共模干扰和差模干扰Microsoft Word 文档

合集下载

电磁干扰(EMI)差模共模干扰抑制措施

电磁干扰(EMI)差模共模干扰抑制措施

54差模干扰在电路回路中存在大小相等、方向相反的干扰电流,并且干扰电流在由两根导线组成的回路中传输。

图4.1.1:差模干扰示意图产生的原因差模干扰中的干扰是起源在回路线路之中(直接注入),如同一线路中工作的电机,开关电源,可控硅等,他们在回路上所产生的干扰就是差模干扰。

如何影响设备差模干扰直接作用在设备两端的,直接影响设备工作,甚至破坏设备。

(表现为尖峰电压,电压跌落及中断)如何滤除差模干扰主要采用差模线圈和差模电容。

55差模线圈图4.1.2:差模线圈示意图从图中可知,当电流流过差模线圈之后,线圈里面的磁通是增强的,相当于两个磁通之和,线圈在低频率时低阻抗,高频率时高阻抗,所以在高频时利用它的高阻抗衰减差模信号。

差模电容电容具有低频率高阻抗,高频率低阻抗特性,利用电容在高频时它的低阻抗短路掉差模信号。

图4.1.3:差模电容示意图56共模干扰在电路回路中存在大小相等、方向相同的干扰电流,并且干扰电流在导线与地线中传输。

产生的原因电网串入共模电压、辐射干扰(如雷电) 在信号线上感应出共模电压、接地电压存在电位差引入共模电压。

如何影响设备因为在负载两端没有电位差,所有的共模电流都通过电缆和地之间的寄生电容流向地线,由于电路的非平衡性。

相同的共摸电压会在信号线和信号地线上产生不同的幅度的共模电流。

从而产生差模电压,形成干扰。

如何滤除共模干扰主要采用共模线圈和共模电容。

图4.2.1:共模干扰示意图57共模线圈图4.2.2:共模线圈示意图共模线圈和差模线圈原理比较类似,都是利用线圈高频时的高阻抗来衰减干扰信号。

共模线圈和差模线圈绕线方法刚好相反。

共模线圈对方向相反的电流基本不起作用。

共模电容共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻抗,使高频干扰信号短路,而低频时电路不受任何影响。

只是差模电容是两极之间短路。

而共模电容是线对地短路。

图4.2.3:共模电容示意图58线圈抑制频率响应实际的电感是L 、C 的并联网络(忽略绕组的电阻)它的阻抗特性如图4.3.1所示,图4.3.1:电感频率响应图DM (LC)-1/2从图上可知,在谐振频率以下,呈现电感的阻抗特性,谐振频率以上,呈现电容的阻抗特性,随着频率的升高.阻抗越来越小,失去对干扰的抑制作用。

共模干扰和差模干扰

共模干扰和差模干扰
我国现已加入世界贸易组织 2 I%J 3 , 今后电信、 电工及 电子产品均需通过电磁兼容性能检测,否则不得投放市场。 为适应当前这一形势的迫切需要,中国通信学会电磁兼容委 员会定于 ,00, 年 C 月 /0 日至 C 月 ,0 日在北京邮电大学召 开电磁兼容高级学术研讨会。主要研讨内容包括: 环境电磁学及电磁兼容原理 /、 电磁兼容设计基础 ,、 电磁兼容试验技术 7、 印刷电路板电磁兼容设计 *、 电磁兼容预测 -、 电磁兼容标准及认证 C、 电磁生物效应 4、 静电、 雷电、 核电磁脉冲 K、 会议期间将聘请院士及知名专家教授 K 人到会作特邀 报告。欢迎具有大专以上学历,正在从事电磁兼容工作的科 技人员报名出席会议。到会代表每人交会议注册费 HC0 元 2 含电磁兼容理论与应用技术丛书以及国内外电磁兼容重要 费用自理。 文献资料费 3 。会议为代表提供食宿条件, 请于 - 月 ,- 日前报名 联系人: 张苏慧 电话: 0/0 F C,,K,C,0 , 0/0 F C,,K,KC0 通信地址: 北京邮电大学 /4/ 信箱 2 /00K4C 3
的状态忽略不计 3 应小于或等于 ,-0>・ " 符合以上四条要求的电源为非内在受限制电源。 三、 结论
综上所述,信息技术设备的设计人员可以通过以上评定供电 电源是否为受限制电源来决定被供电设备是否采用防火防护外 壳。 当然, 如果你设计的外壳采用 > F / 级或更优燃烧等级的材料, 则对供电电源是否为受限制电源就没有要求了。
!"#$%& ’ $()
!""! 年第 ! 期
安全与电磁兼容
!"
・$() 教室・
!"# #$%&&’(()
所示。 路中的符号如图 ,+ 4( G)

