叶绿体色素的提取分离定量及理化性质的鉴定
叶绿体色素的提取与分离、理化性质及含量测定 3
叶绿体色素提取分离与理化性质及含量测定▪(一)实验目的及意义▪(二)实验原理▪(三)实验步骤▪(四)实验报告实验目的和意义▪绿色植物的光合作用是在叶绿体中的叶绿体色素中进行的,了解叶绿体色素的组成、性质及测定对于理解光合作用的本质很有帮助。
▪因此,测定叶绿素含量便成为研究光合作用与氮代谢必不可少的手段,在作物育种、科学施肥、看叶诊断中有着广泛的应用叶绿体在细胞中运动视频叶绿体在细胞中的分布与结构类囊体膜的结构及功能实验原理植物叶绿体色素是吸收太阳光能,进行光合作用的重要物质。
它一般由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
这些色素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。
实验原理▪色素分离的方法有多种,纸层析是最简便的一种。
当溶剂(有机推动剂)不断从纸上流过时,由于混合物(叶绿素提取液)中各种成分在固定相(滤纸纤维素所吸附的水分)和流动相(有机推动剂)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
▪叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
实验原理▪叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。
▪叶绿素中的镁可以被氢离子所取代而成褐色的去镁叶绿素。
去镁叶绿素遇铜则成为铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
实验步骤(1)▪根据朗伯一比尔定律,某有色溶液的吸光度D与其中溶液浓度C和液层厚度L成正比,即:▪D=KCL▪D:吸光度,即吸收光的量,C:溶液浓度, K:为比吸收系数(吸光系数),L:液层厚度,通常为1cm.▪如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和,这就是吸光度的加和性。
实验五 叶绿体色素的提取、分离及理化性质的鉴定
• 3、铜代反应:取上述色素提取液加入试管,逐滴加入 浓盐酸,直至溶液呈现褐色,此时叶绿素分子已经遭到 破坏,称为去镁叶绿素,然后加入醋酸铜结晶少许,慢 慢加入溶液,直至出现鲜亮的绿色,此时即形成了铜代 叶绿素。
实验五 叶绿体色素的提取、分 离及理化性质的鉴定
• 一、叶绿体色素的提取与分离
• 1、称取新鲜叶片2 g,放入研钵总加入丙酮5 ml, 少许碳酸钙和石英砂,研磨成匀浆,再加丙酮10 ml, 以漏一个圆洞,把新华滤纸 剪成20 cm的长条卷成圆柱,一端多次滴上色素提取 液,插入圆形滤纸中间孔中,上面与圆形滤纸齐平
• 五、结果与讨论
• •分析每个实验的结果,注意事项和原因。 • •六、作业 • •1、记录每个实验的结果。 • •2、为什么提取叶绿体色素要加入少许碳
酸钙和石英砂?
• 3、在培养皿中加入展层用的四氯化碳,把上部做 成的滤纸下的含色素圆柱下端浸入展层液,盖上培 养皿上盖,开始展层。等展层液扩散到培养皿边缘 时,取出滤纸,观察同心圆色素带,做好记录。
• 二、叶绿体色素的理化性质 • 1、叶绿体的荧光现象:取上述色素提取液少许于试管
中,分别观察反射光和透射光,比较观察到的颜色不同 并分析原因。
• 4、黄色素与绿色素的分离:取上述色素丙酮提取液10 ml,加入盛有20 ml乙醚的分液漏斗,并沿漏斗边缘加 入30 ml蒸馏水,轻轻摇动分液漏斗,静止片刻,溶液 分为两层。色素已经全部转入上层乙醚总,弃去丙酮和 水,再加入5 ml30%KOH甲醇溶液,用力摇动分液漏斗, 静置10分钟,再加入蒸馏水10 ml,摇动后静置分离, 得到黄色素层和绿色素层,分别保留,分析实验结果和 原因。
(新)叶绿体色素的提取分离及理化性质的鉴定
三.实验操作
丙酮研磨提取叶绿素 ↓ 2mL丙酮提取液 ↓ 加入6N HCl (脱镁叶绿素) ↓ Cu取代
•光学特性:
( 1 )吸收光谱:色素溶液随波长改变而发生光吸收 变化的图谱 Chla Chlb的吸收光谱有二个强吸收峰 640——660nm 红光部分 叶绿素特有 410——470nm 蓝紫光部分 卟啉环化合物共有 (2)荧光和磷光 荧光现象:Chl溶液在透射光下呈绿色,而反射 光下呈红色的现象。强度大,寿命短(10-9秒) 磷光: Chl溶液停止光照后,仍能在一定时间内 放出暗红色的光。 寿命长(10-2秒——10-3秒)
皂化反应: Chla、Chlb 是双羧酸的酯 一个羧基被甲基酯化 可发生皂化反应 另一个羧基被叶醇基酯化 COOCH3 C32H30ON4Mg +2KOH COOC20H39 COOK C32H30ON4Mg +CH3OH+C20H39OH COOK 取代反应:卟啉环中的 Mg2+ 可被 H2+ 、 Cu2+ 、 Zn2+取代,被Cu2+、Zn2+取代后仍保持绿色
↓过滤、洗研钵及残渣 ↓ 余下的色素提取液用石油醚萃取 ↓ ↓ ↓ ↓ 纸层析 荧光 皂化反应 光破坏 ↓ 分离色素 ↓ 扫描光谱 花色素实验
四. 结பைடு நூலகம்与分析
对实验现象作好详细记录, 并加以解释 请对皂化反应现象做出合理解释,而不是 单单用反应方程式来表示
叶绿体色素的提取
叶绿体色素的提取、分离及理化性质的鉴定实验报告10科四 谭晓东 20102501024一、实验目的1、学会叶绿体色素提取和分离的方法。
2、了解叶绿体色素的荧光现象、皂化反应等理化性质。
二、实验原理叶绿体中含有绿色素和黄色素两大类,这两类色素都不溶于水,而溶于有机溶剂,故可用乙醇或丙酮等有机溶剂提取。
叶绿素是一种二羧酸——可与碱起皂化反应而生成醇和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开;叶绿素与类胡萝卜素都具有光学活性,能产生荧光;叶绿素中的镁可以被H +所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
三、实验用具1、实验材料:叶片2、实验试剂:丙酮、碳酸钙3、实验器材:分光光度计 四、实验步骤剪碎叶片研磨 过滤 取提取液荧光现象观察:在直射光下观察溶液的透射光反射光颜色有何不同少量CaCO3、石英砂 25mL 丙酮五、实验结果1. 叶绿体色素荧光现象的观察 叶绿体色素的透射光呈亮绿色,在反射光下呈暗红色。
2. 光的破坏光照后叶绿体色素提取液颜色变浅,暗处存放的叶绿体色素呈深绿色。
