数学统计试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是描述数据集中趋势的统计量?A. 方差B. 中位数C. 众数D. 标准差答案:B2. 在一组数据中,如果所有数据都相等,则该组数据的方差为:A. 0B. 1C. 无法确定D. 一个正数答案:A3. 以下哪个选项是描述数据离散程度的统计量?A. 平均数B. 众数C. 标准差D. 中位数答案:C4. 一组数据的众数是指:A. 数据中出现次数最多的数B. 数据中最小的数C. 数据中最大的数D. 数据中的平均数答案:A5. 在统计学中,标准差是用来衡量:A. 数据的集中程度B. 数据的离散程度C. 数据的对称性D. 数据的偏态答案:B6. 如果一组数据的平均数是10,标准差是2,则这组数据的方差是:A. 2B. 4C. 10D. 20答案:B7. 以下哪个选项不是描述数据分布的统计量?A. 平均数B. 标准差C. 众数D. 相关系数答案:D8. 一组数据的中位数是:A. 数据中最大的数B. 数据中最小的数C. 数据中居于中间位置的数D. 数据中的平均数答案:C9. 如果一组数据的方差是0,则这组数据的特点是:A. 所有数据都相等B. 所有数据都大于0C. 所有数据都小于0D. 无法确定答案:A10. 在统计学中,相关系数是用来衡量:A. 数据的集中程度B. 数据的离散程度C. 两个变量之间的相关性D. 数据的对称性答案:C二、填空题(每题4分,共20分)1. 一组数据的众数是______,即数据中出现次数最多的数。

答案:众数2. 如果一组数据的方差是4,则这组数据的标准差是______。

答案:23. 在统计学中,数据的中位数是将数据从小到大排序后,位于中间位置的数,如果数据个数为奇数,则中位数是______。

答案:中间的数4. 当一组数据的方差为0时,说明这组数据的特点是所有数据都______。

答案:相等5. 相关系数的取值范围在______之间。

统计考试题目及答案高中

统计考试题目及答案高中

统计考试题目及答案高中统计学是高中数学课程中的一个重要分支,它涉及到数据的收集、处理、分析和解释。

以下是一套高中统计学的考试题目及答案,供学生复习和教师参考。

一、选择题(每题2分,共10分)1. 下列哪个选项是描述统计数据集中趋势的指标?A. 方差B. 标准差C. 平均数D. 众数答案:C2. 在一组数据中,哪个数值能反映数据的离散程度?A. 均值B. 中位数C. 极差D. 方差答案:D3. 以下哪个统计图适合展示时间序列数据的变化趋势?A. 条形图B. 饼图C. 散点图D. 折线图答案:D4. 样本容量是指什么?A. 样本中数据的个数B. 总体中数据的个数C. 样本中数据的平均值D. 样本中数据的最小值答案:A5. 以下哪个是统计推断的常用方法?A. 描述统计B. 假设检验C. 相关分析D. 回归分析答案:B二、填空题(每空1分,共10分)6. 一组数据的中位数是将数据从小到大排列后,位于______位置的数值。

答案:中间7. 标准差是衡量数据______程度的统计量。

答案:离散8. 统计图的类型包括条形图、饼图、散点图和______。

答案:折线图9. 样本均值的计算公式是将所有样本值______,然后除以样本容量。

答案:相加10. 假设检验中,如果P值小于显著性水平α,则我们______原假设。

答案:拒绝三、简答题(每题10分,共20分)11. 请简述什么是正态分布,并说明其特点。

答案:正态分布是一种连续概率分布,其形状呈对称的钟形曲线,具有均值、方差和标准差等参数。

其特点是数据集中在均值附近,两侧数据逐渐减少,且具有对称性。

12. 解释什么是相关系数,并说明其取值范围及其意义。

答案:相关系数是度量两个变量之间线性关系强度和方向的统计量。

其取值范围在-1到1之间,1表示完全正相关,-1表示完全负相关,0表示无相关。

四、计算题(每题15分,共30分)13. 给定一组数据:3, 5, 7, 9, 11, 13,请计算其均值、中位数、极差和标准差。

精编新版高中数学单元测试试题-统计专题考试题库(含标准答案)

精编新版高中数学单元测试试题-统计专题考试题库(含标准答案)

2019年高中数学单元测试试题 统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A.①②B.②③C.③④D. ①④2.1 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( )A .9B .10C .12D .133.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 ( )A .101B .808C .1212D .2012(2012四川文)4.某校共有学生2000名,各年级男、女学生人数如右表示,已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三年级中抽取的学生人数为 ▲ .5.(2012湖南文理)设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题6.对某种电子元件使用寿命跟踪调查,所得样本频率分布直方图如图,若一批电子元件中寿命在100~300小时的电子元件的数量为400,则寿命在300~400小时的电子元件的数量为 .(第14题图)7.有100辆汽车在一个时段经过某一雷达测速区,这些 汽车运行时速的频率分布直方图如图所示,则时速超 过60 km /h 的汽车数量约为 辆.8.右图是2008年“隆力奇”杯第13届CCTV 青年歌手电视大奖 赛上某一位选手的部分得分的茎叶统计图,去掉一个最高分 和一个最低分后,所剩数据的方差为 ▲ .9.容量为100的样本的频率分布直方图如图所示,则样本数据落在范围[6,14)内的频率为 ▲ .10.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,考虑采用系统抽样,则分段的间隔k 为___30_________11.在某次数学小测验后,老师统计了所任两个班级的数学成绩,并制成下面的频率分布表,请你估计这两个班的本次数学测验的平均分为 . 827 9 8 4 4 4 6 7 9 1 3 6 第8题图12.为了了解在一个水库中养殖的鱼的有关情况,从这个水库的不同位置捕捞出n 条鱼. 将这n 个样本分成若干组,若某组的频数和频率分别为30和0.25,则n =___________. 〖解〗12013.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为__________h 〖解〗101314.从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为________.〖解〗25,60,1515.某人5 次上班途中所花的时间(单位:分钟)分别为x ,9,11,10,8。

(必考题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)(4)

(必考题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)(4)