共模_差模详解

共模_差模详解

EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。

它包括两个概念:EMI和EMS。

EMI (electromagnetic interference) 电磁干扰,指自身干扰其它电器产品的电磁干扰量。

EMS (electromagnetic susceptibility) 电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。

因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。

EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。

而辐射干扰主要通过屏蔽的手段加以滤除。

从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。

而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。

电源噪声干扰在日常生活中很常见。

比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。

比如电话或手机通话时有嗞嗞的杂声。

又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。

这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。

这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。

比如,会造成自动化仪器误动作,造成医疗仪器失控等等。

我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。

最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。

但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。

电磁干扰差模共模干扰抑制措施

电磁干扰差模共模干扰抑制措施

电磁干扰差模共模干扰抑制措施电磁干扰(EMI)是指在电磁环境中,由于电磁波的辐射、传导或耦合而引起的潜在问题。

在电子设备中,差模共模干扰是最常见和容易发生的电磁干扰形式之一、差模干扰是指在信号的正负两根导线上引入的干扰信号。

共模干扰是指在信号和地线之间或信号和屏蔽之间引入的干扰信号。

为了保证电子设备的正常工作,需要采取一系列抑制措施来抑制差模共模干扰。

1.使用差分信号传输:差模干扰是指在信号的正负两根导线上引入的干扰信号,而差分信号传输采用了两根互补的信号线,其中一根是信号线,另一根是信号线的反相线。

这样设计可以使得差模信号在两根导线上被平衡地引入,从而减小差模干扰的影响。

2.使用屏蔽线缆:差分信号传输可以减小差模干扰,但无法完全消除。

将信号线包裹在屏蔽层中可以进一步减小差模干扰的影响。

屏蔽线缆使用了金属屏蔽层,可以有效地吸收和屏蔽外部的电磁干扰,从而减小差模干扰。

3.采用均衡电路:在接收信号的端口,使用均衡电路可以进一步减小差模干扰的影响。

均衡电路可以将差模信号进行抵消,从而降低差模干扰对信号的影响。

4.使用差模输入输出接口:差模输入输出接口可以限制差模干扰信号的传播路径。

通过选择合适的差模输入输出接口,可以减小差模干扰信号的传播,从而减小对设备的影响。

1.接地:良好的接地可以减小共模干扰的影响。

在设计电子设备时,需要合理设置接地点,确保设备的各个部分都能够得到正确的接地。

2.屏蔽:在信号传输过程中,可以采用屏蔽层将信号线和地线之间隔离,从而减小共模干扰的影响。

屏蔽层采用金属材料制成,可以有效地吸收和屏蔽外部的电磁干扰。

3.使用滤波器:在信号线上安装共模滤波器可以减小共模干扰的影响。

共模滤波器可以选择合适的频率范围,将共模干扰信号滤除,从而保证信号的质量。

4.绕线方式:在布线时,可以通过适当的绕线方式来减小共模干扰的影响。

例如,采用环形绕线、交叉绕线等方法,可以使得信号线和地线之间的耦合减小,从而减小共模干扰。

开关电源中的干扰

开关电源中的干扰

开关电源中的干扰一.电源线噪声电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的,电源线的噪声分为两大类:共模干扰和差模干扰。

1.共模干扰(Common-mode Interference):两导线上的干扰电流振幅相等,而方向相同者称为共模干扰。

(任何载流体与地之间不希望有的电位)共模干扰的消除共模扼流圈工作原理如下:共模扼流圈当电路中的正常电流通过时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当共模电流流过线圈时,由于共模电流的同向性,会在线圈类产生同向的磁场而增大线圈的阻抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流达到滤波的目的。

共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻性,使高频干扰电路短路,而低频时电路不受任何影响。

只是差模电容是两极之间短路,而共模电容是线对地短路。

消除共模干扰的方法包括:(1).采用双绞线并有效接地。

(2).强电场的地方还需要采用度锌管屏蔽。

(3).布线时远离高压线,更不能将高压电源线和信号线捆在一起走线。

(4).不要和电控所共用同一个电源。

(5).采用线形稳压电源或高品质的开关电源(纹波干扰小于50mV)(6).采用差分式电路2.差模干扰(Differential-mode Interference):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。

(任何两个载流体之间不希望有的电位差)(电容C的容量范围大致是2200pF-0.1uF,为减小漏电流,电容量不宜超过0.1uF)差模干扰的消除当干扰信号频率越高时,Zc越小,效果越明显,而低频时电路不受任何影响。

(电容C的容量大致是0.01-0.47uF)任何电源线上传导干扰信号,均用差模和共模信号来表示,差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,一般指在两根信号线上产生的幅值相等,相位相同的噪声,属于非对对称性干扰。

