数学知识点人教A版数学必修五2.1.1 《数列的概念与简单表示法》(一)教案-总结

合集下载

最新人教版高中数学必修5第二章《数列的概念与简单表示法》教案(1)

最新人教版高中数学必修5第二章《数列的概念与简单表示法》教案(1)

《数列的概念与简单表示法》教案(1)
教学目标
1.理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.
教学重点难点
1.重点:数列及其有关概念,通项公式及其应用;
2.难点:根据一些数列的前几项抽象、归纳数列的通项公式.
教法与学法
1.教法选择:“设置问题情境,探索辨析,归纳应用,延伸拓展”;
2.学法指导:类比、联想、猜想、求证.
教学过程
一、设置情境,激发学生探索的兴趣
三、思维拓展,课堂交流
四、归纳小结,课堂延展
1.教材地位分析
根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.
作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端.教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).
2.学生现实状况分析
学生目前已经学习了函数的知识,本课时的内容是数列的定义,通项公式及运用;
本课是在学习映射、函数知识基础上研究数列.。

人教A版高中数学必修五数列的概念与简单表示法教案第课时

人教A版高中数学必修五数列的概念与简单表示法教案第课时

§2.1 数列的概念及简单表示(1)教学目标1.通过大量实例,理解数列概念,了解数列和函数之间的关系2.了解数列的通项公式,并会用通项公式写出数列的任意一项3.对于比较简单的数列,会根据其前几项写出它的个通项公式4.提高观察、抽象的能力.教学重点:1.理解数列概念;2.用通项公式写出数列的任意一项.教学难点:根据一些数列的前几项抽象、归纳数列的通项公式.教学方法:发现式教学法教学步骤:一.(引言)数产生于人类社会的生产、生活需要,它是描绘静态下物体的量,因此,在人类社会发展的历程中,离不开对数的研究,在这一背景下产生数列。

数列是刻画离散现象的函数,是一种重要的数学模型。

人们往往通过离散现象认识连续现象,因此就有必要研究数列(设置情景)看下列一组实例:(1)课本32页“三角形数问题”(2)见EXCEL(3)某种放射性物质最初的质量为1,每经过一年剩留这种物资的84%,则这种物资各年开始时的剩留量排成一列数:1,84.0,284.0,384.0,……(4)-1的1次幂,2次幂,,……排成一列数:-1,1,-1,1,……(5)无穷多个1排成一列数:1,1,1,1,1,……提出问题:上述各组数据有何共同特征?二.探求与研究.I.基础知识:1.数列:按一定的次序排列的一列数叫数列。

2.项:数列中的每一个数都叫做这个数列的项。

其中第1项也叫做首项3.项数:数列的各项所在的位置序号叫做项数。

4.数列的表示: (1)一般形式:1a ,2a ,3a ,…n a ,…其中n a 是数列的第n 项。

(2)简单表示:{}n a5.通项公式:若数列{}n a 的第n 项n a 与它的项数n 之间的关系可以用一个公式表示,则这个公式叫做数列的通项公式。

简记为。

()n a f n =说明:(1)通项公式的本质:反映了数列的项与项数之间的对应关系(函数关系)。

(2)依次用1,2,3,…代替公式中的n ,就可以求出这个数列的各项。

高中数学人教A版必修五2.1【教学设计】《数列的概念与简单表示法》

高中数学人教A版必修五2.1【教学设计】《数列的概念与简单表示法》

《数列的概念与简单表示法》1、知识与技能(1)理解数列及其有关概念,了解数列和函数之间的关系;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。

2、过程与方法(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。

3、情感态度与价值观(1)通过日常生活中的大量实例,鼓励学生动手试验。

理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2)通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

【教学重点】数列及其有关概念,通项公式及其应用。

【教学难点】根据一些数列的前几项抽象、归纳数列的通项公式。

(一)新课导入传说古代印度有一国王喜爱国际象棋,中国智者云游到此,国王得知智者棋艺高超,于是派人请来智者与其对弈,并傲慢地说:“如果你赢了,我将答应你的任何要求。

”智者心想,我应该治一治国王的傲慢,当国王输棋后,智者说:“陛下只须派人用麦粒填满象棋盘上的所有空格,第1格1粒,第2格2粒,第3格4粒,……依此下去,以后每格是前一格粒数的2倍。

”国王听后:哈哈大笑,这个问题也太简单了罢!于是国王吩咐手下马上去办,可是过了好多天,手下惊慌地报到国王,大事不好了,即使我们印度近几十年来生产的所有麦子加起来也还不够啊!国王呆了!到底有多少麦粒呢?你认为国王有能力满足上述要求吗?每个格子里的麦粒数都是前一个格子里麦粒数的2倍,总共有63个格子:得数为:18446744073709551615传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数字。

上图中各三角形表示的数排列有规律吗?由于这些数可以用三角形点阵表示,故称其为三角形数。

下图中各正方形分别表示哪些数?这些数与相应正方形的序号有什么关系?因为这些数能够表示成正方形,故称为正方形数。

高中数学必修5高中数学必修5《2.1数列的概念与简单表示法(一)》教案

高中数学必修5高中数学必修5《2.1数列的概念与简单表示法(一)》教案

2.1数列的概念与简单表示法(一)一、教学要求:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课“有人说,大自然是懂数学的”“树木的,。

