人教版初一数学上册3.4实际问题与一元一次方程(球赛积分问题)教学设计
七年级数学上册(人教版)3.4实际问题与一元一次方程(第3课时)球赛积分表问题优秀教学案例

1.引导学生回顾一元一次方程的基本概念和性质,为学生解决球赛积分表问题打下基础。
2.讲解胜负场次与积分之间的关系,引导学生理解球赛积分表的原理,学会如何根据胜负场次计算球队积分。
3.通过具体案例和示例,演示如何列出一元一次方程来解决球赛积分表问题,让学生跟随教师一起动手操作和思考。
(三)学生小组讨论
为了提高学生的实践能力,我设计了一个小组活动,让学生分组讨论并解决实际问题。问题如下:已知甲队和乙队进行了一场比赛,甲队获胜。已知甲队的胜场数是乙队的两倍,甲队的负场数是乙队的一半。求甲队和乙队的积分分别是多少?
二、教学目标
(一)知识与技能
1.让学生掌握一元一次方程在实际问题中的应用,能够通过设定变量和列出方程解决球赛积分表问题。
七年级数学上册(人教版)3.4实际问题与一元一次方程(第3课时)球赛积分表问题优秀教学案例
一、案例背景
本节课是人教版七年级数学上册第三单元“实际问题与一元一次方程”的第三课时,主要内容是球赛积分表问题。在教学案例中,我以学校举办的篮球赛为背景,设计了一系列与学生生活密切相关的问题,引导学生运用一元一次方程解决实际问题。
3.利用多媒体教学资源,如图片、图表和视频等,形象直观地展示球赛积分表问题,帮助学生更好地理解和掌握知识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,让学生感受数学与实际生活的紧密联系,提高学生对数学学习的积极性。
2.培养学生面对困难时积极思考、勇于尝试和坚持的精神,培养学生的耐心和毅力。
四、教学内容与过程
(一)导入新课
1.利用学校举办的篮球赛实际场景,引导学生关注球赛积分表,激发学生的学习兴趣和参与热情。
2.向学生展示篮球赛积分表的图片或视频,让学生直观地了解球赛积分表的构成和作用,引导学生关注实际问题与数学知识的联系。
人教版七年级数学上册3.4实际问题与一元一次方程球赛积分问题优秀教学案例

二、教学目标
(一)知识与技能
1.理解球赛积分问题的背景和意义,能够将实际问题转化为数学问题,并运用一元一次方程进行求解。
2.掌握一元一次方程的解法和应用,能够运用方程解决实际问题,提高学生的数学应用能力。
3.运用案例分析法,以球赛积分问题为例,引导学生学会将实际问题转化为数学问题,培养学生解决问题的能力。
4.采用启发式教学法,引导学生运用一元一次方程解决实际问题,培养学生的创新思维和独立思考能力。
(三)情感态度与价值观
1.通过解决球赛积分问题,使学生感受到数学在实际生活中的重要性,提高学生学习数学的兴趣和积极性。
3.问题导向教学:以问题驱动的方式,引导学生从实际问题中发现数学问题,激发学生的思考,培养学生的创新思维和独立思考能力,使学生能够更好地理解和掌握一元一次方程的解法和应用。
4.情景创设:利用多媒体展示球赛积分问题的实际场景,让学生身临其境地感受问题的背景和意义,激发学生的学习兴趣,使学生能够更好地理解和掌握一元一次方程的实际应用。
2.通过设计具有挑战性和趣味性的球赛积分问题,引发学生的思考,激发学生解决问题的内在动机。
3.以生活实际为例,让学生认识到数学在生活中的重要性,培养学生学习数学的积极性和主动性。
4.创设轻松、愉快的学习氛围,鼓励学生敢于提出问题、发表见解,尊重学生的个性差异。
(二)问题导向
1.引导学生从实际问题中发现数学问题,激发学生的好奇心,培养学生的问题解决能力。
2.分配不同难度的球赛积分问题,让各小组成员共同探讨、分工合作,提高解决问题的效率。
3.4实际问题与一元一次方程销售、球赛积分问题(教案)

在本次教学活动中,我尝试将实际问题与一元一次方程紧密结合,让学生在实践中感受数学的魅力。从教学过程来看,有几个方面值得我反思和总结。
首先,我发现学生们在从实际问题中抽象出一元一次方程的过程中存在一定难度。他们往往难以把握问题的关键信息,从而建立错误的方程。针对这个问题,我意识到在教学中需要更加注重引导学生如何从复杂情境中提炼出关键信息,这是提高他们解决问题能力的重要一环。
