《一元二次方程》单元测试题

合集下载

一元二次方程单元测试题含答案

一元二次方程单元测试题含答案

第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)精心整理,用心做精品2第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对12.若分式22632x xx x---+的值为0,则x的值为().A.3或-2 B.3 C.-2 D.-3或213.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().精心整理,用心做精品3A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.精心整理,用心做精品4当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003年丽水市全社会用电量统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).精心整理,用心做精品5精心整理,用心做精品621.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0. (1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.精心整理,用心做精品723.已知关于x 的方程a2x2+(2a -1)x+1=0有两个不相等的实数根x1,x2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21a a =0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?QPBDAC精心整理,用心做精品825、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?CA BP QD←↑精心整理,用心做精品92、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)动什么位置时,△OCP 为等腰三角形,求这时点P 么位置时,使得∠CPD=∠OAB ,且58BD BA ,求这时点P 的坐标;C BQ RADlP答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-x2=,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.精心整理,用心做精品1015.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(36x=0,x2-,由求根公式得,.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

一元二次方程 单元测试卷

一元二次方程 单元测试卷

一元二次方程单元测试卷1.方程(x+1)(x-2)=0的根是(A)。

解释:将方程展开得到x^2-x-2=0,用因式分解可得(x+1)(x-2)=0,因此根为x=-1或x=2,选项A符合题目要求。

2.用配方法解一元二次方程x^2+8x+7=0,则方程可变形为(B)。

解释:用配方法得到(x+4)^2-9=0,移项得到(x+4)^2=9,两边取根可得x+4=±3,因此x=-7或x=-1,将选项代入可知选项B符合题目要求。

3.已知α是一元二次方程x^2-x-1=0较大的根,则下面对α的估计正确的是(D)。

解释:通过求根公式可得α=(1+√5)/2≈1.618,因此2<α<3,选项D符合题目要求。

4.已知关于x的一元二次方程3x^2+4x-5=0,下列说法正确的是(B)。

解释:用求根公式可得方程的两个根为x=(-2±√19)/3,因此方程有两个不相等的实数根,选项B符合题目要求。

5.若x=-2是关于x的一元二次方程x^2-2ax+a^2=0的一个根,则a的值为(-1或4)。

解释:将x=-2代入方程可得4-4a+a^2=0,移项得到a^2-4a+4=0,因此(a-2)^2=0,解得a=2,因此选项A和D都符合题目要求。

6.每年投资的增长率为20%。

解释:设每年投资的增长率为r,则根据题意可得5(1+r)^2=7.2,解得r≈0.2,因此每年投资的增长率为20%,选项A符合题目要求。

7.三角形的周长为15.解释:由题可知x^2-13x+36=0,解得x=4或x=9,因为三角形两边长分别为3和6,所以第三边长为9,因此三角形的周长为15,选项B符合题目要求。

8.原来的正方形铁片的面积是64 cm2.解释:设原来正方形铁片的边长为x,则(x-2)^2=48,解得x=8,因此原来的正方形铁片的面积为64 cm2,选项C符合题目要求。

9.A>1.解释:由于方程x^2+2x+A=0不存在实数根,因此判别式Δ=4-4A1,选项B符合题目要求。

一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)

一、选择题1、下列方程中,关于x 的一元二次方程是( )A .()()12132+=+x xB .02112=-+x xC .02=++c bx axD . 1222-=+x x x 2、已知m 方程012=--x x 的一个根,则代数式m m -2的值等于( )A .—1B .0C .1D .23、方程x x 22=的解为( )A .x =2B . x 1=2-,x 2=0C . x 1=2,x 2=0D . x =04、解方程)15(3)15(2-=-x x 的适当方法是( )A 、开平方法B 、配方法C 、公式法D 、因式分解法5、用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为1681)47(2=-t D .3y 2-4y -2=0化为910)32(2=-y 6、下面是李明同学在一次测验中解答的填空题,其中答对的是( ).A .若x 2=4,则x =2B .方程x (2x -1)=2x -1的解为x =1C .若x 2-5xy -6y 2=0(xy ≠),则y x =6或yx =-1 D .若分式1232-+-x x x 值为零,则x =1,2 7、用配方法解一元二次方程02=++c bx ax ,此方程可变形为( ) A 、222442a ac b a b x -=⎪⎭⎫ ⎝⎛- B 、222442a b ac a b x -=⎪⎭⎫ ⎝⎛-C 、222442a ac b a b x -=⎪⎭⎫ ⎝⎛+D 、222442a b ac a b x -=⎪⎭⎫ ⎝⎛+ 8、从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A .9cm 2B .68cm 2C .8cm 2D .64cm 29、某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173(1+x %)2=127B .173(1-2x %)=127C .173(1-x %)2=127D .127(1+x %)2=173二、填空题10、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .11、把方程(2x +1)(x —2)=5-3x 整理成一般形式后,得 ,其中二次项系数是 ,一次项系数是 ,常数项是 。

