浅谈氨氮废水处理技术
氨氮废水常用处理方法
氨氮废水常用处理方法氨氮废水是指废水中含有氨氮化合物的废水。
氨氮废水的处理是保护环境、减少对生活水源、地下水和环境的污染的重要过程。
以下是常用的氨氮废水处理方法。
一、化学法处理1. 氧化法氧化法是将含有氨氮化合物的废水中的氨氮氧化为硝酸盐,进而使得氨氮被转化为无害物质。
常用的氧化剂有氯和臭氧。
此外,还可以利用高锰酸钾氧化废水中的氨氮。
2. 硫酸铵沉淀法硫酸铵沉淀法是一种将氨氮转化为与之反应生成固体沉淀的方法。
该方法中,硫酸铵与废水中的氨氮发生反应,生成可溶性的硫酸铵、硫酸铁、硫酸铵铁等盐类沉淀,从而将氨氮从废水中去除。
二、生物法处理1. 厌氧处理法厌氧处理法是利用厌氧条件下的微生物,将有机废物和氨氮一起去除。
在厌氧生物反应器中,废水中的氨氮会被微生物利用作为能源和氮源,通过微生物代谢的产物来将氨氮去除掉。
2. 高效曝气活性污泥法高效曝气活性污泥法是一种通过生物氧化反应将氨氮去除的方法。
在高效曝气活性污泥法中,通过添加活性污泥,在适宜的温度和pH条件下,利用曝气设备对污水进行充分曝气,促使废水中的氨氮通过厌氧-好氧反应达到去除的目的。
三、物理法处理1. 吸附法吸附法是通过吸附剂表面的孔隙结构和化学性质,将废水中的氨氮物质吸附到吸附剂上,使氨氮物质从废水中转移到吸附剂上,并通过后续的处理将吸附剂中的氨氮去除。
2. 膜分离法膜分离法是利用半透膜将废水中的氨氮物质分离出来的方法。
通过调整操作条件,如压力差、温度等,使得废水中的氨氮物质能够透过半透膜,从而达到去除的目的。
四、辅助方法1. 灭活法灭活法是指通过添加酸、碱等化学物质,改变废水中的pH值,使得废水中的氨氮化合物发生离子化反应,从而改变其活性,达到去除氨氮的目的。
2. 稀释法稀释法是指通过将废水与其他水源进行混合,降低废水中氨氮的浓度,以达到减少氨氮的目的。
上述是常用的氨氮废水处理方法,具体选择何种方法应根据废水中氨氮浓度、处理效果要求和经济成本等多方面因素综合考虑。
氨氮的预处理方法
氨氮的预处理方法氨氮是指水中所含的游离氨和铵离子的浓度。
由于氨氮具有较高的毒性和对水体生态环境的负面影响,因此在水体环境保护和污水处理过程中,需要对氨氮进行预处理以降低其浓度。
1.生物法预处理:生物法预处理是将含氨水体通过微生物活性池进行处理的一种方法。
常见的生物法预处理方法包括活性污泥法、人工湿地法和微生物滤床法。
-活性污泥法:活性污泥法是一种将含氨废水中的氨氮转化为氮气通过空气中的氧气释放出去的方法。
废水经过曝气槽,利用活性污泥中的硝化细菌进行氨氮的氨化转化为亚硝酸盐,再经过好氧池中的硝化细菌进行亚硝酸盐的硝化转化为硝酸盐。
这样,废水中的氨氮就被转化为氮气,从而达到降低氨氮浓度的目的。
-人工湿地法:人工湿地法是一种通过植物和土壤微生物降解氨氮的方法。
水体通过人工湿地,植物的根系和湿地土壤中的微生物可以吸附、分解和转化废水中的氨氮,使其减少。
这种方法具有结构简单、运行成本低的优点,并且可以同时去除其他污染物。
-微生物滤床法:微生物滤床法是将含氨水体通过填充了微生物滤料的滤床进行处理的方法。
废水通过滤床时,微生物滤料上的微生物能够将废水中的氨氮降解为无毒的亚硝酸盐、硝酸盐和氮气。
这种方法具有处理效果稳定、装置结构简单的特点。
2.物化预处理:物化预处理是通过一些物化方法将废水中的氨氮与其他物质发生反应,从而降低氨氮的浓度。
-化学沉淀法:化学沉淀法是利用化学反应将废水中的氨氮转变为不溶性物质,通过沉淀的方式从废水中除去的方法。
常用的化学沉淀剂有氢氧化钙、氢氧化镁等。
-活性炭吸附法:活性炭具有较高的比表面积和吸附性能,可以将废水中的氨氮吸附在其表面上,从而达到去除氨氮的目的。
-化学氧化法:化学氧化法是通过氧化剂将废水中的氨氮氧化为无毒的物质,如亚硝酸盐、硝酸盐等。
常用的氧化剂有臭氧、高锰酸钾等。
3.综合预处理:综合预处理是将多种预处理方法结合起来,通过联合运用提高氨氮去除效果。