3.重点难点解析:在讲授过程中,我会特别强调如程。对于难点部分,我会通过实际案例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与销售、球赛积分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如模拟购物场景,计算打折后的价格,或设定球赛积分规则,计算球队总积分。
1.培养学生的逻辑推理能力:通过实际问题与一元一次方程的结合,让学生掌握从具体情境中抽象出数学问题的方法,运用逻辑推理能力分析问题,建立方程模型。
2.提升学生的数学建模素养:使学生能够将现实生活中的问题转化为数学方程,培养他们在实际问题中发现数学关系,建立数学模型的能力。
3.增强学生的数学运算与数据分析能力:在解决销售、球赛积分等问题时,培养学生熟练运用一元一次方程进行数学运算,对结果进行分析和解释的能力。
-销售问题:假设一件商品原价为x元,打8折后的售价为0.8x元。教学重点是使学生理解打折实际上是乘以一个小于1的数,并能够建立0.8x =售价的方程。
-球赛积分问题:如果一支球队赢一场得3分,平一场得1分,输一场不得分。教学重点是让学生能够根据比赛结果m(赢的场数)和n(比赛总场数)建立方程,如3m + 1*(n-m) =总积分。
人教版七年级数学上册同步备课3.4实际问题与一元一次方程(第3课时)球赛积分表问题(教学设计)

3.4 实际问题与一元一次方程(第3课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.4实际问题与一元一次方程第3课时,内容包括利用一元一次方程分析与解决球赛积分问题.2.内容解析球赛积分问题是实际生活中的常见问题,也是可借助方程模型解决的典型问题之一,并具有一定的代表性.这类问题的背景和表达都更贴近实际,其中的有些数量关系也比较隐蔽.对这一问题的探究可以使学生进一步体验一元一次方程与实际的密切联系,体会数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.基于以上分析,可以确定本节课的教学重点为:球赛积分问题的探究过程.二、目标和目标解析1.目标(1)通过对实际问题的分析,掌握用方程计算球赛积分表这类问题的一般思路及方法.(2)会阅读、理解表格,并从表格中提取关键信息.(3)会根据方程的解的情况对实际问题作出判断.2.目标解析(1)理解球赛中积分的多少与胜、平、负的场数有关,同时也与比赛中的积分规定有关,解题关键是弄清规定,胜、平、负一场各积几分.(2)能找解决问题所需的关键量,并从表格中提取关键信息.(3)不仅能够检验方程的解是否符合原方程,同时也能够判断方程的解是否符合实际情况.三、教学问题诊断分析学生通过之前的学习,对应用一元一次方程解决简单实际问题具备了一定的基础,对建立方程模型解决问题的基本过程也有基本的认识.但在这些问题中建立方程的目的就是为求得问题中某一变量的值,所以设未知数和列方程的指向性比较明显.而本课中,需要学生自行分析并发现关键变量,并自觉建立方程来求得.学生在这种自行选择探究方向和探究方法的问题中缺乏经验.同时学生普遍知道球赛中积分的多少与胜、平、负的场数有关,但未必能够意识到积分的多少也与比赛中的积分规定有关,解题关键是弄清规定,胜、平、负一场各积几分.弄清实际问题中所包含的数学问题是关键.通过积分表来了解胜负的场次,这样的形式在生活中很普遍,要善于观察分析,学习读懂表格.基于以上分析,确定本节课的教学难点为:在探究过程中适时建立一元一次方程解决问题.四、教学过程设计(一)问题的初探你喜欢看篮球比赛吗?你对篮球比赛中的积分规则有了解吗?某次篮球联赛积分榜如下:问题1:你能从表格中了解到哪些信息?每队的胜场数+负场数=这个队比赛场次;每队胜场总积分+负场总积分=这个队的总积分;每队胜场总积分=胜1场得分×胜场数……问题2:你能从表格中看出负一场积多少分吗?由钢铁队得分可知负一场积1分.师生活动:教师提出问题,学生简单闸述理由;教师通过学生回答情况了解学生对问题的认识情况.