《一元二次方程》单元测试卷

《一元二次方程》单元测试卷

《一元二次方程》单元测试卷一、选择题(每小题3分,共30分)1.(3分)已知3是关于x的方程x2﹣2a+1=0的一个解,则2a的值是()A.11B.12C.13D.142.(3分)用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6B.(x+2)2=6C.(x﹣2)2=2D.(x+2)2=2 3.(3分)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.(3分)某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件,若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1400B.200+200(1+x)+200(1+x)2=1400C.200(1+x)2=1400D.200(1+x)+200(1+x)2=14005.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠56.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A.2017B.2018C.2019D.20207.(3分)关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.48.(3分)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9 9.(3分)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±210.(3分)如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0D.a>且a≠0二、填空题(每小题3分,共30分)11.(3分)若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值范围是.12.(3分)一元二次方程(x+1)(3x﹣2)=10的一般形式是.13.(3分)方程x2=3x的解为:.14.(3分)已知两个连续奇数的积是15,则这两个数是.15.(3分)已知(x2+y2﹣1)(x2+y2﹣2)=4,则x2+y2的值等于.16.(3分)某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有名学生.17.(3分)参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得.18.(3分)已知a,b是方程x2﹣1840x+1997=0的两根,(a2﹣1841a+1997)(b2﹣1841b+1997)=.19.(3分)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出个小分支.20.(3分)如果(a2+b2+1)(a2+b2﹣1)=63,那么a2+b2的值为.三、解答题(共60分)21.(20分)解方程(1)x2﹣4x﹣3=0(2)(x﹣3)2+2x(x﹣3)=0(3)(x﹣1)2=4(4)3x2+5(2x+1)=0.22.(10分)求证:代数式3x2﹣6x+9的值恒为正数.23.(10分)某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次.求每年接受科技培训的人次的平均增长率.24.(10分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.若要平均每天盈利960元,则每千克应降价多少元?25.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.《一元二次方程》单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)已知3是关于x的方程x2﹣2a+1=0的一个解,则2a的值是()A.11B.12C.13D.14【考点】A3:一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=3代入已知方程,列出关于2a的一元一次方程,通过解方程即可求得2a的值.【解答】解:根据题意,得×32﹣2a+1=0,即12﹣2a+1=0,解得,2a=13;故选:C.【点评】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.2.(3分)用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6B.(x+2)2=6C.(x﹣2)2=2D.(x+2)2=2【考点】A6:解一元二次方程﹣配方法.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x2﹣4x=﹣2在等号两边加上4,得x2﹣4x+4=﹣2+4∴(x﹣2)2=2.故C答案正确.故选:C.【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法﹣﹣配方法的运用,解答过程注意解答一元二次方程配方法的步骤.3.(3分)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(3分)某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件,若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1400B.200+200(1+x)+200(1+x)2=1400C.200(1+x)2=1400D.200(1+x)+200(1+x)2=1400【考点】AD:一元二次方程的应用.【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1400且今后两年的产量都比前一年增长一个相同的百分数x.【解答】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1400.故选:B.【点评】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.5.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠5【考点】AA:根的判别式.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A.2017B.2018C.2019D.2020【考点】A3:一元二次方程的解.【分析】把x=1代入已知方程求得(a+b)的值,然后将其整体代入所求的代数式并求值即可.【解答】解:∵关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,∴a+b=﹣5,∴2015﹣a﹣b=2015﹣(a+b)=2015﹣(﹣5)=2020;故选:D.【点评】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.7.(3分)关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.4【考点】AA:根的判别式;CC:一元一次不等式组的整数解.【分析】由于关于x的方程(2﹣a)x2+5x﹣3=0有实数根,分情况讨论:①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.【解答】解:∵关于x的方程(2﹣a)x2+5x﹣3=0有实数根,∴①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2﹣a)≥0,解之得a≤,∴整数a的最大值是4.故选:D.【点评】本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意次方程应分是一元二次方程与不是一元二次方程两种情况进行讨论.8.(3分)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9【考点】A6:解一元二次方程﹣配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.9.(3分)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±2【考点】A1:一元二次方程的定义.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.10.(3分)如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0D.a>且a≠0【考点】A1:一元二次方程的定义;AA:根的判别式.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组,解得a≥﹣且a≠0.故选C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.二、填空题(每小题3分,共30分)11.(3分)若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值范围是m≠3.【考点】A1:一元二次方程的定义.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:把方程mx2+3x﹣4=3x2转化成一般形式,(m﹣3)x2+3x﹣4=0,(m﹣3)是二次项系数不能为0,即m﹣3≠0,得m≠3.故答案为:m≠3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.12.(3分)一元二次方程(x+1)(3x﹣2)=10的一般形式是3x2+x﹣12=0.【考点】A2:一元二次方程的一般形式.【分析】先把一元二次方程(x+1)(3x﹣2)=10的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.【解答】解:∵一元二次方程(x+1)(3x﹣2)=10可化为3x2﹣2x+3x﹣2=10,∴化为一元二次方程的一般形式为3x2+x﹣12=0.【点评】去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.13.(3分)方程x2=3x的解为:x1=0,x2=3.【考点】A8:解一元二次方程﹣因式分解法.【分析】首先把方程移项,把方程的右边变成0,然后对方程左边分解因式,根据几个式子的积是0,则这几个因式中至少有一个是0,即可把方程转化成一元一次方程,从而求解.【解答】解:移项得:x2﹣3x=0,即x(x﹣3)=0,于是得:x=0或x﹣3=0.则方程x2=3x的解为:x1=0,x2=3.故答案是:x1=0,x2=3.【点评】本题考查了因式分解法解二元一次方程,理解因式分解法解方程的依据是关键.14.(3分)已知两个连续奇数的积是15,则这两个数是3和5或﹣3和﹣5.【考点】AD:一元二次方程的应用.【分析】设出两个连续的奇数,根据两个连续奇数的积是15这一等量关系,列出方程解答即可.【解答】解:设其中一个奇数为x,则较大的奇数为(x+2),由题意得,x(x+2)=15,解得,x=3或x=﹣5,所以这两个数为3和5或﹣3和﹣5.【点评】本题属于列一元二次解应用题中的数字类问题,此类题目易根据等量关系列出方程,解决此类题目的关键是设未知数一定准确,答案不能漏解.15.(3分)已知(x2+y2﹣1)(x2+y2﹣2)=4,则x2+y2的值等于.【考点】A9:换元法解一元二次方程.【分析】设t=x2+y2(t≥0),则原方程转化为关于t的一元二次方程,通过解该方程求得t即x2+y2的值.【解答】解:设t=x2+y2(t≥0),则由原方程得到:(t﹣1)(t﹣2)=4,整理,得t2﹣3t﹣2=0.则t=.∵t≥0,∴t=.故答案是:.【点评】本题考查了换元法解一元二次方程.我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.16.(3分)某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有11名学生.【考点】AD:一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了110件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=110解得:x1=﹣10(不合题意舍去),x2=11,答:全组共有11名学生.故答案为11.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.17.(3分)参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得x(x﹣1)=45.【考点】AC:由实际问题抽象出一元二次方程.【分析】此题利用一元二次方程应用中的基本数量关系:x人参加聚会,两人只握一次手,握手总次数为x(x﹣1)解决问题即可.【解答】解:由题意列方程得,x(x﹣1)=45.故答案为:x(x﹣1)=45.【点评】此题主要由x人参加聚会,两人只握一次手,握手总次数为x(x﹣1),利用这一基本数量关系类比运用解决问题.18.(3分)已知a,b是方程x2﹣1840x+1997=0的两根,(a2﹣1841a+1997)(b2﹣1841b+1997)=1997.【考点】AB:根与系数的关系.【分析】先利用一元二次方程解的定义得到a2=1840a﹣1997,b2=1840b﹣1997,则利用整体代入的方法得到原式=ab,然后根据根与系数的关系求解.【解答】解:∵a,b是方程x2﹣1840x+1997=0的两根,∴a2﹣1840a+1997=0,b2﹣1840b+1997=0,∴a2=1840a﹣1997,b2=1840b﹣1997,∴(a2﹣1841a+1997)(b2﹣1841b+1997)=(1840a﹣1997﹣1841a+1997)(1840b﹣1997﹣1841b+1997)=﹣a•(﹣b)=ab,∵a,b是方程x2﹣1840x+1997=0的两根,∴ab=1997,∴原式=1997.故答案为1997.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.19.(3分)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出7个小分支.【考点】AD:一元二次方程的应用.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=57,解得:x=7或x=﹣8(不合题意,应舍去);∴x=7.故答案为:7.【点评】此题主要考查了一元二次方程的应用,注意能够熟练运用因式分解法解方程.20.(3分)如果(a2+b2+1)(a2+b2﹣1)=63,那么a2+b2的值为8.【考点】A5:解一元二次方程﹣直接开平方法.【分析】首先把a2+b2看作一个整体为x,进一步整理方程,开方得出答案即可.【解答】解:设a2+b2=x,则(x+1)(x﹣1)=63整理得:x2=64,x=±8,即a2+b2=8或a2+b2=﹣8(不合题意,舍去).故答案为:8.【点评】此题考查利用换元法和直接开平方解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.三、解答题(共60分)21.(20分)解方程(1)x2﹣4x﹣3=0(2)(x﹣3)2+2x(x﹣3)=0(3)(x﹣1)2=4(4)3x2+5(2x+1)=0.【考点】A5:解一元二次方程﹣直接开平方法;A8:解一元二次方程﹣因式分解法.【分析】(1)配方法求解可得;(2)因式分解法求解可得;(3)直接开平方可得;(4)先化成一元二次方程的一般式,再利用公式法求解可得.【解答】解:(1)x2﹣4x=3,x2﹣4x+4=3+4,∴(x﹣2)2=7,两边开平方,得:x﹣2=±,∴x1=+2,x2=﹣+2;(2)左边因式分解,得:(x﹣3)(x﹣3+2x)=0,即(x﹣3)(3x﹣3)=0,∴3(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得:x1=1,x2=3;(3)两边直接开平方,得:x﹣1=±2,即x=±2+1,∴x1=3,x2=﹣1;(4)原方程整理可得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=102﹣4×3×5=40>0,则x==,即x1=,x2=﹣.【点评】本题主要考查一元二次方程的解法,根据不同形式的方程,灵活选择解方程的方法是解题的关键.22.(10分)求证:代数式3x2﹣6x+9的值恒为正数.【考点】1F:非负数的性质:偶次方;AE:配方法的应用.【分析】将代数式前两项提取3,配方后根据完全平方式为非负数,得到代数式大于等于6,即对于任何实数x,代数式3x2﹣6x+9的值总大于0,得证.【解答】证明:∵对于任何实数x,(x﹣1)2≥0,∴3x2﹣6x+9=3(x2﹣2x)+9=3(x2﹣2x+1)+9﹣3=3(x﹣1)2+6≥6>0,则对于任何实数x,代数式3x2﹣6x+9的值恒为正数.【点评】此题考查了配方法的应用,以及非负数的性质:偶次幂,灵活应用完全平方公式是解本题的关键.23.(10分)某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次.求每年接受科技培训的人次的平均增长率.【考点】AD:一元二次方程的应用.【分析】设每年接受科技培训的人次的平均增长率为x,根据原有人数×(1+增长率)2=增长后的人数,再将三年的所有人数加起来,即可列出方程,再求解即可.【解答】解:设每年接受科技培训的人次的平均增长率为x,根据题意得:20+20(1+x)+20(1+x)2=95,解得:x1==50%,x2=﹣(不合题意,舍去),答:每年接受科技培训的人次的平均增长率为50%.【点评】本题本题考查了一元二次方程的运用,解此类题目时常常根据原有人数×(1+增长率)2=增长后的人数来列方程.24.(10分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.若要平均每天盈利960元,则每千克应降价多少元?【考点】AD:一元二次方程的应用.【分析】根据“每天利润=每天销售质量×每千克的利润”即可得出关于x的一元二次方程,解方程即可得出结论.【解答】解:设每千克降价x元,根据题意得:(200+20x)×(6﹣x)=960,整理得:960=﹣20x2﹣80x+1200,即x2+4x﹣12=0,解得:x=﹣6(舍去),或x=2.答:若要平均每天盈利960元,则每千克应降价2元.【点评】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的数量×每千克盈利=每天销售的利润是解题关键.25.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)根据铁栏的长是长方形的长与宽的2倍的和,从而确定长和宽,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.【点评】此题主要考查了一元二次方程的应用,首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.。

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案一元二次方程单元测试卷一、选择题(每题2分,共30分)1.下列关于x的方程中,一元二次方程是()A。

x-y=2B。

2x2+x=C。

x3+1=D。

(m+2)x/(11-m-3mx)=2.方程(m+2)x2/(11-m-3mx)+1=是关于x的一元二次方程,则()A。

m=±2B。

m=2C。

m=-2D。

m≠±23.将一元二次方程-3x2-2=-4x化成一般形式ax2+bx+c=(a≠0)后,一次项和常数项分别是()A。

-4,2B。

-4x,2C。

4x,-2D。

-3x2,24.方程x2=4x的根是()A。

x=4B。

x=1/2,x=4C。

x=0,x=4D。

x=1,x=35.一元二次方程y2-y-3/4=0配方后可化为()A。

(y+2)/2=1B。

(y-2)/2=1C。

(y+1)/3=1D。

(y-1)/3=16.已知x=1是方程x2+px+1=0的一个实数根,则P的值是()A。

0B。

1C。

2D。

-27.x=1关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A。

-2B。

-3C。

-1D。

-68.若关于x的一元二次方程x2-4x+m+2=0有两个不相等实数根,且m为正整数,则此方程的解为()A。

x1=-1,x2=3B。

x1=-1,x2=-3C。

x1=1,x2=3D。

x1=1,x2=-39.若x-2px+3q=0的两根分别是-3和5,则多项式2x-4px+6q可以分解为()A。

(x+3)(x-5)B。

(x-3)(x+5)C。

2(x+3)(x-5)D。

2(x-3)(x+5)10.某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A。

20%B。

11%C。

22%D。

44%11.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A。

数学九年级上学期《一元二次方程》单元测试(附答案)