简述差模信号和共模信号

简述差模信号和共模信号

简述差模信号和共模信号差模信号和共模信号是在信号传输中两个重要的概念。

差模信号是指信号的正负极性相反的部分,即信号的差值;共模信号则是指信号的正负极性保持一致的部分,即信号的公共部分。

在信号的传输中,会存在一定的干扰,其中最常见的干扰就是共模干扰。

共模干扰指的是外界干扰信号与传输信号中的共模信号相互叠加,造成传输信号的失真和噪声。

差模信号和共模信号在电路设计和信号处理中起着重要作用。

在差分信号传输中,常会使用差模信号进行传输。

差模信号可以通过将传输信号的正负极性相反地进行传输,从而减小共模干扰的影响。

通过差分信号传输,可以提高信号的抗干扰能力和传输质量。

共模信号的存在,会对电路和信号处理产生不利影响。

共模干扰的强度会影响信号的完整性和准确性。

为了减小共模干扰的影响,常会采取一系列措施,如使用屏蔽线缆、增加地线等方法。

差模信号和共模信号在信号处理中的处理方法也有所区别。

对于差模信号,通常会进行差分放大和差分输入以增强信号的强度和准确性。

对于共模信号,常需要进行单端放大和滤波等操作来减小其幅值和频率对信号的影响。

总结来说,差模信号和共模信号是信号传输中两个重要的概念。

差模信号指的是信号的差值,而共模信号指的是信号的公共部分。

差模信号的传输可以提高抗干扰能力和传输质量,而共模信号的存在会对信号产生干扰和失真。

在信号处理过程中,需要针对差模信号和共模信号采取相应的处理方法,以保证信号的完整性和准确性。

在电路设计和信号处理中,差模信号和共模信号是值得重视的因素,通过合理地处理和控制差模信号和共模信号,可以提高信号处理的效果和系统的稳定性。

希望上述的简述可以帮助你理解差模信号和共模信号的基本概念和作用。

差模干扰与共模干扰的概念和开关电源EMI原理图详细概述

差模干扰与共模干扰的概念和开关电源EMI原理图详细概述

差模干扰与共模干扰的概念和开关电源EMI原理图详细概述要理解传导干扰测试,首先要清楚一个概念:差模干扰与共模干扰。

差模干扰:存在于L-N线之间,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N,在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。

共模干扰:共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。

下图为差模干扰引起的传导FALL数据,该测试数据前端超标,为差模干扰引起:下图为开关电源EMI原理部分:图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。

此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。

对差模干扰的整改对策: 1. 增大X电容容值; 2. 增大共模电感感量,利用其漏感,抑制差模噪声(因为共模电感几种绕线方式,双线并绕或双线分开绕制,不管哪种绕法,由于绕制不紧密,线长等的差异,肯定会出现漏磁现象,即一边线圈产生的磁力线不能完全通过另一线圈,这使得L-N线之间有感应电动势,相当于在L-N之间串联了一个电感)下图为共模干扰测试FALL数据:电源线缆与大地之间的寄生电容,使得共模干扰有了回路,干扰噪声通过该电容,流向大地,在LISN-线缆-寄生电容-地之间形成共模干扰电流,从而被接收机检测到,导致传导超标(这也可以解释为什么有的主板传导测试时,不接地通过,一夹地线就超标。

USB模式下不接地时,电流回路只能通过L-二极管-负载-热地-二极管-N,共模电流不能回到LISN,。

共模干扰与差模干扰的成因与应对

共模干扰与差模干扰的成因与应对

共模干扰与‎差模干扰的‎成因与应对‎共模干扰:一般指在两‎根信号线上‎产生的幅度‎相等,相位相同的‎噪声。

差模干扰:则是幅度想‎等,相位相反的‎的噪声。

常用的差分‎线对共模干‎扰的抗干扰‎能力就非常‎强。

干扰类型通‎常按干扰产‎生的原因、噪声干扰模‎式和噪声的‎波形性质的‎不同划分。

其中:按噪声产生‎的原因不同‎,分为放电噪‎声、浪涌噪声、高频振荡噪‎声等;按噪声的波‎形、性质不同,分为持续噪‎声、偶发噪声等‎;按噪声干扰‎模式不同,分为共模干‎扰和差模干‎扰。

共模干扰和‎差模干扰是‎一种比较常‎用的分类方‎法。

共模干扰是‎信号对地的‎电位差,主要由电网‎串入、地电位差及‎空间电磁辐‎射在信号线‎上感应的共‎态(同方向)电压迭加所‎形成。

共模电压有‎时较大,特别是采用‎隔离性能差‎的配电器供‎电室,变送器输出‎信号的共模‎电压普遍较‎高,有的可高达‎130V以‎上。

共模电压通‎过不对称电‎路可转换成‎差模电压,直接影响测‎控信号,造成元器件‎损坏(这就是一些‎系统I/O模件损坏‎率较高的主‎要原因),这种共模干‎扰可为直流‎、亦可为交流‎。