一种常用的综合预处理方法是将生物法与物化法相结合。
浅谈氨氮废水处理技术
化学沉淀法的主要原理是通过向废水中投加某 种化学药剂, 使之与废水中的某些溶解性污染物质 发生反应, 形成难溶盐沉淀下来, 从而降低水中溶解 性污染物浓度的方法。目前, 研究最多的是向废水中 添 加 含 有 Mg2+ 和 PO43- 的 药 剂 。 黄 稳 水 等 [11]用 Na2HPO4 和 MgSO4 为 化 学 沉 淀 剂 , 确 定 适 宜 pH 值 为 9.5, n(P): n(N)=1.04, n(Mg):n(N)= 1.2( n 表 示 物 质 的 量 ) , 氨 氮的去除率! 95%。赵庆良等[12]用化学沉淀法对香港新 界 的 垃 圾 渗 滤 液 进 行 了 研 究 , 结 果 表 明 , 在 pH 值 为 8.6 时投加 MgCl2·6H2O 和 Na2HPO4·12H2O 可将氨 氮 质 量 浓度由 5 618mg/L 降 至 65mg/L。Schulze-Rettmer R[13] 提 出 使 用 MgO 和 H3PO4, 这 样 不 仅 可 以 避 免 带 入 有 害 离 子 , 而 且 MgO 还 可 以 中 和 部 分 H+, 节 约 碱 的 用 量 。周 娟 贞 [14]用 化 学 沉 淀 法 在 各 种 条 件 下 对 不 同 质 量 浓 度 的 氨 氮 废 水 (900mg/L  ̄7 500mg/L) 进 行 了 研 究 , 结 论 是 以 n (Mg):n (N):n (P)=1.3:1:1.08 投 加 Mg2+ 和 PO43-, 当 pH 为 9 时 , 氨 氮 去 除 率 最 高 可 达 98%。谢 炜 平 [15]用 Mg(OH)2 和 H3PO4 作 成 絮 凝 剂 , 确 定 适 宜 的 pH 值 范 围 为 9 ̄11, 氨 氮 去 除 率 可 达 到 94% 。 据 报 道 , 最 低 氨 氮 的 去 除 率 也 能 达 到 82.6%。化 学 沉 淀 法 也 有 一 些 缺 点 , 产 生 的 MAP 沉 淀 用 于 土 壤 中 可 能 引 起 的 副 作 用 还待进一步的研究。 2.2 关键技术分析 2.2.1 曝气池供氧量的确定
氨氮废水处理技术介绍(详解)
氨氮废水处理技术介绍(详解)氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。
排放的废水以及垃圾渗滤液等。
氨氮废水对鱼类及某些生物也有毒害作用。
另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。
处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。
一、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。
反应方程式如下:Mg²﹢+NH4﹢+PO4³﹣=MgNH4P04.6H20影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理;化学沉淀法去除效率较好,且不受温度限制,操作简单;形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本;如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。
化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。
氨氮废水的处理方法及案例介绍
氨氮废水的处理方法氨氮废水主要来源于化肥、焦化、石化、制药、食品等行业废水,由于存在一定的隐患问题,因此人们对于这一废水的处理很重视,传统的处理方法有物理法、化学法、物理化学以及生化法等。
(1)生物法传统的生化法主要用于低浓度氨氮废水处理,它是利用微生物的硝化及反硝化作用使氨氮转变为氮气。