一、选择题1.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .552.在二项式(1)n x +的展开式中,存在系数之比为2:3的相邻两项,则指数*()n n N ∈的最小值为( ) A .6B .5C .4D .33.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .34.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16805.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种6.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4807.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C8.()52112x x ⎛⎫-- ⎪⎝⎭展开式的常数项为() A .112B .48C .-112D .-489.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49610.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是( ) A .-5B .7C .-11D .1311.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种B .288种C .192种D .216种12.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( ) A .15-B .15C .60-D .60二、填空题13.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.14.若投掷一枚质地均匀的骰子,第一次投掷的点数为a ,第二次投掷的点数为b ,则b a >的概率为______.15.计算:01220181232019C C C C ++++=______.16.若28C x=3828C x -,则x 的值为_______. 17.二项式61(2x )x-的展开式中常数项为______(用数字表示). 18.现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).19.已知()1121011012101112x a a x a x a x a x +=+++++ ,则12101121011a a a a -+-+=_____.20.若102100121013x a a x a x a x -+++⋯+=(),则12310a a a a +++⋯+=_____.三、解答题21.已知(x 2x)n 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.22.在13nx ⎫⎪⎭(*n N ∈)的展开式中所有二项式系数之和为256.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问: (1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)24.已知()2*12nx n N x ⎛⎫-∈ ⎪⎝⎭的展开式中所有偶数项的二项式系数和为64. (1)求展开式中二项式系数最大的项;(2)求221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式中的常数项. 25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.①第5项的系数与第3项的系数之比是14:3;②第2项与倒数第3项的二项式系数之和为55;③22110n n nC C -+-=.已知在n的展开式中,________. (1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.26.已知二项式)22nx -.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和. (2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.2.C解析:C 【分析】利用二项式定理的展开式写出满足题意的表达式,然后即可求出指数*()n n N ∈的最小值.【详解】解:由题意知:123k n k n C C -=或者132k n k n C C -=.即123n k k -+= 或132n k k -+= 解得,533k n -= 或522k n -=.当533k n -=时,当3k =时,min 4n =; 当522k n -=时,当2k =时,min 4n =.综上所述: min 4n =. 故选:C. 【点睛】本题考查了二项式定理的应用.本题的易错点是未进行分类讨论.3.B解析:B 【分析】可得结论.写出各项的系数,由组合数性质知123456789a a a a a a a a a <<<<>>>>,结合数列123,,,,k a a a a ⋅⋅⋅是一个单调递增数列,可得结论. 【详解】由二项式定理,得98ii a C -=()*19,i i N≤≤∈,所以根据组合数性质知123456789a a a a a a a a a <<<<>>>>, 又数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,所以k 的最大值为5. 故选:B【点睛】本题主要考查二项式定理的运用,考查学生分析解决问题的能力,属于基础题.4.C解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C . 【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.5.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.6.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.7.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn mk n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.8.D解析:D 【分析】把51(2)x -按照二项式定理展开,可得()52112x x ⎛⎫-- ⎪⎝⎭的展开式的常数项.【详解】 由于()()52205142332455555111111121()2()4()8()1632x x C C C C C x x x x x x ⎛⎫⎛⎫---⋅-⋅+⋅-⋅+⋅- ⎪⎭= ⎪⎝⎝⎭故展开式的常数项为3583248C -+=-,故选D .【点睛】本题考查二项式定理的应用,考查了二项式展开式,属于基础题.9.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.10.C解析:C 【解析】611x ⎛⎫- ⎪⎝⎭的展开式的通项公式是61,rr C x ⎛⎫- ⎪⎝⎭ 其中含1x 的项是1161,C x ⎛⎫- ⎪⎝⎭ 常数项为0611,C x ⎛⎫-= ⎪⎝⎭ 故()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是116121112111.x C x ⎡⎤⎛⎫⨯-+⨯=-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选C.11.D解析:D 【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.12.D解析:D 【分析】根据二项展开式的通项公式计算即可求解. 【详解】631216C (1)2rr r r r T x --+=-,令3120r -=,即4r =, ∴常数项为60, 故选:D 【点睛】本题主要考查了二项式定理,二项展开式的通项公式,属于中档题.二、填空题13.-48【分析】令x=1解得a=1再利用的通项公式进而得出【详解】令x=1=2解得a=1又的通项公式令5−2r=35−2r=5解得r=1r=0∴该展开式中的系数为=−80+32=−48故答案为:−48解析:-48 【分析】令x =1,解得a =1,再利用512x x ⎛⎫- ⎪⎝⎭的通项公式,进而得出. 【详解】令x =1,()()5112a +-=2,解得a =1.又512x x ⎛⎫- ⎪⎝⎭的通项公式()5521512r r rr r T C x --+=-⋅,令5−2r =3,5−2r =5. 解得r =1,r =0.∴该展开式中4x 的系数为()()141505512+12C C --=−80+32=−48, 故答案为:−48. 【点睛】本题考查二项式定理的应用,根据通项公式求系数,属于中等题.14.【分析】将两次点数表示成有序数对分别求出基本事件总数和包含的基本事件个数即可求解概率【详解】将两次点数表示成有序数对根据基本计数原理得:基本事件总数为包含的基本事件个数为所以的概率故答案为:【点睛】 解析:512【分析】将两次点数表示成有序数对(),a b ,分别求出基本事件总数和b a >包含的基本事件个数即可求解概率. 【详解】将两次点数表示成有序数对(),a b ,根据基本计数原理得: 基本事件总数为6636⨯=,b a >包含的基本事件个数为5432115++++=,所以b a >的概率1553612P ==. 故答案为:512【点睛】此题考查古典概型,关键在于准确求出基本事件总数和某一事件包含的基本事件个数.15.【分析】将变为然后利用组合数性质即可计算出所求代数式的值【详解】故答案为:【点睛】本题考查组合数的计算利用组合数的性质进行计算是解题的关键考查计算能力属于中等题 解析:2039190【分析】将01C 变为02C ,然后利用组合数性质111k k k n n n C C C ++++=即可计算出所求代数式的值.【详解】()111,,1k k k n n n C C C n N k N k n ++*++=∈∈≤+, 012201801220181220182018123201922320193320192020C C C C C C C C C C C C ∴++++=++++=+++=2039190=.故答案为:2039190. 【点睛】本题考查组合数的计算,利用组合数的性质进行计算是解题的关键,考查计算能力,属于中等题.16.4或9【解析】分析:先根据组合数性质得解方程得结果详解:因为=所以因此点睛:组合数性质:解析:4或9. 