实验报告基于AT89C51的液晶显示频率计的设计
基于AT89C51单片机实现的数字频率计设计
目录第1章绪论 (2)1.1 摘要 (2)1.2 本设计任务和主要内容 (2)第2章元器件选型 (3)2.1 主控制器选择 (3)2.2 计时方案选择 (3)2.3 显示方案选择 (3)2.4 扩展接口选择 (4)第3章系统硬件电路设计 (4)3.1 系统原理框图 (4)3.2 时钟电路和复位电路 (5)3.3 基本电路设计 (6)3.4 数码管显示电路设计 (6)3.5 频率发生电路设计 (8)3.6 电源电路设计 (8)第4章程序流程图与源程序 (9)4.1 程序流程图 (9)4.2 主程序 (10)第5章系统功能分析与说明 (13)5.1 频率计的概述 (13)5.2 频率计的工作原理 (13)5.3 设计思想 (13)5.4 软硬件调试 (13)5.5 系统功能分析 (14)第6章课程设计总结 (14)参考文献 (14)附录 (15)第 1 章绪论1.1 摘要本文设计了一种以单片机AT89C51为核心的数字频率计。
介绍了单片机、数字译码和显示单元的组成和工作原理。
测量时,将被测输入信号送给单片机,通过程序控制计数,结果送8279驱动数码管显示频率值。
频率计具有电路结构简单、成本低、测量方便、精度较高等特点。
适合测量低频信号。
系统简单可靠、操作简易,能基本满足一般情况下的需求。
既保证了测频精度,又使系统具有较好的实时性。
本频率计设计简洁,便于携带,扩展能力强,适用范围广。
【关键字】:频率计、单片机、LED显示1.2 本设计任务和主要内容一、设计题目设计一个频率计,数字显示格式:X X X X。
二、设计内容与要求1、通过定时器计数方式采集频率信号。
2、通过8279在4位数码管上显示频率大小。
三、设计目的1.通过亲身的设计应用电路,将所用的理论知识应用到实践中,增强实践动手能力,进而促进理论知识的强化。
2.通过频率计的设计系统掌握51单片机的应用。
掌握采集频率与数码显示软件编程及硬件设计的方法,掌握根据课题的要求,提出选择设计方案,查找所需元器,设计并搭建硬件电路,编程写入EPROM并进行调试等。
基于at89c51单片机的频率计设计方法的研究
基于at89c51单片机的频率计设计方法的研究【基于at89c51单片机的频率计设计方法的研究】一、引言在现代科技日新月异的今天,单片机作为一种微型计算机,已经被广泛应用于各个领域。
其中,at89c51单片机以其稳定、可靠、易用的特点,成为了广大电子爱好者和专业技术人员的首选。
频率计作为一种常见的电子测量仪器,通过对信号的计数或者对波形的周期进行时间测量,能够准确测量信号的频率。
基于at89c51单片机的频率计设计方法成为了研究的焦点。
二、基本原理1. at89c51单片机简介at89c51单片机是一款典型的8位微控制器,具有4 KB 的内部Flash 可编程存储器。
它集成了许多功能模块,包括定时器、串行总线接口、模数转换器等,非常适合用于频率计的设计。
2. 频率计的基本原理频率计主要通过计数或者时间测量来确定信号的频率。
在基于at89c51单片机的设计中,一般采用定时器/计数器模块来实现频率的测量。
三、设计方法1. 信号输入在频率计的设计中,首先需要考虑的是信号的输入。
可以通过外部引脚的方式输入信号,也可以通过模拟输入口进行信号的输入。
2. 信号计数利用at89c51单片机的定时器/计数器模块,可以很方便地对输入的信号进行计数。
通过对计数值的读取和处理,可以得到信号的频率。
3. 显示输出设计一个合适的显示模块,将测得的频率值以数字或者图形的方式呈现给用户,从而实现频率的测量和显示。
四、关键技术1. 定时器/计数器模块的应用at89c51单片机的定时器/计数器模块是实现频率计的关键。
通过合理的配置和使用,可以实现对复杂信号的准确测量。
2. 中断技术的应用在频率计的设计中,中断技术可以帮助我们实时地对信号进行处理,提高系统的实时性和准确性。
3. 数字滤波技术对于输入的信号,往往存在噪声和干扰,因此需要借助数字滤波技术对信号进行处理,提高测量的精度和稳定性。
五、实际应用基于at89c51单片机的频率计设计方法已经在许多实际应用中得到了广泛的应用。
基于89C51的数字频率计
单片机系统课程设计任务书学生姓名XX 专业班级XX 学号XX 题目基于89C51的数字频率计课题性质工程设计课题来源自拟指导教师XXXXX主要内容(参数)利用89C51单片机设计一个数字频率计,实现功能如下:1、通过定时器计数方式产生频率信号。
2、有足够宽的测量范围,测试结果通过LED数码管显示。
3、能够测量正弦信号,方波信号以及其他各种单元时间内变化的物理量。
任务要求(进度)第1-2天:熟悉课程设计任务及要求,查阅技术资料,确定设计方案。
第3-4天:按照确定的方案设计单元电路。
要求画出单元电路图,元件及元件参数选择要有依据,各单元电路的设计要有详细论述。
第5-6天:软件设计,编写程序。
第7-8天:实验室调试。
第9-10天:撰写课程设计报告。
要求内容完整、图表清晰、文理流畅、格式规范、方案合理、设计正确,篇幅合理。