【设计意图】让学生初步对球赛的积分规则及积分情况进行了解.(二)问题的进一步探究问题3:你能进一步算出胜一场积多少分吗?解:设胜一场积x分,依题意,得10x+1×4=24.解得x=2.经检验,x=2符合题意.所以,胜一场积2分.问题4:怎样用式子表示总积分与胜、负场数之间的关系?解:若一个队胜m场,则负(14-m) 场,胜场积分为2m,负场积分为14-m,总积分为:2m + (14-m) = m +14.即胜m场的总积分为(m +14) 分.问题5:某队胜场总积分能等于它负场总积分吗?解:设一个队胜x 场,则负(14-x) 场,依题意得2x=14-x.解得x=14 3.师生活动:教师提出问题,学生思考并回答. 学生回答过程中,教师适时提问,引领学生熟悉问题情境.【设计意图】借助问题引导学生熟悉并理解问题情境及相关概念,并引领学生将数学问题转化为数学问题,渗透转化思想.(三)变式训练某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?解:由C队的得分可知,胜场积分+负场积=27÷9=3.设胜一场积x分,则负一场积(3-x)分.根据A队得分,可列方程为14x+4(3-x)=32,解得x=2,则3-x=1.答:胜一场积2分,则负一场积1分.师生活动:教师提出问题,学生自行演算,教师巡视指导.在学生完成之后,选同学表述解题过程,教师板书并点评.【设计意图】教师帮助学生明确了探究方向之后,让学生自主探究这一变式训练,使学生经历探究过程,有助于提高学生的探究能力.(四)针对训练某赛季男篮CBA职业联赛部分球队积分榜如下:(1)列式表示积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?为什么?解:观察积分榜,从最下面一行可知负一场积1分. 设胜一场积x分,从表中其他任何一行可以列方程,求出x的值. 例如,从第一行得出方程:18x+1×4=40.由此得出x=2.所以,负一场积1分,胜一场积2分.(1)如果一个队胜m场,则负(22-m) 场,胜场积分为2m,负场积分为22-m,总积分为:2m+(22-m)=m+22.(2)设一个队胜了x场,则负了(22-x)场,如果这个队的胜场总积分等于负场总积分,则有方程:2x=22-x.解得223 x=.其中,x(胜场)的值必须是整数,所以223x=不符合实际. 由此可以判定没有哪个队伍的胜场总积分等于负场总积分.师生活动:教师依次给出练习,学生自主练习,教师巡视,选学生展示解答过程,学生点评.【设计意图】在教师引领完成探究问题之后,依次给出练习,使学生在探究问题中获得的解题经验得以巩固,并通过应用练习转化为能力.(五)当堂巩固1. 某球队参加比赛,开局9 场保持不败,积21 分,比赛规则:胜一场得3 分,平一场得1分,则该队共胜( C )A. 4场B. 5场C. 6场D. 7场2. 中国男篮CBA职业联赛的积分办法是:胜一场积2 分,负一场积1 分,某支球队参加了12 场比赛,总积分恰是所胜场数的 4 倍,则该球队共胜 4 场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?解:设答对了x 道题,则有(20-x)道题答错或不答,由题意得:8x-(20-x)×3=116.解得x=16.答:他答对16道题.【设计意图】考查学生对建立方程模型解决此类问题的一般方法的掌握.(六)能力提升把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积.解:可以求出.从雄鹰队或远大队的积分可以看出胜一场与负一场共得21÷7 = 3(分),设每队胜一场积x 分,则负一场积(3-x) 分,根据前进队的信息可列方程为:10x + 4(3-x) = 24.解得x = 2.所以3-x =1.答:胜一场积2 分,负一场积 1 分.【设计意图】进一步考查学生对建立方程模型解决此类问题的一般方法的掌握.