3. 铜代反应加入浓盐酸后,叶绿素分子遭破坏形成去镁叶绿素,显褐黄色,加入醋酸铜晶体加热后又变成深绿色,形成铜代叶绿素。
4. 皂化反应用分光光度计分析色素吸收光谱曲线,上面的曲线是叶黄素的吸收光谱,峰值波长是465nm;下面是叶绿素的吸收光谱曲线,两个峰值波长分别是415nm和640nm六、分析与讨论1. 叶绿体色素荧光现象的观察叶绿体色素的透射光呈亮绿色,在反射光下呈暗红色。
这是由于叶绿体色素主要吸收自然光中的红橙光和蓝紫光,未被吸收的光线透射过叶绿体色素溶液,呈现出绿色;在可见光下,叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光,故其反射光为暗红色。
叶绿体色素的提取分离及其理化性质的鉴定实验
光合和呼吸代谢【模块实验目的】光合作用与呼吸作用是植物代谢的两大核心内容。
前者是物质合成与能量储存的过程,属于同化作用,为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源,对人类和整个生物界都具有非常重要的意义;后者是物质分解与能量释放过程,属于异化作用,为生命活动提供能量。
光呼吸是在光下绿色细胞发生吸氧与放出二氧化碳的过程,虽然在气体交换方面它与光合作用正好处于相反方向,但无论从发生部位、对光的依赖及在生化上的联系来看,都同光合作用具有很密切的关系。
本模块实验通过测定玉米种子萌发至两周内的呼吸速率。
线粒体H+-ATP酶活性、光合速率、叶片中叶绿素含量及乙醇酸氧化酶活性,了解研究植物的光合和呼吸代谢的基本方法。
【流程图】4-1叶绿体色素的提取和分离[实验目的]了解和掌握叶绿体色素提取、分离的原理和方法。
[ 实验原理]叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。
他们与类囊体膜相结合成为色素蛋白复合体。
这两类色素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。
提取液可用色谱分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可分开各种色素。
[ 器材与试剂]1. 实验仪器与用具研钵、漏斗、剪刀、滴管、圆形滤纸(直径11cm)、层析缸2. 实验试剂丙酮、甲醇、石英砂、碳酸钙、无水硫酸钠、四氯化碳、乙醚3. 实验材料玉米幼苗叶片[ 实验步骤]1. 叶绿体色素的提取:取新鲜叶片4g,洗净,擦干,去掉中脉,剪碎,放入研钵中,研钵中加2~3ml 95%乙醇,研磨至匀浆,再加10~15ml 95%乙醇,提取3~5min,过滤,残渣用5ml 95%乙醇冲洗,合并滤液,定容至25ml。
2. 将展层用的圆形滤纸剪成2cm x20cm的纸条,其中一端剪去两侧,中间留一窄条,长约1.5cm,宽约0.54cm。
实验四、叶绿素的提取、分离及化学性质鉴定
实验四、叶绿素的提取、分离及化学性质鉴定一.实验目的:掌握植物中叶绿体色素的成分分离和定性、定量分析的原理和方法。
二.实验原理:1、溶解性。
叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取2、吸附性。
滤纸对Chlb、Chla、叶黄素、胡萝卜素的吸附能力不同(?),当用石油醚作推动剂时,其在滤纸上的移动速度不同,可相互分离。
当用适当溶剂推动时,混合物中各成分在两相(固定相和流动相)间具有不同分配系数,所以移动速度不同,一定时间后可将各种色素分离三.实验材料:新鲜植物叶片器具:研钵一个,漏斗一个,刻度试管两支,剪刀一把,长滴管一个,培养皿(直径9cm)一个,圆形滤纸(11cm和7cm)各一张,滤纸条一张试剂:95%乙醇,石油醚四.实验步骤:1.色素提取(乙醇粗提液)a.取新鲜叶片洗净擦干,去中脉称1g左右剪碎于研钵b.研钵中加3-5ml 95%乙醇研磨成匀浆过滤于刻度试管残渣用少许乙醇冲洗一并过滤定容至10ml注:研磨用石英砂或SiO2以利于充分研磨,加入CaCO3以保护叶绿素。
2.荧光观察将乙醇提取液试管放于太阳光下观察反射光和透射光下的颜色现象:透射光下呈绿色,反射光下呈红色为叶绿素荧光3.色素萃取(石油醚提取液)取乙醇提取液5ml与另一支试管加2ml石油醚摇荡静止片刻上层深绿色为石油醚提取液注:用丙酮提取会更好些,各色素在石油醚中溶解度不同4.色素分离a.将(11cm)圆滤纸中间剪一小圆孔取滤纸条捻成紧实芯一端插入圆滤纸中心(孔缘与纸芯紧贴且露出少许,最好相平)用长滴管吸少许石油醚提取液滴于纸芯上端待风干后再滴加几次。
b.将盛有石油醚的内盖(不要过满)放于培养皿中央将插上纸芯的滤纸放在培养皿上纸芯下端浸入石油醚迅速盖好培养皿。
c.推动剂前缘接近滤纸边缘时取出滤纸,风干可见分离色带,用铅笔标出各种色素位置和名称注:带宽和移动速度说明?答:带宽:色素越多,色素带越宽,所以色素共分为好几个带移动速度:溶解度高的移动速度快,就越接近滤纸上边缘。
叶绿体色素的提取、分离、理化性质和叶绿素含量的测定
实验报告课程名称: 植物生理学及实验(甲) 实验类型:实验名称: 叶绿体色素的提取、分离、理化性质和叶绿素含量的测定姓名: 专业: 学号:同组学生姓名: 指导老师:实验地点: 实验日期:一、实验目的和要求二、实验内容和原理 三、主要仪器设备 四、操作方法与实验步骤五、实验数据记录和处理 六、实验结果与分析七、讨论、心得一、实验目的和要求 1、掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法。
2、熟悉在未经分离的叶绿体色素溶液中测定叶绿素a 和b 的方法及其计算。
二、实验内容和原理以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。
原理如下: 装 订 线1、叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取。
2、皂化反应。
叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素分开。
COOCH3COO-C32H30ON4Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH +C20H39OHCOOC20H39COO-3、取代反应。
在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。