低浓度氨氮废水通常具有比低的特点,有些生产废水甚至不含COD,因此采用生物脱氮的方式处理,需要加入碳源,运行成本很高。
常见工艺有A/O或A2/O)和SBR工艺。
其缺点是处理过程对温度和工业废水中某些组分的干扰非常敏感,需要的反应器体积比较大,而且反硝化过程中会产生N2O,易转化为其它影响臭氧层的氮氧化物,反硝化把NH4+这种有价值的物质转化成N2逸入空气,造成浪费。
在A/O工艺中,为了促使反硝化反应顺利进行,一般要求C/N大于3。
(2)蒸汽汽提法蒸汽汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,其处理机理与吹脱法基本相同,也是一个气液传质过程,即在高pH值时,使废水与蒸汽密切接触,从而降低废水中氨浓度的过程。
传质过程的推动力是气相中氨的分压与废水中氨的浓度对应的平衡分压之间的差值。
蒸汽汽提法由于采用的工作介质是蒸汽,氨自废水进入蒸汽中,然后在塔顶精馏成为浓氨水回收,因此无需增加后处理工序。
蒸汽汽提所需蒸汽体积要比空气吹脱法中所需空气体积小得多,因此设备体积较小,占地面积较少。
汽提法比较适用于处理1000mg/L以上的高浓度氨氮废水,对氨氮的去除率可达99%以上,效率高,技术成熟度好。
但是,常规的汽提废水脱氨技术蒸汽消耗量大,处理废水单耗比较高。
蒸汽汽提废水脱氨技术的普及推广应用需要在节能降耗方面加大研究开发的力度。
(3)离子交换法离子交换法适用于氨离子浓度在10~100mg/L的废水。
其原理是选用阳离子交换树脂,将水中的铵离子与树脂上的钠离子交换,从而达到去除铵的目的。
沸石具有从含钠、镁和钙等离子的溶液中有选择地去除氨离子的特点,因而选其作为交换树脂也叫有选择性的离子交换法,穿透的树脂要用2%的氯化钠溶液再生,再生液经过去氨处理后再循环使用,达一定的循环率后排放。
关于氨氮废水处理技术的全概述
关于氨氮废水处理技术的全概述!1、吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
而控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882mg/L)进行了处理试验。
最佳工艺条件为pH=11,超声吹脱时间为40min,气水比为1000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
在处理经UASB预处理的垃圾渗滤液(2240mg/L)时发现在pH=11.5,反应时间为24h,仅以120r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。
据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。
2、沸石吸附利用沸石中的阳离子与废水中的NH4 进行交换以达到脱氮的目的。
沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。
然而,蒋建国等探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。
小试研究结果表明,每克沸石具有吸附15.5mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。
用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。
氨氮废水处理技术研究进展
氨氮废水处理技术研究进展氨氮废水是指含有氨态氮物质的废水,其排放对水环境造成严重影响,引起了人们的广泛关注。
针对氨氮废水处理问题,研究人员一直在努力寻找高效、经济、环保的处理技术,以提高废水处理效果和减少对环境的损害。
本文将对氨氮废水处理技术的研究进展进行探讨。
一、生物处理技术生物处理技术是目前处理氨氮废水最常用的方法之一。