主要参考资料[1]张毅刚.单片机原理及应用(第2版)北京:高等教育出版社,2010[2]伟福LAB6000系列单片机仿真实验系统使用说明书[3] 阎石.数字电路技术基础(第五版).北京:高等教育出版社,2006审查意见系(教研室)主任签字:年月日目录1 引言 (3)2 系统概述 (3)2.1 频率测量原理 (3)2.2 方案比较 (3)2.3方案选择 (4)3 系统硬件设计 (4)3.1 系统硬件总述 (4)3.2 信号输入电路 (5)3.3 开关电路 (7)3.4 计数电路 (7)3.5 AT89C51介绍 (8)3.6 数字频率计显示电路 (9)3.7 时钟控制电路 (10)4.系统软件设计 (11)4.1 系统软件总述 (11)4.2 显示器初始化设计 (12)4.3 计数子程序 (13)4.4 数制转换子程序设计 (14)4.5 显示子程序设计 (15)5系统的功能调试 (16)6 结论 (18)参考文献 (18)附录A (19)附录B (19)1 引言单片机是20世纪中期发展起来的一种面向控制的大规模集成电路模块,具有功能强、体积小、可靠性高、价格低廉等特点,在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度。
实验报告基于AT89C51的液晶显示频率计的设计
本科学生单片机课程设计报告题目基于单片机的频率计设计姓名学号201218033院(系)工程与设计学院专业、年级应用电子技术教育 2012级指导教师杨进宝课程设计成绩评定表实评总分指导教师签名引言在设计单片机和数字电路时经常需要测量脉冲个数、脉冲宽度、脉冲周期、脉冲频率等参数,虽然使用逻辑分析仪可以很好地测量这些参数,但其价格昂贵。
且实现测量的数字化、自动化、智能化已成为各类仪器仪表设计的方向,这里介绍一种用单片机控制的、全自动、数字显示的测量频率的方法。
频率计是我们在电子电路试验中经常会用到的测量仪器之一,它能将频率用数码管或液晶显示器直接显示出来,给测试带来很大的方便,使结果更加直接;且频率计还能对其它多种物理量进行测量,如机械振动的频率、声音的频率等,都可以先转变成电信号,然后用频率计来测量,研究频率计的设计与制作将会对我们的生活有很大意义。
现代的频率计多是用数码管显示的,其结果不明确,表示也不直接,研究液晶显示的频率计对频率计的发展很有意义。
数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
它的基本功能是测量正弦信号、方波信号、尖脉冲信号及其他各种单位时间内变化的物理量。
它被广泛应用于航天、电子、测控等领域。
数字式频率计是基于时间或频率的A/D转换原理,并依赖于数字电路技术发展起来的一种新型的数字测量仪器。
由于数字电路的飞速发展,数字频率计的发展也很快。
在电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高了系统的可靠性和速度。
纵观现在的数字频率计,其基本原理都是相同的,频率是单位时间(1S)内信号发生周期变化的次数。
基于89C51单片机的可自选量程的数字频率计设计
1 引言单片机是20世纪中期发展起来的一种面向控制的大规模集成电路模块,具有功能强、体积小、可靠性高、价格低廉等特点,在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度[1]。
51系列单片机是国内目前应用最广泛的一种8位单片机之一,随着嵌入式系统、片上系统等概念的提出和皮鞭接受及应用,51系列单片机还会在继后很唱一段时间占据嵌入式系统产品的低端市场,因此,作为新世纪的大学生,在信息产业高速发展的今天,掌握单片机的基本结构、原理和使用时非常重要的。
随着电子技术的发展,当前数字系统的设计正朝着速度快、容量大、体积小、重量轻的方向发展。
推动该潮流迅猛发展的引擎上日趋进步和完善的设计技术。
目前数字频率计的设计可以直接面向用户要求,根据系统的行为和功能要求,自上至下的逐层挖不出个办法相应的描述、综合、优化、仿真与验证,知道生成期间。
上述设计过程除了系统行为和功能描述以外。
其余所有的设计过程几乎都可以用计算机来自动的完成,也就是说做到了电子设计自动化(EDA)。
这样做可以大大地缩短系统的设计周期,以适应当今品种多,批量下的电子市场的需求,提高产品的竞争能力。
数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。
随着复杂可编程逻辑器件(CPLD)的广泛应用,以EDA工具作为开发手段,运用汇编语言。
将使整个系统大大简化。
提高整体的性能和可靠性。
本文用汇编语言在CPLD器件上实现一种8 b数字频率计测频系统,能够用十进制数码显示被测信号的频率,不仅能够测量正弦波、方波和三角波等信号的频率,而且还能对其他多种物理量进行测量。
具有体积小、功耗低等特点。
2 系统概述2.1 数字频率计的概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
基于AT89C51单片机频率计的设计(含程序)
AT89C51单片机频率计的设计摘要基于在电子领域内,频率是一种最基本的参数,并与其他许多电参量的测量方案和测量结果都有着十分密切的关系。
由于频率信号抗干扰能力强、易于传输,可以获得较高的测量精度。
因此,频率的测量就显得尤为重要,测频方法的研究越来越受到重视。
频率计作为测量仪器的一种,常称为电子计数器,它的基本功能是测量信号的频率和周期频率计的应用范围很广,它不仅应用于一般的简单仪器测量,而且还广泛应用于教学、科研、高精度仪器测量、工业控制等其它领域。