(H+取代Mg2+, Cu2+ (Zn2+)取代H+ )褐色绿色4、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。
5、定量分析。
叶绿素吸收红光和兰紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a,b及总量,而652可直接用于总量分析。
根据朗伯-比尔定律,最大吸收光谱不同的两个组分的混合液,它们的浓度C与吸光值之间有如下的关系: OD1=Ca*ka1+Cb*kb1OD2=Ca*ka2+Cb*kb2查阅文献得,叶绿素a和b的80%丙酮溶液,当浓度为1g/L时,比吸收系数k值如下。
波长/nm比吸收系数k叶绿素a叶绿素b66382.049.2764516.7545.60将数值代入式子得:OD663=82.04*Ca+9.27*Cb OD645=16.75*Ca+45.60*Cb经整理后,得到式子:Ca=0.0127 OD663 - 0.00269 OD645 Cb=0.0229 OD645 - 0.00468 OD663三、主要仪器设备天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等四、操作方法与实验步骤1、定性分析:鲜叶5g+95%30ml(逐步加入),磨成匀浆,过滤入三角瓶中,观察荧光现象。
叶绿体色素的提取、分离、定量及理化性质的鉴定
实验日期:2011.9.28叶绿体色素的提取、分离、定量及理化性质的鉴定1、实验原理叶绿体色素是植物吸收太阳光能进行光合作用的重要物质,主要由叶绿素a 、叶绿素b 、胡萝卜素和叶黄素组成。
它们与类囊体膜相结合成为色素蛋白复合体。
1. 叶绿体色素的结构与分离叶绿素a为蓝黑色固体,在乙醇溶液中呈蓝绿色;叶绿素b为暗绿色,其乙醇溶液呈黄绿色。
Chla与Chlb是吡咯衍生物与镁的络合物,它们很相似,不同之处仅在于Chla第二个吡咯环上的一个甲基(-CH3)被醛基(-CHO)所取代即Chlb。
Chla与Chlb 是植物进行光合作用必需的催化剂,易溶于石油醚等非极性溶剂中。
通常植物中叶绿素a的含量是叶绿素b的三倍。
其结构式如下:类胡萝卜素是一种橙色的天然色素,属于四萜,为一长链共轭多烯,有α、β、γ三种异构体,其中β异构体含量最多。
β-胡萝卜素(R=H)和叶黄素(R=OH)叶黄素是一种黄色色素,与叶绿素同存在于植物体内,是胡萝卜素的羟基衍生物,较易溶于乙醇,在石油醚中溶解度较小。
秋天,高等植物的叶绿素被破坏后,叶黄素的颜色就显示出来。
叶绿素与类胡萝卜素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。
提取液可用色谱分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
2. 叶绿体色素的物理性质叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它从第一单线态返回基态时可发射出红光量子,因而产生荧光。
因为分子吸收的光能有一部分消耗于分子内部的振动上,发射的荧光的波长总是比被吸收光的波长要长。
3. 叶绿体色素的化学性质叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。
植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定
植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定引言:叶绿体是植物细胞中的一个重要细胞器,其中主要存在着叶绿素等色素,它们在光合作用中起着重要的作用。
研究叶绿体色素的提取、分离、理化性质和叶绿素含量的测定,对于了解光合作用的机理以及研究植物生理生化过程具有重要意义。
本实验旨在通过实验手段提取叶绿体色素,进行色素的分离、理化性质的研究和叶绿素含量的测定。
材料与方法:材料:菠菜叶片、研钵、磨杵、丙酮、乙醇、石油醚、叶绿素提取液、测色皿、高锰酸钾溶液、浓硫酸。
方法:1.取适量菠菜叶片放入研钵中,加入适量丙酮,用磨杵捣碎成糊状。
2.将捣碎的菠菜糊状物转移到玻璃漏斗中,用石油醚冲洗3次,使叶绿体附着物进一步析出。
3.将漏斗中的上清液收集,并加入适量乙醇,振摇混合,使叶绿素慢慢析出。
4.将释放出的叶绿体颗粒通过离心机离心沉淀10分钟,收集沉淀。
5.取收集到的叶绿体沉淀,加入适量叶绿素提取液,用乳钙酸钠解离剂进行叶绿素含量的测定。
6.将其中一部分叶绿体溶液加入高锰酸钾溶液,观察颜色变化。
7.将其余叶绿体溶液与浓硫酸混合,观察颜色变化。
结果与讨论:通过上述方法,我们成功地提取并分离出菠菜叶片中的叶绿体色素。
加入石油醚可以去除一部分杂质,使叶绿体进一步纯化。
加入乙醇可以使叶绿素从叶绿体中溶出。
通过离心沉淀,我们收集到了叶绿体的沉淀物。
叶绿体的提取液与高锰酸钾溶液反应后呈现蓝色或紫色,这是由于高锰酸钾通过氧化反应将一些具有现菌酮结构的物质氧化为合成叶绿素的前体物质所引起的。
这种反应也证实了叶绿体的存在。
叶绿体溶液与浓硫酸混合后呈现蓝绿色,这是由于浓硫酸通过剥离叶绿体周围的蛋白质和其他有机物质,将叶绿素分子释放出来,产生颜色变化。
叶绿素的含量测定是通过与乳钙酸钠解离剂反应来进行的。
乳钙酸钠解离剂能够与叶绿体中的叶绿素结合,并形成稳定的叶绿素-乳钙酸钠络合物。
这种络合物通过光密度的测定,可以根据比色法来测量叶绿素的含量。
实验3叶绿体色素的提取、分离及理化性质的测定
实验3叶绿体⾊素的提取、分离及理化性质的测定实验三叶绿体⾊素的提取、分离及理化性质的测定【实验原理】叶绿体⾊素⼜称光合⾊素,在⾼等植物中可分为叶绿素和类胡萝⼘素两⼤类,前者包括叶绿素a(蓝绿⾊)和叶绿素b(黄绿⾊),后们类囊体膜上的蛋者包括胡萝⼘素(橙⾊)和叶黄素(黄⾊),它与⽩质结合形成⾊素蛋⽩复合体,不溶于⽔,易溶于酯,因此可⽤丙酮、⼄醇、⽯油醚等有机溶剂进⾏提取。
叶绿体⾊素的分离有多种⽅法,本实验仅介绍纸层析法。
层析的基本原理:在分离过程中,由⼀种流动相(即⼀种液体或⽓体)带动着试样经过固定相(⼀种⽀持物,如纸)向外扩散,由于试样在两相中的溶解度不同和固定相对试样中不同成分的吸附程度有别,当⽤适当的溶剂推动时,混合物中各成分在两相间具有不同的分配系数,所以它们的移动速度不同,经过⼀定时间层析后,可使试样中的各种组分得到分离,在做纸层析时,由于纸对光合⾊素中各种⾊素分⼦的吸附程度不同,以及这些⾊素分⼦在溶剂四氯化碳(推进剂)中溶解度也有差异,以致溶剂带动⾊素分⼦向四周移动时,各种⾊素分⼦沿纸扩散的速度也就不同,使混合⾊素分离,出现不同颜⾊的环。