差模干扰是‎指作用于信‎号两极间的‎干扰电压,主要由空间‎电磁场在信‎号间耦合感‎应及由不平‎衡电路转换‎共模干扰所‎形成的电压‎,这种让直接‎叠加在信号‎上,直接影响测‎量与控制精‎度。

差模干扰在‎两根信号线‎之间传输,属于对称性‎干扰。

消除差模干‎扰的方法是‎在电路中增‎加一个偏值‎电阻,并采用双绞‎线;共模干扰是‎在信号线与‎地之间传输‎,属于非对称‎性干扰。

消除共模干‎扰的方法包‎括:(1)采用屏蔽双‎绞线并有效‎接地(2)强电场的地‎方还要考虑‎采用镀锌管‎屏蔽(3)布线时远离‎高压线,更不能将高‎压电源线和‎信号线捆在‎一起走线(4)采用线性稳‎压电源或高‎品质的开关‎电源(纹波干扰小‎于50mV‎)在一般情况‎下,差模信号就‎是两个信号‎之差,共模信号是‎两个信号的‎算术平均值‎。

电路中的共模信号与差模信号

电路中的共模信号与差模信号

电路中的共模信号与差模信号在电路设计和信号传输中,共模信号(Common Mode Signal)和差模信号(Differential Mode Signal)是两个非常重要的概念。

它们在电路性能和信号质量上起着关键作用。

本文将从原理、应用以及解决方案等方面,探讨共模信号和差模信号的特点以及对电路性能的影响。

一、共模信号的特点和作用共模信号是指同时作用于电路两个输入端口的信号,它们具有相同的幅值和相位。

在某些情况下,由于外界信号或者电路内的某些因素,共模信号会被引入到差动信号中,从而导致信号的失真和干扰。

共模信号的存在会对电路的性能产生负面影响,如信号失真、干扰增加等。

为了解决共模信号对电路性能的影响,工程师们通常会采取一系列的抑制措施。

比如,在模拟电路设计中,可以采用差分放大器、共模抑制电路等,来抑制共模信号的干扰。

在数字电路设计中,可以采用屏蔽技术、滤波器等来降低共模信号的干扰。

二、差模信号的特点和应用差模信号是指作用于电路的两个输入端口的信号,它们具有相反的相位,在电路中相互抵消。

差模信号在许多应用中起着重要作用,特别是在数据传输和通信领域。

差分信号在许多数字通信中广泛应用,利用差分信号传输数据可以提高信号质量和稳定性。

相比于单端传输,差分信号可以减少共模噪声的干扰,并提高信号的抗干扰能力。

在信号的采集和放大过程中,差分输入的方式可以提高信号的准确性和抗干扰能力。

差分信号输入方式具有更高的共模抑制比、更低的噪声功率以及更好的线性特性。

三、解决方案和技术为了提高共模抑制能力和差分信号传输质量,工程师们提出了一系列的解决方案和技术。

在电路设计中,可以采用差分信号传输技术来提高信号品质。

差分信号传输可以通过差分放大器、差分线路、差分编解码器等实现。

这些技术可以将差分信号从共模信号中分离出来,提高信号传输质量。

在电路布局和连接中,可以采用屏蔽性的方法来降低共模干扰。

通过电路板的屏蔽和接地设计,可以减少共模噪声对电路的干扰。

(word完整版)EMI滤波器设计专题(_好)[1]

(word完整版)EMI滤波器设计专题(_好)[1]

EMI滤波器设计专题(华南理工大学电力学院 Andrew Zhang)1、EMI滤波器基本概念电源线是干扰传入设备和传出设备的主要途径,通过电源线,电网的干扰可以传入设备,干扰设备的正常工作,同样设备产生的干扰也可能通过电源线传到电网上,干扰其他设备的正常工作。

因此,必须在设备的电源进线处加入EMI滤波器,这种滤波器是低通滤波器,它只允许设备正常工作频率信号进入设备(一般来说就是工频50Hz,60Hz或者中频400Hz),而对高频的干扰信号有较大的阻碍作用.由此我们知道EMI的作用主要有两个:a抑制交流电网中的高频干扰对设备的影响;b抑制设备(本文主要指高频开关电源)对交流电网的干扰.2、干扰的分类一般我们常把干扰分为共模干扰和差模干扰两大类。

所谓共模干扰就是任何载流导体与参考地之间不希望有的电位差;而差模干扰则是任何两个载流导体之间不希望有的电位差。

这两种干扰的来源可以从以下两个方面进行考虑:2。

1共模干扰的来源:架空导线载传输的过程中会受到周围空间电磁环境的辐射,火线、中线和安全地上所感应的信号的幅值和相位几乎是相等的,由于安全地线要和大地相连接,所以就形成了火线、中线和安全地之间的共模干扰。