随着微电子技术和计算机技术的迅速发展,特别是单片机的出现和发展,使传统的电子侧量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化,形成一种完全突破传统概念的新一代侧量仪器。
频率计广泛采用了高速集成电路和大规模集成电路,使仪器在小型化、耗电、可靠性等方面都发生了重大的变化。
目前,市场上有各种多功能、高精度、高频率的数字频率计,但价格不菲。
为适应实际工作的需要,本次设计给出了一种较小规模和单片机(AT89C51)相结合的频率计的设计方案,不但切实可行,而且体积小、设计简单、成本低、精度高、可测频带宽,大大降低了设计成本和实现复杂度。
频率计的硬件电路是用Ptotues绘图软件绘制而成,软件部分的单片机控制程序,是以KeilC做为开发工具用汇编语言编写而成,而频率计的实现则是选用Ptotues仿真软件来进行模拟和测试。
关键词:单片机;AT89C51;频率计;汇编语言选题的目的意义数字频率计的主要功能是测量周期信号的频率。
其基本原理就是用闸门计数的方式测量脉冲个数。
频率是单位时间( 1s )内信号发生周期变化的次数。
如果我们能在给定的 1s 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
基于AT89C51的等精度宽范围频率计
制作名称:基于AT89C51的等精度宽范围频率计1、制作编号:0092、难度等级:★★★★★(适合第5、7学期制作)3、设计要求1)利用AT86S51设计一个等精度宽范围频率计。
2)用5位数码管显示测量结果。
3)系统采用7V-12V直流电源供电。
4)用开关控制电路的通断,电路接通时指示灯亮,反之熄灭。
4、使用说明1.把电源线接入电路右方J2端口(按电路所标极性正确连接),给电路提供合适的工作电压。
2.按下电源开关S2,此时电源指示灯亮,电路即可进行工作,使用时把测试线接入J1端口即可进行频率测量(测试线标有“※”的为信号测试线,测试线标有“-”的为地线)3.读数方法:测试结果的显示格式采用科学计数法,单位是(H Z)。
测量结果从左到右用5位数码管显示:前3位为测量结果的有效数字;第四位为指数的符号(其中“–︳”表示正;“–”表示负);第5位为乘数(即0的个数)。
例如:显示结果是“888-︳2”也就是888×102Hz (88.8k Hz),如果是“888-2”也就是888×10-2Hz(8.88H z)。
5、技术参数电源电压:D C 7V~12V使用环境温度:0℃~80℃测量频率范围:0.100H Z~9.99MH Z测量频率误差:±1%测量信号峰值范围:≥0.5V测量信号类型:正弦波、各种脉冲波6、电路原理图7、元器件明细表8、参考电路板图9、方框图产品电路元器件的插装与焊接需要注意元器件安装的先后顺序和每个元器件的方向,大概步骤如下:1)第一工序为跳线的装配焊接:对照图(1)把跳线插装到电路板对应的位置,并在电路板的焊接面将引脚扳弯,使引脚与电路板成45°~60°,以防跳线脱落,全部跳线4个插完后进行焊接,焊完后用斜口钳将多余引脚剪掉。
图(1)2)第二工序为电阻的焊接:将各电阻的阻值选择好,根据电路板上对应的两安装孔的距离弯曲电阻脚,并注意二极管极性不能插反。
基于AT89C51的智能频率计的设计
基于AT89C51的智能频率计的设计范敏毅(武汉理工大学自动化学院湖北武汉430070)摘要:本系统的设计是基于AT89C51单片机的软硬件系统设计。
本设计中硬件电路包括电源电路、时基电路、待测信号滤波放大电路、整形电路、分频电路、并行接口电路、显示电路。
软件包括测量初始化部分、信号频率测量部分、自动换档部分、进制转换部分、译码部分、显示部分。
系统结构简单,稳定性好,精度较高。
关键词:频率计;频率测量;AT89C51单片机中图分类号:TM935文献标识码:A文章编号:1671-7597(2012)0510063-02滤波电路及稳压电路组成。
本电路主要应用整流系统和稳压器0引言7805组成的电压源电路来实现最终设计。
在电子领域内,频率测量的精确度是最高的。
因此,在生产过程中许多物理量,例如温度、压力、流量、液位、值、PH振动、位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用智能频率计来测量,以提高精确度。
智能频率计是电子测量与仪表技术最基础的电子仪表类别之一,智能频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,而且它是数字电压表必不可少的部件。
1系统整体结构本系统的频率计由硬件电路和软件部分组成,系统硬件组成如图所示。
1图系统软件框图22.2时基信号产生电路的设计本设计中时基信号的产生由和完成。
CD4060CD40132.3信号预处理电路的设计231..滤波、衰减、补偿电路的设计待测信号经电容的隔直通交过来,当输入的信号电压较C1高时,按下键衰减,输入的电压信号可达到,当输入的K1125V信号频率较低时,大概在以下时,按下键,经低通滤100KHzK2波减小干扰信号对后级的影响,信号经高频补偿电路进入放大电路。
图系统硬件框图1232..放大电路的设计系统软件包括测量初始化部分、信号频率测量部分、自动放大部分采用场效应管,静态功耗低,而且放大之前有稳换档部分、进制转换部分、译码部分、显示部分。