将提取的叶绿素溶液置于光下,在透射光呈绿⾊,在反射光下呈这现象称为荧光现象。
在反射光下叶绿素溶液之所以呈樱桃红⾊,种发态,激发态的叶樱桃红⾊,是因为叶绿⾊分⼦吸收光能后处于激状绿素分⼦很不稳定,当它回到基态时,将所获得的能量以辐射能的形式发射出红光量⼦。
叶绿素的化学性质很不稳定,容易受强光、⾼温等的破坏,特别是当叶绿素与蛋⽩质分离以后,破坏更快,⽽类胡萝⼘素则较稳定。
叶绿素中的镁可以被H+所取代⽽成褐⾊的去镁叶绿素,后者遇铜后,其中的氢(H+)⼜被铜(Cu2+)取代,形成了铜代叶绿素,便由褐⾊转变成蓝绿⾊,铜代叶绿素很稳定,且⽐原来的绿⾊还要稳定些,在光下也不易被破坏。
设备试剂】【材料、与1. 材料新鲜的菠菜或⼩⽩菜等其他绿⾊植物叶⽚。
2. 设备电⼦天平、研钵、烧杯、量筒、培养⽫、刻度试管、试管夹、试管架、酒精灯、剪⼑、圆形滤纸、⼩漏⽃等。
叶绿体色素的提取分离、理化性质和含量测定
叶绿体色素的提取分离、理化性质和含量测定1 实验目的(1)学习用薄层色谱法分离叶绿体色素的实验方法;(2)验证叶绿体素的理化性质。
2 实验原理2.1 叶绿素的提取叶绿体是进行光合作用的细胞器。
叶绿体中的叶绿素a、叶绿素b、胡萝卜素和叶黄素与类囊体膜结合称为色素蛋白复合体。
这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。
提取液可用薄层色谱法加一分离和鉴别。
2.2 叶绿素的分离薄层层析色谱法是将吸附剂均匀的涂在玻璃板上称一薄层,将此吸附剂薄层作为固定相,把待分离的样品溶液点在薄层板的下端,然后用一定量的溶剂做流动相,将薄层板的下端浸入到展开剂当中。
流动相通过毛细血管作用由下而上浸润薄层板,并带动样品在板上也向上移动,样品中各组分在吸附剂和展开剂之间发生连续不断地吸附、脱吸附、再吸附、再脱附……的过程。
由于吸附剂对不同物质的吸附能力大小不同,吸附力强的物质相对移动慢一点,而吸附力弱的物质则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。
2.3 叶绿素理化性质测定叶绿素是一种由叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成甲醇和叶绿醇及叶绿酸盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较为稳定。
叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素。
去镁叶绿素遇铜则成为铜代叶绿素,铜带叶绿素很稳定,在光下不易被破坏,故常用此法制作绿色多只植物的浸渍标本。
2.4 叶绿素含量的测定根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。
根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。
叶绿体色素的提取
叶绿体色素的提取、分离、定量及理化性质的鉴定【实验目的】1.掌握提取和分离叶绿体色素的方法;2.掌握测定叶绿体色素含量的方法;3.熟悉叶绿体色素的理化性质及吸光特性;4.了解植物叶绿体色素组成及其与生境的相关性。
【实验原理】1.叶绿体色素是植物进行光合作用的重要物质,叶绿体色素包含绿色素(包括叶绿素a 和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类,这两类色素都不溶于水,而溶于有机溶剂,故可用乙醇或丙酮等有机溶剂提取。
提取液可用色层分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各成分在两相(流动相和固定相)间具有不同的分配系数,所以它们的移动速度不同,经过一定时间层析后,便将混合色素分离。
2.叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开图一:叶绿素的结构3.叶绿素与类胡萝卜素都具有光学活性,叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
图二:叶绿素对光能的吸收与能量转变示意图4.叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素。
铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
5.叶绿体色素具有吸光特性,可利用分光光度计在某一特定波长下测定色素溶液光密度,即可用公式计算出其中各色素的含量。
各种色素含量计算如下:Chla(μg /ml)=12.7 OD663-2.69OD645Chlb(μg /ml)=22.9 OD645-4.68 OD663ChlT(μg /ml)=Chla + Chlb0.1ml提取液Chla含量(μg )=Chla(μg /ml)*0.1ml*稀释倍数0.1ml提取液Chlb含量(μg)=Chlb(μg /ml)*0.1ml*稀释倍数0.1ml提取液ChlT含量(μg )=ChlT(μg /ml)*0.1ml*稀释倍数(菠菜:稀释倍数=0.1ml/3ml=30,玉米:稀释倍数=0.3ml/3ml=10)每种叶绿素含量计算(以Chla为例):FW总V)μg含量(Chla提取1ml)/gμg含量(Chla ⨯=液其中FW为样品总重(2.0g菠菜叶片,0.2g玉米叶片),V总=10ml6.叶绿体色素易受光氧化,提取色素应在弱光中进行,并避光保存色素。
《植物生理学实验》实验02 叶绿体色素的提取、分离及理化性质的鉴定
• 分子式: Chla C55H72O5N4Mg / Chlb C55H70O6N4Mg • 结构式: 卟啉环化合物 四个吡咯环与四个=CH-组成一个大环,共轭双键形
成一个大π键,环中央有一个镁原子,卟啉环决定叶绿素颜色,也是吸收可见光, 并以诱导共振方式传递光能的根本所在,叶醇尾是由四个异戊二烯单位组成 的双萜; 卟啉环头部呈极性, 具亲水性; 叶醇尾部具亲脂性
长(10-2秒——10-3秒)(无法观察到)
• 化学特性:皂化反应 • 叶绿素是一种双羧酸的酯,可与碱发生皂化作用,产生的盐能溶于水,而
叶黄素不能发生皂化反应,可用此法将叶绿素与类胡萝卜素分开
• 化学特性:光不稳定性 • 叶绿素在叶绿体中与蛋白质及酶形成复合物,具有稳定性,但在分离出来
后,在光下会发生氧化作用,被光解为一系列小分子物质而褪色.