传统的生物处理技术包括活性污泥法、生物膜法和植物床等。
活性污泥法通过利用污水中的微生物对氨氮进行氧化还原反应,将氨氮转化为亚硝酸盐和硝酸盐,进而实现氨氮的去除。
生物膜法则是利用生物膜固定化处理废水中的氨氮。
植物床则是利用植物的吸收能力将废水中的氨氮去除。
近年来,研究人员还提出了一些新的改进方法,如厌氧氨氧化法和氨氧化菌具体群的调控等,以进一步提高生物处理技术的效果。
二、物化处理技术物化处理技术主要包括吸附法、膜分离技术和化学沉淀法等。
吸附法通过添加吸附剂将废水中的氨氮吸附到表面,并将废液进行分离。
常用的吸附剂有活性炭、改性膨润土等。
膜分离技术通过利用半透膜,将废水中的氨氮分离出来,达到去除的效果。
化学沉淀法则是通过添加化学沉淀剂与废水中的氨氮发生反应,生成不溶性沉淀物,从而达到去除氨氮的目的。
三、电化学处理技术电化学处理技术近年来发展迅速,成为一种新兴的氨氮废水处理技术。
通过电解电池,利用电流在电极之间引发化学反应,从而使废水中的氨氮转化成硝酸盐等化合物。
电化学处理技术具有高效、低能耗和易操作等优势,但目前还存在电极材料选择和耐久性等方面的问题需要解决。
四、复合处理技术为了更好地处理氨氮废水,研究人员还提出了一些复合处理技术。
常见的复合处理技术有生物-物理化学技术、生物-电化学技术等。
这些技术将不同的废水处理技术进行组合,取长补短,以提高氨氮废水的处理效果。
综上所述,氨氮废水处理技术在过去几十年中取得了显著的进展。
生物处理技术、物化处理技术、电化学处理技术和复合处理技术等都在不同程度上对氨氮废水的处理起到了积极作用。
氨氮废水处理工艺技术最全总结
氨氮废水处理工艺技术最全总结氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
一、生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1、多级污泥系统多级污泥系统可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
2、单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
3、生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
二、物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
总结氨氮废水处理技术分析
总结氨氮废水处理技术分析1 氨氮废水的来源含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。
含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。
人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。
人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。
随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。
近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。
氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是最主要的存在形式之一。
废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。
氨氮污染源多,排放量大,并且排放的浓度变化大。
2 氨氮废水的危害水环境中存在过量的氨氮会造成多方面的有害影响:(1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。
