第五讲 分式(2013-2014中考数学复习专题)

合集下载

2013年中考数学专题复习第5讲:分式(含详细参考答案)

2013年中考数学专题复习第5讲:分式(含详细参考答案)

2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【名师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【名师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【名师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【名师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先 此类题目解决过程中要注意整体代入 】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1 D .a≠0点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x 的取值范围满足( ) A .x=0 B .x≠0 C .x >0 D .x <0考点二:分式的基本性质运用例2 (2012•杭州)化简216312m m --得 ;当m=-1时,原式的值为 . 对应训练2.(2011•遂宁)下列分式是最简分式的( )A .223a a bB .23a a a -C .22 a b a b ++D .222a ab a b -- 考点三:分式的化简与求值例3 (2012•南昌)化简:2211a a a a a --÷+.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.例4 (2012•安徽)化简211x x x x+-- 的结果是( ) A .x+1 B .x-1 C .-x D .x点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.例5 (2012•天门)化简221(1)11x x -÷+- 的结果是( ) A .21(1)x + B .21(1)x - C .2(1)x + D .2(1)x - 点评:此题考查了分式的化简混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,同时注意最后结果必须为最简分式.例6 (2012•遵义)化简分式222()1121x x x x x x x x --÷---+,并从-1≤x≤3中选一个你认为合适的整数x 代入求值.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.对应训练3.(2012•河北)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x - D .2(x+1) 4.(2012•绍兴)化简111x x --可得( ) A .21x x - B .21x x -- C .221x x x +- D .221x x x-- 5.(2012•泰安)化简22()2-24m m m m m m -÷+-= . 6.(2012•资阳)先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x=6的根.考点四:分式创新型题目例7 (2012•凉山州)对于正数x ,规定1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+,则 111(2012)(2011)(2)(1)()()()220112012f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++= .对应训练7.(2012•临沂)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211(1)n n n ==+∑ .【聚焦山东中考】一、选择题1.(2012•潍坊)计算:2-2=( )A .14B .2C .14- D .4 2.(2012•德州)下列运算正确的是( ) A .42= B .(-3)2=-9C .2-3=8D .20=0 3.(2012•临沂)化简4(1)22a a a +÷--的结果是( ) A .2a a + B .2a a + C .2a a - D .2a a - 4.(2012•威海)化简的结果是( )A .B .C .D .二、填空题 5.(2012•聊城)计算:24(1)42a a a +÷=-- . 6.(2011•泰安)化简:22()224x x x x x x -÷+--的结果为 . 三、解答题7.(2012·济南)化简:2121224a a a a a --+÷--.8.(2012•烟台)化简:222844(1)442a a a a a a+--÷+++.9.(2012•青岛)化简:2211(1)12a a a a -+++。

中考数学复习《分式》考点归纳PPT课件

中考数学复习《分式》考点归纳PPT课件
a c ac. bb b
②异分母的分式相加减法则:先通分,变为同分母的分 式,然后再加减.
用式子表示为: a c ad bc ad bc . b d bd bd bd
(2)分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:
a c ac . b d bd
• (2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式, 约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大 公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.
• 【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因 式.
4、最简分式
• 分子、分母没有公因式的分式叫做最简分式. • 【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能 成为整式。
5、通分及通分法则
• (1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的 分式,这一过程称为分式的通分.
• (2)通分法则
• 把两个或者几个分式通分:
• ①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因 式的积);
• ②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母, 使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;
中考数学复习《分式》考点归纳PPT课件
• 1、分式的定义
(1)一般地,整式 A 除以整式 B,可以表示成 A 的形式,如果除式 B 中含有字母,那么称 B
A 为分式. B
(2)分式 A 中,A 叫做分子,B 叫做分母. B
【注】①若 B≠0,则 A 有意义;②若 B=0,则 A 无意义;③若 A=0 且 B≠0,则 A =0.

2015中考数学复习第五讲 分式

2015中考数学复习第五讲 分式

第二章 代数式课时5.分式【知识考点】考点1: 分式的概念:整式A 除以整式B ,可以表示成 A B的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 A B 无意义;若 ,则 A B=0. 考点2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .考点3:分式有意义、值为0的条件1.分式有意义的条件:分母不等于0.2.分式值为0的条件:分子等于0且分母不等于0.3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.5.约分的关键是确定分式的分子与分母的 ;通分的关键是确定n 个分式的 。