【解析】分析:先根据组合数性质得383828x x x x 或=-+-=,解方程得结果 详解:因为28C x=3828C x -,所以383828x x x x 或=-+-= 因此49.x x ==或点睛:组合数性质:11111,,.m n m m m m k k n n n n n n n C C C C C kC nC -++-+-=+==17.-160【解析】二项式的展开式的通项为令可得即展开式中常数项为答案:解析:-160 【解析】二项式612x x ⎛⎫- ⎪⎝⎭的展开式的通项为66621661(2)()(1)2r r r r r r rr T C x C x x ---+=-=-⋅⋅⋅,0,1,2,,6r =.令3r =,可得33346(1)2160T C =-⋅⋅=-,即展开式中常数项为160-. 答案:160-18.【分析】根据题意假设正五角星的区域依此为分析6个区域的涂色方案数再根据分步计数原理计算即可【详解】根据题意假设正五角星的区域依此为如图所示:要将每个区域都涂色才做完这件事由分步计数原理先对区域涂色有解析:96【分析】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,分析6个区域的涂色方案数,再根据分步计数原理计算即可. 【详解】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,如图所示:要将每个区域都涂色才做完这件事,由分步计数原理,先对A 区域涂色有3种方法,B 、C 、D 、E 、F 这5个区域都与A 相邻,每个区域都有2种涂色方法,所以共有32222296⨯⨯⨯⨯⨯=种涂色方案. 故答案为:96 【点睛】方法点睛:涂色问题常用方法:(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法; (2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.19.【分析】对原方程两边求导然后令求得表达式的值【详解】对等式两边求导得令则【点睛】本小题主要考查二项式展开式考查利用导数转化已知条件考查赋值法属于中档题 解析:22【分析】对原方程两边求导,然后令1x =-求得表达式的值. 【详解】对等式112012(12)x a a x a x +=++10111011a x a x +++两边求导,得101222(12)2x a a x +=+91010111011a x a x +++,令1x =-,则1210112101122a a a a -+-+=.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.20.1023【分析】赋值法令得:;令得:再两式相减可得【详解】解:∵令得:;①令得:;②由①②可得:;故答案为:【点睛】赋值法在求各项系数和中的应用(1)形如()的式子求其展开式的各项系数之和常用赋值法解析:1023 【分析】赋值法 令0x =得:01a =;令1x = 得:10012310131024a a a a a =++⋯+-=++(),再两式相减可得.【详解】解:∵102100121013x a a x a x a x -+++⋯+=(),令0x =得:01a = ;①令1x = 得:10012310131024a a a a a =++⋯+-=++(); ②由①②可得:12310102411023a a a a +++⋯+-==; 故答案为:1023. 【点睛】赋值法在求各项系数和中的应用(1)形如()n ax b +,2()m ax bx c ++ (a b c R ∈,,)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可.(2)对形如()()n ax by a b R +∈,的式子求其展开式各项系数之和,只需令1x y ==即可. (3)若()2012nn f x a a x a x a x +++⋯+=,则()f x 展开式中各项系数之和为()1f .三、解答题21.(1)5n =;(2)51T x =,2352T x =,5516T x=. 【分析】(1)写出二项式(n x +展开式的通项公式,得到第二项和第三项的系数,所以得到关于n 的方程,解得答案;(2)由(1)得到n的值,写出二项式(n x 展开式的通项公式,整理后,得到其x 的指数为整数的r 的值,再写出其展开式中的有理项. 【详解】解:二项式(n x +展开式的通项公式为32112rrn rr n r r r n n T C x C x--+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,()0,1,2r n =⋅⋅⋅; (1)根据展开式中的第二项和第三项的系数相等,得2121122nn C C ⎛⎫⋅=⋅ ⎪⎝⎭,即()111242n n n -=⋅, 解得5n =;(2)二项式展开式的通项公式为3521512rrr r T C x -+⎛⎫=⋅⋅ ⎪⎝⎭,()0,1,2r n =⋅⋅⋅;当0,2,4r =时,对应项是有理项, 所以展开式中所有的有理项为0551512T C x x ⎛⎫=⋅⋅= ⎪⎝⎭, 22532351522T C x x -⎛⎫=⋅⋅= ⎪⎝⎭,44565515216T C x x -⎛⎫=⋅= ⎪⎝⎭. 【点睛】本题考查二项展开式的项的系数,求二项展开式中的有理项,属于中档题.22.(1)289;(2)837081x -【分析】(1)由题意利用二项式系数的性质,求得n 的值,再利用二项式展开式的通项公式,求得展开式中的常数项.(2)由题意利用二项式系数的性质,二项式展开式的通项公式,求得二项式系数最大的项. 【详解】解:(1)*31()3nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式中所有二项式系数之和为2256n =,8n ∴=,故展开式的通项公式为8431813rr r r T C x-+⎛⎫= ⎪⎝⎭.令8403r-=,求得2r ,故展开式中的常数项为2812899C =. (2)由于8n =,故当4r =时,二项式系数最大,故二项式系数最大的项为48843358170381T C x x --⎛⎫==⎪⎝⎭. 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.23.(1)576;(2)144 【分析】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果. 【详解】解:可知从1到7的7个数字中,有3个偶数,4个奇数, (1)五位数中,偶数排在一起的有:23413442576C C A A =个,(2)两个偶数不相邻且三个奇数也不相邻的五位数有:23233423144C C A A =个. 【点睛】本题考查数字的排列问题,涉及排列和组合的实际应用以及排列数和组合数的运算公式,考查利用捆绑法解决相邻问题,利用插空法解决不相邻问题,考查运算能力. 24.(1)54500T x =-,25280T x =(2)112 【分析】(1)由偶数项二项式系数可得7n =,可知展开式中间两项二项式系数最大,利用展开式通项公式求解;(2)由(1)利用展开式通项公式求含1x -和2x 项,结合与212x x ⎛⎫+ ⎪⎝⎭相乘即可求解. 【详解】(1)由展开式中所有的偶数项二项式系数和为64,得1264n -=, 所以7n =所以展开式中二项式系数最大的项为第四项和第五项.因为7212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()()72714317712121rrrr r r rr r T C xC x x ---+⎛⎫=-=- ⎪⎝⎭, 所以()f x 的展开式中二项式系数最大的项为54500T x =-,25280T x =(2)由(1)知7n =,且7212x x ⎛⎫- ⎪⎝⎭的展开式中1x -项为684T x =-, 2x 项为25280T x =,所以221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式的常数项为()2841280112⨯-+⨯=, 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题. 25.(1)56252x -;(2)5x .【分析】(1)先求出二项展开式的通项,根据条件求出n ,即可知道二项式系数最大的项; (2)令x 的指数为5,即可计算出r ,求出含5x 的项. 【详解】可知3561(1)rn rr n r r r r n n T C C x --+⎛==- ⎝, 方案一:选条件①,(1)由题可知4422(1)14(1)3n n C C -=-, !2!(2)!144!(4)!!3n n n n -∴⨯=-,25500n n ∴--=,解得10n =或5n =-(舍去),所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)由(1)知56110510,(1)r r r rn T C x-+==-,令5556r -=,0r ∴=,51T x ∴=, 所以展开式中含5x 的项是第一项,为5x ; 方案二:选条件②, (1)由题可知21212552n nnnnn nC CC C -++=+==,整理得21100n n +-=,解得10n =或11n =-(舍去), 所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2); 方案三:选条件③, (1)222211110n n nn n n C C C C C -++-=-==,10n ∴=,所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2). 【点睛】本题考查二项展开式的相关性质,属于中档题. 26.(1)-1 (2)180 【分析】(1)先求出n 的值,再求二项展开式的系数之和;(2)根据已知求出n 的值,再求出展开式中的常数项. 【详解】 (1)二项式)22nx--的展开式的通项为5221(2)(2)n r r n rr rr r nnTC x C x---+=-=-,所以第二项系数为1(2)n C -,第四项系数为33(2)n C -,所以13(2)188n n C C -=-,所以5n =.所以二项展开式的系数之和)52211-⨯=-.(2)因为展开式中只有第6项的二项式系数最大, 所以展开式有11项,所以10.n = 令1050,22rr -=∴=. 所以常数项为2210(2)180C -=.【点睛】本题主要考查二项式展开式的系数问题,考查指定项的求法,意在考查学生对这些知识的理解掌握水平.。