”,(一)、复习准备:1. 在必修①课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“12”,再取一半还剩“14”,、、、、、、,如此下去,即得到1,12,14,18,、、、、、、 2. 生活中的三角形数、正方形数. 阅读教材提问:这些数有什么规律?与它所表示的图形的序号有什么关系?(二)、讲授新课:1. 教学数列及其有关概念:(1)三角形数:1,3,6,10,···(2)正方形数:1,4,9,16,··· (2)1,2,3,4……的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,……排列成一列数:-1,1,-1,1,-1,。

(4)无穷多个1排列成的一列数:1,1,1,1,。

有什么共同特点? 1. 都是一列数;2. 都有一定的顺序① 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢? ----------数列的有序性(2)数列中的数可以重复吗?(3)数列与集合有什么区别?集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。

② 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、、、、、、排在第n 位的数称为这个数列的第n 项.③ 数列的一般形式可以写成123,,,,,n a a a a ,简记为{}n a .④ 数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.⑤ 数列中的数与它的序号有怎样的关系?序号可以看作自变量,数列中的数可以看作随着变动的量。

高中数学必修5《数列的概念与简单表示法》教案-5页精选文档

高中数学必修5《数列的概念与简单表示法》教案-5页精选文档

2.1《数列的概念与简单表示法》(第1课时)普通高中课程标准实验教科书A版数学(必修5 )一、教材分析:1、教材的地位和作用《数列的概念与简单表示法》是“数列”一章中的重要组成部分;一方面它是前面函数知识的延伸及应用,另一方面为后面学习等差数列、等比数列的通项、求和等知识作铺垫,所以本节课在教材中起到了“承上启下”的作用;有利于学生思维拓展;况且数列是历年高考命题的热点之一,命题的方向主要是以能力考查为主,通过减少计算量,增加思维量,突出体现数列在实际生活中的应用价值。

2、教学目标知识目标:理解数列的有关概念,及通项公式的意义。

能力目标:培养学生观察、归纳、类比、联想等分析问题的能力。

情感目标:培养学生敢于实践,勇于发现,大胆探究的合作创新精神;体会数学源于生活又服务于生活;激发学习数学兴趣。

3、教学重点与难点教学重点:理解数列的概念与通项公式的意义;能根据数列前几项的特点,归纳出数列的通项公式。

教学难点:根据数列前几项的特点,归纳出数列的通项公式。

二、教法学法1、教法分析:根据主编寄语:“数学是自然的;数学是清楚的;数学是有用的”,和本节课的内容与结构以及本班学生的实际情况,本节课教学主要采用以下方法:①观察分析法:通过对生活事例的观察,引导学生的思维在“最近发展区”内,自然合理地感受到数学源于生活又服务于生活,对学习数学产生浓厚的兴趣。

②提问法:以恰时恰点的问题引导学生活动,培养问题意识,孕育创新精神。

③动手实践法:让学生通过动手实践,解决发现的问题,激发探究新知的的欲望。

④启发式法:通过不同内容的联系与启发,提高数学思维能力,培育理性精神。

2、教学媒体:多媒体平台。

3、学法分析:“动手实践,自主探究、合作交流”。

由于新课标精神在于以学生发展为本,能力培养为主,把学习的主动权还给学生。

因此,根据本节课的内容与结构,采用“动手实践、自主探究、合作交流”的学法。

三、教学过程:四、教学评价:本节课的教学设计要真正体现出学生的主体地位,以学生活动、学生探究为主,把数学与实际生活联系起来,具体说来,新课程的理念有如下体现:本节课的组织与实施,充分体现了教师的主导和学生的主体性相结合的原则;教师扮演的是组织者、引导者、参与者,学生是学习的主体,通过大量实例激发学生的学机动机和学习兴趣。

高中数学必修五2.1.1 数列的概念与简单表示法(一)

高中数学必修五2.1.1 数列的概念与简单表示法(一)

2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。

人教A版高中数学必修5第二章 数列2.1 数列的概念与简单表示法教案(1)

人教A版高中数学必修5第二章 数列2.1 数列的概念与简单表示法教案(1)

2.1.1 数列的概念与简单表示法一、教学目标(1)了解数列的概念通过实例,引入数列的概念,并理解数列的顺序性,感受数列是刻画自然规律的数学模型。

同时了解数列的几种分类。

(2)了解数列是一种特殊的函数了解数列是一类离散函数,体会数列之间的变量依赖关系,了解数列与函数之间的关系。

二、教学重点与难点(1)教学重点:了解数列的概念,以及数列是一种特殊函数,体会数列是反映自然规律的数学模型。

(2)教学难点:将数列作为一种特殊函数去认识,了解数列与函数之间的关系。

三、教学过程<1>创设情境,实例引入1、引导学生观察P26章节前的知识背景图片,构建自然现象中体现出的数的规律。

留下问题思考:你能发现下面这一列数的规律吗1,1,2.,3,5,8,13,21,34,55,89,...(我们先一起来观察一下课本P26的这幅大图,大家来数数这些花各有几片花瓣。

我们发现,第一朵花有3片花瓣,第二朵花有5片花瓣,第三朵花有8片花瓣,第四朵花有13片花瓣。

那大家来观察一下书上的那一组数:1,1,2.,3,5,8,13,21,34,55,89,...,你能发现它们有什么规律吗?带着这个问题,我们要来探讨一个有关数的新问题。