6.分式的运算:(1)加减法法则①同分母的分式相加减: ,字母表示: ② 异分母的分式相加减: . 字母表示:(2)乘法法则: . 字母表示:乘方法则: . 字母表示:(3) 除法法则: . 字母表示:【中考试题】一.选择题:1. 下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 2.代数式21,,,13x x a x x x π+中,分式的个数是( ) A .1 B .2 C .3 D .43.计算22()ab ab 的结果为( ) A .b B .a C .1 D .1b4. 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-25. 已知2111=-b a ,则b a ab -的值是 A.21 B.-21 C.2 D.-26. 设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于 A. 23B. 3C. 6D. 3 7.化简x y x y y x x ⎛⎫--÷⎪⎝⎭的结果是( ) A. 1yB. x y y +C. x y y -D. y 8. 计算:211(1)1m m m+÷⋅--的结果是( ) A .221m m ---B .221m m -+-C .221m m --D .21m - 9. 计算1a -1 – a a -1的结果为( ) A. 1+a a -1B. -a a -1C. -1D.1-a 10. 化简(x -x 1-x 2)÷(1-x1)的结果是( ) A .x 1 B .x -1 C .x 1-x D .1-x x 11. 化简22a b a b a b---的结果是 A a b + B a b - C 22a b - D 112.计算1a -1 – a a -1的结果为( ) A. 1+a a -1B. -a a -1C. -1D.1-a 13.化简ba b b a a ---22的结果是 A .22b a - B .b a + C .b a - D .114、计算11x x y--的结果是( ) A.()y x x y -- B.2()x y x x y -+ C.2()x y x x y -- D.()y x x y - 二.填空题 1.当x =______时,分式11x x +-有意义; 2.当x =______时,分式2x x x-的值为0.3. 当x 时,分式392--x x 的值为零. 4.当x = 时,分式31x -无意义. 5. 当x 时,分式x -31有意义. 6. 已知分式235x x x a--+,当x =2时,分式无意义,则a = ,当a <6时,使分式无意义的x 的值共有 个.7. 当x = 时,分式22+-x x 的值为零. 8. 如果分式23273x x --的值为0,则x 的值应为 . 9.计算:x x y ++y y x+=________. 10.填写出未知的分子或分母:(1)2223()11,(2)21()x y x y x y y y +==+-++11.分式223111,,342x y xy x-的最简公分母是_______. 12. 化简a a a -+-111=________. 13. 化简:x 2 - 9x - 3= . 14. 化简1(1)(1)1m m -++的结果是 . 15. 化简:(2x x+2-x x-2)÷x x 2-4的结果为 。

《分式总复习》课件

《分式总复习》课件
也较为复杂,学生容易出错。
经典例题解析
例题一
计算 $frac{x}{x + y} + frac{y}{x - y} frac{2xy}{x^2 - y^2}$。
解析
首先将所有项的分母统一 为 $(x + y)(x - y)$,然后 进行约分和加减运算。
解析
根据已知条件,通过等式 的性质和分式的加减法进 行证明。
特点
通常形式为 ax/b = c (其中 a、b、c 是已知数,b ≠ 0)。
复杂分式方程
定义
复杂分式方程是含有多个分式的 方程。
特点
通常形式为 f(x)/g(x) = h(x)/i(x) ( 其中 f(x)、g(x)、h(x)、i(x) 是多项 式函数)。
解法
通过消去分母,将方程转化为整式 方程或使用其他数学方法求解。
约分和通分是分式中的重要概念 ,但学生常常难以理解和掌握。 约分是将分子和分母中的公因式 约去,通分则是将两个或多个分
式化为同分母。
分式的加法与减法
在进行分式的加法和减法时,需 要寻找分母的公倍数,将分母统 一后再进行计算。这一过程对学
生来说较为复杂,容易出错。
分式的乘法与除法
在进行分式的乘法和除法时,需 要寻找分子和分母的公因式,进 行约分后再进行计算。这一过程
分式的性质
总结词
分式具有一些重要的性质,这些性质包括基本性质、等价变换性质和运算性质。
详细描述
分式的基本性质是分式的分子和分母可以同时乘以或除以同一个非零整式;等价 变换性质是分式的等价变换不改变分式的值;运算性质是分式的加、减、乘、除 等运算应先进行括号内的运算,再进行乘除运算,最后进行加减运算。
分式的约分与通分