2.2差模干扰的来源:共用一条输电线的不同设备,当其中的某一设备进行切换操作时,火线和中线之间会形成幅值大致相等而相位相反的信号,这种信号就是差模干扰。

简单地说,共模干扰就是两个都是进去,而差模干扰则是一进一出.3、EMI滤波器设计3.1 EMI 滤波器的典型结构EMI 滤波器是一种由电感和电容组成的低通滤波器,它能让低频的有用信号顺利通过,而对高频干扰有抑制作用.怎样才能抑制这些高频干扰信号呢?无非就是要在信号进入设备之前把它遏制,也就是说,在输入电路部分对高频干扰形成所谓的阻抗失配。

在开关电源中常用的EMI 滤波器的结构如图1所示。

N图1 EMI 滤波器的典型结构图中的L 就是共模电感,它是在同一个磁环上绕制两个绕向相反,匝数相同的线圈所形成的,如图2所示。

共模干扰

共模干扰

共模干扰指的是干扰电压在信号线及其回线(一般称为信号地线)上的幅度相同,这里的电压以附近任何一个物体(大地、金属机箱、参考地线板等)为参考电位,干扰电流回路则是在导线与参考物体构成的回路中流动。

中文名共模干扰外文名common mode interference概述由陈伟华主编的《电磁兼容实用手册》中对“共模”干扰的定义是指电源线对大地,或中线对大地之间的电位差。

对于三相电路来说,共模干扰存在于任何一相与大地之间。

共模干扰有时也称为纵模干扰,不对称干扰或接地干扰,这是载流导体与大地之间的电位差。

它与差模的区别是差模干扰存在于电源相线与中线之间。

共模干扰往往是指同时加载在各个输入信号接口段的共有的信号干扰。

共模干扰是在信号线与地之间传输,属于非对称性干扰。

共模干扰好比两个人同时向前或者向后推你,于此相对的差模干扰则是一前一后在拉你。

共模电流一般情况下,电缆上产生共模电流的原因有三个方面: 一个是外界电磁场在电缆中所有导线上感应出来的电压(这个电压相对于大地是等幅同相的),这个电压产生电流;另一个原因是电缆两端的设备所接的地电位不同,在这个地电位的驱动下产生电流; 第三个原因是设备上的电缆与大地之间的电位差,这样电缆上会有共模电流。

如果设备在其电缆上产生共模电流,电缆会产生强烈的电磁辐射,对电子、电气产品元器件产生电磁干扰,影响产品的性能指标。

另外,当电路不平衡时,共模电流会转变为差模电流,差模电流对电路直接产生干扰影响。

对于电子、电气产品电路中的信号线及其回路而言:差模电流流过电路中的导线环路时,将引起差模辐射,这种环路相当于小环天线,能向空间辐射磁场,或接收磁场。

因此,必须限制环路的大小和面积。

[1]如何识别共模干扰这是由于共模干扰是通过空间感应到电缆上的,这种感应只有在较高频率时才容易发生。

但有一种例外,当电缆从很强的磁场辐射源(例如,开关电源)旁边通过时,也会感应上频率较低的共模干扰。

3)用仪器测量:只要有一台频谱分析仪和一只电流卡钳就可以进行测量、判断了,判断的步骤如下:将卡钳卡在信号线或地线(火线或零线)上,记录下某个感兴趣频率(f1)的干扰强度;/将卡钳同时卡住信号线和地线,若能观察到(f1)处的干扰,则(f1)干扰中包含共模干扰成份,要判断是否仅含共模成份,进行步骤三的判别;将卡钳分别卡住信号线和地线,若两根线上测得的(f1)干扰的幅度相同,则(f1)干扰中仅含共模成份;若不相同,则(f1)干扰中还包含差模成份。

差模与共模的区别

差模与共模的区别

最近一直对运放的共模电压和差模电压有些搞不清楚,网上搜了搜,摘录一些经典!共模信号和差模信号是指差动放大器双端输入时的输入信号。

共模信号:双端输入时,两个信号相同。

差模信号:双端输入时,两个信号的相位相差180度。

任何两个信号都可以分解为共模信号和差模信号。

设两路的输入信号分别为:A,B.m,n分别为输入信号A,B的共模信号成分和差模信号成分。

输入信号A,B可分别表示为:A=m+n;B=m-n则输入信号A,B可以看成一个共模信号m 和差模信号n 的合成。

其中m=(A+B)/2;n=(A-B)/2。

差动放大器将两个信号作差,作为输出信号。

则输出的信号为A-B,与原先两个信号中的共模信号和差模信号比较,可以发现:共模信号m=(A+B)/2不见了,而差模信号n=(A-B)/2得到两倍的放大。

这就是差模放大器的工作原理。

我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。

就像初中时平面坐标需要用x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个v 是由x,y 两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为vi = (vi+, vi-)也可以表示为vi = (vic, vid)c 表示共模,d 表示差模。