数学九年级上学期《一元二次方程》单元测试(附答案)

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(30分)1. 若方程(m+2)x|m|+3mx+1=0 是关于x的一元二次方程,则m =()A . 0B . 2C . -2D . ± 22. 方程x2=x 的根是()A . x=0B . x=1C . x=0或x=-1D . x=0 或x=13. 若x1、x2是方程x2+x-1=0 的两根,则(x12+x1-2)×(x22+x2-2) 的值( )A . 2B . -2C . -1D . 14. 已知关于x的方程x2-px + q = 0 的两根是x1 = 1, x2 = -2, 则二次三项式x2-px + q可以分解为( )A . (x-1)(x +2)B . (x-1)(x-2)C . (x +1)(x-2)D . (x +1)(x +2)5. 对于任意实数x,多项式x2-5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定6. 若A -B +C =0,A ≠0,则方程A x2+B x+C =0 必有一个根是()A . 1B . 0C . –1D . 不能确定7. 如果关于x的方程A x 2+x–1= 0有实数根,则A 的取值范围是()A . A >–B . A ≥–C . A ≥–且A ≠0D . A >–且A ≠08. 一元二次方程(m-2)x2-4mx+2m-6=0 有两个相等的实数根,则m等于()A . -6B . 1C . 2D . -6或19. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+x)+50(1+x)2=182D . 50+50(1+x)=18210. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m二、填空题(共18分)11. 将方程化为一般形式:2x2-3x=3x-5是____________________12. 方程x(x-2)=0的解是___________________13. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.14. 方程x2-2x-1=0的判别式△=____________.15. 方程x2-4x+4=0的根的情况是__________________16. 关于x的一元二次方程x2+mx-3=0的一个根是1,则另一根为________.三、解答题(共52分)17. 解方程:(1)(x-5)2=16 (直接开平方法)(2)x2+5x=0 (因式分解法)(3)x2-4x+1=0 (配方法)(4)x2+3x-4=0 (公式法)18. 在实数范围内定义一种新运算“△”,其规则为:A △B =A 2﹣B 2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.19. 已知关于x的方程x2-(2m+1)x+m(m+1)=0.求证:方程总有两个不相等的实数根.20. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?21. 已知:如图,A 、B 、C 、D 为矩形的四个顶点,A B =16C m,A D =6C m,动点P、Q 分别从A 、C 同时出发,点P 以3C m/s的速度向点B 移动,一直到达点 B 为止,点 Q 以2C m/s的速度向点 D 移动.(1)P、Q 两点从出发点出发几秒时,四边形PB C Q 的面积是33C m2?(2)P、Q 两点从出发点出发几秒时,点P、Q 间的距离是10C m?参考答案一、选择题(30分)1. 若方程(m+2)x|m|+3mx+1=0 是关于x的一元二次方程,则m =()A . 0B . 2C . -2D . ± 2[答案]B[解析]由一元二次方程的定义可得,解得:m=2.故答案为:2.2. 方程x2=x 的根是()A . x=0B . x=1C . x=0或x=-1D . x=0 或x=1[答案]D[解析]解:移项得:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,x1=0,x2=1.故选C .3. 若x1、x2是方程x2+x-1=0 的两根,则(x12+x1-2)×(x22+x2-2) 的值( )A . 2B . -2C . -1D . 1[答案]D[解析]根据方根的根的定义得:故(x12+x1-2)×(x22+x2-2)= .故选D .4. 已知关于x的方程x2-px + q = 0 的两根是x1 = 1, x2 = -2, 则二次三项式x2-px + q可以分解为( )A . (x-1)(x +2)B . (x-1)(x-2)C . (x +1)(x-2)D . (x +1)(x +2)[答案]A[解析]根据方根的根的定义得:x2-px + q=(x -1)(x +2).故选A .5. 对于任意实数x,多项式x2-5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定[答案]B[解析]试题解析:x2-5x+8=x2-5x++=(x-)2+,任意实数的平方都是非负数,其最小值是0,所以(x-)2+的最小值是,故多项式x2-5x+8的值是一个正数,故选B .考点:1.配方法的应用;2.非负数的性质:偶次方.6. 若A -B +C =0,A ≠0,则方程A x2+B x+C =0 必有一个根是()A . 1B . 0C . –1D . 不能确定[答案]C[解析]由题意得:当A -B +C =0,即当x=-1时,A x2+B x+C =A -B +C =0,故选C .7. 如果关于x的方程A x 2+x–1= 0有实数根,则A 的取值范围是()A . A >–B . A ≥–C . A ≥–且A ≠0D . A >–且A ≠0[答案]B[解析]由题意得: .故选C .8. 一元二次方程(m-2)x2-4mx+2m-6=0 有两个相等的实数根,则m等于()A . -6B . 1C . 2D . -6或1[答案]C[解析]试题分析:根据一元二次方程A x2+B x+C =0(A ≠0)的根的判别式和定义得到m﹣2≠0且△=0,即16m2﹣4×(m﹣2)×(2m﹣6)=0,m2+5m﹣6=0,解得m1=﹣6,m2=1,即可得到m的值.∵一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,∴m﹣2≠0且△=0,即16m2﹣4×(m﹣2)×(2m﹣6)=0,m2+5m﹣6=0,解得m1=﹣6,m2=1.∴m的值为﹣6或1.考点:根的判别式.9. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+x)+50(1+x)2=182D . 50+50(1+x)=182[答案]B[解析]一个季度包括3个月,四月份产量+五月份产量+六月份产量=第二季度共生产零件182万个.易得:50+50(1+x)+50(1+x)2=182.故选B .10. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m[答案]A视频二、填空题(共18分)11. 将方程化为一般形式:2x2-3x=3x-5是____________________[答案]2x2-6x+5=0[解析]原方程移项,得2x2-6x+5=0.故答案为2x2-6x+5=0.点睛:一元二次方程的一般形式为:A x2+B x+C =0(A ≠0).12. 方程x(x-2)=0的解是___________________[答案]x1=0,x2=2[解析]利用因式分解法解一元二次方程,易得:x=0或x-2=0,即x1=0,x2=2.故答案:x1=0,x2=2.13. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.[答案]-3[解析]试题分析:根据一元二次方程的根,可知把x=1代入原方程可得1+2+m=0,解得m=-3.考点:一元二次方程的解14. 方程x2-2x-1=0的判别式△=____________.[答案]8[解析]由题意得:A =1,B =-2,C =-1,故 .故答案:8.15. 方程x2-4x+4=0的根的情况是__________________[答案]有两个不相等实数根[解析]Δ=B 2-4A C =(-4)2-4×1×4=0,所以方程有两个相等的实数根.点睛:一元二次方程解的情况:(1)B 2-4A C >0,方程有两个不相等的实数根;(2)B 2-4A C =0,方程有两个相等的实数根;(3)B 2-4A C <0,方程没有实数根.16. 关于x的一元二次方程x2+mx-3=0的一个根是1,则另一根为________.[答案]-3[解析]设方程两根分别为x1,x2,其中x1=1,由韦达定理可得x1·x2=-3,∴x2=-3.故答案为-3.三、解答题(共52分)17. 解方程:(1)(x-5)2=16 (直接开平方法)(2)x2+5x=0 (因式分解法)(3)x2-4x+1=0 (配方法)(4)x2+3x-4=0 (公式法)[答案](1) x1=9, x2=1;(2)x1=0, x2=-5;(3)x1=2+, x2=2;(4)x1=-4 , x2=1[解析][试题分析](1)用直接开平方法求解;(2)用因式分解法求解;(3)用配方法求解;(4)用公式法求解.[试题解析](1)(x-5)2=16(2)x2+5x=0(3)x2-4x+1=0(4)x2+3x-4=0A =1,B =3,C =-4,则所以方程的根为:,即:x1=-4 , x2=1.[方法点睛]本题目是一道考查求一元二次方程的根的问题,四道题利用四种不同的方法求解,在于全面考查一元二次方程的解法,难度不大.18. 在实数范围内定义一种新运算“△”,其规则为:A △B =A 2﹣B 2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.[答案](1)7;(2)x1=3, x2=-7[解析]试题分析:(1)将A =4,B =3代入公式计算出结果即可;(2)根据运算规则计算出方程左边的结果,再解方程即可.试题解析:(1)4△3=42-32 =16-9=7.(2)(x+2)△5=0,(x+2)2-52=0,(x+2)2=52,x+2=±5,x1=3,x2=-7 .点睛:遇到新运算规则,理解题目的意思,套用公式即可.19. 已知关于x的方程x2-(2m+1)x+m(m+1)=0.求证:方程总有两个不相等的实数根.[答案]见解析[解析]试题分析:要证明方程总有两个不相等的实数根,即要证明Δ>0恒成立,将Δ用含m的式子表示出来,然后配方即可证明.试题解析:△=(2m+1)2-4 m(m+1) =4m2+4m+1-4m2-4m =1>0,所以方程有两个不相等实数根.点睛:(1)一元二次方程解的情况:①B 2-4A C >0,方程有两个不相等的实数根;②B 2-4A C =0,方程有两个相等的实数根;③B 2-4A C <0,方程没有实数根.(2要证明多项式恒大于0或者恒小于0可用配方法证明.20. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?[答案](1)每年市政府投资的增长率为50% ;(2)2017年预计建设了18万平方米的廉租房.[解析]试题分析:(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.解:(1)设每年市政府投资的增长率为x,依题意得:3(1+x)2=6.75解得x1=0.5=50% x2=-2.5(舍去)答:每年市政府投资的增长率为50%(2)12(1+50%)2=27答:2017年预计建设了27万平方米的廉租房.点睛:本题考查了一元一次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为A (1+x)n =B ,其中n为共增长了几年,A 为第一年的原始数据,B 是增长后的数据,x是增长率.21. 已知:如图,A 、B 、C 、D 为矩形的四个顶点,A B =16C m,A D =6C m,动点P、Q 分别从A 、C 同时出发,点P 以3C m/s的速度向点B 移动,一直到达点 B 为止,点 Q 以2C m/s的速度向点 D 移动.(1)P、Q 两点从出发点出发几秒时,四边形PB C Q 的面积是33C m2?(2)P、Q 两点从出发点出发几秒时,点P、Q 间的距离是10C m?[答案](1)P、Q 两点出发5秒时,四边形PB C Q 的面积为33C m2;(2) P、Q 两点从出发点出发秒或秒时,点P 与点Q 的距离是10C m.[解析]解:(1)设P、Q两点从出发开始到x秒时四边形PB C Q的面积为33C m2,则PB =(16﹣3x)C m,QC =2xC m,根据梯形的面积公式得(16﹣3x+2x)×6=33,解之得x=5,(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10C m,作QE⊥A B ,垂足为E,则QE=A D =6,PQ=10,∵PA =3t,C Q=B E=2t,∴PE=A B ﹣A P﹣B E=|16﹣5t|,由勾股定理,得(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:(1)P、Q两点从出发开始到5秒时四边形PB C Q的面积为33C m2;(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10C m.[点睛](1)根据梯形的面积公式可列方程:求解;(2)作QE⊥A B ,垂足为E,在Rt PEQ中,用勾股定理列方程求解.视频。