基于AT89C51单片机的频率计设计方法的研究
基于AT89C51单片机的频率计设计方法的研究任小青,王晓娟(青海大学机械系,青海西宁810016)摘要:采用单片机AT89C 51作为系统控制单元,辅以适当的软、硬件资源完成以单片机为核心的频率计设计。
介绍了内部计数器计数法、外部计数器计数法、测周期法3种测量频率的方法,并对每种设计方法进行了优缺点比较。
关键词:频率计;频率测量;单片机中图分类号:TP368.1文献标识码:B文章编号:1006- 8996(2009)02- 0010- 03Researchonacymometerdesignmethodbasedonasinglechip AT89C51REN Xiao-qing,WANG Xiao-juan(MechanicalEngineeringDepartmentofQinghaiUniversity,Xining 810016,China) Abstract:AcymometeruseasinglechipAT89C51asthesystemcontrolunitwithappropriate softwareandhardwareresourcesisdesignedinthispaperandthreekindsoffreguencymea suringmethods,internalcountercountiongmethod,externalcountercountingmethodan dmeasuringcyclemethod,areintroducedtoo.Theadvantagesanddisadvantagesonthethr eemethodsarecomparedatlast.Keywords:cymometer;frequencymeasurement;singlechip频率计是一种测量信号频率的仪器,在教学、科研、高精度仪器测量、工业控制等领域都有较广泛的应用。
基于AT89C51单片机的频率计设计
基于AT89C51单片机的频率计设计频率计是一种测量信号频率的仪器。
在工业自动化、仪器仪表和电子实验等领域广泛应用。
本文将基于AT89C51单片机设计一个简单的频率计。
一、设计原理频率计的工作原理是通过计数单位时间内输入信号的脉冲数量,并将其转化为频率进行显示。
本设计使用AT89C51单片机作为控制核心,采用外部中断引脚INT0作为计数脉冲输入口,通过对计数器的计数值进行处理,最终转化为频率并在LCD1602液晶屏上进行显示。
二、硬件设计硬件电路主要包括AT89C51单片机、LC1602液晶显示屏、脉冲输入引脚INT0,以及供电电路等。
其中,AT89C51单片机的P0口用于与LC1602液晶屏的数据口连接,P2口用于与液晶屏的控制口连接。
脉冲输入引脚INT0连接到外部信号源,通过中断请求实现计数器的计数功能。
液晶显示屏的VDD和VDDA引脚接5V电源,VSS和VSSA引脚接地,RW引脚接地,RS引脚接P2.0,E引脚接P2.1,D0-D7引脚接P0口。
三、软件设计软件设计主要包括初始化设置、中断服务程序、计数器计数和频率转换、液晶屏显示等模块。
1.初始化设置:首先设置P0和P2为输出端口,中断引脚INT0为外部触发下降沿触发中断,计数器为初始值0。
2.中断服务程序:中断服务程序负责处理外部脉冲输入引脚INT0的中断请求。
每当INT0引脚检测到下降沿时,计数器加13.计数和频率转换:在主函数中,通过读取计数器的值并根据单位时间计算频率。
通过AT89C51单片机的定时器模块,我们可以设置一个单位时间进行计数。
在单位时间结束后,将计数器的值除以单位时间得到频率。
4.液晶屏显示:通过P0口向液晶屏的数据口发送频率值,并通过P2口向液晶屏的控制口发送控制信号,完成频率的显示。
四、测试结果将生成的二进制固件烧录到AT89C51单片机中,将脉冲信号输入到INT0引脚,即可在LCD1602液晶显示屏上看到实时的频率值。
基于AT89C51单片机的等精度数显频率计
50第24卷 第2期 零陵学院学报 V ol. 24 No.2 2003年3月 Journal of Lingling University Mar. 2003基于AT89C51单片机的等精度数显频率计 李春树 (湖南 零陵学院电子工程系,湖南 永州 425006) 摘 要:介绍了一种基于AT89C51单片机进行等精度数字测频的软、硬件实现方案。
该方法简单实用,具有较广的使用价值。
关键词:单片机;频率计;测频*中图分类号:Q4-39 文献标识码:B 文章编号:1671-9697(2003)02-0050-05 引言:数显频率计是直接用十进制数字显示被测信号频率的一种测量装置。
传统的数显频率计大多采用74LS系列数字集成电路直接测频,在使用过程中存在电路结构复杂,测量精度低、故障率高、维护不易等问题。
随着单片机技术的不断发展,用单片机通过软件设计,采用适当的算法取代这部分电路不仅能弥补上述不足,而且性能也将大有提高。
1 传统的测频电路结构及测频精度分析 传统的数显频率计采用直接方式测频。
即利用计数器在闸门开启期间对输入信号的周期进行计数来完成测频的。