)2、引导学生观察课本P28的两幅图-三角形数与正方形数,进而引出数列的概念。

(大家都知道古希腊拥有着灿烂的文明,它的数学文化同样值得我们去探究。

古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,书本上的这两幅图正是他们所研究的一小部分,即三角形数与正方形数。

大家一起来观察一下,在三角形数这幅图中每个图形分别对应着数1,3,6,10....,而在正方形数这幅图中每个图形分别对应着数1,4,9,16...,大家能发现它们的共同特点吗?每个图形代表的数与在图中的序列号有没有什么联系呢?这样的一组数我们在数学上称之为数列。

现在我们一起来认识这个全新的概念:数列。

高中数学 人教A版必修五 2.1数列的概念与简单表示法 课件、教学设计

高中数学 人教A版必修五     2.1数列的概念与简单表示法 课件、教学设计

22 2
1,5 3
23 3
1,7 4
24 4
1,9 5
25 5
1,
∴数列{an}的一个通项公式为an=
2n 1 n
2
1 n
.
证明:由an=an-1+n(n1
(n≥2)得
1)
an-an-1=n(n1
(n≥2)
1)
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
1
1
1 1
35
2n 1
(5)0, 1 , 2 ,…, n 1, ….
23
n
其中,_______是有穷数列,_______是无穷数列,______
是递增数列,_______是递减数列,_______是摆动数列.
【审题指导】题目中给出了各个数列的表达形式,注意观察 数列的项的变化趋势与规律,注意省略号“…”及其位置, 利用数列的通项公式,紧扣数列的有关概念完成判断.
=-2n,1
an
∴ a+2n 2nan-1=0,解得an=-n± n2 1.
∵an>0,∴an= n2 -1n,n∈N*.
【典例】(12分)数列{an}的通项公式是an=n2-8n+12. (1)这个数列的第3项是多少? (2)32是不是这个数列的项?若是这个数列的项,它是第几项? (3)求an的最小值,并求此时n的值. 【审题指导】题目中给出了数列{an}的通项公式,此通项公式是 关于n的二次函数,可结合二次函数的性质及图象特点,利用方 程求解即可.
5 3 15 15
答案:19
15
6.已知数列{an}的通项公式为an=3n2-28n,则-49是否是该数

人教A版数学必修五2.1 《数列的概念与简单表示法》教案

人教A版数学必修五2.1 《数列的概念与简单表示法》教案

课题:2.1.1数列的概念与简单表示法(1)
【学习目标】1、理解数列的概念;
2、认识数列是反映自然规律的基本数学模型;
3、初步掌握数列的一种表示方法——通项公式;
【学习重点】数列及其有关概念,通项公式及其应用.
【学习难点】根据一些数列的前几项抽象、归纳数列的通项公式. 【授课类型】新授课
【教具】多媒体电脑、实物投影仪、电子白板。

,6,7,8,9,10,…②的图象与我们学过的什么函数的图象与我们学过的一次函数y=x+3的图象有关. ,31 ,4
1
,…③的图象与我们学过的什么函数的图象有关?
六、课后反思:。

高中数学必修5《数列的概念与简单表示法》教案

高中数学必修5《数列的概念与简单表示法》教案

2.1《数列的概念与简单表示法》(第1课时)普通高中课程标准实验教科书A版数学(必修5 )一、教材分析:1、教材的地位和作用《数列的概念与简单表示法》是“数列”一章中的重要组成部分;一方面它是前面函数知识的延伸及应用,另一方面为后面学习等差数列、等比数列的通项、求和等知识作铺垫,所以本节课在教材中起到了“承上启下”的作用;有利于学生思维拓展;况且数列是历年高考命题的热点之一,命题的方向主要是以能力考查为主,通过减少计算量,增加思维量,突出体现数列在实际生活中的应用价值。

2、教学目标知识目标:理解数列的有关概念,及通项公式的意义。

能力目标:培养学生观察、归纳、类比、联想等分析问题的能力。

情感目标:培养学生敢于实践,勇于发现,大胆探究的合作创新精神;体会数学源于生活又服务于生活;激发学习数学兴趣。

3、教学重点与难点教学重点:理解数列的概念与通项公式的意义;能根据数列前几项的特点,归纳出数列的通项公式。

教学难点:根据数列前几项的特点,归纳出数列的通项公式。

二、教法学法1、教法分析:根据主编寄语:“数学是自然的;数学是清楚的;数学是有用的”,和本节课的内容与结构以及本班学生的实际情况,本节课教学主要采用以下方法:①观察分析法:通过对生活事例的观察,引导学生的思维在“最近发展区”内,自然合理地感受到数学源于生活又服务于生活,对学习数学产生浓厚的兴趣。

②提问法:以恰时恰点的问题引导学生活动,培养问题意识,孕育创新精神。

③动手实践法:让学生通过动手实践,解决发现的问题,激发探究新知的的欲望。

④启发式法:通过不同内容的联系与启发,提高数学思维能力,培育理性精神。

2、教学媒体:多媒体平台。

3、学法分析:“动手实践,自主探究、合作交流”。

由于新课标精神在于以学生发展为本,能力培养为主,把学习的主动权还给学生。

因此,根据本节课的内容与结构,采用“动手实践、自主探究、合作交流”的学法。

三、 教学过程:(6分钟) (10分钟) (6分钟) (21分钟) (2分钟)“给我一张纸,我能建起一座通往月球的桥。

人教版高中必修52.1数列的概念与简单表示法教学设计

人教版高中必修52.1数列的概念与简单表示法教学设计

人教版高中必修5-2.1 数列的概念与简单表示法教学设计一、教学目标1.知道什么是数列,掌握数列的概念和序列的性质;2.掌握数列的简单表示法,并能够运用;3.能够运用数列的简单表示法解决实际问题。