(七)感受中考(2022•铜仁市)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.17【解答】解:设小红答对的个数为x个,由题意得5x-(20-x)=70,解得x=15,故选:B.【设计意图】通过对最近几年的中考真题的训练,使学生提前感受中考考什么,进一步了解考点.(八)课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.【设计意图】通过问题引领学生梳理探究过程,归纳探究方法.(九)布置作业P107:习题3.4:第8题.P112:复习题3:第9题.五、教学反思列方程就是通过读题审题理清和寻找题目中相等的数量关系,通过设未知数将这些相等的数量关系表示出来.解一元一次方程就是,通过去分母、去括号、移项、合并同类项等步骤,将方程向ax=b(a≠0)的方向转化,其中体现了化归和程序化思想.解方程得到的未知数的值,是否符合具体问题的实际意义,是我们学习列方程解应用题需要关注的.这既是实际问题与数学问题相互转化过程中需要注意的问题,也有利于培养学生良好的思维习惯和品质,让他们能够从中进一步体会方程的应用价值.本节教材所涉及的实际问题的背景和表达都更加贴近实际,数量关系有的比较隐蔽,有的比较抽象,有的则更为复杂,需要学生结合自己的生活经验理清、理解,经历探究用一元一次方程解决实际问题的基本过程,进而逐步提升他们分析问题、解决问题的能力,有效积累探究、交流、反思等数学活动经验,体会转化化归和方程模型思想,增强数学应用意识和能力.。
人教版数学七年级上册3.4《实际问题与一元一次方程》(球赛积分表问题)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(球赛积分表问题)教学设计一. 教材分析《实际问题与一元一次方程》这一节的内容,主要是让学生学会如何将实际问题转化为数学问题,进而利用一元一次方程来解决问题。
本节课通过球赛积分表问题,让学生了解实际问题中的一元一次方程的运用,培养学生的数学建模能力。
二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、小数的基本运算,对代数概念有一定的了解。
但学生对于如何将实际问题转化为数学问题,并运用一元一次方程来解决,还比较陌生。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:学生能理解实际问题中的一元一次方程,并能运用一元一次方程解决简单的问题。
2.过程与方法:学生通过解决球赛积分表问题,学会将实际问题转化为数学问题,培养学生的数学建模能力。
3.情感态度与价值观:学生能感受到数学在实际生活中的运用,提高学生学习数学的兴趣。
四. 教学重难点1.教学重点:学生能理解实际问题中的一元一次方程,并能运用一元一次方程解决简单的问题。
2.教学难点:学生如何将实际问题转化为数学问题,并找出未知数。
五. 教学方法1.情境教学法:通过球赛积分表问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.案例教学法:分析球赛积分表问题,让学生了解实际问题中的一元一次方程的运用。
3.小组合作学习:学生在小组内讨论如何解决球赛积分表问题,培养学生的合作能力。
六. 教学准备1.教师准备球赛积分表问题相关案例,以及解决问题的方法。
2.学生准备笔记本,用于记录解题过程。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生思考实际问题与数学问题的关系,激发学生的学习兴趣。
例如:“同学们,你们知道篮球比赛中的积分是如何计算的吗?”2.呈现(10分钟)教师展示球赛积分表问题,让学生观察并找出其中的数学问题。
例如:“请大家看这份球赛积分表,思考如何根据比赛结果计算每个队的积分?”3.操练(10分钟)教师引导学生尝试解决球赛积分表问题,指导学生如何将实际问题转化为数学问题。
人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题优秀教学案例

五、案例亮点