若设计数值为x N ,则输入信号的频率可表示为: wx x T Nf =式中Tw为闸门开启的时间宽度,一般由晶体振荡器产生标准频率0f 经过n级10分频后得到,即010fT nw =,由此得:010f N f x n x −=…………(1) 由于Tw是固定的,但对于任意的x f 电路无法保证在Tw时间内刚好有N x个x T ,因此最大可能会产生±1个Tx的误差。
通过对(1)求导得: )(1000df N dN f df x x n x +=−………………… (2) (2)÷(1)得:00f df N dN f df x x x x += 其中00f df 为晶振的频率稳定度,通常可达10-6 ̄10-8数量级,xN x dN为计数值的相对误差。
基于AT89C51的频率设计
目录摘要 (1)第1章绪论 (2)第2章设计方案论证与比较 (3)2.1 基于集成电路的简易数字频率计设计 (3)2.2 基于AT89C51的频率计设计 (3)2.3 方案的可行性和优点 (4)第3章频率计电路的工作原理 (6)3.1 单元电路工作原理 (6)3.1.1 信号转换电路 (6)3.1.2 分频电路 (7)3.1.3 数据选择电路 (8)3.1.4 单片机硬件系统设计 (9)3.1.5 显示电路 (12)3.2 基于AT89C51的频率计总体硬件电路图 (13)第4章基于AT89C51频率计的软件设计 (15)第5章电路的仿真 (20)总结 (21)参考文献 ............................................................................................ 错误!未定义书签。
摘要随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。
传统的频率计通常是使用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的范围比较小。
考虑到上述问题,本电路设计一个基于单片机技术的数字频率计,可使测量频率范围大、运行速度快。
在线路实现上更加可靠。
本文从频率计的原理出发,首先把待测正弦信号经过整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
利用单片机设计的数字频率计,选择了实现系统的各种电路元器件,并对硬件电路进行了仿真。
关键词单片机;数字频率计;测量第1章绪论在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于测量过程自动化等优点,是频率测量的重要手段之一。
电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法如周期测频法,直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。
基于AT89C51频率计的设计
基于AT89C51频率计的设计张亚丽(陕西理工学院电信工程系电子信息工程专业,2007级6班,陕西汉中 723000)指导教师:秦伟[摘要]本文设计了一种以单片机AT89C51为核心的数字频率计,介绍了单片机、数字译码和显示单元的组成及工作原理。
测量时,将被测输入信号送给单片机,通过程序控制计数,结果送译码器74LS138,驱动LED数码管显示频率值。
通过测量结果对比,分析了测量误差的来源,提出了减小误差应采取的措施。
频率计具有电路结构简单、成本低、测量方便、精度较高等特点,适合测量低频信号。
系统简单可靠、操作简易,能基本满足一般情况下的需要。
既保证了系统的测频精度,又使系统具有较好的实时性。
本频率计设计简洁,便于携带,扩展能力强,适用范围广。
[关键词]数字频率计,单片机,LED显示,Proteus仿真,Kell仿真目录引言1.数字频率计总体方案设计1.1 频率计工作原理 (1)1.2 设计思想 (1)1.3 方案论证及选择 (1)2. 整体电路设计2.1 系统硬件设计 (3)2.2 系统工作原理图 (4)2.3 器件选型2.3.1 AT89C51单片机及引脚功能 (4)2.3.2 译码电路 (6)2.3.3数据显示电路 (7)3. 软件设计3.1 实现一秒定时 (10)3.2 计数部分 (10)3.3 软件仿真3.3.1 Keil和Protues介绍和联调 (11)3.3.2 PROTUES 软件仿真过程 (11)3.3.3 误差分析 (11)致谢 (12)参考文献 (13)附录A 整体电路图 (14)附录B 源程序 (15)附录C 原器件清单 (16)引言随着科学技术的发展,尤其是单片机技术和半导体技术的高速发展,频率计的研究及应用越来越受到重视,这样对频率测量设备的要求也越来越高。
目前的微处理器芯片发展迅速,出现诸如DSP、FPJA等不同领域的应用芯片。
而单片机是一门发展极快,应用方式极其灵活的使用技术。
采用AT89C51单片机的数字频率计设计
采用A T89C51单片机的数字频率计设计编辑:D z3w.C o m文章来源:网络我们无意侵犯您的权益,如有侵犯请[联系我们]采用A T89C51单片机的数字频率计设计概述:设计一种以单片机A T89C51为核心的数字频率计,介绍了单片机、数字译码和显示单元的组成及工作原理。
测量时,将被测输入信号送给单片机,通过程序控制计数,结果送译码器74-L S145与移位寄存器74L S164,驱动L E D数码管显示频率值。
通过测量结果对比,分析了测量误差的来源,提出了减小误差应采取的措施。