在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N 是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。
根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。
由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。
《2024年废水中氨氮的去除》范文
《废水中氨氮的去除》篇一废水中的氨氮去除:技术、挑战与解决方案一、引言随着工业化和城市化的迅速发展,大量的工业废水和城市生活污水产生,这些废水中含有的氨氮浓度较高。
氨氮不仅会降低水体的氧含量,导致水生生物窒息死亡,还可能转化为有害的亚硝酸盐,影响饮用水质量。
因此,废水中氨氮的去除显得尤为重要。
本文将详细探讨废水中氨氮的去除技术、面临的挑战以及解决方案。
二、废水中的氨氮及其危害氨氮是废水中常见的污染物之一,主要来源于生活污水、工业废水以及农业废水等。
氨氮在水体中积累,会降低水体的氧含量,影响水生生物的生长和繁殖。
此外,氨氮还可能转化为亚硝酸盐,对人类健康产生潜在危害。
长期摄入含有高浓度亚硝酸盐的水可能导致人体健康问题。
三、废水中的氨氮去除技术1. 生物法:生物法是一种常用的氨氮去除技术,主要利用微生物的代谢作用将氨氮转化为无害的物质。
常见的生物法包括活性污泥法、生物膜法等。
这些方法具有处理效果好、成本低等优点,但需要较长的处理时间和适宜的微生物生长环境。
2. 物理化学法:物理化学法主要包括化学沉淀法、离子交换法、电渗析法等。
这些方法可以通过添加化学药剂或利用电场等物理手段去除废水中的氨氮。
物理化学法的处理速度快,但可能产生二次污染,需注意处理过程中产生的废弃物的处理与处置。
3. 高级氧化技术:高级氧化技术如光催化氧化、臭氧氧化等,可以通过产生强氧化剂将氨氮氧化为无害的物质。
这些方法具有处理效果好、适用范围广等优点,但设备成本较高,且可能产生其他有害物质。
四、面临的挑战尽管现有的氨氮去除技术具有一定的效果,但仍面临诸多挑战。
首先,不同来源的废水中的氨氮浓度和性质差异较大,需要针对不同的废水制定相应的处理方案。
其次,许多传统处理方法存在能耗高、成本高、易产生二次污染等问题。
此外,部分地区由于地理和环境因素,难以实现废水的有效处理和排放。
五、解决方案针对上述挑战,我们可以采取以下措施:1. 深入研究各种废水的性质和特点,开发针对不同废水的氨氮去除技术。
浅析氨氮废水处理技术
浅析氨氮废水处理技术摘要:本文总结了多项氨氮废水处理方法的工作原理和特点,并提出了氨氮废水处理技术的发展方向。
通过讨论指出处理氨氮废水的关键途径,可为氨氮废水处理领域提供技术借鉴。
关键词:氨氮废水处理;技术应用;优缺点超标氨氮废水富集很多养分,带来富营养化水体,危害环境。
氨氮废水成分复杂,可生化性较差,未经处理的含氮废水排放给环境造成了极大的危害。
本文对多项氨氮废水的处理进行总结和分析,通过讨论指出处理氨氮废水的关键途径。
一、运用物化途径氨氮特有的质量分数,关系着它的酸碱度。
在去除步骤中,若能达到气态,则应变更溶液初始的酸碱值,至少为11[1]。
这类物化步骤融汇了汽提及吹脱、后续膜吸收等。
处理可回收累积的氨氮,但也会耗费碱。
(一)隔离膜特有的吸收膜吸收的步骤,整合了初始的分离步骤、后续吸收步骤,制作新型薄膜。
制备微孔薄膜,分离气液两相。
运用微小的这类小孔以便传递多样介质。
疏水特性薄膜累积着氨氮废水,它把体系内的吸收液隔离于两侧。
变更酸碱值,废水内的离子物质即可被变更为挥发特性物质。
薄膜双侧含有这一浓度差值,废水汽化且快速挥发。
氨氮沿着小孔,向另一边快速拓展。
吸收液特有的界面之上,氨氮将被吸收。
这种反应得到不可被挥发的另一物质,从而可以回收。