中考数学总复习_分式讲课教案

中考数学总复习_分式讲课教案

【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式.2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验知识网络结构图 分式的概念 分式的概念 分式的意义、无意义的条件 分式的值为0的条件 分式的基本性质 分式的基本性质 分式的约分 分式的通分 分式的乘法规则 分式的除法规则分式 同分母分式的加减法法则分式的运算 分式的加减法法则异分母分式的加减法法则 运算性质负正数指数幂科学记数法公式方程的概念 解分式方程的步骤 分式方程 分式方程中使最简公分母为0的解 列分式方程应用题的步骤专题总结及应用一、识性专题专题1 分式基本性质的应用【专题解读】分式的基本性质是分式的化简、计算的主要依据.只有掌握好分式的基本性质,才能更好地解决问题.例1 化简(1)2610xy x ; (2) 21xy yx --;例2 计算2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪---+⎭⎭⎝⎝ 例3 已知13x x+=,求2421x x x -+的值. 例4 已知22230x xy y --=,且x y ≠-,求2x x y x y--的值.例5 已知345,x y y z z x ==+++求()()()xyzx y y z x z +++的值. 例6 已知,,x z a c y z x y ==++且abc o ≠,求111a b ca b c +++++的值. 例7 已知1,x y zy z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值. 例8 已知,345x y z==求23x y x y z +-+的值. 例9 已知,a b b c a c k c a b +++===求21kk +的值. 例10 已知111,a b a b+=+求b aa b +的值.例11 已知14x x+=,求下列各式的值.(1)221x x+; (2)2421x x x ++. 例12 如果方程11322xx x-+=--有增根, 那么增根是 . 例13 若关于x 的方程2403x x ax -+=-有增根, 则a 的值为 ( ) A.13 B. –11 C. 9 D.3例14 a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 专题4 利用分式方程解应用题【专题探究】 列分式方程解应用题不同于列整式方程解应用题.检验时,不仅要检验所得的解是否为分式方程的解,还要检验此解是否符合题意.例15 在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元.信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的45. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.例16 (08·山西) 某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第二批进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少?(2)若商店销售这两批书包,每个售价都是120元,全部售出生,商店共盈利多少元? 二、规律方法专题专题5 分式运算的常用讨巧 (1)顺序可加法.有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很烦琐.如果先把两个分式相加减,把所提结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法,当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法.对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n =-++进行裂项.(4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法.有些分式的分子.、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法). (7)活用分式变形求值. (8)设k 求值法(参数法) (9)整体代换法. (10)消元代入法.例17 化简32411241111x x x x x x +++-+++ 例18 计算422a a -++. 例19 计算3211x x x x +-+-. 例20 计算1111.(1)(1)(2)(2)(3)(2005)(2006)a a a a a a a a +++++++++++g g g例12 计算22221111.23243x x x x x x x x x +--+++++++ 例22已知x =求2111.242x x x +-+--例23 计算22223652.3256x x x x x x x x ++++-++++ 例24 已知271xx x =-+,求2421x x x ++的值. 例25 已知2510x x -+=和0x ≠,求441x x +的值. 例26 已知,b c c a a ba b c +++==求()()()abc a b b c c a +++的值. 例27 已知111111111,,,6915a b b c a c +=+=+=求abcab bc ac++的值. 例28 若4360,27,x y z x y z --=+-求232232522310x y z x y z ----的值.三、思想方法专题 专题6 整体思想【专题解读】在进行分式运算时要重视括号的作用,即在计算时括号内的部分是一个整体,另外在分式的运算以及解方程时要注意符号的作用.例29 请先将下列代数式化简,再选择一个你喜欢又使原式有意义和数代入求值.21111121a a a a a -⎛⎫-÷ ⎪---+⎝⎭2011中考真题精选 一、选择题1. (2011广东珠海,5,3分)若分式ba a +2的a 、b 的值同时扩大到原来的10倍,则此分式的值( ) A .是原来的20倍 B .是原来的10倍 C . 是原来的101倍 D .不变 2. 计算-22+(-2)2-(- 12)-1的正确结果是( )A 、2B 、-2C 、6D 、10 3. (2011四川遂宁,2,4分)下列分式是最简分式的( ) A.ba a 232 B .aa a 32- C .22ba b a ++ D .222b a ab a --4. (2011广东湛江,11,3分)化简22a b a b a b---的结果是( ) A 、a+b B 、a-b C 、a 2-b 2D 、15.(2011丽江市中考,4,3分)计算10()(12)2-+-错误!未找到引用源。

考点05 分式、分式方程及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点05 分式、分式方程及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点05 分式、分式方程及其应用分式在中考中的考察难度不大,考点多在于分式有意义的条件,以及分式的化简求值。

浙江中考中,分式这个考点的占比并不太大,其中分式的化简求值问题为主要出题类型,出题多以简答题为主;个别城市会同步考察分式方程的简单应用,多以选择填空题为主,有些城市甚至不会出分式的单独考题;而分式方程的应用也和分式方程一样,较少出题,出题也基本是以选择题或者填空题的形式考察,整体难度较小。

但是,分式的化简方法以及分式方程的解法的全面复习对后期辅助几何综合问题中的计算非常重要!考向一、分式有意义的条件考向二、分式的运算法则考向三、分式方程的解法考向四、分式方程的应用考向一:分式有意义的条件1.分式:一般地,如果A,B 表示两个整式,并且B中含有分母,那么式子叫做分式,分式中A叫做分子,B 叫做分母。

最简分式:分子分母中不含有公因式的分式2.分式有意义的条件3.分式值=0需满足的条件【易错警示】1.下列四个式子:,x 2+x ,m ,,其中分式的个数有( )A .1个B .2个C .3个D .4个【分析】根据分式的定义可得.【解答】解:分母上含有字母的式子是分式,题目中所给的式子中只有,两个分母中都含有字母,所以这两个是分式,故选:B .2.若分式无意义,则x 的取值范围是( )A .B .C .D .【分析】根据分式无意义的条件可得2x ﹣1=0,再解即可.【解答】解:由题意得:2x ﹣1=0,解得:x =,若 <故选:C .3.若分式的值为零,则x 的值为( )A .2或﹣2B .2C .﹣2D .1【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:依题意,得x 2﹣4=0,且x +2≠0,解得,x =2.故选:B .4.已知=,则的值为( )A .﹣B .﹣C .D .【分析】先化简,代入数值计算即可.【解答】解:∵,===.故选:C .考向二:分式的运算法则1.分式的基本性质:分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。