频率计具有电路结构简单、成本低、测量方便、精度较高等特点,适合测量低频信号。
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率计在教学、科研、测量仪器、工业控制等方面都有较广泛的应用。
测量频率的方法有多种,其中电子计数测量频率具有精度高、使用方便、测量迅速,以及便于实现测量自动化等优点,是频率测量的重要手段之一。
本设计就是用计数的方法,以单片机A T89C51为控制核心,充分利用其软硬件资源,设计并制作了频率计的计数、显示部分。
1测频设计原理频率计测频原理方框图如图1所示。
被测输入信号通过脉冲形成电路进行放大与整形(可由放大器与门电路组成),然后送到单片机入口,单片机计数脉冲的输入个数。
计数结果经L E D 数码管显示,从而得到被测信号频率。
2元器件选择与使用2.1单片机选择单片机A T89C51是因为有编程灵活、易调试的特点,而且A T89C51的引脚较多,利于电路的展。
它集成了C P U,R A M,R O M,定时器/计数器和多功能I/0口等一台计算机所需的基本功能部件,有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含两个外中断口,两个16位可编程定时计数器,两个全双工串行通信口。
其片内集成了4K B的F L A S H P E R O M用来存放应用程序,这个F L A S H程序存储器除允许一般的编程器离线编程外,还允许在应用系统中实现在线编程,并且还提供了对程序进行三级加密保护的功能。
基于89C51的等精度频率计LCD1602显示
《嵌入式系统设计与应用》课程设计报告论文题目:等精度频率计的设计学院(系):电子信息与自动化学院班级:104070301学生姓名:吴知忠学号14指导教师:时间:从2007年7 月 2 日到2007年7 月8 日等精度频率计的设计一摘要:本设计是基于MCS-51单片机的等精度频率计。
输入信号为峰峰值5v的正弦信号,频率测量范围10HZ~100MHZ ,频率测量精度为0.1%。
采用1602液晶显示器显示测量结果。
信号源由PROTEUS 的虚拟信号发生器产生。
二关键词:频率计等精度单片机分频三设计原理与总体方案:测量一个信号的频率有两种方法:第一种是计数法,用基准信号去测量被测信号的高电平持续的时间,然后转换成被测信号的频率。
第二种是计时法,计算在基准信号高电平期间通过的被测信号个数。
根据设计要求测量10HZ~100MHZ的正弦信号,首先要将正弦信号通过过零比较转换成方波信号,然后变成测量方波信号。
如果用第一种方法,当信号频率超过1KHZ的时候测量精度将超出测量极度要求,所以当被测信号的频率高于1KHZ的时候需要将被测信号进行分频处理。
如果被测信号频率很高需要将被测信号进行多次分频直到达到设计的精度要求。
根据设计要求用单片机的内部T0产生基准信号,由INTO输入被测信号,通过定时方式计算被测信号的高电平持续时间。
通过单片机计算得出结果,最后有1062液晶显示器显示测量结果。
等精度频率计的系统设计框架如下图1所示。
图1 等精度频率计系统设计框图四硬件设计:硬件电路主要分为信号转换电路、分频电路、数据选择电路、单片机系统和显示电路五部分。
其总体电路图如图2所示。
图2 总体电路图4.1 电平转换电路:要将正弦信号转换成方波信号可以用过零比较电路实现。
正弦信号通过LM833N与零电平比较,电压大于零的时候输出LM833N的正电源+5V,电压小于零的时候输出负电源0V。
具体电路如图3所示。
图3信号转换电路4.2 分频电路:分频电路采用十进制的计数器74HC4017来分频,当被测信号脉冲个数达到10个时74HC4017产生溢出,C0端输出频率为输入频率的1/10,达到十分频的作用。
基于AT89C51单片机的频率计设计
基于AT89C51单片机的频率计设计1、频率计方案概述本频率计的设计以AT89S51单片机为核心,利用他内部的定时/计数器完成待测信号周期/频率的测量。
单片机AT89S51内部具有2个16位定时/计数器,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。
在定时器工作方式下,在被测时间间隔内,每来一个机器周期,计数器自动加1(使用12 MHz时钟时,每1μs加1),这样以机器周期为基准可以用来测量时间间隔。
在计数器工作方式下,加至外部引脚的待测信号发生从1到0的跳变时计数器加1,这样在计数闸门的控制下可以用来测量待测信号的频率。
外部输入在每个机器周期被采样一次,这样检测一次从1到0的跳变至少需要2个机器周期(24个振荡周期),所以最大计数速率为时钟频率的1/24(使用12 MHz时钟时,最大计数速率为500 kHz)。
定时/计数器的工作由运行控制位TR控制,当TR置1,定时/计数器开始计数;当TR清0,停止计数。
本设计综合考虑了频率测量精度和测量反应时间的要求。
例如当要求频率测量结果为3位有效数字,这时如果待测信号的频率为1 Hz,则计数闸门宽度必须大于1 000 s。
为了兼顾频率测量精度和测量反应时间的要求,把测量工作分为两种方法:(1)当待测信号的频率>100 Hz时,定时/计数器构成为计数器,以机器周期为基准,由软件产生计数闸门,计数闸门宽度>1 s时,即可满足频率测量结果为3位有效数字;(2)当待测信号的频率<100 Hz时,定时/计数器构成为定时器,由频率计的予处理电路把待测信号变成方波,方波宽度等于待测信号的周期。