• 化学特性:镁的置换反应 • 叶绿素中的镁可被H+取代而生成褐色的去镁叶绿素;加人铜盐作用,后者
则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用 此法制作绿色植物的浸渍标本
实验用品
材料:新鲜植物叶片 仪器:大试管或展层缸,天平,研钵,量筒,烧杯,
漏斗,软木塞,滤纸,毛细滴管,剪刀,分液漏斗, 移液管,分光计 试剂:丙酮,甲醇,醋酸酮,盐酸,氢氧化钾,石英 砂,碳酸钙,无水硫酸钠,四氯化碳,乙醚
02 叶绿素的荧光现象 取上述色素丙酮提取液少许于试管中,分别观察在反 射光和透射光一侧,提取液的颜色有无不同:反射光侧观察到的血红色,即为 叶绿素产生的荧光颜色
03 叶绿素的光不稳定性 取上述色素丙酮提取液少许分装于2支试管中,1支试 管放在黑暗处(或用黑纸包裹),另一支试管放在强光下,经2—3h后,观察两 支试管中溶液的颜色有何不同。
叶绿素的提取及理化性质的鉴定
叶绿素的提取及理化性质的鉴定文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)植物生理学实验叶绿体色素的提取分离及其理化性质姓名学号系别班级实验日期同组姓名摘要:为探究植物叶绿素理化性质,根据不同的叶绿体色素分子结构不同,在有机溶剂中的溶解性和吸附剂上的吸附性差异,本实验在提取菠菜叶片叶绿体色素(叶绿素和类胡萝卜素)后,利用纸层析法将不同的色素分离的方法,对植物叶绿素的理化性质进行观察与检验。
一、实验原理及实验目的实验原理:1、提取: 叶绿体中含有叶绿素(叶绿素a与b)和类胡萝卜素(胡萝卜素和叶黄素),这两类色素均不溶于水,而溶于有机溶剂,故常用乙醇、丙酮等有机溶剂提取。
2、分离: 当溶剂沿支持物不断向前推进时,由于叶绿体中不同色素分子结构不同,在两相(流动相与固定相)间具有不同的分配系数,因此它们移动速率不同。
对叶绿体色素进行层析可将不同色素分离。
3、理化性质的观察: 叶绿素是一种二羧酸酯,在碱作用下,发生皂化反应;在弱酸作用下,叶绿素中镁可被氢原子取代而成为褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,叶绿素具有荧光,故从与入射光相垂直的方向观察叶绿素溶液呈血红色。
叶绿素的化学性质不稳定,易受强光氧化,特别是当叶绿素与蛋白质分离后,破坏更快。
分子吸收光能后,从基态转变到激发态。
叶绿素分子有两种单线激发态,对应两个主要的光吸收区。
分子在激发态停留的时间不超过数纳秒(10-9秒)由激发态回到基态的过程称为衰变(Decay)。
叶绿素a:C55H72O5N4Mg,MW=叶绿素b:C55H70O6N4Mg,MW=胡萝卜素:C40H56, MW=叶黄素:C40H56O2, MW=实验目的:以植物叶片组织为材料,提取叶绿体色素;以纸层析法分离其成分;鉴定叶绿体色素的理化性质.二、实验材料和方法1、实验材料:菠菜2、实验用具:天平、研钵、三角漏斗、滤纸、层析缸、毛细管、分光镜、量筒、烧杯、试管等3、实验试剂:丙酮、碳酸钙、层析液(石油醚:丙酮=25:3),20%KOH-甲醇、乙醚、1%HCl、醋酸铜三、实验步骤1、叶绿体色素的提取(1)取新鲜菠菜叶片2克,擦干,去中脉,剪碎放入研钵;(2)加入少许石英砂和CaCO,再加入无水丙酮10ml,研磨成匀浆,再加丙3酮15ml;(3)用漏斗滤去残渣,得叶绿体色素提取液(置于暗处).2、纸层析分离叶绿体色素(1)层析样纸制备,将优质滤纸剪成3cm×9cm的长条,将一端剪成中央留约1cm×的窄条;(2)点样,用细玻璃棒蘸取叶绿体色素提取液点于层析纸的窄条上端中央部,用吹风机吹干后在原处重复点样7-8次;(3)展层,在层析缸中加入3-5ml层析推动液,然后将已点样的层析纸插入缸的侧壁槽内,调节纸条使窄条1/2部分浸入推动液中,盖好盖子,于阴暗处展层约10min,即可在层析纸上分辨出4种不同的清楚色层;3、叶绿体理化性质的观察荧光现象的观察:取浓的叶绿体色素提取液化3ml,在透射光和反射光下观察叶绿体色素提取液的颜色。
叶绿体色素的提取、分离及理化性质鉴定
叶绿体色素的提取、分离及理化性质鉴定
实验目的了解叶绿素提取分离原理、方法,验证理化性质
实验原理叶绿素易溶于乙醇、丙酮,类胡萝卜素更易溶于苯;
叶绿素是双羧酸脂类,能与强碱发生皂化反应;
叶绿素分子中络合的镁能依次被H+、Cu2+取代;
叶绿素溶液光照后有荧光现象。
实验器材试管、研钵、太平、毛细滴管、剪刀、移液管、展层缸、滤纸、漏斗、50ml容量瓶、酒精灯、试管夹
实验试剂乙醇、丙酮、苯、盐酸氯化铜混和液、甲醇、氢氧化钾、石英砂
实验材料菠菜叶片
实验步骤
一、叶绿体色素的提取、分离
1、提取:叶片2g剪碎,放入研钵,加乙醇(或丙酮)5ml研磨匀浆,再加10ml,
过滤。
2、分离:滤纸一张,用毛细管在圆心处分次滴加提取液,圆心处穿孔,然后
插入滤纸圆芯;将其放入盛有展层液(汽油或丙酮:苯:石油醚=9:1:
0.1混和液)的展层缸内,30min.后观察结果。
叶绿体色素被分离成从内
到外的篮绿(叶绿素a)、黄绿(叶绿素b)、浅黄(叶黄素)、橙黄(胡萝卜素)四个同心圆环。