专题05 分式及其运算(37题)(原卷版)--2024年中考数学真题分类汇编

专题05 分式及其运算(37题)(原卷版)--2024年中考数学真题分类汇编

专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b-C .22a b-D .2a b a b--2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=6.(2024·天津·中考真题)计算3311x x x ---的结果等于()A .3B .xC .1x x -D .231x -7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为x yxy -,则A =()A .xB .yC .x y +D .x y-二、填空题8.(2024·四川南充·中考真题)计算---a ba b a b的结果为.9.(2024·湖北·中考真题)计算:111m m m +=++.10.(2024·广东·中考真题)计算:333a a a -=--.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:2422x x x+=--.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.三、解答题15.(2024·广东·中考真题)计算:011233-⨯-+.16.(2024·江苏盐城·中考真题)先化简,再求值:22391a a a a a ---÷+,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.18.(2024·四川广安·中考真题)先化简2344111a a a a a ++⎛⎫+-÷--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.19.(2024·山东·中考真题)(11122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.20.(2024·上海·中考真题)计算:102|124(1++-.21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x ---.24.(2024·江苏苏州·中考真题)计算:()0429-+-.25.(2024·福建·中考真题)计算:0(1)54-+-26.(2024·陕西·()()025723-+-⨯.27.(2024·湖南·中考真题)先化简,再求值:22432x x x x x-⋅++,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式()223232a b ba ab b -+-+的值.29.(2024·甘肃临夏·中考真题)计算:101420253-⎛⎫-+ ⎪⎝⎭.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷⎪--⎝⎭.31.(2024·浙江·中考真题)计算:131854-⎛⎫-- ⎪⎝⎭32.(2024·四川广元·中考真题)先化简,再求值:22222a a b a ba b a ab b a b--÷---++,其中a ,b 满足20b a -=.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:2669x x x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.35.(2024·江苏苏州·中考真题)先化简,再求值:2212124x x xx x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.37.(2024·四川乐山·中考真题)先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.。

中考数学一轮复习《分式》知识梳理及典例讲解课件

中考数学一轮复习《分式》知识梳理及典例讲解课件
1
15
A.-1
B.x-1
C.
D.
5.(2023·铜仁石阡县期末)化简+x-2的结果是( D )
A.1
B.
C.
D.
6.(2023·毕节期末)化简:= x-1 .
7.化简:(-)÷= ​ .
C
D
x-1

解:原式=[-]·=·=·=.
8.化简:(-)÷.
9.先化简,再求值:÷(2-),其中x=5.解:原式=÷=·=.当x=5时,原式==.
1.(2023·黔西南州期末)计算+的结果为( C )
A.
B.
C.
D.
2.(2023·毕节织金县期末)若分式有意义,则x的取值范围是( A )
A.x≠-1
B.x≠0
C.x≠1
D.x≠2
3.(2023·贵阳期末)若分式的值为0,则x的值是( A )
A.0
B.-1
C.1
D.0或1
C
A
A
巩固训练
4.(2023·遵义期末)计算-的结果是( C )
A.
B.
C.
D.
2.要使分式有意义,则x的取值范围是 x≠-1 .
3.若分式的值为0,则x的值是 2 .
B
x≠-1
2
考点训练
命题点2 分式的化简及求值
4.(2023·贵州)化简-的结果正确的是( A )
A.1
B.a
C.
D.-
5.计算:-= ​ .
6.先化简,再求值:÷(a-),其中a=2,b=1.
没有公因式
B≠0
A=0且B≠0
【提分小练】
1.下列等式成立的是( C )
A.=
B.=

2013年中考数学复习专题讲座五:数学思想方法(一)(含详细参考答案)

2013年中考数学复习专题讲座五:数学思想方法(一)(含详细参考答案)

2013年中考数学复习专题讲座五:数学思想方法(一)一、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

二、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

例1 10.(2012•德州)已知,则a+b等于()A.3 B.C.2 D.1考点:解二元一次方程组。

点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用整体思想求出答案,题目比较典型,是一道比较好的题目.考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

例2 (2012•内江)已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM 取得最大值时,则M的坐标为.考点:一次函数综合题;三角形三边关系;关于x轴、y轴对称的点的坐标。

点评:本题可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.考点三:分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

2013年中考数学复习分级训练5 分式(含答案)

2013年中考数学复习分级训练5 分式(含答案)

第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x有意义,x 的取值范围满足( ) A .x =0 B .x ≠0 C .x >0 D .x <02.(2012年四川德阳)使代数式x 2x -1有意义的x 的取值范围是( ) A .x ≥0 B .x ≠12 C .x ≥0且x ≠12D .一切实数 3.在括号内填入适当的代数式,是下列等式成立:(1)2ab =( )2xa 2b 2 ; (2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z =____________; x 2-9x 2-2x -3=____________. 5.已知a -b a +b =15,则a b=__________. 6.当x =______时,分式x 2-2x -3x -3的值为零. 7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-x x +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________.B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( ) A .x ≠1 B .x ≠2 C .x ≠1且x ≠2 D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫-⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值:2212111x xx x⎛⎫-++⎪+-⎝⎭÷x-1x+1,其中x=2.14.(2012年四川资阳)先化简,再求值:a-2a2-1÷2111aaa-⎛⎫--⎪+⎝⎭,其中a是方程x2-x=6的根.C 级 拔尖题15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x 2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yz z +y =34,zx z +x =-34,则xyz xy +yz +zx的值为____________.参考答案1.B 2.C 3.(1)4xab (2)a +b4.7z 36x 2y x +3x +15.326.-1 7.解:x 2-1x +1÷x 2-2x +1x 2-x =(x +1)(x -1)x +1÷(x -1)2x (x -1)=x . 8.解:x 2x -1+11-x =x 2-1x -1=x +1,代入求值(除x =1外的任何实数都可以). 9.-1410.m -6 11.C12.解:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1=3x +4-2x -2(x +1)(x -1)·(x -1)2x +2=x +2(x +1)(x -1)·(x -1)2x +2=x -1x +1. 13.解:原式=2111(11)x x x x ⎛⎫-+ ⎪++-⎝⎭())(·x +1x -1=x x +1·x +1x -1=x x -1. 当x =2时,原式=2.14.解:原式=a -2a 2-1÷(a +1)(a -1)-2a +1a +1=a -2a 2-1÷a 2-2a a +1=a -2(a +1)(a -1)×a +1a (a -2)=1a 2-a. ∵a 是方程x 2-x =6的根,∴a 2-a =6.∴原式=16. 15.解:原式=a (b +1)(b +1)(b -1)+b -1(b -1)2=a b -1+1b -1=a +1b -1. 由b -2+36a 2+b 2-12ab =0, 得b -2+(6a -b )2=0,∴b =2,6a =b ,即a =13,b =2. ∴a +1b -1=13+12-1=43. 16.解:由x 2-3x -1=0知x ≠0,则x 2-1=3x ,两边同除以x 得x -1x=3. 原式=21x x ⎛⎫- ⎪⎝⎭+2=11 17.-4 解析:由xy x +y =-2,得x +y xy =-12,裂项得1y +1x =-12.同理1z +1y =43,1x +1z =-43.所以,1y +1x +1z +1y +1x +1z =-12+43-43=-12,1z +1y +1x =-14. 于是xy +yz +zx xyz =1z +1y +1x =-14,所以xyz xy +yz +zx=-4.。