两种描述是完全等价的。

只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。

运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比CMRR)条件下允许的共模信号的范围。

显然,不存在“某一端”上的共模电压的问题。

但“某一端”也一样存在输入电压范围问题。

而且这个范围等于共模输入电压范围。

道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。

对其它放大器,共模输入电压跟单端输入电压范围就有区别了。

例如对于仪放,差分输入不是0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

共模干扰与差模干扰

共模干扰与差模干扰

共模干扰与差模干扰(帖子总结)共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。

差模干扰:则是幅度相等,相位相反的的噪声。

常用的差分线对共模干扰的抗干扰能力就非常强。

干扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。

其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。

共模干扰和差模干扰是一种比较常用的分类方法。

共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。

共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。

共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。

差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。

差模干扰在两根信号线之间传输,属于对称性干扰。

消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线;共模干扰是在信号线与地之间传输,属于非对称性干扰。

消除共模干扰的方法包括:(1)采用屏蔽双绞线并有效接地(2)强电场的地方还要考虑采用镀锌管屏蔽(3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线(4)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV)在一般情况下,差模信号就是两个信号之差,共模信号是两个信号的算术平均值。

共模抑制比:差模信号电压增益与共模信号电压增益的比值,说明差分放大电路对攻模信号的抑制能力,因此共模抑制比越大越好,说明电路的性能优良传输线的共模状态:当两条耦合传输线上驱动信号的幅度与相位都相同时,称为共模传输模式。