二、叶绿素理化性质鉴定
1、荧光现象观察:浓提取液向光观察呈绿色,背光观察呈血红色(荧光)
2、皂化反应:加提取液0.5ml至试管,加入氢氧化钾的甲醇饱和液2ml,沿
管壁加水2ml,管内有乳白色沉淀出现(皂化)。
加苯1ml,静置5min,上层苯层呈深黄色(类胡萝卜素)。
3、取代反应:加提取液0.5ml至试管,加水2ml,加盐酸氯化铜混和液2ml,
用酒精灯慢慢加热,仔细观察溶液颜色依次有绿变褐(氢取代)再变篮绿(铜取代)。
叶绿体色素的提取、分离、理化性质和叶绿素含量的测定
• 2、叶绿素的荧光现象
透射光下呈绿色
反射光下呈暗红色
• 3、取代反应
CH2 CH C C C CH3 N C CH —CH3 H3C— C H3C R1—C C C C N
H3C R1—C HC C C C N
C
C
HH
HC
H3C—
Cu
C
CH2 CH C C C CH3 N C CH
—CH3
褐色
绿色
4、皂化反应
COOCH3 C32H30ON4Mg COOC20H39 COO— + 2K+ +CH3OH +C20H39OH COO—
+ 2KOH
C32H30ON4Mg
?
?
5、定量分析:叶绿素吸收红光和兰紫光,红
光区可用于定量分析,其中665 和649用于定量 叶绿素a,b及总量,而652可直接用于总量测定
180 160 140 120 100 80 60 40 20 0 400 500 Waverlength(nm) 600 700
abBiblioteka • 实验步骤 1.定性分析:
取鲜叶3-5g+95%乙醇15-25ml(逐步加入),磨成匀浆
过滤入三角瓶中
观察荧光现象 透射光 色,反射 光 光。
定性实验 无需移液管量 皂化反应(约1ml)
省培项目
叶绿体色素的提取、分离、 理化性质和叶绿素含量的测定
• 一、实验目的和要求:掌握植物中叶绿 体色素的提取分离和性质鉴定、定量分 析的原理和方法。
• 二、实验内容和原理:以菠菜为材料, 提取和分离叶绿体色素并进行理化性质 分析和叶绿素含量测定。
1、叶绿素和类胡 萝卜素均不溶于 水而溶于有机溶 剂,常用95%的 乙醇或80%的丙 酮提取。
实验七叶绿体色素的提取分离及理化性质的鉴定讲解
实验七叶绿体色素的提取及理化性质的鉴定一、目的1、学习应用提取分离叶绿体色素的实验方法。
2、验证叶绿素的理化性质。
3、了解叶绿体色素的荧光现象、皂化反应等理化性质。
二、原理1、叶绿体色素:植物叶绿体色素主要有三类:1)叶绿素2)类胡萝卜素3)藻胆素。
高等植物叶绿体中含有前两类,藻胆素仅存在于藻类植物中。
高等植物体内叶绿素(chlorophyll两种)主要有两种:叶绿素a、b(简写为chla、chlb,其结构式见图7-3),chla通常呈蓝绿色,而chlb呈黄绿色,chlb是chla局部氧化的衍生物。
chla是chlb的三倍,二十世纪30年代,知道了叶绿素的分子结构,50年代末期,人工合成了叶绿素a,其它色素也几乎在同时发现。
叶绿体中的类胡萝卜素主要包括胡萝卜素(carotene)和叶黄素(lutein)两种,前者呈橙黄色,后者呈黄色。
叶黄素是胡萝卜素的二倍。
一般植物叶绿素是类胡萝卜素的三到四倍;胡萝卜素:C40H56 (有α、β、γ三种同分异构体)叶黄素:C40H54(OH)2 (同分异构体很多)。
2、理化性质:这二大类四种色素都不溶于水,而溶于有机溶剂,如乙醇、丙酮等。
通常用80%的丙酮或丙酮:乙醇:水为4.5:4.5:1的混合液来提取叶绿素。
按化学性质来说,叶绿素是叶绿酸的酯,在碱的作用下,可使其酯键发生皂化作用,生成叶绿酸的盐,能溶于水,但由于它保留有Mg核的结构,仍保持原来的绿色。
而类胡萝卜素中,胡萝卜素是不饱和的碳氢化合物,β—胡萝卜素水解可生成2分子维生素A,叶黄素是由胡萝卜素衍生的二元醇,不能与碱发生皂化反应,根据这一点,可以将叶绿素和类胡萝卜素分开。
此外,叶绿素还可以在酸的作用下,其中的Mg被H所代替形成褐色的去Mg叶绿素:去Mg叶绿素能与其他金属盐中的铜、锌、铁盐等代H,又重新呈现绿色,比原来的绿色更稳定。
根据这一原理可用醋酸铜处理来保存绿色标本。
3、功能:1.叶绿体色素的功能叶绿素和类胡萝卜素都包埋在类囊体膜中,与蛋白质结合在一起,组成色素蛋白复合体,根据功能来区分,叶绿体色素可分为二类:(1)作用中心色素:叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇的“尾部”,呈蝌蚪型,大卟啉环由四个小吡咯环以四个含有双键的甲烯基(-CH=)连接而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验日期:2011.9.28叶绿体色素的提取、分离、定量及理化性质的鉴定一、实验原理叶绿体色素是植物吸收太阳光能进行光合作用的重要物质,主要由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
它们与类囊体膜相结合成为色素蛋白复合体。