二、教学内容1.数列的概念和性质;2.数列的简单表示法;3.数列的实际应用。

三、教学重难点1.数列的概念、性质和简单表示法的理解;2.数列应用题的解决。

四、教学方法1.归纳法;2.讲授法;3.实例分析法。

五、教学流程1. 导入环节1.给学生出示“$2, 4, 6, 8, 10, \\ldots$”的数字序列,让学生自愿回答这是一个什么序列,以及这个序列有哪些规律。

2.引出数列的概念和定义,通过对学生的思考和讨论形成数列的一般概念和数列的一些基本性质。

2. 正式教学1.简单数列的定义和性质:明确什么是数列、数列中元素的个数、数列中元素的含义、数列的公式表示和一些基本的性质。

2.数列的简单表示法:通项公式的定义和规律,借助一些典型的数列示例,让学生进行抽象思考,培养学生发现规律和总结规律的能力。

3.数列的实际应用:通过实际例子的引导,让学生掌握数列在实际应用中的重要性和地位,并能够运用数列的思想方法解决实际问题。

3. 巩固与拓展1.给予学生一些数列在基础知识上的练习和拓展,让学生巩固理论学习。

2.引导学生寻找数列在实际生活中的应用,并结合其它数学知识进行探究。

3.让学生通过模拟应用数列的实际场景进行实践探索,从而加深对数列概念和应用的理解。

六、教学效果评估1.在学习过程中检测学生对数列概念、性质和简单表示法的掌握情况,结合实际例子进行解析。

2.考查学生对数列实际应用的理解和掌握情况,测试学生的数列应用能力。

3.教师在课下进行综合性评估,包括平时课堂表现、课后作业及课堂练习等成果。

七、教学反思数列作为一种概念相对简单、应用非常广泛的数学工具,具有很大的实际意义和应用价值。

在此次教学中,利用合适的教学方法和教学手段,让学生在欣赏到数列优美之处的同时,也能深刻理解数学背后的知识与智慧。

人教A版数学必修五 2.1《数列的概念与简单表示法》(1)数列概念教案

人教A版数学必修五 2.1《数列的概念与简单表示法》(1)数列概念教案

河北省武邑中学高中数学 1.数列概念教案新人教A版必修5 备课人授课时间课题 2.1数列的概念与简单表示法(1)课标要求理解数列及其有关概念,掌握通项公式及其应用教学目标知识目标理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,技能目标会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。

情感态度价值观体会数学来源于生活,提高数学学习的兴趣。

重点数列及其有关概念,通项公式及其应用难点根据一些数列的前几项抽象、归纳数列的通项公式教学过程及方法问题与情境及教师活动学生活动Ⅰ.课题导入三角形数:1,3,6,10,…正方形数:1,4,9,16,25,…Ⅱ.讲授新课⒈数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式:,,,,,321naaaa,或简记为{}n a,其中na是数列的第n项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项151413121↓↓↓↓↓序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:nan1=来表学生阅读理解概念老师评价讲解1河北武中·宏达教育集团教师课时教案教学过程及方法问题与情境及教师活动学生活动⒋数列的通项公式:如果数列{}n a的第n项n a与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=nna,也可以是|21cos|π+=nan.⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数()na f n=,当自变量从小到大依次取值时对应的一列函数值。

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。

2020人教A版数学必修五2.1数列的概念与简单表示法word教案

2020人教A版数学必修五2.1数列的概念与简单表示法word教案

《斐波那契数列》教学设计一、教材分析:本节是高中数学必修5《数列》的一篇阅读思考的内容。

本节在学生已掌握数列的概念和基本表示方法的基础上,探索斐波那契数列的性质。

通过探究发现其与大自然的联系,在影视作品中的应用,以及数字特征让同学们感受数学之美,提高学习数列的兴趣,为学习等差等比数列奠定基础。

二、教学目标:进一步巩固数列的基本概念,能在具体情境中运用数列知识解决实际问题。

理解数学在实际生活中的应用,体会数学之美。

开拓视野,感受大自然的奥妙和神奇,提高创新意识和求知欲。

三、学情分析:学生已掌握数列基本概念及表示,能在具体情境中发现数列中的特殊关系。

部分学生有一定的自主学习能力,但应用意识较差,创新意识不强,需要 指导。

大部分学生能独立利用互联网或书籍查阅相关资源,解决问题并开阔视野。

四、教学策略:学生课下利用互联网或相关书籍查阅相关资源,课上分小组探究汇总,老师点评和总结。

五、教学过程:(一)新课引入同学们,我们为什么要学习数学?我认为根本原因有三个:计算、应用、兴趣。

数学是研究规律的科学,我们通过学习数学来训练我们的逻辑推理能力、思辨能力以及创造力。

但是,我们在学校里学到的数学好像没有激起我们太大的兴趣,每当同学们问起“老师,我们为什么学习圆锥曲线,没兴趣,”你们得到的答案往往是“高考要考”。

那么有没有可能,哪怕只有一节课的时间我们学习数学是因为兴趣或是数学的优美?那种感觉岂不是很棒。

我知道同学们一直没有这样的机会,今天,我们一起创造机会,让我们为了兴趣而任性一回。

我带领大家探究一个有趣的数列——斐波那契数列。

介绍人物(幻灯片)斐波那契,真实名字是列昂那多比萨,来自意大利,这个数列出自他的著作《算盘书》,这本书中,他首先将阿拉伯数字和十进制计数法引入欧洲,对欧洲数学的发展有着深远的影响。