高中数学必修二第九章统计单元测试卷(1)(含解析)

高中数学必修二第九章统计单元测试卷(1)(含解析)

高中数学必修二第九章统计单元测试卷(1)一、单选题(本大题共4小题,共20.0分)1.两位大学毕业生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是”,根据这位负责人的话可以推断出参加面试的人数为().A. 20B. 21C. 10D. 702.已知x,y的取值如表所示,且线性回归方程为ŷ=bx+132,则b=()x234y645A. 13B. 12C. −13D. −123.清远市教育教学研究院想了解清远市某所中学的学生是否赞成该学校的某个新政策,由于条件限制,教学研究院不能询问每位学生的意见,所以需要选择一个合适的样本.最好的方法是询问()A. 由该学校推选的学生B. 在课间遇见的学生C. 在图书馆学习的学生D. 从学校名单中随机选取的学生4.已知甲、乙两组数据的茎叶图如图所示,则甲组数据的众数与乙组数据的中位数分别是()A. 52,65B. 52,66C. 73,65D. 73,66二、单空题(本大题共7小题,共35.0分)5.已知数据x1,x2,…,x10的方差为3,那么数据2x1+3,2x2+3,…2x10+3的方差为______ .6.给出下列四种说法:①3,3,4,4,5,5,5的众数是5,中位数是4,极差是2;②频率分布直方图中每一个小长方形的面积等于该组的频率;③频率分布表中各小组的频数之和等于1④如果一组数中每一个数减去同一个非零常数,则平均数改变,标准差不变其中说法正确的序号依次是______ .7.某单位青年、中年、老年职员的人数之比为11∶8∶6,从中抽取200名职员作为样本,则应抽取青年职员的人数为________.8.某校高三年级有400名学生,在一次数学测试中,成绩都在[80,130](单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为______9.对140名学生用系统抽样的方法抽取20人的样本,将学生编号1−140号,按序号一次分成20组,第15组抽取的四102号,那么第二组抽取的号码为______ .10.某校八年级共240名学生参加某次数学测试,教师从中随机抽取了40名学生的成绩进行统计,共有12名学生成绩达到优秀等级,根据上述数据估算该校八年级学生在这次数学测试中达到优秀的人数大约有______ 人.11.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为s2=________________________.三、解答题(本大题共5小题,共60.0分)12. 某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制成如图所示的频率分布直方图.(1)求直方图中x的值;(2)求续驶里程在[200,300]的车辆数;(3)若从续驶里程在第二组与第五组的车辆中随机抽取2辆车,求两车的续驶里程差大于50公里概率.13. 某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿.14. 甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参见而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中,且各局胜负相互独立.求:一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12(Ⅰ)恰好打满2局比赛就停止的概率;(Ⅱ)比赛停止时已打局数ξ的分布列与期望Eξ.15. 如图,某学校新校区有一块矩形草地,要在这块草地上开辟一个内接四边形建体育馆(图中阴影部分),使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH= CF=CG,设AE=x,阴影部分面积为y .(1)求y 关于x的函数关系式,并指出这个函数的定义域;(2)当x为何值时,阴影部分面积最大?最大值是多少?16. 某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:答对题目数[0,8)8910女213128男3379(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.【答案与解析】1.答案:B解析:试题分析:设共有n 个人,然后根据每人被招的可能性相同得到二人同时被招的概率,使其等于即可求出n 的值,得到答案.解:设共有n 个人参加面试,从n 个人中招聘3人的所有结果数共有C n 3=种,则此两个人同时被招进的结果有C n−21C 22=n −2,P =,∴n(n −1)=420即n 2−n −420=0,∴n =21,故选B考点:古典概率点评:本题主要考查古典概率以及其概率的计算公式.考查对基础知识的灵活运用2.答案:D解析:解:x =2+3+43=3,y =6+4+53=5.∴5=3b +132,解得b =−12. 故选D .求出样本中心代入回归方程解出b .本题考查了线性回归方程与样本中心的关系,属于基础题.3.答案:D解析:解:根据样本的选取方法可得:最好的方法是询问,从学校名单中随机选取的学生. 故选:D .根据样本的选取方法即可判断出结论. 本题考查了样本的选取方法,属于基础题.4.答案:C解析:解:甲组数据为:52,52,68,73,73,73,73,84; 故甲里面的众数是73,乙组数据从小到大排列为:51,56,64,66,72,82; 正中间两个为64,66; 故乙组数据的中位数为65. 故选:C .根据众数与中位数的定义结合茎叶图中数据即可得出答案.本题考查茎叶图、众数和中位数的概念,关键是知道众数是数据里面个数最多的数,中位数是一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数).5.答案:12解析:本题考查方差的求法,是基础题,解题时要认真审题,注意方差性质的合理运用.利用方差的性质直接求解即可.解:∵x1,x2,…,x10的方差为3,∴数据2x1+3,2x2+3,…2x10+3的方差为:22×3=12.故答案为:12.6.答案:①②④解析:解:对于①3,3,4,4,5,5,5的众数是5,中位数是4,极差是2;正确.对于②频率分布直方图中每一个小长方形的面积等于该组的频率;正确.对于③频率分布表中各小组的频数之和等于1,不正确,是频率之和为1,所以错误.对于④如果一组数中每一个数减去同一个非零常数,则平均数改变,标准差不变,平均数减1,标准差不变,所以正确.正确结果是①②④.故答案为:①②④.利用众数,中位数,极差判断①的正误;利用频率直方图的特性判断②,③的正误;利用平均数与标准差的计算判断④的正误;本题考查频率分布表,众数、中位数、平均数的应用,考查基本知识的应用.7.答案:88解析:本题考查分层抽样方法的基本原理应用,根据总体中青年职员的所占的比例、样本的容量,求出应抽取青年职员的人数.解:因为青年、中年、老年职员的人数之比为11:8:6,所以应抽取青年职员的人数为:200×=88.