共模干扰转变为差模干扰的原因

共模干扰转变为差模干扰的原因

共模干扰转变为差模干扰的原因1. 共模信号和差模信号在电磁波传输中,我们会遇到两种信号类型:共模信号和差模信号。

共模信号指的是两个信号的幅度和相位相同,方向相同的信号,它们同时影响电路中的两个引脚。

而差模信号则指的是两个信号的幅度和相位不同,方向相反的信号,它们影响电路中的两个引脚的差值。

2. 共模噪声共模噪声是指同样的干扰信号同时作用于电路中所有的引脚,造成系统的工作不稳定或者失效。

在数字电路中,共模噪声通常由电源干扰、地线干扰,以及其他干扰信号产生,会导致数据传输错误、系统效率下降等问题。

3. 差模信号相反的,差模信号在电子电路中是非常重要的信号类型。

差模信号能够过滤掉来自共模噪声的干扰信号,从而达到消除干扰信号的效果。

为此,商用的集成电路和电路板一般都采用差模式的设计。

4. 共模干扰转变为差模干扰虽然差模信号可以有效地抑制共模干扰信号,但某些情况下共模干扰仍然会转化为差模干扰。

这种情况主要是由于共模干扰信号与电路板的电流回路线路之间的感应耦合所引起的。

当共模干扰信号作用于电路板时,会通过地线、电源线传输到整个电路板,向电路板内的电流回路中注入电流。

如果共模干扰信号所带的电流是不对称的,那么在通过电路板上的线路时,就会引起线路间的感应耦合,形成差模干扰信号。

5. 解决办法为了解决共模干扰信号转化为差模干扰信号的问题,我们可采取多种措施。

比如说,在电路板中增加电源和地线的滤波电路,通过滤波电路将共模干扰信号进行隔离,从而降低共模噪声的水平。

同时,在电路设计中尽可能采取差模电路,减少感应耦合对系统的干扰。

此外,我们可以更换或优化一些元器件,比如提高磁芯的质量等,以减小电感器的磁场耦合,防止感应耦合产生差模干扰。

总之,需要注意的是,共模干扰信号能够转化为差模干扰信号,但我们可以采取相应的措施来减少干扰信号的影响,从而提高电子电路的可靠性和性能。

怎样解决电路中的共模干扰问题

怎样解决电路中的共模干扰问题

怎样解决电路中的共模干扰问题共模干扰是电路中常见的问题之一,它可能导致信号质量下降、影响系统性能和准确性。

本文将介绍共模干扰的原因和如何解决这一问题。

一、共模干扰的原因共模干扰是因为电路中存在共模信号而引起的。

共模信号是指同一电路引起的两个信号之间的相互作用。

这种相互作用可能会导致信号失真、噪声增加和系统性能下降。

常见的共模干扰产生的原因有以下几种:1. 地线干扰:电路中的地线可能存在阻抗不匹配、接触不良或共地点干扰等问题,这会导致共模干扰。

2. 电源线干扰:电源线中的电流波动、电源线附近的磁场、电磁波等都可能引起电源线干扰。

3. 电缆行为不良:电缆的长度、布线方式、绝缘材料等都可能对共模干扰产生影响。

二、解决共模干扰问题的方法为了解决共模干扰问题,我们可以采取以下几种方法:1. 优化布线:合理布线可以减少共模干扰。

在设计电路时,应避免信号线与电源线、地线等共模干扰源的靠近,可以考虑增加间隔,使用屏蔽线材或屏蔽导线等方法来降低共模干扰。

2. 使用滤波器:滤波器可以帮助我们滤除共模干扰。

可以在电路输入和输出处添加滤波器,通过选择合适的滤波器类型和参数来减少共模干扰。

3. 地线设计:合理的地线设计可以有效减少共模干扰。

应保证地线的良好接触,并避免地线环路的存在。

此外,还可以考虑使用独立的数字地线和模拟地线,降低共模干扰的传播。

4. 屏蔽和隔离:可以采用屏蔽技术和隔离技术来减少共模干扰问题。

通过使用屏蔽盒、屏蔽罩、屏蔽材料等措施,可以有效隔离和屏蔽共模干扰信号。

5. 等电位设计:等电位设计可以帮助我们减少共模干扰。

通过使信号源和负载处于相同的电位,可以减少共模干扰信号的传播,并提高系统抗干扰性能。

三、共模干扰问题的重要性共模干扰在电路中具有重要的意义。

解决共模干扰问题可以提高电路的可靠性、稳定性和精确性,对于保证信号质量和系统性能至关重要。

在电子产品设计中,共模干扰问题必须引起足够的重视。

合理选择和应用上述解决共模干扰问题的方法,能够有效提高电路的工作质量和稳定性,为用户提供更好的使用体验。

传导干扰耦合方式

传导干扰耦合方式

传导干扰耦合方式传导干扰耦合方式是指在电路中信号传输过程中,由于信号的电磁波会在电路中形成电磁场,从而导致信号被干扰的现象。

这种干扰方式在电路中普遍存在,而且会对电路的正常工作造成不良影响。

在本文中,我们将详细探讨传导干扰耦合方式的种类、产生原因以及预防措施等方面的内容。

一、传导干扰耦合方式的种类传导干扰耦合方式主要有两种:共模干扰和差模干扰。

1. 共模干扰共模干扰是指两个或多个信号在电路中共同传输时,由于它们具有相同的电磁场特性,从而导致它们之间相互干扰的现象。

共模干扰主要产生于多层印刷电路板、信号线束和电源线等电路中。

2. 差模干扰差模干扰是指两个或多个信号在电路中分别传输时,由于它们的电磁场特性不同,从而导致它们之间相互干扰的现象。

差模干扰主要产生于单层印刷电路板和信号线等电路中。

传导干扰耦合方式产生的原因主要有以下几点:1. 信号线路的设计不合理如果信号线路的长度过长、宽度过窄或者走位方式不合理,就会导致电磁波在传输过程中产生干扰。

2. 电源线路的设计不合理电源线路与地线之间存在电容耦合,如果电源线路的设计不合理,就会导致电磁波在传输过程中产生干扰。

3. 线束的设计不合理线束中各个信号线之间存在电容和电感的耦合,如果线束的设计不合理,就会导致电磁波在传输过程中产生干扰。

三、传导干扰耦合方式的预防措施为了避免传导干扰耦合方式对电路的干扰,我们可以采取以下几种预防措施:1. 信号线路的设计应合理信号线路的长度应尽量短,宽度应适当增加,走位方式应合理,以减少电磁波在传输过程中的干扰。

2. 电源线路的设计应合理电源线路的设计应符合电磁兼容性标准,应适当增加电源线路的宽度和厚度,以减少电磁波在传输过程中的干扰。

3. 线束的设计应合理线束中各个信号线之间应适当隔离,且线束的形状应合理,以减少电磁波在传输过程中的干扰。

4. 选择合适的滤波器通过选择合适的滤波器,可以滤除一定频率范围内的干扰信号,以减少传导干扰的影响。

共模干扰与差模干扰

共模干扰与差模干扰

共模干扰与差模干扰
一. 差模干扰
1.1差模干扰:简单的说就线与线的干扰。

图1
1.2.差模干扰产生的原因
差模干扰中的干扰是起源在同一电源线路之中(直接注入)。

如同一线路中工作的电机,开关电源,可控硅等,他们在电源线上所产生的干扰就是差模干扰。

1.3如何影响设备。

差模干扰直接作用在设备两端的,直接影响设备工作,甚至破坏设备。

(表现为尖峰电压,电压跌落及中断。


1.4如何滤除差模干扰
主要采用差模电感和差模电容。

1.4-1差模电感的工作原理
1.4-2 差模电容工作原理。

二. 共模干扰2.1.共模干扰:就是共同对地的干扰。

2.2共模干扰产生的原因很多。

主要有以下几点:
2.3如何影响设备。

2.4如何滤除共模干扰(共模电感共模电容)
1.4-2共模电容工作原理。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共模干扰和共模干扰
共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。