介绍数列(幻灯片)有一对初生的小兔子(一雌一雄)一个月之后长成大兔子,再过一个月生出一对小兔子,如此规律生长,在不发生死亡的情况下,12个月后又几对兔子?分析数列(幻灯片)动画展示兔子个数的变化规律1 123 5 8 13 21 34 55 89 144 233......板书定义 前两项是1,从第三项开始每一项都等于它的前两项之和,这样的数列就叫斐波那契 数列。

人教版必修五:数列的概念与简单表示法说课稿

人教版必修五:数列的概念与简单表示法说课稿

人教版必修五:数列的概念与简单表示法说课稿§2.1.1数列的概念与复杂表示法 (第一课时)说课稿人教A版数学必修5§2.1.1数列的概念与复杂表示法 (第一课时)教材剖析:1 数列是高中数学的重要内容,也是历年高考命题的热点之一。

2 本节课有着承上启下的作用。

一方面,数列作为一种特殊的函数,与函数思想密不可分,另一方面,学习数列也为进一步学习等差数列、等比数列等外容做好预备.3 本节课有着很强的兴趣性,可以让先生体会到我们这一版教材中提到的〝数学是有用的〞。

4 教学重点、难点:重点:了解数列的概念和复杂表示法,了解数列是一种特殊函数,体会数列是反映自然规律的数学模型。

难点:将数列作为一种特殊的函数去看法,了解数列与函数之间的关系。

学情剖析:先生在之前曾经学过了函数的基本知识,但对函数、映射等知识学得并不是特别透彻。

所以能够会对数列与函数的关系看法不清,对数列的表示特别是通项公式刚接触能够会感到困惑。

教学目的:依据上述教材和学情的剖析,思索到先生已有的认知结构心思特征,我制定如下教学目的:知识目的:掌握数列的概念,了解数列的通项公式。

并经过数列与函数的比拟加深对数列的看法。

才干目的:培育先生观察、归结、类比、联想等发现规律的普通方法。

情感目的:让先生在协作学习中感受学习的乐趣。

在大胆表现中体会成功的快乐。

教法与学法剖析:教法:高中先生知识阅历已较为丰厚,具有了一定的笼统思想才干和归结推理才干,所以本节课我采用启示式、讨论式以及讲练结合的教学方法,经过效果激起先生求知欲,使先生自动参与数学实际活动,以独立思索和相互交流的方式,在教员的指点下发现、剖析和处置效果。

学法:协作学习,讨论探求。

在引导剖析时,给先生留出思索的时间,让学生去联想、探求,经过让先生协作学习,分组展现,再辅以多媒体手段,到达探求、归结的目的。

教学进程剖析:第一局部观经过让先生观察图片和视频,激起其对数列的兴味。

高中数学必修五2.1.1数列的概念与简单表示法课件人教A版

高中数学必修五2.1.1数列的概念与简单表示法课件人教A版

HONGNANJUJIAO
D典例透析
IANLITOUXI
1.对数列有关概念的理解 剖析要准确理解数列的定义,需特别注意定义中的两个关键 词:“一列数”,即不止一个数;“一定顺序”,即数列中的数是有顺序的. 同时还要注意以下五点: (1)数列中项与项之间用“,”隔开. (2)数列中的项通常用an表示,其中下标n表示项的位置序号,即an 为第n项. (3)与集合中元素的性质相比较,数列中的项也有三个性质: ①确定性:一个数在不在数列中,即一个数是不是数列中的项是 确定的.(与集合相同) ②可重复性:数列中的数可以重复.(与集合不同)如数列1,1,1,而由 1,1,1组成的集合是{1}.
第二章 数列
-1-
2.1 数列的概念与简单表示法
-2-
第1课时 数列的概念与简单表示法
-3-
第1课时 数列的概念与简单表示法
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI其简单应用. 3.理解数列与函数间的关系. 4.能根据数列的前几项写出一个通项公式.
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做3】 在数列{an}中,an=3n-1,则a2等于( A.2 B.3 C.9 D.32 答案:B
).
-10-
第1课时 数列的概念与简单表示法
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
含义 从第 2 项起,每一项都大于它的前一项的数列 从第 2 项起,每一项都小于它的前一项的数列 各项相等的数列 从第 2 项起,有些项大于它的前一项,有些项小于它 的前一项的数列

高中数学必修5《数列的概念与简单表示法》教案

高中数学必修5《数列的概念与简单表示法》教案

高中数学必修5《数列的概念与简单表示法》教案
1、数列:按照一定次序排列的一列数(与顺序有关)
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不唯一)
3、数列的表示:
(1) 列举法:如1,3,5,7,9 ;
(2) 图解法:由(n,an)点构成;
(3) 解析法:用通项公式表示,如an=2n+1
(4) 递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1
4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列
5、任意数列{an}的前n项和的性质
[点评]数列问题转化为解方程和不等式问题,注意正整数解
例4、有一数列{an},a1=a,由递推公式an+1=,写出这个数列的前4项,并根据前4项观察规律,写该数列的一个通项公式。