这时用方波作计数闸门,当待测信号的频率=100 Hz,周期为10ms,使用12 MHz时钟时的最小计数值为10 000,完全满足测量精度的要求。
2频率计的量程自动切换使用计数方法实现频率测量时,外部的待测信号为单片机定时/计数器的计数源,利用软件延时程序实现计数闸门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科学生单片机课程设计报告题目基于单片机的频率计设计姓名学号*********院(系)工程与设计学院专业、年级应用电子技术教育 2012级指导教师杨进宝课程设计成绩评定表实评总分指导教师签名引言在设计单片机和数字电路时经常需要测量脉冲个数、脉冲宽度、脉冲周期、脉冲频率等参数,虽然使用逻辑分析仪可以很好地测量这些参数,但其价格昂贵。
且实现测量的数字化、自动化、智能化已成为各类仪器仪表设计的方向,这里介绍一种用单片机控制的、全自动、数字显示的测量频率的方法。
频率计是我们在电子电路试验中经常会用到的测量仪器之一,它能将频率用数码管或液晶显示器直接显示出来,给测试带来很大的方便,使结果更加直接;且频率计还能对其它多种物理量进行测量,如机械振动的频率、声音的频率等,都可以先转变成电信号,然后用频率计来测量,研究频率计的设计与制作将会对我们的生活有很大意义。
现代的频率计多是用数码管显示的,其结果不明确,表示也不直接,研究液晶显示的频率计对频率计的发展很有意义。
数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
它的基本功能是测量正弦信号、方波信号、尖脉冲信号及其他各种单位时间内变化的物理量。
它被广泛应用于航天、电子、测控等领域。
数字式频率计是基于时间或频率的A/D转换原理,并依赖于数字电路技术发展起来的一种新型的数字测量仪器。
由于数字电路的飞速发展,数字频率计的发展也很快。
在电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高了系统的可靠性和速度。
纵观现在的数字频率计,其基本原理都是相同的,频率是单位时间(1S)内信号发生周期变化的次数。
如果我们能在给定的1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
但现在的频率计其显示部分都是通过LED数码管显示的,显示内容是BCD码,不直观,若用LCD液晶来显示,会使输出结果更直接,便于观察。
正因为如此,所以未来数字频率计的发展必定会向用液晶显示的方向发展。
1 绪论1.1 研究背景在电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高了系统的可靠性和速度。
集成电路的类型很多,从大的方面可以分为模拟电路和数字集成电路两大类。
数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。
一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。
数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个应用领域。
测量频率是电子测量技术中最常见的测量之一,不少物理量的测量, 如时间、速度等都涉及到或本身可转化为频率的测量。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号,如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
1.2 发展现状数字频率计发展到现在,有基于CPLD的数字频率计的设计,基于VHDL语言的数字频率计的设计,还有基于单片机的简易数字频率计等。
CPLD是一种新兴的高密度大规模可编程逻辑器件,它具有门阵列的高密度和PLD器件的灵活性和易用性,目前已成为一类主要的可编程器件;可编程器件的最大特点是可通过软件编程对其器件的结构和工作方式进行重构,能随时进行设计调整而满足产品升级,使得硬件的设计可以如软件设计一样方便快捷,从而改变了传统数字系统及用单片机构成的数字系统的设计方法、设计过程及设计概念,使电子设计的技术操作和系统构成在整体上发生了质的飞跃。
VHDL (Very High Speed Integrated Circuit Hardware Description Language,超高速集成电路硬件描述语言)诞生于1982年,是由美国国防部开发的一种快速设计电路的工具,目前已经成为IEEE(The Institute of Electrical and Electronics Engineers)的一种工业标准硬件描述语言;相比传统的电路系统的设计方法,VHDL具有多层次描述系统硬件功能的能力,支持自顶向下(Top to Down)和基于库(Library Based)的设计的特点。
单片机技术在短短的20余年间已发展成为计算机技术中一个非常有活力的分支,它有自己的技术特征、规范、发展道路和应用环境。
1.3 单片机的发展目前计算机硬件技术向巨型化、微型化和单片化三个方向发展。
自1975年美国德克萨斯仪器公司第一块单片机芯片TMS-1000问世以来,在短短的30余年间,单片机技术已发展成为计算机技术中一个非常有活力的分支,它有自己的技术特征、规范、发展道路和应用环境。