这类技术优势:氨氮特有的物质,在吸收液及洁净水体之中,含有不同形态。
这种情形下,依托形态变更,它被传递至吸收液,直至完全中和。
历经处理以后,氨氮浓度应被缩减至零。
对比其他方式,膜吸收适宜平日内的常压及常温,可以浓缩回收。
它除掉了累积着的二次污染,增添回收资源。
这类技术弊病:薄膜很易渗漏。
为了增添通量,薄膜常被设定得很薄。
在压差推动下,两侧薄膜常常就会泄露。
(二)汽提吹脱方式汽提法即吹脱法,是把废水调和为碱性,然后接通蒸汽。
气液彼此衔接,吹脱了游离的这种氨气。
采纳这种流程,提升了原有的吹脱比值。
通常来看,若氨氮特有的去除概率超越了97%,那么酸碱值应被调和为11。
7种氨氮废水的处理技术
高浓度氨氮废水处理工艺工业废水氨氮处理工艺:工业废水——原水泵——粗格栅——曝气沉砂——细格栅——池——消毒池——出水一、氨氮废水处理技术1.传统脱氮工艺活性污泥法脱氮的传统工艺[1]是在1969年美国的巴茨(Barth)提出的,被称为三级活性污泥法,是以氨化、硝化和反硝化3步反应过程为基础建立起来的。
活性污泥含有有机物降解菌、硝化菌和反硝化菌,它们分别在各自的反应池内生长繁殖,并且有各自的沉淀池和回流设施,如图1.1所示。
在实践中还可采用两级生物脱氮系统(如图1.2所示),将前两级BOD去除和硝化两道反应过程合在同一反应器内进行,第一级池去除BOD,将有机氮转化为NH3、NH4+,同时使NH3、NH4+进一步氧化成NO x--N。
第二级池在缺氧条件下,将NO x --N还原为氮气,并逸出大气,应采取厌氧-缺氧的运行方式。
碳源,既可投加CH3OH(甲醇)作为外加碳源,亦可引入原废水作为碳源。
该工艺优点反应速率大,而且比较彻底。
缺点是处理设施多,占地面积大,造价高,管理不够方便,因此在实践中采用比较少。
图1.1 传统活性污泥法脱氮工艺(三级活性污泥法流程)图1.2 两级生物脱氮工艺2.A/O法A/O脱氮工艺是80年代初开发出来的工艺流程(图1.4)。
废水经预处理和一级处理后,首先进入缺氧池,利用氨化菌将废水中有机氮转化成NH3-N,与原废水中的NH3-N一并进入好氧池。
在好氧池中,除与常规活性污泥法一样对含碳有机物进行氧化外,在适宜的条件下,利用亚硝化菌及硝化菌,将废水中NH3-N硝化生成NO x--N。
为了达到废水脱氮的目的,好氧池中硝化混合液通过内循环回流到缺氧池,利用原废水中有机碳作为电子供体进行反硝化,将NO x--N还原成氮气。
与传统生物脱氮工艺相比,A/O系统不用投加外加碳源,可利用原废水中的有机物作为碳源进行反硝化,达到同时降低COD和脱氮的目的。
缺氧池设在好氧池之前,当水中碱度不足时,由于反硝化可增加碱度,因而可以补偿硝化过程中对碱度的消耗。
氨氮废水处理方案
氨氮废水处理方案1. 引言氨氮废水是指含有高浓度氨氮的废水,通常来自生活污水、工业废水、农业排放等。
由于氨氮废水对环境和人体健康带来严重影响,因此需要进行有效处理。
本文将介绍一种适用于氨氮废水处理的方案。
2. 氨氮废水特点氨氮废水具有以下特点: - 含有高浓度氨氮,对环境有毒 - pH值通常偏高,需要进行中和处理 - 传统的物理处理方法效果有限,需要辅助化学处理3. 氨氮废水处理方案采用以下步骤进行氨氮废水处理:步骤1:预处理对氨氮废水进行初步处理,包括调整废水的pH值和去除大颗粒杂质。
这可以通过添加酸碱或使用物理过滤器实现。
预处理有助于提高后续处理步骤的效果。
步骤2:生物处理将经过预处理的废水送入生物反应器进行生物处理。
在生物反应器中,将废水与微生物接触,通过微生物的作用,将废水中的氨氮转化为较为稳定的氮气。
生物处理过程需要保持适宜的温度、氧气供应和细菌数量,以提高处理效果。
步骤3:沉淀处理经过生物处理后,废水中的氨氮已经大幅降低,但仍存在一定量的悬浮物。
因此,需要进行沉淀处理。
可以采用物理沉淀池或化学沉淀剂来促进悬浮物的沉淀。
化学沉淀剂通常是金属盐类,如氯化铁或氯化铝。