详见优化设计P37典例剖析之例2,解答过程略。

(理科班学生可要求通项公式的推导:倒数法)
变式:在数列{an},a1=1,an+1=,求an。

详见优化设计P37典例剖析之例1,解答过程略。

[点评]对递推公式,要求写出前几项,并猜想其通项公式,此外了解常用的处理办法,如:迭加、迭代、迭乘及变形后结合等差(比)数列公式,也很必要。

高中数学(2.1.1数列的概念与简单表示法(一))示范教案新人教A版必修5

高中数学(2.1.1数列的概念与简单表示法(一))示范教案新人教A版必修5

, …,
2 4 8 16

256
生 对折 8 次以后,纸的厚度为原来的 256 倍,其面积为原来的 分 1[]256 式 ,再折下去太
高中数学 ( 2.1.1 数列的概念与简单表示法 (一) )示范教案 新人教 A 版必修 5
高中数学 ( 2.1.1 数列的概念与简单表示法 (一) )示范教案 新人教 A 版必修 5
(5)2 , -6 ,12, -20 , 30, -42 ,
师 这里只给出数列的前几项的值, 哪位同学能写出这些数列的一个通项公式? ( 给学生一定
的思考时间
生老师,我写好了!
n
解: (1) an= 2n+ 1; (2) an=
2n
; (3) an= 1 ( 1) ;
( 2n 1)(2n 1)
2
(4) 将数列变形为 1+ 0, 2+ 1, 3+ 0,4+ 1, 5+0, 6+ 1, 7+ 0,8+ 1,…,
(2) 序号: 1
2


项分母: 2=1+1
3=2+1
3 ↓ 4=3+1
项分子: 2 2-1=(1+1) 2-1 3 2-1=(2+1) 2-1
4 2-1=(3+1) 2-1
所以我们得到了 an= (n 1) 2 或 (n 2) n ;
n1
n1
(3) 序号 : 1
2
3
4 ↓
5 2-1=(4+1) 2-
高中数学 ( 2.1.1 数列的概念与简单表示法 (一) )示范教案 新人教 A 版必修 5
二、过程与方法
1. 理论联系实际,激发学生的学习积极性 .
2. 发挥学生的主体作用,作好探究性学习;