中考数学专题复习题:分式的基本性质

中考数学专题复习题:分式的基本性质

中考数学专题复习题:分式的基本性质一、单项选择题(共7小题)1.下列各式是最简分式的是()A.13B.1x−2C.x2y2xD.2a82.下列各分式的化简正确的是()A.x6x3=x3B.a+xb+x=abC.x2x2=0D.a2−1a−1=a−13.若分式2aba+b 中a,b都扩大到原来的3倍,则分式2aba+b的值是()A.扩大3倍B.缩小3倍C.不变D.扩大6倍4.下列各式中,正确的是()A.a+12a+3=25B.ab=a2abC.−a+1a=−a+1aD.a2−4(a−2)2=a+2a−25.下列等式成立的是()A.1a +2b=3a+bB.abab−b2=aa−bC.22a+b=1a+bD.a−a+b=−aa+b6.若代数式a+1a−1在实数范围内有意义,则实数a的取值范围是()A.a≥1B.a≠1C.a<1D.a=−17.如果把分式x−2y+zxyz中的正数x,y,z都扩大2倍,则分式的值()A.不变B.扩大为原来的两倍C.缩小为原来的14D.缩小为原来的18二、填空题(共4小题)8.分式14x2yz 和16xy2的最简公分母是________.9.不改变分式的值,化简:−0.03x+0.1−0.04x−0.03=________.10.已知y>3,则y2−6y+93−y=________.11.把分式2xx+y中的x、y都扩大两倍,则分式的值________.三、解答题(共4小题)12.不改变分式的值,将下列各分式的分子与分母中各项系数都化为整数:(1)x−0.2y0.8x−5y;(2)m2+n32m 5−2n3.13.根据分式的基本性质填空:(1)x+32x =( )2x2;(2)−am−n=a( ).14.已知a,b实数满足ab=1,若M=11+a +11+b,N=a1+a+b1+b,请你猜想M与N的数量关系,并证明.15.写出下列等式中所缺的分子或分母:(1)1ab =( )ab2c(c≠0)括号内应填入__________;(2)ma−b =( )a2−b2(a≠−b)括号内应填入__________;(3)xx(x−y)=1( )括号内应填入__________.。

分式中考经典总复习课件

分式中考经典总复习课件

状元备课
)
--
=-1
+
-
-
D.
=
+
+
B.
解析:应用分式的基本性质时,要注意“都”与“同”这两个字的含义,
-
-(-) -
,
=
=- .
避免犯只乘分子或只乘分母的错误.D项中 +
+
+
答案:D
规律方法探究
命题点1
命题点2
命题点3
命题点 3
【例 3】
命题点4
分式的约分与通分
0.
考点二
分式的基本性质
分式的分子与分母同乘(或除以)一个不等于零的整式,分式的

×
÷
值不变.用式子表示是: = × , = ÷(其中 M 是不等于 0 的整
式).
基础自主导学
考点梳理
状元备课
自主测试
考点三 分式的约分与通分
1.约分
分式约分:利用分式的基本性质,约去分式的分子、分母中的
答案:C
状元备课
规律方法探究
命题点1
命题点2
命题点3
命题点4
3+5
5
1
无意义,则当

=0
-1
3-2 2-
变式训练若分式
3+5
解析:由
无意义,可得 x=1,
-1
5
1
5
1


=0,得

=0,
3-2 2-
3-2 2-1
5
1

=
,
3-2
2-1
所以 5(2m-1)=3m-2.

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算复习目标1.了解分式的概念2.会利用分式的基本性质进行约分和通分。