按单片机的生产技术和应用对象,单片机先后经历了4位机、8位机、16位机、32位机几个有代表性的发展阶段。
单片机与通用微机相比较,在结构、指令设置上均有其独特之处,其主要特点有:1)单片机的存储器ROM和RAM是严格区分的,ROM称为程序存储器,只存放固定常数及数据。
RAM则为数据存储器,用于工作区及存放用户数据。
2)采用面向控制的指令系统。
3)单片机的输入/输出引脚通常是多功能的。
4)单片机的外部扩展能力强。
从80年代单片机被引入我国,单片机已广泛地应用于电子设计中。
单片机的应用迅速发展,其性价比高,大量的外围接口电路,使基于单片机的电子系统设计方便,周期缩短,而且不断发展。
新型单片机支持高级语言,进一步延伸了其发展空间。
2方案论证与选择2.1 方案一基于VHDL语言的频率计的设计设计的基于VHDL语言频率计的系统原理框图系统原理框图如图2.1所示。
图2.1 设计的基于VHDL语言频率计的系统原理框图各模块说明如下:(1) 标准信号发生器, 开关控制电路。
标准信号发生器产生1kHz 基准信号。
开关控制电路对键盘输入的启停信号进行处理(2)分频器当收到使能信号, 分频器启动, 将标准1kHz 信号经3次10分频, 得到100Hz, 10Hz, 1Hz 信号。
1kHz, 100Hz, 10Hz 信号作为计数器闸门信号来控制计数, 以实现不同量程。
(3)计数控制器计数控制模块将输入的分频信号处理, 产生计数闸门信号、计数清零信号和锁存信号。
(4)计数器采用3个十进制计数器级联作为计数模块。
闸门信号与待测信号相与作为计数输入。
计数结果直接输出给锁存器。
(5)锁存器每当锁存使能信号来临, 锁存器便将锁存结果读入、锁存。
锁存器还完成量程选择功能。
锁存器还根据当前量程, 选择合适的小数点位置输出。
(6)译码显示电路由于小数点由锁存器输出, 故在此仅考虑数码管的7段驱动,7段译码器将计数值译成相应的7 段数码驱动值。
2.2 方案二基于单片机的频率计的设计设计的基于单片机频率计的原理框图如图2.2所示。
图2.2 设计的基于单片机频率计的原理框图复位电路采用上电复位方式,每次单片机上电工作时使单片机处于复位状态,即初始状态,为测量频率作好准备。
时钟电路中片内高增益反相放大器通过XTAL1、XTAL2外接作为反馈元件的晶振(呈感性)与电容组成的并联谐振回路构成一个自激振荡器向内部时钟电路提供振荡时钟,由此向单片机提供振荡脉冲。
AT89C51单片机内部具有2个16位的定时器/计数器,并可以在定时或计数溢出时产生中断。
将被测信号通过P3.5口送入单片机,将T0设置为定时方式,每50ms产生一次中断,产生20次中断所用时间正好为1S,将T1设置为计数方式,T1的初值设置为0,计65535个脉冲后产生一次溢出中断,在T1中断溢出时对溢出次数进行计数(计数值为N)。
1S内T1计的总的脉冲数为65535×N+TH1×256+TL1,这个数值就是被测信号的频率值。
单片机计的脉冲数值经过转换送到液晶显示模块1602,从而显示被测信号的频率,测量结果用十进制表示,很直接。
2.3 方案的选择基于VHDL语言的频率计设计的优点:VHDL语言,对设计的描述具有相对独立性, 设计者可以不懂硬件结构, 降低了硬件电路设计难度。
利用EDA工具maxplus II 对源程序进行编译、选配、优化、逻辑综合, 自动地把VHDL描述转变成门级电路, 进而完成电路分析、纠错、验证、自动布局布线、仿真等各种测试工作。
最后通过编程电缆下载数据流, 将所设计内容下载到所选中的FPGA器件中, 即完成设计工作。
这种设计方法减少了电路设计的时间和可能发生的错误, 降低了开发成本。
基于VHDL语言的频率计设计的缺点:FPGA大部分是基于SRAM编程,编程数据信息在系统断电时会丢失,每次上电时需从器件的外部存储器或计算机中将编程数据写入,布线结构和逻辑实现复杂,其编程信息需存放在外部存储器上,需外部存储器芯片,且使用方法复杂,保密性差。
基于单片机的频率计的设计的优点:单片机在控制领域中有很多优点,如体积小、成本低、运用灵活、抗干扰能力强,可以方便地实现多机和分布式控制。
并且利用单片机设计的频率计原理框图简单,所用元器件少,电路不易出错,其程序存放在内部存储器上,不需要外部存储器芯片,使用方法简单。
且单片机便宜、稳定、开发简单、通用性好。
基于单片机的频率计的设计的缺点:所测信号的频率范围窄,若要扩大频率范围需外加分频器。
综合比较上述两种方案,选择用单片机来设计频率计,显示部分用液晶显示模块,以使测量结果更加直接、明确。
3基于单片机的液晶显示频率计的设计3.1系统硬件电路的设计3.1.1 单片机的管脚AT89C51单片机的管脚排部如图3.1所示。
图3.1 A T89C51单片机的管脚排布主电源引脚V CC(40脚):接+5V电源正端。
V SS(20脚):接+5V电源地端。
外接晶体引脚XTAL1(19脚):接外部石英晶体的一端。
在单片机内部,它是一个反相放大器的输入端,这个放大器构成了片内振荡器。
XTAL2(18脚):接外部石英晶体的另一端。
在单片机内部,它是片内振荡器的反相放大器的输出端。
输入/输出引脚P0口(39~32脚):P0.0~P0.7统称为P0口,在不接片外存储器与不扩展I/O口时,可作为准双向输入/输出口。