故答案为:88.8.答案:220解析:解:由频率分布直方图得:(2a+0.040+0.030+0.020)×10=1,解得a=0.005,∴这次测试数学成绩不低于100分的频率为:1−(0.005+0.040)×10=0.55∴这次测试数学成绩不低于100分的人数为:400×0.55=220.故答案为:220.由频率分布直方图得(2a+0.040+0.030+0.020)×10=1,求出a=0.005,由此能求出这次测试数学成绩不低于100分的频率.本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.9.答案:11解析:本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键,属于简单题.求出样本间隔,结合系统抽样的定义和性质进行求解即可.解:样本间隔为140÷20=7,得第2组和第15组相差13×7=91,则第2组的号码为102−91=11.故答案为:11.10.答案:72解析:解析:解:随机抽取了40名学生的成绩进行统计,共有12名学生成绩达到优秀等级,∴样本优秀率为:12÷40=30%,又某校八年级共240名学生参加某次数学测试,∴该校八年级学生在这次数学测试中达到优秀的人数为:240×30%=72人,故答案为72.随机抽取的40名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校八年级学生在这次数学测试中达到优秀的人数.本题考查了用样本估计总体,是统计的基本思想.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.11.答案:解析:甲:平均数:,方差为:.乙:平均数:,方差为:.∴方差较小的为.12.答案:解:(1)由直方图可得:(0.002+0.005+0.008+x+0.002)×50=1,∴x=0.003;(2)由题意可知,续驶里程在[200,300]的车辆数为:20×(0.003×50+0.002×50)=5;(3)由题意可知,续驶里程在第二组[100,150)的车辆数为20×(0.005×50)=5,续驶里程在第五组[250,300)的车辆数为20×(0.002×50)=2,从这7辆中随机抽取2辆车,共有C72=21种抽法;两车的续驶里程差大于50公里,则每一组分别抽取一辆车,共有C51C21=10∴两车的续驶里程差大于50公里概率P=10.21解析:(1)利用小矩形的面积和为1,求得x值;(2)求得续驶里程在[200,300]的车辆的频率,再利用频数=频率×样本容量求车辆数;(3)利用排列组合,分别求得7辆中随机抽取2辆车的抽法种数与每一组分别抽取一辆车抽法种数,根据古典概型的概率公式计算.本题考查了频率分布直方图,古典概型的概率计算,属于基础题.13.答案:解:(Ⅰ)由直方图可得:20×x+0.025×20+0.0065×20+0.003×20×2=1,解得x=0.0125;(Ⅱ)新生上学时间不少于1小时的频率为0.003×20×2=0.12,∵600×0.12=72,∴600名新生中有72名学生可以申请住宿.解析:本题考查频率分布直方图的理解与应用,理解直方图的意义是解答的关键.(Ⅰ)由直方图中各个矩形的面积为1建立方程求x ;(Ⅱ)计算出新生上学时间不少于1小时的频率,再乘上新生的总人数即可得到申请住宿的人数.14.答案:解:(Ⅰ)令A k ,B k ,C k 分别表示甲、乙、丙在第k 局中获胜,且它们都是相互独立的,恰好打满2局比赛就停止的概率为: P(A 1A 2)+P(B 1B 2)=122+122=12. (Ⅱ)ξ的所有可能值为2,3,4,5,6, 由(Ⅰ)有P(ξ=2)=12,P(ξ=3)=P(A 1C 2C 3)+P(B 1C 2C 3)=123+123=14, P(ξ=4)=P(A 1C 2B 3B 4)+P(B 1C 2A 3A 4)=124+124=18, P(ξ=5)=P(A 1C 2B 3A 4A 5)+P(B 1C 2A 3B 4B 5)=125+125=116, P(ξ=6)=P(A 1C 2B 3A 4C 5)+P(B 1C 2A 3B 4C 5)=12+12=116. 故有分布列为∴Eξ=2×12+3×14+4×18+5×116+6×116=4716(局).解析:(Ⅰ)令A k ,B k ,C k 分别表示甲、乙、丙在第k 局中获胜,且它们都是相互独立的,由此能求出恰好打满2局比赛就停止的概率.(Ⅱ)ξ的所有可能值为2,3,4,5,6,分别求出相应的概率,由此能求出比赛停止时已打局数ξ的分布列与期望Eξ.本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法.15.答案:解:(1)S △AEH =S △CFG =12x 2,S △BEF =S △DGH =12(a −x)(2−x),∴y =S ABCD −2S △AEH −2S △BEF =2a −x 2−(a −x)(2−x)=−2x 2+(a +2)x , 由{x >0a −x >02−x ≥0a >2,得0<x ≤2,∴y =−2x 2+(a +2)x ,函数的定义域为{x|0<x ≤2};(2)对称轴为x =a+24,又因为a >2,所以a+24>1,当1<a+24<2,即2<a <6时,则x =a+24时,y 取最大值(a+2)28, 当a+24≥2,即a ≥6时,y =−2x 2+(a +2)x ,在(0,2]上是增函数,则x =2时,y 取最大值2a −4,综上所述:当2<a <6时,AE =a+24时,阴影部分面积最大值是(a+2)28,当a ≥6时,x =2时,阴影部分面积取最大值2a −4.解析:本题主要考查实际问题中的建模和解模能力,注意二次函数求最值的方法,同时考查了分类讨论的思想,属于中档题.(1)先求得四边形ABCD ,△AHE 的面积,再分割法求得四边形EFGH 的面积,即建立y 关于x 的函数关系式;(2)由(1)知y 是关于x 的二次函数,用二次函数求最值的方法进行求解.16.答案:解:(1)答对题目数小于9道的人数为55人,记“答对题目数大于等于9道”为事件A(2)设答对题目数少于8道的司机为A 、B 、C 、D 、E ,其中A 、B 为女司机,选出两人包含AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种情况,至少有1名女驾驶员的事件为AB 、AC 、AD 、AE 、BC 、BD 、BE 共7种.记“随机选出的两人中至少有1名女驾驶员”为事件M ,则解析:(1)实际就是统计答对题目数大于等于9的人数,再除以总数就得到所求概率.也可利用对立事件,先统计出答对题目数小于9道的人数,这样计算较方便.求概率问题,需注重“设、列、解、答”完整的步骤.(2)答对题目数少于8的出租车司机共5人,从5人中选出两人,共有10种基本事件.作为文科考生主要方法为枚举法,主要列举时要由条理.对应“至少”型问题,一般利用对立事件求解,即先求选出的两人中没有女出租车司机的概率,这时分类较简单,就是从3个男司机中选两人,共有3种基本事件,所以所求概率为。