步骤4:细微处理经过沉淀处理后,废水中仍可能存在微量的氨氮。
为了达到出水标准,需要进行细微处理。
可以采用吸附剂、活性炭或其他吸附材料来吸附废水中的残余氨氮。
4. 结论氨氮废水处理是一项重要的环保工作。
本文提出的氨氮废水处理方案包括预处理、生物处理、沉淀处理和细微处理等步骤。
通过综合运用这些步骤,可以有效地降低废水中的氨氮含量,达到环境排放标准。
然而,不同情况下的废水处理工艺可能会有所差异,因此在实际操作中应根据具体情况进行调整和优化。
以上是针对氨氮废水处理方案的详细介绍。
希望能为相关从业人员提供一定的参考和指导。
通过科学合理的废水处理,我们能够保护环境、保障人民健康,共同建设美丽的家园。
氨氮废水处理
氨氮废水处理氨氮废水处理是一项重要的环境保护工作,对于保护水资源和生态环境具有重要意义。
本文将从氨氮废水的来源、危害、处理技术和实践案例等方面进行探讨。
氨氮废水是指含有高浓度氨氮的废水,其主要来源包括工业制造过程、农业生产和生活污水等。
氨氮废水的排放对水体环境造成很大危害,首先是直接毒性效应,高浓度的氨氮会对水生生物造成损害甚至死亡;其次是间接污染效应,氨氮进入水体后会引发富营养化现象,导致水体富营养化、水华暴发等问题。
针对氨氮废水的处理技术主要包括物理处理和化学处理两种方法。
物理处理主要通过沉淀、过滤等方式将废水中的氨氮物质去除,这种方法操作简单,但处理效果有限。
化学处理则是通过添加化学反应剂,如氯化钙、硫酸铵等与氨氮发生反应,将氨氮转化为氮气释放到空气中,从而降低废水中的氨氮浓度。
化学处理方法能够有效降低氨氮废水的浓度,但需要进行后续处理以处理产生的混凝沉淀。
在实践中,氨氮废水处理技术已经得到了广泛应用。
例如,在某化工厂中,他们采用了一种生物法处理氨氮废水。
在废水处理系统中,通过调节控制水体中微生物的种类和数量,使其转化废水中的氨氮成分,并将其转化为无害物质。
这种生物法不仅处理效果好,而且成本较低,对于降低氨氮废水的排放量和保护水体环境具有重要意义。
此外,在农业生产中,科学合理地利用化肥和农药,减少化学物质的排放,也是预防农业废水中氨氮排放的重要措施。
通过科学施肥和农药使用,减少农业废水对水体的污染负荷,可以有效减少氨氮的排放。
综上所述,氨氮废水处理是一项具有重要意义的环境保护工作。
通过采用适当的处理技术,可以有效减少氨氮废水的排放量,保护水资源和生态环境的安全。
在实践中,我们需要不断探索和应用新的废水处理技术,并加强对农业、工业等领域的监管和管理,以确保氨氮废水排放达到国家和地方的相关标准。
只有这样,才能实现可持续发展的目标,建设美丽中国。
氨氮废水处理
氨氮废水处理氨氮废水是指含有肯定浓度的氨氮的工业、农业、生活污水,其直接排放对环境产生严重影响。
为了保护环境,削减水污染对人类和生物造成的损害,需要对氨氮废水进行有效处理。
本文将对氨氮废水的生成、特点、影响以及处理方法进行认真介绍。
一、氨氮废水的生成和特点氨氮废水重要来自于人类和动物的排泄物、化肥及农药使用、工业废水、畜禽养殖业等,它的重要特点是呈弱酸性,PH值在6—8之间,不易挥发。
在自然环境中,氨氮会在水体中快速被微生物汲取、化解为亚硝酸盐和硝酸盐,其中氨氮会被微生物利用来合成蛋白质,使氨氮的含量降低,但假如废水中氨氮浓度过高或污染物过多,微生物就无法快速将其降解,从而对环境造成危害。
二、氨氮废水的影响氨氮废水对环境造成的影响重要有以下几点:1. 氨氮会对水体中的鱼类造成危害。
高浓度的氨氮会使鱼体的呼吸系统受到损害,从而引发鱼类死亡。
2. 氨氮会抑制植物生长。
氨氮在高浓度下会引起植物叶片焦枯、萎蔫甚至死亡,从而影响到植物的生长发育。
3. 氨氮会对土壤产生负面影响。
高浓度的氨氮在土壤中累积会导致土壤酸化,影响土壤的肥力和生物活性。
4. 氨氮会对人类健康产生危害。
当氨氮浓度过高时,会对人类的眼睛和呼吸系统造成刺激,引发头痛和感冒等疾病。