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。

《一元二次方程》单元测试题及答案

《一元二次方程》单元测试题及答案

《一元二次方程》单元测试题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A 。

(a-3)x 2=8 (a ≠3)B 。

ax 2+bx+c=0 C.(x+3)(x —2)232057x +-= 2下列方程中,常数项为零的是( )A 。

x 2+x=1 B.2x 2—x-12=12;C 。

2(x 2—1)=3(x-1) D 。

2(x 2+1)=x+23。

一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A 。

23162x ⎛⎫-= ⎪⎝⎭;B 。

2312416x ⎛⎫-= ⎪⎝⎭;C 。

231416x ⎛⎫-= ⎪⎝⎭; D 。

以上都不对 4。

关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为()A 1 B 1- C 1或1-D1/25.已知三角形两边长分别为2和9,第三边的长为二次方程x 2—14x+48=0的一根, 则这个三角形的周长为( ) A 。

11 B.17 C.17或19 D 。

196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、、3 C 、6 D 、97。

使分式2561x x x --+ 的值等于零的x 是( ) A 。

6 B 。

—1或6 C 。

—1 D.-6 8.若关于y 的一元二次方程ky 2—4y-3=3y+4有实根,则k 的取值范围是( )A.k>-7/4B.k ≥-7/4 且k ≠0 C 。

k ≥-7/4 D.k>7/4 且k ≠09.已知方程22=+x x ,则下列说中,正确的是( )A 方程两根和是1B 方程两根积是2C 方程两根和是1-D 方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x ,则由题意列方程应为( )A 。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案1. 单项选择题(每题2分,共10题)1) 求方程x^2 + 3x - 4 = 0的根是:A. 2和-2B. 1和-4C. -1和4D. 0和-32) 方程2x^2 + 5x + 3 = 0的根是:A. -3和-1/2B. 1/2和3C. -1/2和-3D. -3和1/23) 若x^2 + ax + 6 = 0的根为-2和3,则a的值是:A. -5B. -1C. 1D. 54) 若x^2 + (k + 1)x + 1 = 0有相等的根,则k的值是:B. 0C. 1D. 25) 若x^2 - (2k + 1)x + 2 = 0的根之和与根之积的乘积为4,则k的值是:A. -1B. 0C. 1D. 26) 方程x^2 + (k + 3)x + 2k = 0的根是互为相反数,则k的值是:A. 2/7B. -2/7C. 3/8D. -3/87) 若方程x^2 - (a + 1)x + a^2 - 2a + 1 = 0的两个根之差为1,则a的值是:A. -1B. 0D. 28) 若方程x^2 - (2k + 1)x + k^2 + 1 = 0的两个根之和为k,则k的值是:A. -2B. -1C. 0D. 19) 若方程3x^2 - (a - 1)x - 2a = 0的两个根之差为2,则a的值是:A. -2B. -1C. 0D. 110) 若方程(k + 1)x^2 - (2k - 1)x + k - 4 = 0的两个根之积为4,则k 的值是:A. -3B. -2C. -1D. 1答案:1) B 2) A 3) B 4) C 5) A 6) B 7) C 8) A 9) C 10) B2. 解答题(每题10分,共2题)题目1:求解方程x^2 - 5x + 6 = 0的根。

解答:首先,我们可以尝试因式分解这个二次方程,看看是否可以将其化简为两个一次方程相乘的形式。

将x^2 - 5x + 6 = 0进行因式分解,得到(x - 2)(x - 3) = 0。

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)

第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m •的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ). A .a=b=c B .一根为1 C .一根为-1 D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ).A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3x2=6x;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2+x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.23.已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a-1)2-4a2>0,解得a<1 4.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21aa=0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止;点Q以2cm/s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少? 1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒, (1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;C AB Q D ← ↑ A D P QP B D A C3、如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D,(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且58BDBA,求这时点P的坐标;答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-,x2=,,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(3-6x=0,x2-,由求根公式得.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