1.叶绿体色素的结构与分离叶绿素a为蓝黑色固体,在乙醇溶液中呈蓝绿色;叶绿素b为暗绿色,其乙醇溶液呈黄绿色。
Chla与Chlb是吡咯衍生物与镁的络合物,它们很相似,不同之处仅在于Chla第二个吡咯环上的一个甲基(-CH3)被醛基(-CHO)所取代即Chlb。
Chla与Chlb是植物进行光合作用必需的催化剂,易溶于石油醚等非极性溶剂中。
通常植物中叶绿素a的含量是叶绿素b的三倍。
其结构式如下:类胡萝卜素是一种橙色的天然色素,属于四萜,为一长链共轭多烯,有α、β、γ三种异构体,其中β异构体含量最多。
RRβ-胡萝卜素(R=H)和叶黄素(R=OH)叶黄素是一种黄色色素,与叶绿素同存在于植物体内,是胡萝卜素的羟基衍生物,较易溶于乙醇,在石油醚中溶解度较小。
秋天,高等植物的叶绿素被破坏后,叶黄素的颜色就显示出来。
叶绿素与类胡萝卜素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。
提取液可用色谱分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
2.叶绿体色素的物理性质叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光亮度计精确测定。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它从第一单线态返回基态时可发射出红光量子,因而产生荧光。
因为分子吸收的光能有一部分消耗于分子内部的振动上,发射的荧光的波长总是比被吸收光的波长要长。
3.叶绿体色素的化学性质叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。
在酸性条件下,卟啉环中央的镁离子可以被H+取代,产生褐色的去镁叶绿素。
叶绿素中的Mg2+也可以被其它金属离子,如Cu2+或Zn2+等取代,此时叶绿素仍保持绿色。
叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
根据朗伯-比尔(Lambert-Beer )定律,某有色溶液的吸亮度A 值与其中溶质浓度C 以及光径L 成正比,即A =aCL (a 为该物质的吸光系数)。
各种有色物质溶液在不同波长下的吸光值可通过测定已知浓度的纯物质在不同波长下的吸亮度而求得。
如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸亮度等于各组分在相应波长下的吸亮度的总和,这就是吸亮度的加和性。
今欲测定叶绿体色素提取液中叶绿素a 、b 含量,只需测定该提取液在2个特定波长下的吸亮度度值,并根据叶绿素a 与b 在该波长下的吸光系数即可求出各自的浓度。
在测定叶绿素a 、b 含量时,为了排除类胡萝卜素的干扰,所用单色光的波长应选择叶绿素在红光区的最大吸收峰。
已知叶绿素a 、b 的80%丙酮提取液在红光区的最大吸收峰分别为663nm 和645nm ,又知在波长663nm 下,叶绿素a 、b 在该溶液中的比吸收系数分别为82.04和9.27,在波长645nm 下分别为16.75和45.60,可根据加和性原则列出以下关系式: (1)A663=82.04Ca+9.27Cb(2)A645=16.75Ca+45.6Cb式中A663、A664分别为波长663nm 和645nm 处测定叶绿素溶液的吸亮度值;Ca 、Cb 分别为叶绿素a 、b 的浓度(g/L)。
解联立方程(1)、(2)可得以下方程:(3)Ca=0.0127A663-0.00269A645(4)Cb=0.0229A645-0.00468A663 如把叶绿素含量单位由g/L 改为,(3)(4)式则可改写为: (5)Ca(mg/L)=12.7A663-2.69A645(6)Cb(mg/L)=22.9A645-4.68A663 叶绿素总量(7)CT(mg/L)=Ca+Cb=20.2A645+8.02A663叶绿素总量也可根据下式求导 A652=34.5×CT由于652nm 为叶绿素a 与b 在红光区吸收光谱曲线的交叉点(等吸收点),两者有相同的比吸收系数(均为34.5),因此也可以在此波长下测定一次吸亮度(A652)求出叶绿素总量: CT(g/L)=A652/34.5CT(mg/L)=A652×1000/34.5(8)因此,可利用(5)、(6)式可分别计算叶绿素a与b含量,利用(7)式或(8)式可计算叶绿素总量。
二、实验目的 1、掌握提取和分离叶绿体色素的方法;2、掌握测定叶绿体色素含量的方法;3、熟悉叶绿体色素的理化性质及吸光特性;4、了解植物叶绿体色素组成及其与生境的相关性。
三、实验材料与仪器1、材料:菠菜叶和玉米叶。
2、100%丙醇,80%丙醇,16-⋅L mol 的盐酸水溶液,-KOH %30甲醇溶液,乙醚,四氯C 32H 30ON 4Mg COOCH 3COOC 20H 39+HCl C 32H 30ON 4H 2COOCH 3COOC 20H 39+MgCl 22C 32H 30ON 4H 2COOH 3COOC 20H 39CH 3COOC 32H 30ON 4Cu COOCH 3COOC 20H 39CH 3COOH ++2CH 3COO C 32H 30ONMg COOCH 3COOC 20H 39+KOH C 32H 30ON 4Mg COOKCOOK 2+CH 3OH C 20H 39OH+化碳,碳酸钙粉末,醋酸铜晶体,石英砂。