精选高中数学单元测试试题-统计专题完整考题库(含标准答案)

精选高中数学单元测试试题-统计专题完整考题库(含标准答案)

2019年高中数学单元测试试题 统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602.1 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 3.在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8(2010山东文数)(6)4.一个容量100的样本,其数据的分组与各组的频数如下表则样本数据落在(10,40)上的频率为A. 0.13B. 0.39C. 0.52D. 0.64(2009福建文)10,40的有:13+24+15=52,由频率=频数÷总数可得0.52.故选C. 解析由题意可知频数在(]25.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).(1)根据频率分布直方图完成以上表格;(2)用组中值估计这10 000人月收入的平均值;(3)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2000,3500)(元)月收入段应抽出多少人?第II卷(非选择题)请点击修改第II卷的文字说明二、填空题6.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中还有一位同学的座位号应该是.7.五个数1,2,3,4,a的平均数是3,这五个数的标准差是8.某地区在连续7天中,新增某种流感的数据分别为4,2,1,0,0,0,0,则这组数据的方差s2= .9.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s= ▲ .10.下图是根据某小学一年级10名学生的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,则选10名学生平均身高是 cm11.为了解高三女生的身高情况,从高三女生中选取容量为60的样本(60名女生身高,单位:cm),分组情况如下:则a = ▲ .12.某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取___________、________、_____________; 〖解〗6,30,1013.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画出散点图(2)如果y 对x 有线性相关关系,求回归直线方程; (3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?〖解〗(2)y=0.7286x-0.8571 (3)x 小于等于14.901314.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 〖解〗1015.一个田径队,有男运动员20人,女运动员10人,比赛后立刻用分层抽样的方法,从全体队员中抽出一个容量为6人的样本进行兴奋剂检查,其中男运动员应抽 人。

(常考题)人教版高中数学必修第二册第四单元《统计》测试(含答案解析)(2)

(常考题)人教版高中数学必修第二册第四单元《统计》测试(含答案解析)(2)