一元二次方程章节测试及单元测试试卷五套

一元二次方程章节测试及单元测试试卷五套

22.1一元二次方程一、认认真真,书写快乐1.把方程2(21)(1)(1)x x x x +-=+-化成一般形式是 .2.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 . 3.已知1x ≠-是方程260x ax -+=的一个根,则a = .4.关于x 的方程2(1)230m x mx ++-=是一元二次方程,则m 的取值范围是 . 5.已知236x x ++的值为9,则代数式2392x x +-的值为 . 二、仔仔细细,记录自信6.下列关于x 的方程:①20ax bx c ++=;②2430x x+-=;③2540x x -+=;④23x x =中,一元二次方程的个数是( ) A .1个 B .2个 C .3个D .4个7.若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( ) A .2a >-B .2a <-C .2a >-且0a ≠D .12a >8.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1-C .1或1-D .129.已知2是关于x 的方程23202x a -=的一个解,则21a -的值是( ) A .3 B .4 C .5 D .6三、拓广探索,游刃有余10.如右图所示,相框长为10cm ,宽为6cm ,内有宽度相同的边缘木板,里面用来夹相片的面积为32cm 2,则相框的边缘宽为多少厘米?我们可以这样来解:(1)若设相框的边缘宽为cm x ,可得方程 (一般形式); (2)分析并确定x 的取值范围; (3(4参考答案:一、1.23320x x ++= 2.5- 3.7- 4.1m ≠-5.7二、6.A7.C8.B9.C三、10.(1)2870x x -+=;(2)03x <<;(3)7,0,5-,8-;(4)1cm .22.1 一元二次方程一、双基整合: 1.方程(x+3)(x+4)=5,化成一般形式是________.2.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________. 3.若关于的方程x 2-3x+k=0有一个根是1,则它的另一个根是________. 4.已知方程x 2-x-m=0有整数根,则整数m=________.(填上一个你认为正确的答案) 5.根据题意列出方程:有一面积为54m 2(设正方形的边长为m )的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,这个正方形的边长是多少?设正方形的边长为xm ,请列出你求解的方程__________.6.如果两个连续奇数的和是323,求这两个数,如果设其中一个奇数为x ,•你能列出求解x 的方程吗?______________.7.如图,在宽为20m ,长30m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500m 2,若设路宽为xm ,则可列方程为:_________. 8.下列各方程中一定是关于x 的一元二次方程的是( )A .3x 2=4x+mB .ax 2-8=0C .x+y 2=0D .5xy-x+6=09.如果关于x 的方程(m-3)27mx -x+3=0是关于x 的一元二次方程,那么m 的值为( )A .±3B .3C .-3D .都不对10.以-2为根的一元二次方程是( )A .x 2+2x-x=0B .x 2-x-2=0C .x 2+x+2=0D .x 2+x-2=0 11.若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( ) A .a>-2 B .a<-2 C .a>-2且a≠0 D .a>1212.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,•全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是( ) A .x (x+1)=182 B .x (x-1)=182 C .2x (x+1)=182 D .x (x-1)=182×213.已知关于x 的方程(2k+1)x 2-4kx+(k-1)=0,问:(1)k 为何值时,此方程是一元二次方程?求出这个一元一次方程的根;(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项.14.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.一个两位数,个位上的数字比十位上的数字小4,•且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.二、拓广探索:15.先从括号内①②③④备选项中选出合适的一项,填在横线上,•将题目补充完整后再解答.如果a 是关于x 的方程x 2+bx+a=0的根,且a≠0,求________的值. ①ab ②ba③a+b ④a-b 16.如果方程ax 2+bx+c=0(a≠0),a-b+c=0,那么方程必有一个解是________.17.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( ) A .x 2+130x-1400=0 B .x 2+65x-350=0C .x 2+130x-1400=0D .x 2-65x-350=0 18.若x 2a+b -3x a-b +1=0是关于x的一元二次方程,求a 、b 的值,下面是两位学生的解法:•甲:根据题意得2a+b=2,a-b=1解方程组得a=1,b=0.乙:由题意得2a+b=2,a-b=1•或2a+b=1,a-b=2解方程组得a=1,b=0或a=1,b=-1.你认为上述两位同学的解法是否正确?•为什么?如果都不正确,请给出正确的解答.三、智能升级19.为争创市规范化学校,某中学向全体师生征集空地绿化 方案,•如图是李刚同学对其中一块正方形空地的设计图,中央绿地面积为24平方米,如果设正方形空地的边长为x ,那么空地中央长方形绿地的长为______米,宽为______米,根据题意,•可得方程___________.20.若方程(m-1)x 2x=1是关于x 的一元二次方程,则m 的取值范围是( )A .m≠1B .m≥0C .m≥0且m≠1D .m 为任意实数21.某大学为改善校园环境,计划在一块长80m ,宽60m •的长方形场地的中央建一个长方形网球场,网球场占地面积为3500m 2.四周为宽度相等的人行走道,如图所示,若设人行走道的宽为xm .(1)你能列出相应的方程吗?(2)x 可能小于0吗?说说你的理由.(3)x 可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽xm 是多少吗?说说你的求解过程.答案:1.x2+7x+7=0 2.k≠3 3.2 4.2等5.(x+5)(x+2)=54 6.x(x+2)=323或x(x-2)=3237.(30-x)(20-x)=500 8.A 9.C 10.D 11.C 12.B13.(1)k=-12时,方程是一元二次方程,x=34;(2)k≠12,2k+1,-4k,k-1.14.设个位数字为x,则十位数字为x+4,由题意得x2+(x+4)2=10(x+4)x+x-415.③a+b=-1 16.-1 17.B18.解:均不正确,考虑不全,欲使x2a+b-3x(a-b)+1=0是关于x•的一元二次方程,•则2a+b=2,a-b=2;或2a+b=2,a-b=1;或2a+b=2,a-b=0;或2a+b=1,a-b=2;或2a+b=0,a-b=2,∴a=43,b=-23;或a=1,b=0;或a=23,b=23或a=1,b=-1;或a=23,b=-4319.x-2,x-4,(x-2)(x-4)=24 20.C21.(1)设人行道的宽为xm,则网球场的长和宽分别为(80-2x)m,(60-2x)m,•则可列方程:(80-2x)(60-2x)=3500,整理为:x2-70x+325=0;(2)x的值不可能小于0,因为人行道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际,当然x更不可能大于40.(4)由上面问题可知:x的大致范围应为0<x<30.求解过程如下:显然当x=5时,x-70x+325=0,∴人行道的宽度为5m.人教九上22.2降次——解一元二次方程一、选一选!1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=-2. (2006年杭州)已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -= (C) 2(2)9x p -+= (D) 2(2)5x p -+=3. (2006年广州)一元二次方程2230x x --=的两个根分别为( ). (A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或2 5. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-26. 已知x 满足方程2310x x -+=,则1x x +的值为( ). (A )3 (B )-3 (C )32(D )以上都不对7. 要使分式2544x x x -+-的值为0,x 等于( ).(A )1 (B )4或1 (C )4 (D )-4或-1 8. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ). (A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =- 二、填一填! 9. 222(_____)[(____)]3y y y -+=+.10. x =__________. 11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______. 三、做一做!17.用配方法解下列方程:(1)210257x x -+=;(2)261x x +=;(3)23830x x +-=;(4)2310x x -+=. 18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=. 19.