1.贴近生活:本案例以球赛积分表问题为背景,紧密结合学生的兴趣爱好,使学生在解决实际问题的过程中,感受到数学与生活的紧密联系,提高了学生的数学应用意识。
3.教师对学生的学习情况进行评价,关注学生的知识掌握和能力培养,为今后的教学提供有力支持。
(五)作业小结
1.教师布置适量的球赛积分表问题,让学生进行课后练习,巩固所学知识。
2.提醒学生注意作业的完成质量,要求字迹工整、步骤清晰。
3.鼓励学生在课后进行自我学习,探索更多的球赛积分表问题,提高自己的数学应用能力。
2.引导学生了解一元一次方程的解法,如代入法、加减法、移项法等。
3.结合球赛积分表问题,讲解一元一次方程在实际问题中的应用,让学生理解实际问题与数学知识的联系。
4.举例讲解球赛积分表问题的解题思路和方法,引导学生学会运用一元一次方程解决问题。
(三)学生小组讨论
1.教师布置具有挑战性的球赛积分表问题,让学生进行小组讨论。
(一)导入新课
1.利用多媒体展示球赛积分表,引导学生关注球赛积分表中的实际问题。
2.提出问题:“小明和小华看球赛,为什么小明比小华多获得5个积分?”激发学生的思考和兴趣。
3.引导学生回顾已学的方程知识,为新课的学习做好铺垫。
(二)讲授新知
1.讲解一元一次方程的基本概念,使学生明确一元一次方程的定义和特点。
三、教学策略
(一)情景创设
1.利用多媒体展示球赛积分表的实际问题,让学生置身于真实的学习情境中,激发学生的学习兴趣。
人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题教学设计

1.重点:掌握一元一次方程在实际问题中的应用,特别是球赛积分表问题的解决方法。
难点:如何引导学生从实际问题中抽象出一元一次方程,并正确求解。
2.重点:培养学生的数据分析能力,提高他们解决实际问题的能力。
难点:帮助学生克服对实际问题分析的恐惧,培养他们勇于挑战困难的信心。
3.重点:加强小组合作学习,提高学生的团队协作能力。
2.教学过程设计:
a.导入:通过生活中的球赛积分表实例,引导学生关注实际问题,为新课的学习做好铺垫。
b.新课:以小组合作的形式,让学生探讨球赛积分表问题,互相交流,共同解决问题。
c.巩固:设置不同难度的练习题,让学生独立完成,巩固所学知识,提高解题能力。
d.应用:让学生将所学知识运用到其他实际问题中,如购物优惠、旅游行程等,提高知识迁移能力。
4.学生在小组合作中,可能存在分工不明确、讨论效率低下等问题,教师应引导学生学会有效沟通、合理分工。
针对以上学情分析,教师在教学过程中应注重启发式教学,引导学生主动探究,帮助他们将实际问题转化为数学模型。同时,关注学生的合作学习过程,培养他们的团队协作能力,提高课堂学习效果。
三、教学重难点和教学设想
人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题教学设计
一、教学目标
(一)知识与技能
1.理解球赛积分表的基本概念,掌握球赛积分的计算方法。
2.运用一元一次方程解决实际问题,特别是球赛积分表问题。
3.能够根据实际问题,正确列出相应的一元一次方程,并运用等式性质进行求解。
4.通过对球赛积分表问题的探讨,提高数据分析与解决问题的能力。
在设计本章节的教学活动时,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重培养学生的数学素养,将数学知识与实际生活紧密结合,提高学生的综合素质。在教学过程中,关注学生的情感态度,营造轻松、愉快的学习氛围,使学生在愉悦的情感体验中学习数学。
人教版七年级数学上册3.4实际问题与一元一次方程球赛积分问题教学设计

为了巩固本节课所学知识,培养学生的数学应用能力,特布置以下作业:
1.完成课本第62页的练习题第1、2、3题,要求学生独立完成,并在解题过程中注意等量关系的寻找和一元一次方程的列法。
2.结合球赛积分问题,设计一道类似的实际问题,要求学生将其抽象为一元一次方程,并求解。例如:“某篮球队在赛季中共进行了15场比赛,赢了m场,输了n场,平了k场,总共获得了p分。请问该篮球队赢了、输了、平了各多少场?”