三、氨氮废水的处理方法1. 生物法处理在氨氮废水处理中,生物法可以说是最常用的处理方法之一,这是由于生物法处理成本低,处理效率高。
生物法处理废水的方式可以用好氧法处理和厌氧法处理,优点在于处理过程本身不会产生二次污染。
在好氧法处理中,氨氮在氧气的作用下,被微生物氧化为亚硝酸盐和硝酸盐,亚硝酸盐和硝酸盐在水体中的含量被有效地去除。
在厌氧处理中,氨氮在没有氧气的环境中,被厌氧微生物氧化为亚硝酸盐和硝酸盐,和好氧法处理相比,厌氧法处理更适用于含有高浓度氨氮的废水。
2. 化学法处理在氨氮废水处理中,常用的化学处理方法有氧化法和还原法。
氧化法通过氧化氨氮来达到去除氨氮的目的,氧化剂有过氧化氢、臭氧、高锰酸钾等,优点是去除效率高,但需要消耗大量的化学品,成本较高。
氨氮废水处理——常用的几种方法
氨氮废水处理--常用的几种方法导读氨氮废水的形成一般是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸筱,氯化筏等等。
氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞅革、味精、肉类加工和养殖等行业。
排放的废水以及垃圾渗滤液等。
氨氮废水对鱼类及某些生物也有毒害作用。
另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。
处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。
本文对氨氮废水处理方法作一综述并对各种方法的优缺点进行分析汇总。
化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4+与Mg?+、PO43-在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。
反应方程式如下:Mg2÷+NH4++PO43-=MgNH4P04影响化学沉淀法处理效果的因素主要有PH值、温度、氨氮浓度以及摩尔比(n(Mg2+):n(NH4+):n(P043-))等。
以氯化镁和磷酸氢二钠为沉淀剂对氨氮废水进行处理,结果表明当PH值为10,镁、氮、磷的摩尔比为12:1:1.2时,处理效果较好。
以氯化镁和磷酸氢二钠为沉淀剂进行研究,结果表明当PH值为9.5,镁、氮、磷的摩尔比为12:1:1时,处理效果较好。
对新出现的高浓度氨氮有机废水一生物质煤气废水进行研究,结果表明,MgC12+Na3PO4.12H20明显优于其他沉淀剂组合。
当PH值为10.0,温度为30℃z n(Mg2÷):n(NH4+):n(P043-)=1:1:1时搅拌30min废水中氨氮质量浓度从处理前的222mg∕1降至∣J17mg∕1,去除率为92.3%β将化学沉淀法和液膜法相结合用于高浓度工业氨氮废水的处理。
氨氮废水处理方法
氨氮废水处理方法
氨氮的构成:
废水中氨氮的构成主要有两种:一种是氨水形成的氨氮,一种是无机氨形成的氨氮;主要是硫酸铵和氯化铵等等。
氨氮主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。
氨氮废水处理方法:
1.物理法:一般是在废水中加入絮凝剂,然后利用格栅或其它物理隔栅工具把一部分污染物处理下来,带走一部分有机物。
但是这个方法基本上只对浓度上千的氨氮起微少的作用,一般到几百的时候就很难光靠此方法处理了。
2.生物法:在污水处理厂或者大型的废水站中运用得比较多,一般都是靠各种的菌种,活性污泥等生物处理,对其进行好氧厌氧等处理后,形成完整的处理工艺,能有效去除溶解性的和胶体状态的可生化有机物等。
3.化学法:运动化学药剂的氧化作用分解氨氮,这种方法下的氨氮分解效率快,处理时间快。
一般都直接在出水口投加希洁氨氮去除剂SN-1使用,没有过多繁琐的操作。
能在5~6分钟左右降解氨氮,并且浓度好调节,灵活性强,根据不同的浓度投加不同的药剂量就能很好地控制氨氮的浓度了。