用因式分解法解下列方程:(1)(41)(57)0x x -+=;(2)3(1)22x x x -=-; (3)2(23)4(23)x x +=+;(4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=y=4时,x 2-1=4,∴x 2=5,∴x=x 1x 2x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48 (1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选一选! 1.D ; 2.B ; 3.C ; 4.A ; 5.D ; 6.A ; 7.A ; 8.C ;二、填一填! 9.19,13-; 10. -5或3; 11.9或-2; 12.4,-3,-5;13. x 1x 214.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多. 15. -•4或1; 16.略;三、做一做!17.(1)15x =25x =(2)13x =-23x =- (3)113x =,23x =-;(4)1x =2x =18.(1)19x =,22x =-;(2)1x =2x =; (3)1213x x ==-;(4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.22.3 实际问题与一元二次方程一、双基整合:1.要用一条长为24cm的铁丝围成一个斜边是10cm的直角三角形,•则两条直角边的长分别为________.2.一个多边形有9条对角线,则这个多边形有________条边.3.一个矩形及与它等积的正方形的周长之和为54cm,矩形两邻边的差为9cm,•则这个矩形的面积为________.4.两个正方形,小正方形边长比正方形边长的一半多4cm,•大正方形的面积比小正方形的面积的2倍少32cm2,则大小正方形的边长分别是______.5.如图,一块矩形纸片ABCD,长BC=8cm,宽CD=6cm,将这块矩形纸片沿对角线BD 对折(折痕与折叠后得到的图形用虚线表示),得到△BDE,则EF=________.6.从正方形的铁片上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm2B.64cm2C.80cm2D.32cm27.用一块长80cm、宽60cm的长方形铁皮,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方体盒子,设小正方形的边长为x,则可列出方程()A.x2-70x+825=0 B.x2+70x-825=0 C.x2-70x-825=0 D.x2+70x+825=0 8.若一个等腰三角形两边长分别是x2-12x+32=0的两根,•则这个等腰三角形的周长为()A.20 B.16 C.16或20 D.不能确定9.如图,水池中离岸边D点1.5m的C处,直立着一根芦苇,出水部分BC的长是0.5m,把芦苇拉到岸边,它的顶端B恰好在D点,求水池的深度AC.10.一块长方形铁片长32cm,宽24cm,四角都截去相同的小正方形,折起来做成一个无盖铁盒,使底面积是原来面积的一半,求盒子的高.二、拓广探索:11.如图,有一块直角△纸片,两直角边AC=6cm,BC=8cm,现将直角边AC•沿直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD=()A.2cm B.3cm C.4cm D.5cm12.线段AB=6cm,点C是AB的黄金分割点(如图),即较长线段AC是较短线段BC和原线段AB的比例中项,那么线段AC的长为()A B C.()cm D.()cm13.如图所示,东西和南北街道交于点O,甲沿东西道由西向东,速度是每秒4m,乙沿南北道由南向北走,速度是每秒3m,当乙通过O点后又继续前进50m时,•甲刚好通过O 点,当甲、乙相距85m时,求每个人位置.14.用一根8米长的木料做成一个长方形的窗框,若设这个长方形的长为x米.(1)这个长方形的面积S=________.(2)根据上式完成下表:(3)你发现了什么?(4)为什么现实生活中,窗户一般都做成一个长与宽接近相等的长方形,•而不做成一个正方形,谈谈你的看法.三、智能升级:15.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米(如右图),如果梯子的顶端下滑1米,那么(1)猜一猜,底端也将滑动1米吗?(2)•列出底端滑动距离所满足的方程,并说明(1)中结论.16.有一块缺角矩形地皮ABCDE (如下图),其中AB=110m ,BC=80m ,CD=90m ,•∠EDC=135°,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,•才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式.(3(4 (5)用配方法对(2)中的S 与x 之间的关系式进行分析,并检验你的猜测是否正确. (6)你认为A 、B 、C 、D 中哪一种方案合理?答案:1.6cm ,8cm 2.6 3.36cm 2 4.16m 和12cm 5.74cm 6.B 7.A 8.A 9.AC=2 10.4cm 11.B 12.C 13.设甲通过O 点以后t 秒时,甲、乙位置分别是AB (图略), 则OA`=4t ,OB`=50+3t ,根据题意得(4t )2+(50+3t )2=852, 即t 2+12t-189=0,t 1=9,t 2=-21,当t=9时,OA`=36,OB`=77; 当t=-21时,OA`=-84,OB`=-13,答:甲、乙分别都在通过O 点后又前进了36m ,77m 或者尚未通过O 点,分别在距O 点84m ,13m 的位置. 14.(1)S=x×822x=-x 2+4x , (2)S 的值分别为1.75、3、3.75、3.99、4、3.99、3.75、3、1.75, (3)当长与宽相等时,S 的值最大,即当窗户为正方形时,面积最大,(4)•窗户做成正方形时,面积最大,透光性最大,但同时窗户内部的其他用料也相对增多,如钢筋、水泥等,所以,制成一个长与宽接近相等的长方形,即有利于透光,又可相对地节省材料,当然,也涉及到美学等方面的知识. 15.(1)底端滑动的距离大于1米.(2)设底端将滑动x 米,依题意,得72+(x+6)2=102,•解得x 1,x 2(舍去),-6=7-6=1,∴底端滑动的距离大于1米. 16.(1)方案A 的面积为80×90=7200m 2,方案B 的面积为110×(80-20)=6600m 2;(2)•由于MF=80-x ,∠EDC=135°,所以DF=80-x ,NB=CD+DF=90+(80-x )=170-x ,S=(170-x )×x ,即S=-x 2+170x ; (3)S 的值从左到右依次为6000、6600、7000、7125、7176、7189、7200、7209、7216;(4)猜想:当x≤80时,S 随x 的增大而增大; (5)S=-x 2+170x=-(x-85)2+852,所以当x≤85时,S 随x 的增大而增大,由于x≤80,所以,当x=80•时,•S •最大值为7200m 2;(6)选A 种方案.第二十二章一元二次方程水平测试题一.填空题:(每小题2分,共22分)1.方程20x x -=的一次项系数是____________,常数项是____________; 2.若代数式219991998m m -+的值为0,则m 的值为____________; 3.在实数范围内分解因式:221x x --=__________________________;4.已知13x =-是方程2230x kx +-=的一个根,2x 是它的另一个根,则k =_____,2x =____5.方程220x -+=的判别式∆=____________,所以方程_________________实数根;6.已知分式2212x x x -+-的值为0,则x 的值为____________;7.以2,-3为根的一元二次方程是__________________________; 8.当方程()()211120m m xm x +--+-=是一元二次方程时,m 的值为________________;9.若12,x x 是方程25x x -=的两根,则2212x x +=________________;10.已知210x x +-=,则2339x x +-=____________; 11.已知2x y +=,1xy =,则x y -=____________; 二.选择题(每小题3分,共30分)1.方程()2211x +=化为一般式为( ) A .22421x x ++=B .241x x +=-C .22410x x ++=D .22210x x ++=2.用配方法解下列方程,其中应在两端同时加上4的是( )A .225x x -= B .2245x x -= C .245x x += D .225x x += 3.方程()1x x x -=的根是( )A .2x =B .2x =-C .122,0x x ==D .122,0x x =-=4.下列方程中以1,2-为根的一元二次方程是( )A .()()120x x +-=B .()()121x x -+=C .()221x +=D .21924x ⎛⎫+=⎪⎝⎭ 5.下列方程中,无论b取什么实数,总有两个不相等实数根的是( )A .210x bx ++=B .221x bx b +=+C .20x bx b ++=D .22x bx b += 6.将222x x --分解因式为( )A .1144x x ⎛--- ⎝⎭⎝⎭ B .11244x x ⎛+- ⎝⎭⎝⎭C .11244x x ⎛-++ ⎝⎭⎝⎭D .11244x x ⎛-+- ⎝⎭⎝⎭7.县化肥厂今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为( )A .()21a x + B .()21100a x + C . ()21100x + D .()2100a a x + 8.已知2120m m+=,则1m -=( ) A .0或12- B .0或-2 C .-2 D .12-9.一项工程,甲队独做要x天,乙队独做要y天,若甲乙两队合作,所需天数为( )A .xy x y +B .2x y+ C .x y xy+ D .x y +10.已知方程2220383x x x x+-=+,若设23x x y +=,则原方程可化为( )A .2208y y -= B .2208y -= C .208y y -= D .2208y y -= 三.解方程(组)(每小题5分,共20分)1.()()22211x x +=- 2.2232211x y x y x y +=⎧⎨+++=⎩3.22431242x x x x -=+--- 4.22124321x x x x +++=++四.解答下列各题(每小题7分,共28分)1.已知12,x x 是关于x 的一元二次方程()2160x m x m ++++=的两实数根,且22125x x +=,求m 的值是多少?2.求证:无论k 为何值,方程()23210x k x k -++-=总有两个不相等的实数根。