3.会进行分式的加、减、乘、除、乘方运算4.能够根据具体问题数量关系列出简单的分式方程5.会解简单的可化为一元一次方程的分式方程;考点梳理一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.【归纳总结】分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B ≠0时,分式有意义;当分式有意义时,B ≠0.②当B =0时,分式无意义;当分式无意义时,B =0.③当B ≠0且A =0时,分式的值为零.例1、若把x ,y 的值同时缩小x 为原来的13倍,则下列分式的值保持不变的是()A .xy x y+B .22y x ++C .()22x y x +D .222x y x -【答案】C 【解析】A.1111333==11333x y xyxy x y x y x y⨯⨯+++,选项说法错误,不符合题意;B.61263=3616233y y x x y x +++=+++,选项说法错误,不符合题意;C.22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==,选项说法正确,符合题意;D.22222213112261())(33()3xx xy x y x y x ⨯==---⨯,选项说法错误,不符合题意故选C二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.例2、计算22111m mm m----的结果是()A.1m+B.1m-C.2m-D.2m--【答案】B【解析】解:()222121211 1111mm m m m mm m m m---+-===-----;故选B.【归纳总结】约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.【特别提醒】通分注意事项(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.【特别提醒】1.解分式方程注意事项(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.2.列分式方程解应用题的基本步骤(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.例3、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周6000件提高到8400件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80D.6000x=840080x-【答案】A【解析】解:设原来平均每人每周投递快件x件,则更换交通工具后平均每人每周投递快件(x+80)件,依题意得:6000x=840080x+,故选:A.综合训练1.(2022·全国九年级课时练习)若代数式13x x -+有意义,则x 的取值范围是()A .3x ≠B .1x ≠C .3x ≥-D .3x ≠-【答案】D【分析】根据分式有意义的条件分析即可.【详解】 数式13x x -+有意义,30x ∴+≠,解得3x ≠-.故选D .2.(2022·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是()A .-a bB .a b +C .1a b-D .1a b+【答案】A【分析】直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】解:2b a ba a a ⎛⎫+-÷⎪⎝⎭=22a b aa a b-⨯+=()()a b a b aaa b+-⨯+=-a b .故选:A .3.(2022·厦门市第九中学九年级二模)港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55千米.通车前需走水陆两路共约170千米,通车后,约减少时间3小时,平均速度是原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为()A .1705532.5x x-=B .5517032.5x x-=C .17055 2.53x x ⨯-=D .1705532.5x x-=【答案】D【分析】设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,根据它们行驶的时间差为3小时列出分式方程.【详解】解:设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,依题意得:1705532.5x x-=故选D .4.(2022·哈尔滨市第十七中学校)分式方程1x x +12x +-=1的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【答案】A【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:112x x x ++-=1,去分母,方程两边同时乘以x (x ﹣2)得:(x +1)(x ﹣2)+x =x (x ﹣2),x 2﹣x ﹣2+x =x 2﹣2x ,x =1,经检验,x =1是原分式方程的解.故选:A .5.(2022·四川九年级期中)关于x 的方程244x ax x -=++有增根,则a 的值为()A .-4B .-6C .0D .3【答案】B【分析】将分式方程转化为整式方程,根据方程有增根求得4x =-,代入整式方程即可.【详解】解:244x ax x -=++两边同时乘4x +得:2x a -=①∵244x ax x -=++有增根∴4x =-代入方程①得:6a =-故答案为B .6.(2022·全国)已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为()A .14B .12C .1D .2【答案】C【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==,∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C .7.(2022·日照市田家炳实验中学九年级一模)已知关于x 的方程2222x mm x x+=--无解,则m 的值是___.【答案】12或1【分析】分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值和方程没有增根两种情况进行讨论.【详解】解:①当方程有增根时方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,②当方程没有增根时方程两边都乘2x -,得22(2)x m m x -=-,解得221mx m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.8.(2022·山东滨州市·九年级其他模拟)已知关于x 的分式方程3522x mx x=+--的解为非负数,则m 的取值范围为______.【答案】10m ≥-且6≠-m 【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【详解】解:3522x m x x=+--去分母,得:35(2)x m x =-+-,移项、合并,得:210x m=+系数化为1得:102mx +=∵分式方程的解为非负数,∴1002m +≥且1022m +≠,解得:10m ≥-且6≠-m ,故答案为:10m ≥-且6≠-m .9.(2022·云南九年级期末)先化简,再求值:212(1)11x x x ++÷+-,其中2x =.【答案】x -1,1【分析】根据分式的混合运算法则化简原式然后代值计算即可.【详解】解:原式=2111()12x x x x ++-⨯++=2(1)(1)12x x x x x ++-⨯++=1x -,∵2x =,∴原式=211-=.10.(2022·河南三门峡市·)下面是小锐同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++()()()()23321233x x x x x +-+=-++…第一步()321323x x x x -+=-++…第二步()()()23212323x x x x -+=-++…第三步()()262123x x x --+=+…第四步()262123x x x --+=+…第五步526x =-+…第六步(1)填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______;②第______步开始出现错误,这一步错误的原因是__________.(2)请从出现错误的步骤开始继续进行该分式的化简;(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.【答案】(1)①三,分式的基本性质;②五,括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)见解析;(3)最后结果应化为最简分式或整式【分析】(1)①分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;②根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;(2)根据分式的混合运算法则解答;(3)可从分式化简的最后结果或通分时应注意的事项等进行说明.【详解】解:(1)①在以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变);②第五步开始出现错误,这一步错误的原因是:括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)原式()262172326x x x x ---==-++;(3)答案不唯一.如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆等.。

精品 中考数学一轮综合复习 第05课 方程与不等式(分式方程)

精品 中考数学一轮综合复习 第05课 方程与不等式(分式方程)