一、选择题1.甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测试.为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,记这项调查为①;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记这项调查为.②完成这两项调查宜采用的抽样方法依次是( ) A .分层抽样法、系统抽样法 B .分层抽样法、简单随机抽样法 C .系统抽样法、分层抽样法D .简单随机抽样法、分层抽样法2.某校高一年级有男生400人,女生300人,为了调查高一学生对于高二时文理分科的意向,拟随机抽取35人的样本,则应抽取的男生人数为( ) A .25B .20C .15D .103.如果数据121x +、221x +、、21n x +的平均值为5,方差为16,则数据:153x -、253x -、、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .5.如图所示的茎叶图记录了CBA 球员甲、乙两人在2018-2019赛季某月比赛过程中的的得分成绩,则下列结论正确的是( )A .甲的平均数大于乙的平均数B .甲的平均数小于乙的平均数C .甲的中位数大于乙的中位数D .甲的方差小于乙的方差6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后一定比80前多D .互联网行业中从事技术岗位的人数90后一定比80后多7.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A .随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B .2012年以来,国家财政性教育经费的支出占GDP 比例持续7年保持在4%以上C .从2010年至2018年,中国GDP 的总值最少增加60万亿D .从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年 8.已知一组数据:123,,,,n x x x x 的平均数为4,方差为10,则1232,32,32n x x x ---的平均数和方差分别是( )A .10,90B .4,12C .4,10D .10,109.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4750元,则该教师2018年的旅行费用为( )A .21250元B .28000元C .29750元D .85000元10.某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是( ). A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛11.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为 A .5、10、15B .3、9、18C .3、10、17D .5、9、1612.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下: 行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数和招聘人数的比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业 C .机械行业最紧张D .营销行业比贸易行业紧张13.在发生某公共卫生事件期间,我国有关机构规定:该事件在一段时间没有发生规模群体感染的标志为“连续10天每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地总体均值为3,中位数为4B.乙地总体均值为2,总体方差大于0 C.丙地中位数为3,众数为3D.丁地总体均值为2,总体方差为3二、解答题14.某市有100万居民,政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),,[4,4.5)分成9组,制成了如下的频率分布直方图:(1)求直方图中a的值;(2)估计居民月均用水量的众数、中位数(精确到0.01).15.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[20,40),9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100].例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值,同一组中的数据用该组区间的中点值代表;(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替同一组中的数据用该组区间的中点值代表,已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:22之间通过的车辆数结果保留到整数. 参考数据:若()2~,T Nμσ,则①()0.6827P T μσμσ-<≤≤=;②(22)0.9545P T μσμσ-<≤+=;③(33)0.9973P T μσμσ-<≤+=. 16.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.17.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)100,110、[)110,120、[)120130,、[)130140,、[]140,150.(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.18.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:分组 频数 频率 [)10,15 15 0.30[)15,20 29n[)20,25mp[)25,302t合计M1(1)求出表中M,p及图中a的值;(2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间[)10,15内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[)25,30内的概率.19.某单位共有10名员工,他们某年的收入如下表:员工编号12345678910年薪(万元)4 4.565 6.57.588.5951(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆy bx a=+中系数计算公式分别为:()()()121ˆni iiniix x y ybx x==--=-∑∑,ˆˆa y bx=-,其中x、y为样本均值.20.为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.21.参加某高中十佳校园主持人比赛的甲、乙选手得分的茎叶统计图如图所示.(1)比较甲、乙两位选手的平均数;(2)分别计算甲、乙两位选手的方差,并判断成绩更稳定的是哪位.22.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间X 服从正态分布()2N μσ,,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若()2~,,X N μσ令X Y μσ-=,则()~0,1Y N ,且()a P X a P Y μσ-⎛⎫≤=≤⎪⎝⎭.利用直方图得到的正态分布,求()10P X ≤.(ii)从该高校的学生中随机抽取20名,记Z 表示这20名学生中每周阅读时间超过10小时的人数,求()2PZ ≥(结果精确到0.0001)以及Z 的数学期望.1940178,0.77340.00763≈≈.若()~0,1Y N ,则()0.750.7734P Y ≤=. 23.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)24.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.25.2018年2月925-日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分层抽样和简单随机抽样的定义进行判断即可. 【详解】①,四所学校,学生有差异,故①使用分层抽样, ②在同一所学校,且人数较少,使用的是简单随机抽样,故选B . 【点睛】本题主要考查简单抽样的应用,根据分层抽样的定义是解决本题的关键.2.B解析:B 【解析】分析:设应抽取的男生人数为x ,根据分层抽样的定义对应成比例可得35400300400x=+,解出方程即可.详解:设应抽取的男生人数为x ,∴35400300400x=+,解得20x,即应抽取的男生人数为20,故选B.点睛:本题考查应从高一年级学生中抽取学生人数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.3.A解析:A 【分析】计算出数据1x 、2x 、、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、、53n x -的平均值和方差.【详解】 设数据1x 、2x 、、n x 的平均值为x ,方差为2s ,由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===,24s ∴=. 所以,数据153x -、253x -、、53n x -的平均值为()()()12535353n x x x n-+-+-()1235535321n x x x x n+++=-=-=-⨯=-,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===. 故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.4.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。

精选高中数学单元测试试题-统计专题考核题库完整版(含标准答案)

精选高中数学单元测试试题-统计专题考核题库完整版(含标准答案)

2019年高中数学单元测试试题统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.1 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.142.2 .(2012安徽理)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差3.某校共有学生2000名,各年级男、女学生人数如右表示,已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三年级中抽取的学生人数为 ▲ .4.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 ( ) A .1 B .2 C .3 D .4(2006江苏)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图.则这300辆汽车中车速低于限速的汽车有 180 辆(四川省泸州高中2011届高三一模适应性考试文科)6.某小卖部为了了解冰糕销售量y(箱)与气温x(C ︒)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如左所示):由表中数据算得线性回归方程a bx y+=ˆ中的2-≈b ,预测当气温为25C ︒时, 冰糕销量为 杯.分析:线性回归方程a bx y+=ˆ恒过(,)x y ,由表中算得(,)x y =(10,40)代入回归方程,可得a =60,即ˆ260yx =-+,将5x =-代入回归方程,得ˆy =70. 7.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份x 1 2 3 4 用水量y 4.5432.5由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是 .8.某校高三年级有男生500人,女生成400人,为了了解该年级同学的健康情况,从男生中任意抽出25人,从女生中任意抽出20人进行调查,这种抽样方法是: 。

精选高中数学单元测试试题-统计专题完整版考核题库(含答案)

精选高中数学单元测试试题-统计专题完整版考核题库(含答案)