3、分析天平,研钵,漏斗,剪刀,点样毛细管,层析缸,滤纸,试管,试管架,水浴锅,移液枪。
四、实验步骤(一)叶绿体色素的提取、定量1、称取新鲜菠菜叶片2.0g左右,放入研钵中,加5ml丙酮和少许碳酸钙和石英砂,研磨成匀浆。
2、再加入5ml丙酮,并搅拌均匀,用滤纸过滤,由于丙酮易挥发,最后定容至10ml。
即为色素提取液,放于暗处备用。
3、取0.1ml色素提取液,用80%丙酮稀释到3ml,测定663、645nm处的吸光值,根据公式计算叶绿素a、叶绿素b的含量。
4、测定步骤3中的溶液在400nm到700nm之间的吸光值,每隔10nm测一次,制成菠菜叶绿体色素提取液的吸收光谱。
5、称取玉米叶片0.2g左右,重复上述步骤1-3,唯一不同的是我们取了0.3ml玉米色素提取液稀释为3ml。
(二)叶绿体色素的分离1、取圆形定性滤纸一张,用毛细管吸取叶绿体色素提取滴在圆形滤纸中心,使色素扩散的宽度限制在0.5cm以内,保证叶绿素扩展速度均匀,保证色素扩展清晰,风干后,应多点样几次,大约20次左右。
2、在圆形滤纸中心戳一圆形小孔(直径约3mm),将纸捻一端插入圆形滤纸的小孔中,使与滤纸刚刚平齐(勿突出)。
培养皿中加入适量的四氯化碳,把带有纸捻的圆形滤纸平放在培养皿上,使纸捻下端浸入推动剂中。
迅速盖好培养皿。
此时,推动剂借毛细管引力顺纸捻扩散至圆形滤纸上,并把叶绿体色素向四周推动,不久即可看到各种色素的同心圆环。
所用培养皿底、盖直径应相同,且应略小于滤纸直径,以便将滤纸架在培养皿边缘上。
3、长形滤纸一条,也点样后层析分离。
长形滤纸放入盛有四氯化碳大试管中,进行层析后获得线形不同色素条带,分别剪下后测定吸收光谱。
(三)叶绿体色素的理化性质1、叶绿素的荧光现象:取叶绿体色素提取液少许于1支试管中,用反射光和透射光观察提取液的颜色有何不同,反射光下观察到的提取液颜色即为叶绿素产生的荧光颜色。
2、光对叶绿素的破坏作用:取叶绿体色素提取液少许,分装两支试管中,一支放在黑暗处(或用黑纸套包裹),另一支放在强光下(阳光下),经过2-3h后,观察两支试管中溶液的颜色有何不同。
3、铜代反应:取上述色素提取液少许于试管中,一滴一滴加浓盐酸,直至溶液颜色出现褐绿色,此时叶绿素分子已遭破坏,形成去镁叶绿素。
然后加醋酸铜晶体少许,慢慢加热溶液,则又产生鲜亮的绿色。
此即形成了铜代叶绿素。
4、皂化反应:取叶绿体色素提取液2mL于大试管中,加入4mL乙醚,摇匀,再沿试管壁慢慢加人3mL蒸馏水,轻轻混匀,静置片刻,溶液即分为两层,色素已全部转入上层乙醚中。
用滴管吸取上层绿色层溶液,放入另一试管中,再用蒸馏水冲洗一、二次。
在色素乙醚溶液中加入30%KOH-甲醇溶液,充分摇匀,再加入蒸馏水约3-5mL,摇匀静置。
五、结果1.叶绿素含量及对比光合作用时CO2中的C直接转移到C3(3-磷酸甘油酸)里的植物叫做C3植物,菠菜为C3植物;光合作用时CO2中的C首先转移到C4(草酰乙酸)里,然后再转移到C3中的植物叫做C4植物,玉米为C4植物。
两类植物在叶绿体的结构及分布上不同,C3植物的维管束不含叶绿体,叶脉颜色较浅;C4植物的维管束含叶绿体,叶脉绿色较深有呈“花环型”的两圈细胞。
C4植物叶肉细胞的叶绿体固定CO2的酶——磷酸烯醇式丙酮酸羧化酶PEPC与CO2的亲和力强于C3植物叶绿体内固定CO2的酶。
C4植物将CO2泵入维管束鞘细胞,改变了CO2/O2比率,改变了Rubisico(1,5-二磷酸核酮糖羧化酶)的作用方向,降低了光呼吸。
故C4植物比C3植物具有更强的光合作用。
从表一中可以看出,玉米的叶绿素a和叶绿素b含量都比菠菜的叶绿素a和叶绿素b含量都要高,玉米叶片中叶绿素总含量为1176.077μg/g,a/b值为4.6;菠菜叶片的叶绿素总含量比玉米低,只有976.655μg/g,a/b值为2.9,也比玉米低,但叶绿素b含量与玉米相近。
由此可见,叶绿素含量的高低及其a/b比值的大小在一定程度上也影响光合速率的大小。
玉米叶片的叶绿素含量较高,其单位叶面积的叶绿素数目最多,因而光合速率大,这可能是导致玉米光合速率较高的因素之一。
2.叶绿体色素的分离及其吸收光谱1)圆形滤纸层析分析在滤纸上可清楚地看到蓝绿色的叶绿素a,黄绿色的叶绿素b,黄色的叶黄素和橙黄色的胡萝卜素,但叶黄素和胡萝卜素长时间放置后无法看清。
叶绿素a第二个吡咯环上的一个甲基(-CH3)被醛基(-CHO)所取代后为叶绿素b ;类胡萝卜素属于四萜,为一长链共轭多烯,β-胡萝卜素的两个-H 被-OH 取代后为叶黄素。
叶绿体色素的极性按从大到小排列分别是:叶绿素b>叶绿素a>叶黄素>胡萝卜素根据相似相溶原理,在有机溶液中的溶解度:叶绿素b<叶绿素a<叶黄素<胡萝卜素,故极性越大,在展开剂中移动的速度越慢,所以滤纸上从外到内的四个色素带圈分别是胡萝卜素、叶黄素、叶绿素a 、叶绿素b 。