数学九年级上册《一元二次方程》单元检测(附答案)

数学九年级上册《一元二次方程》单元检测(附答案)

人教版数学九年级上学期《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、62.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±254.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2 5.(2017全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( )A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=06.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=08.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( ) A.()113802x x -= B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 9.(2019·湖南初三期中)如图,在宽度为20 m ,长为32 m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m 2 , 求道路的宽.如果设小路宽为x m ,根据题意,所列方程正确的是( )A.(20+x )(32+x )=540B.(20﹣x )(32﹣x )=100C.(20﹣x )(32﹣x )=540D.(20-2x )(32﹣2x )=54010.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A.50(1+x )²=182B.50+50(1+x )+50(1+x )²=182C.50(1+2x )=182D.50+50(1+x )+50(1+2x )²=182二、填空题(每小题4分,共24分)11.(2018全国初三期末)把方程3x (x ﹣2)=4(x+1)化为一元二次方程的一般形式是_______; 12.(2019·江苏初三期中)已知(m −3)x 2 −3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是______. 13.(2019·湖北初三期中)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______. 15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.参考答案一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【解析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案. 【详解】解:方程()223x x =-化成一般形式是2260x x -+=, ∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项.2.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-【答案】B【解析】把x=-1代入已知方程可以求得a-b+c=0.【详解】依题意,得x=-1满足关于x 的一元二次方程ax 2+bx+c=0,则a-b+c=0.故选B .【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±25【答案】C【解析】利用直接开平方法解方程即可.【详解】移项得:x 2=25,∴x 1=﹣5,x 2=5.故选C .【点睛】本题考查了解一元二次方程﹣直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2【答案】C【解析】根据一元二次方程的定义即可得.【详解】解:∵方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,∴|m |=2,且m ﹣2≠0.解得:m =﹣2.故选:C .【点睛】本题主要考查一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.5.(2017·全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( ) A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=0【答案】C【解析】A :直接开平方应得到两个方程:3(x+1)=2(x-1)和3(x+1)=-2(x-1),所以A 不正确; B :化成一般形式应是:5x 2+26x+5=0;所以B 不正确;C :方程左边满足平方差形式,可以用平方差公式因式分解为:[3(x+1)+2(x-1)][3(x+1)-2(x-1)]=0,所以C 正确.D :两个完全平方的差为0,不能直接得到两个式子分别是0,只有两个完全平方的和是0,才能直接得到两个式子分别是0,所以D 不对.故选:C .点睛:本题考查的是用因式分解法解一元二次方程,根据题目的结构特点,用平方差公式因式分解.6.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 【答案】D【解析】∵关于x 的一元二次方程21(2)02m x x -++=有两个不等的实数根, ∴220{12(2)0m m -≠∆=--> 解得:52m <且2m ≠ 故选C.7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=0【答案】B【解析】分析: α 、β为一元二次方程的两根,且α、β满足α+ β=5、αβ=6.所以这个方程的系数应满足两根之和是b a - =5,两根之积是c a=6 ,当二次项系数为”1”时,可直接确定一次项系数、常数项. 本题解析:∵所求一元二次方程的两根是α、β,且α、β满足α+ β=5、αβ=6. ∴这个方程的系数应满足两根之和是b a -=5,两根之积是c a =6. 当二次项系数a=1时,一次项系数b=−5,常数项c=6.故选B8.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A.()113802x x -=B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 【答案】B【解析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x(x-1)=380,故选:B.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程.9.(2019·湖南初三期中)如图,在宽度为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是()A.(20+x)(32+x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20-2x)(32﹣2x)=540【答案】C【解析】把白色部分经过平移合并成长为32-x,宽为20-x的小长方形,再根据小长方形的面积等于草坪的面积建立等式.【详解】白色部分经过平移合并成长为32-x,宽为20-x的小长方形则小长方形的面积为(20﹣x)(32﹣x)由小长方形的面积等于草坪的面积可得:(20﹣x)(32﹣x)=540故答案为:C.【点睛】本题考查了一元二次方程的应用,解题关键在于把白色部分的图形平行合并成一个小长方形. 10.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)²=182【答案】B【解析】设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产182万个,可列出方程.【详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=182.故选:B.【点睛】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.二、填空题(每小题4分,共24分)11.(2018·全国初三期末)把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;【答案】3x2-10x-4=0.【解析】先把一元二次方程3x(x﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.12.(2019·江苏初三期中)已知(m−3)x2−3x + 1 = 0是关于x的一元二次方程,则m的取值范围是______.【答案】m≠3【解析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0,由这两个条件得到相应的关系式,再求解即可.【详解】由题意,得m-3≠0.解得m≠3,故答案为:m≠3.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.13.(2019·湖北初三期中)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.【答案】k<1.【解析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=2241k 0-⨯⨯>,解得:k 1<,故答案为:k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知”在一元二次方程()2ax bx c 0a 0++=≠中,若方程有两个不相等的实数根,则△=2b 4ac 0->“是解答本题的关键.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______.【答案】2【解析】试题解析:∵a 、b 为方程x 2+4x+2=0的两实根,∴a+b=-4,a•b=2,a 2+4a+2=0,∴a 2=-4a-2,∴a 3+14b+50=a (-4a-2)+14b+50=-4a 2-2a+14b+50=-4(a 2+4a+2)+14a+14b+50+8=14(a+b )+58=14×(-4)+58=2.15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________.【答案】2-【解析】直接利用根与系数的关系求出另外一根即可,【详解】解:设方程的另一根为2x ,根据根与系数的关系得:212x ⋅=-,∴22x =-,故答案为2-.【点睛】本题考查了一元二次方程的根与系数的关系,掌握一元二次方程中根与系数的关系是解题的关键. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.【答案】121,2x x ==-【解析】根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程. 【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)【答案】x 1,x 2=1 【解析】试题分析:先移项,再将二次项系数化为1,然后配方解出x 即可.试题解析:3x 2-6x +1=0,移项,得3x 2-6x =-1,二次项系数化为1,得x 2-2x =-13, 配方,得x 2-2x +12=-13+12,即(x -1)2=23, 解得,x -1=±3,即x 1,x 2=1. 点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.【答案】(1)证明见解析;(2)方程的另一个根为0或4.【解析】(1)根据根的判别式求出△的值,再进行判断即可;(2)先把x=-2代入方程,然后解关于m 的一元二次方程,即可求出m 的值.【详解】(1)证明:()()222141284m m m m ∆=---⨯⨯-+=+⎡⎤⎡⎤⎣⎦⎣⎦. 20m ≥2840m ∴+>,即>0∆,∴方程总有两个不相等的实数根.(2)当2x =-时,原方程为()()44120m m m +--+=,即2 20m m -=,解得:10m =,22m =.设方程的另一根为1x ,当0m =时,有120x -=,解得:10x =;当2m =时,有128x -=,解得:14x =(将m 代入方程,解方程得到亦可)综上所述:当=-2x 是此方程的一个根时,方程的另一个根为0或4.【点睛】此题考查一元二次方程的根的判别式,解题关键在于利用方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.【答案】(1)13k ≤且k 1≠-;(2)4-. 【解析】(1)方程有两个实数根,则0k+10≥≠△,,解出即可;(2)根据根与系数的关系,求出1212x x x x +,的值,解出即可.【详解】解:(1)方程有两个实数根,则0k+10≥≠△,,即[]2=2(1)4(1)0k+10k k k ---+≥≠△,,解得:13k ≤且k 1≠-; (2)()()12211k b x x a k -+=-=+,121c k x x a k ==+,则()()21211k k k k -=+++,解得:4k =-,143-<, 则k 的值为4-.【点睛】本题是对一元二次方程的综合考查,熟练掌握一元二次方程的根的判别式及根与系数的关系是解决本题的关键.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 【答案】1【解析】根据分式的运算法则先化简分式.再解一元二次方程求出m ,代入化简后的式子,注意代入时原分式要有意义,m 不等于-1和-2. 【详解】原式213112m m m m --+=⋅++ (2)(2)112m m m m m +-+=⋅++ 2m =-解方程260m m --=得:3m =或2m =-20m +≠2m ∴≠-当3m =时,原式321=-=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,注意代入分式中字母的值必须使分式必须有意义.21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)【答案】(1)x 1=-4,x 2=2;(2)x 1x 2. 【解析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用求根公式解方程.【详解】(1)x 2+2x-8=0,(x+4)(x-2)=0,所以x 1=-4,x 2=2;(2)△=12-4×1×(-3)=13,,所以x 1x 2. 【点睛】此题考查解一元二次方程-因式分解法,解题关键在于掌握运算法则.22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】(1)1008;(2)20【解析】(1)降价4元时,根据题意分别求出单件利润和销量,再根据销售利润问题的等量关系:单件利润×销量=总利润,可求出总利润;(2)设降价x 元,然后根据题意找出单件利润和销量的表达式,再根据销售利润问题的等量关系:单件利润×销量=总利润,列出方程求解,最后根据题意舍去不符合题意的解.【详解】(1)降价4元时,每件盈利为40-4=36元,销量为10204=285+⨯件, ∴总盈利36×28=1008元.(2)设降价x 元,由题意得()104020=12005x x ⎛⎫-+⋅ ⎪⎝⎭化简得2302000x x -+=,解得1=10x ,2=20x ,要尽量减少库存,则取=20x ,所以平均每天要盈利1200元,每件衬衫应降价20元.【点睛】本题考查一元二次方程的应用:销售利润问题,根据等量关系建立方程是解题的关键.五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.【答案】(1)1;(2)2;(3)不能.【解析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm 则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解; (2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】设t 秒后,则:AP =tcm ,BP =(5﹣t )cm ;BQ =2tcm .(1)S △PBQ =BP ×BQ ,即1(5)242x x -⨯=,解得:t =1或4.(t =4秒不合题意,舍去) 故:1秒后,△PBQ 的面积等于4cm 2.(2)PQ =5,则PQ 2=25=BP 2+BQ 2,即25=(5﹣t )2+(2t )2,t =0(舍)或2.故2秒后,PQ 的长度为5cm .(3)令S △PQB =7,即:BP ×2BQ =7,1(5)272x x -=,整理得:t 2﹣5t +7=0. 由于b 2﹣4ac =25﹣28=﹣3<0,则方程没有实数根.所以,在(1)中,△PQB 的面积不等于7cm 2.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【答案】(1)-3,小,4;(2)1,大,5;(3)当边长为4米时,花园面积最大为32m2.【解析】(1)由完全平方式的最小值为0,得到x=-3时,代数式的最小值为4;(2)将代数式前两项提取-2,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16-2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【详解】(1)∵(x+3)2≥0,∴当x=-3时,(x+3)2的最小值为0,则当x=-3时,代数式3(x+3)2+4的最小值为4;(2)代数式-2x2+4x+3=-2(x-1)2+5,则当x=1时,代数式-2x2+4x+3的最大值为5;(3)设垂直于墙的一边为xm,则平行于墙的一边为(16-2x)m,∴花园的面积为x(16-2x)=-2x2+16x=-2(x2-8x+16)+32=-2(x-4)2+32,则当边长为4米时,花园面积最大为32m2.【点睛】此题考查配方法的应用,解题关键在于要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.【答案】(1)1;(2)3;(3)3;(4)y≤15.【解析】(1)由(x-1)2≥0可得x=1时,取得最小值0;(2)由m2≥0知m2+3≥3可得答案;(3)将方程变形为(m-4)2+(n+1)2=0,由非负数性质求得m、n的值即可得;(4)由y=-4t2+12t+6=-4(t-32)2+15知-4(t-32)2+15≤15,从而得出答案.【详解】(1)代数式(x-1)2有最小值时,x=1,故答案为:1;(2)代数式m2+3的最小值是在m=0时,最小值为3,故答案为:3.(3)∵m2+n2-8m+2n+17=0,∴(m-4)2+(n+1)2=0,则m=4、n=-1,∴m+n=3;(4)y=-4t2+12t+6=-4(t2-3t)+6=-4(t2-3t+94-94)+6=-4(t-32)2+15,∵(t-32)2≥0,∴-4(t-32)2≤0,则-4(t-32)2+15≤15,即y≤15.【点睛】此题考查配方法的应用,完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的性质进行解答.。

九年级上册数学《一元二次方程》单元检测(含答案)

九年级上册数学《一元二次方程》单元检测(含答案)
A.300(1+x)=363B.300(1+x)2=363
C.300(1+2x)=363D.300(1﹣x)2=363
【答案】B
【解析】
【分析】
本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意即可列出方程.
【详解】设绿化面积平均每年的增长率为x,根据题意得:
3.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()
A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,2
【答案】D
【解析】
试题分析:由根与系数的关系式得: , =﹣2,解得: =﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.
考点:根与系数 关系.
4.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为()
17.三角形的每条边的长都是方程 的根,则三角形的周长是.
18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是__________三角形
三、解答题(共66分)
19.用适当的方法解下列方程:
(1)(x+1)(x-2)=x+1; (2) x2-4x=4 .
26.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.
(1)求小亮设计方案ຫໍສະໝຸດ 甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)
参考答案
一、选择题(每小题3分,共30分)
1.一元二次方程x2-8x-1=0配方后为()