2019年高中数学单元测试试题统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.1.(2012山东文)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差2.(2009宁夏海南理)对变量x,y观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断.()A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关[答案] C[解析]用散点图可以判断变量x与y负相关,u与v正相关.3.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法(2004湖南理)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.5.某人5次上班途中所花的时间(单位:分钟)分别为:x,y,10,11,9.已知这组数的值为.据的平均数为10,方差为2,则x y6.下表是某厂1~4月份用水量(单位:百吨)的一组数据,月份x 1 2 3 4用水量y 4.5 4 3 2.5由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是▲.7.某校有高中生1200人,初中生900人,老师120人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从初中生中抽取人数为60人,那么n=___148___________8.某校参加2009年高考的考生数学成绩按“好、中、差”分层的人数比例恰为3:5:2,抽样调查发现此次考试“好、中、差”三层的人平分分别为121、104和78,则该校此次高考数学的人平分应为____________分(精确到0.1),若已知“好成绩”的共有180人,则“差成绩”的考试总分为_______________分.〖解〗103.9,93609.为了解某校高中学生的视力情况,对该校学生按年级进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共被抽取25名,则高一年级应被抽取的学生数为____________.甲 乙85 0 1 2 3 2 2 8 8 9 第7题图10.若12320082009,,,,,x x x x x 的方差为3,则12200820093(2),3(2),,3(2),3(2)x x x x ----的方差为 .11.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 .15012.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次 应抽取 ,z , 辆.13.右图是2008年“隆力奇”杯第13届CCTV 青年歌手电视大奖赛上某一位选手的部分得分的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为 807.14.若五个数3,2,1,0,a 的平均数为1,则这五个数的方差等于______2_______.15.甲、乙两名运动员某赛季一些场次的得分的茎叶图(如图所示), 甲、乙两名运动员的得分的平均数分别为b a ,则=-b a ▲ .16. 在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 ▲ .甲 8 9 1 2 5 7 8 5乙 2 9 3 4 5 4 8 2 6 5 3 517. 给出如下10个数据:63,65,67,69,66,64,66,64,65,68.根据这些数据制作频率分布直方图,其中[64.566.5,)这组所对应的矩形的高为 ▲ .18.一组数据9.8, 9.9, 10,a , 10.2的平均数为10,则该组数据的方差为 ▲ .19.一位篮球运动员在最近的8场比赛中得分的茎叶图如图所示,则他在这8场比赛中得分的平均值是 ▲ ;20.已知数列{}n a 的通项公式为21n a n =-,则数据1a ,2a ,3a ,4a ,5a 的方差为___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高中数学单元测试试题 统计专题(含答案)
学校:__________ 姓名:__________ 班级:__________ 考号:__________
第I 卷(选择题)
请点击修改第I 卷的文字说明 一、选择题
1.1 .(2013年高考新课标1(理))为了解某地区的中小学生视力情况,拟从该地区的
中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视
力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样
B .按性别分层抽样
C .按学段分层抽样
D .系统抽样
2.(2008陕西理)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关
数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为
00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,
101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受
到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A .11010 B .01100 C .10111 D .00011
3.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。

为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(A )9
(B )18
(C )27
(D) 36(2009陕西卷文)
答案B.
第II 卷(非选择题)
请点击修改第II 卷的文字说明 二、填空题
4.如图,i N 表示第i 个学生的学号,i G 表示第i 个学生的成绩,已知学号在1~10的学生的成绩依次为401、392、385、359、372、327、354、361、345、337,则打印出的第5组数据是 ▲ .
(第3题图)
5.设有一条回归直线方程为2 1.5y x =-,则当变量x 增加一个单位时,y 平均减少 个单位.
6.某校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n 的值为
7.某城市有大学20所,中学200所,小学480所。

现用分层抽样的方法从中抽取一个容量为70的样本进行某项调查,则应抽取的中学数为 。

8.某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取___________、________、_____________; 〖解〗6,30,10
9.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为_______ 〖解〗50
10.某科研机构由科技人员、行政人员和后勤职工3种不同类型的 人员组成,现要抽取一个容量为45的样本进行调查。

已知科技 人员共60人,抽入样本的有20人,且行政人员与后勤职工人数之比为2:3,那么此机构的行政人员有___________人。

〖解〗30
11.如图是某校主持人大赛上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ▲ .
12.将20个数平均分为两组,第一组的平均数为50,方差为33;第二组的平均数为40,方差为45,则整个数组的标准差是 .
13.某班学生在一次数学考试中成绩分布如下表:
那么分数不满110的累积频率是 (精确到0.01)
14.为了检测某自动包装流水线的生产情况,在流水线上随机抽取40件产品,分别称出它们的重量(单位:克)作为样本。

下图是样本的频率分布直方图,根据图中各组的组中值估计产品的平均重量是 ▲ 克.
15.某校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本,适合的抽样方法为_________. 16. 若12320082009,,,,,x x x x x 的方差为3,则12200820093(2),3(2),
,3(2),3(2)x x x x ----的方

为 .
17. 某校从高一年级学生中随机抽取100

学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是__▲______。

18. 若一组数据1x ,2x ,3x ,…,10x 的方差为2,则13(2)x -,23(2)x -,…,
103(2)x -的方差为 ▲ .
19.某同学使用计算器求30个数的平均数时,错误的将其中一个数据105输入成15,那么

















______________________________________________
20.若施化肥量x 与小麦产量y 之间的回归方程为2504y x ∧
=+(单位:kg ),当施化肥量为50kg 时,预计小麦产量为 kg . 450
21.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:
则成绩较为稳定(方差较小)的那位运动员成绩的方差为_____________. 22.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得 落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以
估计出阴影部分的面积约为 ▲ .
23.某校开展“爱我家乡”射影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示,记分员在去掉一个最高分和一个最低分之后,算得平均分为91.复核员在复合时发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是________
作品A 8 8 9 9 9 2 3 x 2 1 5
24.右边的茎叶图记录了一组同学的植树棵数,则他们植树棵数的 方差为 .
三、解答题
25.(本题满分16分) 从全校卫生知识的调查问卷中,抽取一个班级问卷作样本,考察其成绩分布.将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高的比是
13642::::,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题:
(1)求样本容量.
(2)估计这次问卷中,成绩低于70分的被调查人占总人数的百分率.
26.(14分)从某校参加2012年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为 ▲ , ▲ , ▲ .
(2)补全在区间 [70,140] 上的频率分布直方图;
(3)若成绩不低于100分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
0 1
9,9 0,1, 1 第4题
第18题图
27.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的
频率分布直方图(如下图).
(1)根据频率分布直方图完成以上表格; (2)用组中值估计这10 000人月收入的平均值;
(3)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2000,3500)(元)月收入段应抽出多少人?(本小题满分14分)
.0.0.0.0.0.0.0.0.0.0
28.如图是总体的一样本频率分布直方图,且在[15,18)内的频数为8,求(1)样本容量;(2)若在[12,15) 内小矩形面积为0.06,求在[12,15)内的频数;(3)在(2)的条件下,求样本数据在[18,33)内的频率并估计总体数据在[18,33)内的频率.
29.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生 产能耗y (吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx
a =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性 回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 19.
30.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程y bx a
=+;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
2。

相关文档
最新文档