4.通过球赛积分问题的解决,提高学生的逻辑思维能力和数学推理能力,培养他们将数学知识应用于生活实际的能力。
(二)过程与方法
1.通过小组合作和探究学习,引导学生从实际问题中提炼数学问题,培养他们的问题发现和解决能力。
2.运用情景教学法,将球赛积分引入课堂,让学生在具体情境中感受数学的应用,提高他们对数学学习的兴趣。
在解决球赛积分问题的基础上,设计一些拓展性问题,让学生运用所学知识进行解决,提高他们运用一元一次方程解决实际问题的能力。
5.知识巩固,反馈评价
设计一定数量的练习题,让学生独立完成,巩固所学知识。同时,通过课堂提问、作业批改等方式,了解学生的学习情况,及时给予反馈和评价。
6.教学重难点的突破设想
(1)针对重点,通过实例讲解、学生模仿、总结提炼等环节,使学生逐步掌握将实际问题抽象为一元一次方程的方法。
2.学生分享自己在解决球赛积分问题过程中的收获和感悟,教师给予肯定和鼓励。
3.教师强调解决实际问题时,要善于从问题中提炼等量关系,将其转化为方程,并运用数学方法解决问题。
4.教师布置课后作业,要求学生运用一元一次方程解决生活中的实际问题,培养学生的数学应用能力。
5.课堂结束前,教师鼓励学生将所学知识分享给家人和朋友,让他们感受到数学的魅力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4实际问题与一元一次方程(球赛积分问题)
一、问题的引入
问题:
1.积分榜的东方队和光明队的积分被墨汁遮盖住了?
你能告诉我这两队的积分各为多少?你是如何
得到的?
2.卫星队的积分也被墨汁遮盖住了?你能告诉我该
队积分为多少?
3.怎么计算卫星队的积分?它由几部分组成?
问题1通过观
察、比较、思
考,说出你获
得的信息。
引
导学生得出结
论。
问题2、3通过
观察、比较、
思考,说出你
读到的信息。
引导学生得出
结论:必须知
道胜一场积几
分?负一场积
几分?然后通
过计算才可得
知。
从
比赛积
分问题
中获取
相对较
高层次
的信息。
体现实
用价值
的能力,
建立数
学模型。
二、问题的初
步探究
问题1:哪一队最特殊你能从中看出负一场积多少
分吗?
问题2:你能进一步算出胜一场积多少分吗?
问题3:用式子表示总积分与胜、负场数之间的关系•
问题4:某队的胜场总积分能等于它的负场总积分
吗?
三、问题的进
一步探究
问题5:本次篮球联赛是单循环赛吗
观察积分
榜,从最下面
一行数据可以
看出:负一场
积1分。
除最
后一行外,其
它任一行都可
以求出胜一场
的积分
先独立思
考,再讨论、
交流引导学生
用方程解决问
题
分组计算
说出你得到的
数量关系
通过积分表解
决具体的数学
问题
教师介绍
篮球循环赛的
相关知识。
学
生完成
前两
问,培
养读图
能力
分析过
程渗透
方程思
想
先
感性认
识,再
具体抽
象用字
母表
示,实
际问题
转化为
数学问
了解篮
球比赛
的相关
知识。
四、巩固应用
1.2000赛季篮球甲A联赛部分球队积分榜:
(1)列式表示积分与胜、负场数之间的数量关系;
(2)
某队的胜场总积分能等于它的负场总积分
吗?
变式训练:将第1题篮球甲A联赛部分球队积分榜
改为
其余不变,还是求上述那两个问题?
2. 2013赛季中甲联赛开幕,中甲部分积分榜如
下:
已知负一场得0分,
学生先思
考后再试说出
解题思路再在
练习本上书
写。
(1)列式表示积分与胜、平场数之间的数量关系;
(2)已知某队负了7场,请问该队的胜场总积分能等
于它的平场总积分吗?
3.某电视台组织知识竞赛,共设20道选择题,各题分值
相同,每题必答.下表记录了5个参赛者的得分情况.
练习
1知识
的直接
迁移;变
式训练
知识的
迁移;
练
习2知
识的间
接迁移
养学生
用数学
意识,
体会到
数学的。