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x - 5 = 0C. 3y^2 + y = 7D. x^3 - 4x^2 + x - 6 = 02. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ 的值是多少?A. 1B. 25C. 49D. 03. 方程 x^2 + 4x + 4 = 0 有几个实数解?A. 0B. 1C. 2D. 34. 如果一元二次方程 ax^2 + bx + c = 0 的一个解是 x = 2,那么2a + b 的值是多少?A. aB. -cC. a - bD. c5. 用配方法解方程 x^2 - 6x + 5 = 0 的解是什么?A. x = 1, 5B. x = 2, 3C. x = 3, 4D. x = 4, 56. 方程 2x^2 - 8x + 5 = 0 的解的和是多少?A. 0B. 4C. 8D. 167. 方程 x^2 + 2x + 1 = 0 的解是:A. x = -1B. x = 1C. x = -1, 1D. 无实数解8. 一元二次方程的一般形式是:A. ax + b = 0B. ax^2 + bx + c = 0C. a(x - b)^2 = cD. ax^2 + bx = c9. 如果一元二次方程的系数 a = 1,b = -6,c = 5,那么方程的根的情况是:A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 一个实数根10. 解方程 3x^2 - 12x + 10 = 0 的判别式Δ 的值是:A. 36B. 0C. -4D. 4二、填空题(每题4分,共20分)11. 方程 2x^2 - 3x + 1 = 0 的判别式Δ = ____。

12. 方程 x^2 - 4x + __ = 0 是完全平方。

13. 如果一元二次方程的解为x = 3 ± 2√2,那么 a = ____,b = ____。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案1. 单项选择题(每题2分,共10题)( ) 1. 解方程x^2 + 5x + 6 = 0的根是:a) -3和-2b) 2和3c) -1和-6d) -6和-1( ) 2. 解方程2x^2 - 7x + 3 = 0的根之和为:a) 7/2b) -7/2c) 3/2d) -3/2( ) 3. 若一个一元二次方程有两个相同的实数根,则该方程的判别式为:a) 大于零b) 小于零c) 等于零d) 不确定( ) 4. 若一个一元二次方程的系数满足a+b+c=0,则该方程的一个根是:a) ab) bc) cd) 1( ) 5. 解方程3x^2 - 5x + 2 = 0的根之积为:a) -2/3b) 2/3c) 2/5d) -2/5( ) 6. 若一个一元二次方程的判别式大于零,则该方程的根为:a) 两个不相等的实数根b) 两个相同的实数根c) 两个不相等的复数根d) 两个相同的复数根( ) 7. 若一个一元二次方程的判别式等于零,则该方程的根为:a) 两个不相等的实数根b) 两个相同的实数根c) 两个不相等的复数根d) 两个相同的复数根( ) 8. 若一个一元二次方程的判别式小于零,则该方程的根为:a) 两个不相等的实数根b) 两个相同的实数根c) 两个不相等的复数根d) 两个相同的复数根( ) 9. 方程x^2 - px + 9 = 0的两个根之比为1:3,则p的值为:a) -18b) 18c) 6d) -6( ) 10. 方程x^2 - 2x - 8 = 0的一个根是2,则另一个根为:a) 4b) -2c) -4d) -16答案:1. a 2. c 3. c 4. d 5. b 6. a 7. b 8. c 9. d 10. c 2. 问题解答题问题一:求解方程2x^2 - 5x - 3 = 0的根。

解答:我们可以使用因式分解或配方法求解该方程。

方法一:因式分解2x^2 - 5x - 3 = 0(2x + 1)(x - 3) = 0根据零乘法,得到:2x + 1 = 0 或 x - 3 = 0x = -1/2 或 x = 3方程的根为x = -1/2或x = 3。

初三数学《一元二次方程》单元测试题

初三数学《一元二次方程》单元测试题

初三数学《一元二次方程》单元测试题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2《一元二次方程》单元测试题(时间:100分钟 满分:120分)班级:_______________姓名:___________ 成绩:____________一、选择题:(本题包括12小题,每小题3分,共36分,每小题只有一个正确答案) 1、当m ( )时,关于x 的方程2(1)210m x mx ---=是一元二次方程. A .m >1 B .m <1 C .1m ≠- D .1m ≠ 2、方程2100x ax --=的一个根是2-,那么a =( ) A .-5 B .5 C .-3 D .3 3、方程22()x a b -=的根是( )A .b a ±B .a b ±C .a b -±D .a b + 4、下列没有实数根的方程是( )A .23420x x -+=B .25310x x +-=C .22(21)4x += D230x -= 5、关于x 的方程222(1)2(4)0m x mx m +-++=一定( )A .有两个正实根B .有两个负实根C .有一正一负两根D .没有实根 6、二次方程2202kx x -+=没有实根,那么k 的最小正整数值是( ) A .1 B .2 C .3 D .4 7、如果1x ,2x 是22410x x -+=的两根,那么2112x x x x +=( )3A .32B .3C .4D .6 8、方程210x kx --=的一根是2k 的值是( )A.2,4x k ==- B.2,4x k == C.2,4x k ==- D.2,4x k == 9、方程220x px q ++=两根是-4和2,则,p q 的值是( )A .4,16p q =-=-B .4,16p q ==-C .2,8p q ==-D .2,8p q =-=-10、若,,a b c 是一个三角形的三边,且关于x 的方程22(1)2(1)0b x ax c x --++=有两个相等实根,则这个三角形是( )A .正三角形B .锐角三角形C .直角三角形D .钝角三角形 11、若,a b 是方程2220060x x +-=的两根,则23a a b ++=( ) A .2006 B .2005 C .2004 D .2002 12、对于二次方程220x bx +-=,下面观点正确的是( )A .方程有无实根,要根据b 的取值而定;B .无论b 取何值,方程都有一正根、一负根C .当b >0时,两根为正,当b <0时,两根为负;D .因为2-<0,所以两根肯定为负选择题答题栏:4二、填空题:(每小题4分,共24分)1、如果二次方程20x mx n ++=的两根是0和-2,那么m = ,n = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程》单元练习卷
班级 姓名 座号 一、选择题:(每小题3分,共30分)
1、下列方程是关于x 的一元二次方程的是( )
A.02=++c bx ax
B.21
12=+x x
C.1222-=+x x x
D.)1(2)1(32+=+x x
2、若关于x 的方程2(1)210m x mx ---=是一元二次方程,则m 的取值范围为( )
A .1m >
B .1m <
C .1m ≠-
D .1m ≠ 3、方程0142=++x x 配方后正确的是( )
A .()2
10x += B .()022=+x C .()322=+x D .()312
=+x
4、方程(1)(3)0x x +-=的解是( )
A .3,121-==x x
B .2,421-==x x
C .3,121=-=x x
D .2,421=-=x x
5、二次方程2202
k
x x -+=没有实根,那么k 的最小正整数值是( )
A .1
B .2
C .3
D .4 6、关于x 的方程的两根分别为11x =,22x =则这个方程可以为( )
A .2320x x ++=
B .2230x x -+=
C . 2320x x -+=
D .2320x x +-= 7、某厂今年一月份的总产量为500吨,三月份的总产量达到720吨,若平均每月增产率是x ,则可以列方程( )
A.720)21(500=+x
B.720)1(5002=+x
C.720)1(5002=+x
D.500)1(7202=+x
8、关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0 . 则a 的值为 ( )
A 、 1
B 、-l
C 、 1 或-1
D 、
12
9、关于x 的一元二次方程22
(21)10k x k x -++=有两个不相等的实数根,k 的取值范围是( )
A 、k >14-
B 、k >14-且0k ≠
C 、k <14-
D 、1
4
k ≥-且0k ≠
10、如图,在宽为30m ,长为40m 耕地. 根据图中数据,计算耕地的面积为( )
A .551 m 2
B .850 m 2
C .875 m 2
D .950 m 2
二、填空题:(每小题3分,共18分)
11、方程x x 3122
=
-的二次项系数是 ,一次项系数是 . 12、已知方程022=-+kx x 的一个根是1,则另一个根是 ,
k 的值是 . 13、已知直角三角形ABC 的两条直角边长恰好是方程01272=+-x x 的两个根,则这个
直角三角形的斜边长是 .
14、代数式162-+x x 的最小值为 . 15、已知方程8322=-x x 的两个根为21x x ,那么
12
11
x x += . 16、在一次同学聚会时,大家一见面就相互握手。

有人统计了一下,大家一共握了45次手,设参加这次聚会的同学共有x 人,则可列的方程为 . 三、解答题:(共52分) 17、解方程:(每小题4分,共16分)
①04832=+-x x ② 0122=--x x (用配方法)
③()()2
23523x x +=+ ④ 9614422++=+-x x x x
18、(8分) 已知:关于x 的一元二次方程2(1)60x k x -+-=,
(1)求证:对于任意实数 k ,方程有两个不相等的实数根. (2)若方程的一个根是2,求k 的值及方程的另一个根.
19、(8分)如图,有一面积为2
150m的长方形鸡场,鸡场的一边靠墙(墙长m
18),另三边用竹篱笆围成,如果竹篱笆的长为m
35,求鸡场的长与宽各为多少米?
20、(10分)百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.
1)要想平均每天销售这种童装盈利1200元,那么每件童装因应降价多少元?
2)当每件童装降价多少元时,该服装柜每天销售这种童装获得的利润最大?最大利润为多少?21、(10分)如图,△ABC中,AB=5厘米,BC=7厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动. 1)如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于4平方厘米?2)如果P、Q分别从A、B同时出发,经过几秒,使PQ等于5厘米?
3) 在(1)中,△PBQ的面积能否等于7平方厘米?说明理由。

附加题
(本题10分)某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处的正南方向的B处,此时AB=90海里.如果军舰和侦察船仍按原来速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰 ?如果能,最早何时能侦察到?如果不能,请说明理由.
●B。

相关文档
最新文档