中考数学一轮复习第05课 方程与不等式(分式方程)知识点:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧増根:解分式方程步骤:定义:分式方程相同字母或因式:系数:分式的通分分式的加减法则:相同字母或因式:系数:分式的约分分式的乘除法则:分式的运算分式的符号法则:分式的基本性质:的条件:分式值为的条件:分式值为分式值为零的条件:分式无意义的条件:分式有意义的条件:定义:分式)3()2()1()2()1()2()1(1-1课堂同步:1.下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m---=-中,成立的是( ) A.①② B.③④ C.①③ D.②④2.下列各式中,可能取值为零的是( ) A.2211mm +- B.211m m -+ C.211m m +- D.211m m ++ 3.如果把分式xyy x 2+中的x 和y 都扩大10倍,那么分式的值( ) A.扩大10倍 B.缩小10倍 C.是原来的23 D.不变 4,有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A.9001500300x x =+ B.9001500300x x =- C.9001500300x x =+ D.9001500300x x =-5.化简1(1)(1)1m m -++的结果是 6.化简:2222222a b a b a ab b a b--÷+++=______________ 7.如果实数x 满足0322=-+x x ,那么代数式11)21(2+÷++x x x 的值为_ _. 8.某市在旧城改造过程中,需要整修一段全长2400m 的道路,为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .9.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.10.当x 取什么值时,下列分式有意义: (1)32-x x (2)141+-x x (3)422+x x (4)1212+-+x x x (5)4-x x (6)21102x x -+11.化简下列各分式:a b a b a b b a +⋅+)2﹢﹣( ⎪⎭⎫ ⎝⎛+-+÷+-1111222x x x xx 224422111m m m m m m -+-÷+---,其中x=212.解方程:(1)32121---=-x x x (2)2163524245--+=--x x x x13.已知:25)5)(2(14-++=+-+x B x A x x x 求A,B.14.已知:3511=+y x ,求yxy x y xy x +++-2232的值. 15.如果21<<x ,试化简x x --2|2|x x x x |||1|1+---.16.已知:432z y x ==,求22232z y x xz yz xy ++-+的值.17.已知:251=+x x ,求(1)221x x +;(2)1242++x x x 的值.18.已知分式方程21212-=---x k x x 的解为正数,求k 的取值范围.19.已知实数a 满足a 2+2a ﹣15=0,求12231211222+-++÷-+-+a a a a a a a 的值.25,可提前20.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%10天完成任务,问原计划日产多少台?21.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务.求原来每天装配的机器数.22.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?23.某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的1.2倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.24.有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?25.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.26.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?27.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.28.某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.29.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?30.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?31.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?第05课 方程与不等式(分式方程)测试题日期: 月 日 满分:100分 时间:20分钟 姓名: 得分:1.分式21+-x x 的值为0时,x 的值是( ) A.0 B.1 C.-1 D.-2 2.下列各式与yx y x +-相等的是( ) A.55+++-y x y x B.y x y x +-22 C.)()(222y x y x y x ≠-- D.2222y x y x +- 3.计算111---a a a 的结果为( ) A.11-+a a B.1--a a C.-1 D.1-a 4.计算:211(1)1m m m +÷⋅--的结果是( ) A.221m m --- B.221m m -+- C.221m m -- D.21m -5.已知2111=-b a ,则ba ab -的值是( ) A.21 B.-21 C.2 D.-2 6.化简)11()12(x x x x -÷--的结果是( ) A.x 1 B.x-1 C.x 1-x D.1-x x7.计算 dd c c b b a 1112⨯÷⨯÷⨯÷ 的结果是( ) A.2a B.2222d c b a C.bcd a 2 D.其他结果 8.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A.66602x x =-B.66602x x =-C.66602x x =+D.66602x x=+ 9.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天10.已知114a b -=,则2227a ab b a b ab---+的值等于( ) A.6 B.-6 C.215 D.27- 11.如图,设)(乙图中阴影面积甲图中阴影面积0>>=b a k ,则有( ) A.k >2B.1<k <2C.D. 12.设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于( ) A.32B.3C.6D.3 13.对于分式5312-+x x ,(1)当 时,分式有意义; (2)当 时,分式无意义;(3)当 时,分式的值为0; (4)当 时,分式的值为1;14.化简分式:x x x 1)11(2-÷+ 22()a b ab b a a a --÷- 221()a b a b a b b a-÷-+-17.先化简,再求代数式:1222122+-+÷--+a a a a a a 的值,其中260tan 60-=a .18.某漆器厂接到制作480件漆器订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?19.甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度。

九年及数学中考专题(数与代数) 第五讲《分式(1)》课件(北师大版)

九年及数学中考专题(数与代数) 第五讲《分式(1)》课件(北师大版)
B B×M B B÷M
三.知识要点 2.分式的基本性质与符号法则: 分式的基本性质与符号法则: 分式的基本性质与符号法则
②分式的符号法则:同时改变分式的分子、分母 分式的符号法则:同时改变分式的分子、 和分式本身中两个的符号,分式的值不变. 和分式本身中两个的符号,分式的值不变 即
− A −A A −A = = =− B B −B −B

a 2 − b 2 (a + b )(a − b ) a − b = = 2 a (a + b ) a a + ab
知识考查:分式的基本性质、最简分式、 知识考查:分式的基本性质、最简分式、因式分解和 约分. 约分 解:C.
四.典型例题
南昌) 南昌 例2(2006·南昌)若分式 值为_________. 值为
三.知识要点 3.约分: 约分: 约分
根据分式的基本性质, 根据分式的基本性质,把一个分式的分子 与分母的公因式约去,叫做分式的约分. 与分母的公因式约去,叫做分式的约分 A.依据:分式的基本性质; 依据: 依据 分式的基本性质; B.步骤:首先找出分式的分子与分母的公因式 步骤: 步骤 首先找出分式的分子与分母的公因式. 当分子、分母是多项式时,要先对分子、 当分子、分母是多项式时,要先对分子、分母 分解因式;然后约去分子与分母的公因式. 分解因式;然后约去分子与分母的公因式 C.约分的结果是整式或最简分式 约分的结果是整式或最简分式. 约分的结果是整式或最简分式
四.典型例题
a2 − b2 江西) 的结果是( 例1 (2004年·江西)化简 2 年 江西 的结果是( ) a + ab a−b a+b a−b a −b A. B. C. D. 2a a a a+b 思路分析:分式的分子、 思路分析:分式的分子、分母是多项式时要先进行因 式分解,从而找出公因式,以便分式的约分化简. 式分解,从而找出公因式,以便分式的约分化简