人教课标版高中数学必修五《数列的概念与简单表示法(第1课时)》教案(1)-新版

人教课标版高中数学必修五《数列的概念与简单表示法(第1课时)》教案(1)-新版

第二章数列2.1数列的概念与简单表示法(第一课时)一、教学目标1.核心素养通过学习数列的含义和表示,初步形成基本的数学抽象和逻辑推理能力.2.学习目标(1)通过实例,了解数列的概念.(2)理解数列的通项公式,会用通项公式写出数列的任意一项.(3)通过观察简单数列,会根据前几项写出它的通项公式.3.学习重点理解数列有关概念.4.学习难点理解数列的通项公式,根据前几项写出它的通项公式.二、教学设计(一)课前设计1.课前预习任务:预习教材P29—P30.思考:数列的概念是什么?通项公式是什么?如何根据前几项写出它的通项公式?(二)课堂设计1.问题探究问题探究一、数列的含义.●观察与思考:毕达哥拉斯学派数字神秘主义的外壳里包含了理性的内核,其关于“形数”的研究,强烈地反映了他们将数化作为几何思维元素的精神.图(1)—(4)中的点分别围成了边长为4的“正三角形”、“正方形”、“正五边形”和“正六边形”,按照这种方式给出的点的个数称为边长为的正边形数,那么边长为8的正10边形数为__________.想一想:在以前的数学学习中,我们接触了哪些具体的数列?阅读与举例:请大家阅读教材中所列举的数列例子,并试着列举生活与学习中的数列例子.(鞋子尺码的转化,棋盘中数学)问一问:(1)2,4,6,8与8,6,4,2是同一个数列吗?(2)-1,1,-1,1…是一个数列吗?想一想:请大家根据以上结论,思考什么叫做数列?一般地,按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.●数列与集合的区别与联系:(1)作为一个集合的元素,必须是_________的,同样,作为一个数列的项,同样是明确的.(2)对于给定的集合,其中的元素一定是_________的.集合中的任意两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素.而数列中的项可以相同,甚至所有的项都可以是同一个数(即常数列).(3)对于给定的集合,其中的元素是不考虑__________的,而数列中的每一项都有固定的顺序,如果两个数列的项一样但项的顺序不同,那么这两个数列就不是同一个数列.●数列的分类:1.根据数列的项数的多少分类有穷数列:项数有限的数列.(如1,3,5,7是有穷数列)无穷数列:项数无限的数列.(如-1,1,-1,1…是无穷数列)2.根据项的大小变化分类递增数列:从第2项起,每一项都大于它的前一项的数列.递减数列:从第2项起,每一项都小于它的前一项的数列.常数数列:各项都相等.摆动数列:从第二项起,有些项大于它的前一项,有些项小于它的前一项.问题探究二、数列的通项公式●数列的通项公式结合上面的知识点以及数列与集合之间的联系与区别,能有如下的规律如果数列{}n a的第_________项与________之间的关系可以用一个公式来表示,那么这个公式叫作这个数列{}n a的_________.●数列通项公式与函数的关系对于数列{}n a 每一项的_________与这一项的对应关系可以看做序号集合到另一个数集的_________.由此可见,数列可以看成特殊的函数.数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.●对数列的通项公式的认识:(1)表达式n a 的两层含义①_________,②_________.(2)与所有函数关系不一定有解析式一样,并不是所有数列都有通项公式.(3)数列的通项公式在形式上不一定是唯一的.如数列0,1,0,1,0,1……,你能给出多少种不同通项公式呢?问题探究三 数列的项数、项、通项公式之间有何联系?例1、写成下面数列的一个通项公式,使它的前4项分别是下列各数.()(1);(2)11n n n n a a n n ==-⋅+ 【知识点:数列的通项公式;数学思想:特殊到一般】()()()()()()()12111; 22cos 211321; 41n n n n n n a a n n a n a n π+-+==+-=-=+详解: 点拨:在求解数列的通项公式时,需从已知条件中分析项与项之间的联系以及项与项数之间的联系,寻求合理的表达式(表达式不唯一). 例2根据下面数列{}n a 的通项公式,写出前5项:(1)n a n n a n n n ⋅-=+=)1()2(;1 【知识点:数列的项与通项公式】分析:由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项解:(1) (2) 点拨:根据通项公式求项时,需注意项数与项的对应,同时注意计算(符号)例3数列{}n a 中,452+-=n n a n . ⑴18是数列中的第几项?⑵n 为何值时,n a 有最小值?并求最小值.;65;54;43;32;21.5,4,3,2,154321======a a a a a n ;5;4;3;2;21.5,4,3,2,154321-==-====a a a a a n【知识点:数列的通项公式】详解:⑴由0145184522=--⇒=+-n n n n ,解得7=n ,∴18是数列中的第7项.⑵Q 49)25(4522--=+-=n n n a n ,+∈N n ∴2=n 或3=n 时,25242)(2min -=+⨯-=n a .点拨:在求解项中最值时,需利用函数的性质,然需注意项数是正整数.在取最值时要留心.2.课堂总结【知识梳理】(1) 数列的概念:一般地,按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2) 数列的分类:按照项数的多少与项之间的变化这两种方式分类.(3)数列的通项公式:项数与项之间的关系.【重难点突破】(1)数列中的数是按一定次序排列的,因此如果两个数列中的数相同而排列次序不同,那么它们就是不同数列.同时应注意,在数列定义中,并没有规定数列中的数必须不同.(2)数列可以看作是定义域为*N (或它的有限子集{}n ,,2,1⋯)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列,如果这个对应关系能用一个表达式表示,则这个表达式即这个数列的通项公式.3.随堂检测1.数列1,0,1,0,1,……的一个通项公式是( )A.a n =2)1(11+--n B.a n =2)1(11+-+n C.a n =21)1(--n D.a n =2)1(1n --- 【知识点:数列的通项公式;数学思想:归纳总结】解:B 将数列{21}与{2)1(1+-n }对应项相加得到的数列即是.故选B. 2.设数列11,22,5,2,……则25是这个数列的( )A.第六项B.第七项第八项 D.第九项【知识点:数列的项】解:B 可观察所给数列的通项公式是a n =13-n ,由5213=-n 得n =7 故选B.3.已知a n =n 2+n ,那么( )A.0是数列中的一项是数列中的一项C.702是数列中的一项不是数列中的一项【知识点:数列的通项公式;数学思想:一般到特殊】解:C 由n 2+n =702即n 2+n -702=0得:n =26或n =-27(舍去故选C 4.函数f (n )=2)1()1(+-n n 当自变量依次取正整数1,2,3,…,n ,…时对应的函数值,以数列形式表示为( )A.-1,1,--1,-1,1,1,-1,- C.-1,-1,1,1,-1,-1, (2)1()1(+-n n D.-1,-1,1,1,-1,-1,…,2)1()1(+-nn【知识点:数列的项,通项公式】解:D 显然数列{f (n )}为无穷数列5.已知数列{a n }的通项公式为a n =9n (32)n ,则此数列的前4项分别为______. 【知识点:数列的通项公式】解:6,8,8,964 a 1=6,a 2=8,a 3=8,a 4=964 (三)课后作业基础型 自主突破1.根据下面数列的通项公式,写出前5项:(1)n a n n a n n n ⋅-=+=)1()2(;1【知识点:数列的通项公式】解:(1);65;54;43;32;21.5,4,3,2,154321======a a a a a n (2);5;4;3;2;21.5,4,3,2,154321-==-====a a a a a n 2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7; (2)515;414,313;2122222---- ;(3)-211⨯,321⨯,-431⨯,541⨯. 【知识点:数列的项与通项公式】解:(1)12-=n a n (2)1)1(2+-=n n n a n (3))1(1)1(+-=n n a n n 3.已知数列的第1项是1,以后的各项由公式111-+=n n a a 给出,写出这个数列的前5项. 【知识点:数列的通项公式】解:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a4.已知数列{}n a 中,n a a a a a n n n (3,2,12121--+===≥3),试写出数列的前4项.【知识点:数列的通项公式】解:233,73,2,123412321=+==+===a a a a a a a a能力型 师生共研5.在数列{a n }中,,,,,c b a c bn an a n 其中+=均为正实数,则n a 与1+n a 的大小关系是( ) A .1+<n n a a B .1+>n n a a C .1+=n n a a D .不能确定【知识点:数列的通项公式,大小比较】解:答案A6.k 为正偶数,)(k p 表示等式)214121(21114131211k k k k k +++++=--++-+- 则)2(p 表示等式 ,)4(p 表示等式 .【知识点:数列的通项公式】解:)441241(24131211;2212211+++=-+-+⨯=- 7.已知数列{}n a 中,11=a ,1211+=--n n n S S S ,求{}n a 的通项公式. 【知识点:数列的通项公式与前n 项和】解:21121111+=+=---n n n n S S S S ∴⎭⎬⎫⎩⎨⎧n S 1)32)(12(2---n n ∴⎪⎩⎪⎨⎧---=3211211n n a n )2()1(≥=n n 8.已知数列{}a n :…,…,…,,,1001001002100133323122211++++++ ①求证:()12121221≥=+-+=-+n n n a a n n .②设()N n a a b n n n ∈=+11,求n b b b +++…21 【知识点:数列的通项公式】解:①由条件,()212122121+=+=+++=+++=n n n n n n n n n a n …… ∴221+=+n a n ;∴()12121221≥=+-+=-+n n n a a n n ②()()()(),214421122211++=++=++=n n n n n n b n ·∴⎪⎭⎫ ⎝⎛+-+=21114n n b n⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+++2121421114413143121421n n n b b b n ………。