差模干扰:则是幅度相等,相位相反的的噪声。

常用的差分线对共模干扰的抗干扰能力就非常强。

扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。

其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。

共模干扰和差模干扰是一种比较常用的分类方法。

共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。

共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。

共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。

差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。

差模干扰在两根信号线之间传输,属于对称性干扰。

消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线;
共模干扰是在信号线与地之间传输,属于非对称性干扰。

消除共模干扰的方法包括:消除共模干扰的方法包括:(1)采用屏蔽双绞线并有效接地(2)强电场的地方还要考虑采用镀锌管屏蔽(3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线(4)不要和电控锁共用同一个电源(5)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV)。

在一般情况下,差模信号就是两个信号之差,共模信号是两个信号的算术平均值。

共模抑制比:差模信号电压增益与共模信号电压增益的比值,说明差分放大电路对共模信号的抑制能力,因此共模抑制比越大越好,说明电路的性能优良。

传输线的共模状态:当两条耦合传输线上驱动信号的幅度与相位都相同时,称为共模传输模式。

此时,传输线的等效电容将随着互容的减少而减少,同时等效电感却因为互感的增加而增加。

传输线的差模状态:当两根耦合的传输线相互之
间的驱动信号幅值相同但相位相差180 度的时候,就是一个差模传输的模型。

此情况下,传输线的等效电容因为互容的加倍而增加,但是等效电感因为互感的减小而变小。

任何电源线上传导干扰信号,均可用差模和共模干扰信号来表示。

差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。

在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。

因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下,除抑制干扰源以外,最有效的方法就是在开关电源输入和输出电路中加装EMI滤波器。

开关电源的工作频率约为10~100 kHz。

EMC很多标准规定的传导干扰电平的极限值都是从10 kHz算起。

对开关电源产生的高频段EMI信号,只要选择相应的去耦电路或网络结构较为简单的EMI滤波器,就不难满足符合EMC标准的滤波效果。

差模传导噪音是电子设备内部噪音电压产生的与信号电流或电源电流相同路径的噪音电流。

减小这种噪音的方法是在信号线和电源线上串联差模扼流圈、并联电容或用电容和电感组成低通滤波器,来减小高频的噪音。

噪音产生的电场强度与电缆到观测点的距离成反比,与频率的平方成正比,与电流和电流环路的面积成正比。

因此,减小这种辐射的方法是在信号输入端加LC低通滤波器阻止噪音电流流进电缆;使用屏蔽电缆或扁平电缆,在相邻的导线中传输回流电流和信号电流,使环路面积减小。

共模传导噪音是在设备内噪音电压的驱动下,经过大地与设备之间的寄生电容,在大地与电缆之间流动的噪音电流产生的。

减小共模传导噪音的方法是在信号线或电源线中串联共模扼流圈、在地与导线之间并联电容器、组成LC滤波器进行滤波,滤去共模噪声。

噪音辐射的电场强度与电缆到观测点的距离成反比,与频率和电缆的长度成正比。

简单说:差模干扰串联在信号中;共模干扰同时加在信号的两个输入端。

一般而言,对于你的设计,通过已知的连线进入的干扰信号是差模干扰,通过空间或说分布参数进入的干扰信号是共模干扰。

485通信线由两根双绞的线组成,它是通过两根通信线之间的电压差的方式来传递信号,因此称之为差分电压传输。

什么是共模干扰和差模干扰
电压电流的变化通过导线传输时有二种形态,我们将此称做"共模"和"差模"。

设备的显性电源,电话等的通信线,与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号。

但在这两根导线之外通常还有第三导体,这就是"地线"。

干扰电压和电流分为两种:一种是两根导线分别做为往返线路传输;另一种是两根导线做去路,地线做返回路传输。

前者叫"差模",后者叫"共模"。

什么是共模残压什么是共模残压共模电压(common mode voltage):在每一导体和所规定的参照点之间(往往是大地或机架)出现的相量电压的平均值。

或者说同时加在电压表两测量端和规定公共端之间的那部分输入电压。

差模电压(symmetrical voltage):一组规定的带电导体中任意两根之间的电压。

使差模电压又称对称电压。

在规定波形,标称放电电流冲击氧化锌阀片,阀片两端测到的电压峰值,称为残压。

残压与压敏电压的比值,残压比。

雷击,闪电会在输入/输出电源线上产生瞬间高压,大电流,影响用户设备稳定运行,严重时会造成设备损坏。

避雷器按接法分可分为共模接法和差模接法两种:避雷器接在相线之间或相线与零线之间称为差模接法,即所谓横向保护。

避雷器接在相线与地线之间或零线与地线之间称为共模接法,即所谓纵向保护。

相关文档
最新文档