精品 中考数学一轮综合复习 第05课 方程与不等式(分式方程)

精品 中考数学一轮综合复习 第05课 方程与不等式(分式方程)
第 7 页 共 8 页

C.3 天
D.2 天
1 1 a 2ab b 的值等于( 4 ,则 a b 2a 2b 7 ab
B.-6
甲图中阴影面积 ,则有( (a b 0) 乙图中阴影面积
A.6 11.如图,设 k A.k>2
D. 2
7
B.1<k<2
2 2
C.
12.设 m>n>0,m +n =4mn,则 A. 2 3
2 B. m 1
C.①③ ) C. m 1
m2 1
2 1 m 1
3.如果把分式 x 2 y 中的 x 和 y 都扩大 10 倍,那么分式的值(
xy
3 D.不变 2 4, 有两块面积相同的试验田,分别收获蔬菜 900kg 和 1500kg, 已知第一块试验田每亩收获蔬菜比第二块 少 300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜 x kg,根据题意,可得方 程( ) 900 1500 900 1500 900 1500 A. B. C. D. 900 1500 x 300 x x x 300 x x 300 x 300 x
22.某人骑自行车比步行每小时多走 8 千米,已知他步行 12 千米所用时间和骑自行车走 36 千米所用时 间相等,求这个人步行每小时走多少千米?
23.某校少先队员到离市区 15 千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的 1.2 倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.
66 60 66 60 66 60 66 60 B. C. D. x x2 x2 x x x2 x2 x 9.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作 2 天完成总量的三分之一,这时
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲分式
【基础知识回顾】
一、分式的概念
若A,B表示两个整式,且B中含有那么式子就叫做分式
【名师提醒:①若则分式A
B
无意义②若分式
A
B
=0,则
应且】
二、分式的基本性质
分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、
.
.
a m
a m
= ,
a m
b m
÷
÷
= (m≠0)
2、分式的变号法则
b
a
-
=
b
= 。

3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确定分式的分子和分母中的,
约分的结果必须是分式或整式。

4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分,通分的关键是确定各分母的。

【名师提醒:①最简分式是指;②约分时确定公因式的方法:当分子、分母是单项式时,公因式应取系数的,相同字母的,当分母、分母是多项式时应先再进行约分;③通分时确定最简公分母的方法,取各分母系数的相同字母,分母中有多项式时仍然要先,通分中有整式的应将整式看成是分母为的式子;④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】
二、分式的运算:
1、分式的乘除
①分式的乘法:b
a
.
d
c
=
②分式的除法:b
a
÷
d
c
= =
2、分式的加减
①用分母分式相加减:b
a
±
c
a
=
②异分母分式相加减:b
a
±
d
c
= =
【名师提醒:①分式乘除运算时一般都化为法来做,其实质
是的过程②异分母分式加减过程的关键是】
3、分式的乘方:应把分子分母各自乘方:即(b
a
)m =
1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由化简后的形式直接代数所求分式的值
③式中字母表示的数隐含在方程等题设条件中
【名师提醒:①实数的各种运算律也符合分式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先此类题目解决过程中要注意整体代入思想的运用。


【重点考点例析】
点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
对应训练
1.A
考点二:分式的值为零的条件
A.x=-2 B.x=±2 C.x=2 D.x=0
思路分析:分式的值为零:分子等于零,且分母不等于零.
解:由题意,得
x2-4=0,且x+2≠0,
解得x=2.
故选C.
点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
对应训练
A.9 B.±3 C.-3 D.3
2.D
考点四:分式的化简与求值
对应训练
考点五:零指数幂和负指数幂
例5 (2013•荆州)下列等式成立的是()
A.|-2|=2 B-1)0=0 C.(-1
)-1=2 D.-(-2)=-2
对应训练
5.(2013•济南)下列计算正确的是( )
A .(13)-2=9
B .
C .(-2)0=-1
D .|-5-3|=2
5.A
1.B
2.(2013•泰安)(-2)-2等于( )
A .-4
B .4
C .-1
D .1
A .1
B .0
C .-1
D .±1
3.A
4.(2013•淄博)下列运算错误的是( ) A . 22()1()a b b a -=- B .1a b a b
--=-+ C . 0.5510a b a b ++= D .a b b a --=
A .2
B .
C .
D .-2
A .
B .
C .2
D .2
【备考真题过关】
A.x=3 B.x=0 C.x=-3 D.x=-4
A.-1 B.0 C.±1 D.1
A.
1
x-B.
1x
-
C.
1
x-
D.
1x
-
4.B
5.(2013•河北)下列运算中,正确的是( )
A 3
B C .(-2)0=0 D .2-1= 12
A .-2
B .2
C .-22(2)a -+
D .22(2)
a +
A .k >2
B .1<k <2
C .2<k <1
D .0<k <2
7.B
二、填空题
13.1
三、解答题。

相关文档
最新文档