高二数学人教A版必修5教学教案2-1数列的概念与简单表示法(通用)(1)Word版含解析

高二数学人教A版必修5教学教案2-1数列的概念与简单表示法(通用)(1)Word版含解析

数列之花处处盛开——数列的概念及简单表示法(教案)一、知识与技能1.理解数列有关概念、性质及数列的分类;2.掌握数列的通项公式的概念;3.了解数列和函数之间的关系,掌握数列的三种表示法;4.对于比较简单的数列,会根据其前几项写出它的通项公式。

二、过程与方法1.采用探究法,按照观察、思考、交流、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性。

三、情感态度与价值观1.通过大自然和日常生活中的大量实例,鼓励学生理论联系实际;2.激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;3.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

四、教学重点与难点重点:数列的概念,数列的表示法。

难点:根据一些数列的前几项抽象,归纳数列的通项公式。

五、教学情景设计(一)引入:1.花的花瓣数借助生动的图片,阐述兰花上有3片花瓣,苹果花上有5片花瓣。

格桑花上有8片花瓣,菊花上有13片花瓣。

紫菀花上有21片花瓣。

向日葵花上有34片花瓣。

2.树在生长过程中的各个年份的枝桠数:1,2,3,5,8,13,……3.在向日葵花盘上,种子从中心开始一直延伸到花瓣,排列成1、2、3、5、8、13、21、34、55、89、144…。

4.古希腊毕达哥拉斯学派的数学家用“三角形点阵” 1,3,6,……研究数学。

5.用正方形点阵表示,故称其为正方形数.:1,4,9,16,……6.杜甫的《绝句》两个黄鹂鸣翠柳,一行白鹭上青天。

窗含西岭千秋雪,门泊东吴万里船。

诗中出现的数字:2,1,100,100007.请列举出生活中的一列数的例子(请学生踊跃举手回答)比如某班级同学的身高: 154,177,160,175,160,148,……某文具店每天卖出的铅笔数:20,41,13,52,9,……又如细胞分裂,核裂变,中国的GDP,银行的利率,住房贷款等等都涉及到我们的数学。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省长乐第一中学高中数学必修五《2.1.1 数列的概念与简单表示
法(一)》教案
第一课时 2.1.1 数列的概念与简单表示法(一)
教学要求:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通
项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式. 教学重点:数列及其有关概念,通项公式及其应用.
教学难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.
教学过程:
一、复习准备:
1. 在必修①课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺
之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“
12”,再取一半还剩“14”,、、、、、、,如此下去,即得到1,12,14,18
,、、、、、、 2. 生活中的三角形数、正方形数.
二、讲授新课:
1. 教学数列及其有关概念:
① 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. ② 数列中排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、、、、、、排在第n 位的数称为这个数列的第n 项.
③ 数列的一般形式可以写成123,,,,,n a a a a ,简记为{}n a .
④ 数列的分类:有穷数列与无穷数列,递增数列、递减数列、常数列与摆动数列.
2. 教学数列的表示方法:
① 讨论下列数列中的每一项与序号的关系:
1,12,14,18,、、、;1,3,6,10,、、、;1,4,9,16,、、、. (数列的每一项都与序号有关,即数列可以看成是项数与项之间的函数.)
② 数列的通项公式:如果数列的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. (作用:①求数列中任意一项;②检验某数是否是该数列中的一
项.)
③ 数列的表示方法:列表法、图象法、通项公式法.
3. 例题讲解:
例、写出下面数列的一个通项公式,使它的前4项分别是下列各数:
①0.5,0.5,0.5,、、、②1,-1,1,-1,、、、(可用分段函数表示)③-1,12,-14,18
,、、、 思考:是不是所有的数列都存在通项公式?根据数列的前几项写出的通项公式是唯一的吗?
4. 小结:数列及其基本概念,数列通项公式及其应用.
三、巩固练习:
1. 练习:、根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 7, 9, 11,……;(2) 32, 154, 356, 638, 99
10, ……;(3) 0, 1, 0, 1, 0, 1,……;(4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……;(5) 2, -6, 18, -54, 162, ……. 2. 作业:教材P38页 第1①②、2题。

相关文档
最新文档