二元合金相图
第3章__二元合金相图
液相线 纯镍 熔点
1455
L+
纯铜 熔点
Ni 100
固相线
固液两相区
2、合金的结晶过程
L L
平衡结晶
形核和晶粒的长大
能量起伏 结构起伏 成分起伏
图3-17 匀晶相图合金的结晶过程
3、杠杆定律及其应用
设合金成分为ω,合金的总质量 为m,在T温度时,固相成分ωα, 液相成分ωL,对应的质量 m α , mL mL m m
mLL m m
mL bc m L ab
mL bc m ab m ac m ac m ab
T,C
T,C 1 L L+(+)+
183
L+
M
L
E
L+
N
2L+
+
Pb X3
(+ )+ (+ )+ + Ⅱ Sn
t
标注了组织组成物的相图
M
E
N
三、相图与性能的关系
1. 合金的使用性能与相图的关系
固溶体中溶质浓度↑ → 强度、硬度↑ 组织组成物的形态对强度影响很大。组织越细密,强度越高。
二、共晶相图
液相线
固相线
T,C
Pb
L+
L
L+
Sn
固溶线
+
Sn%
固溶线
铅-锡合金共晶相图
第四章-二元合金相图
G
t/s
70% Sn的过共晶合金的结晶过程分析
概括起来,过共晶合金平衡结晶过程为:
t1温度以上: 液态 L70 L
19
t1~ t2温度: 液相中析出 , t2温度时发生共晶反应: L61.9 t2温度以下: 初 Ⅱ
97.5
室温组织: 初 + Ⅱ + (+)共晶
一、相律
在恒压下,在纯固态或纯液态情况下,出现的相数 小于等于主元数。在液固共存(恒温)条件下出现 的相数小于等于主元数加一。因而,对二元合金, 固态下出现的相数为1或2,液固共存(恒温)条件 下恒温下出现的相数为2或3。
二、二元匀晶相图的分析
匀晶转变:在一定温度范围内由液相结 晶出单相的固溶体的结晶过程。 二元匀晶相图:指两组元在液态和固态 均无限互溶时的二元合金相图。 具有这类相图的合金系主要有Ni-Cu、 Cu-Au、Au-Ag、Mg-Cd、W-Mo等。
标注在温度— 成分坐标中 无限缓冷下测各 合金的冷却曲线 连接各相变点
确定各合金 的相变温度
确定相
如:0%Cu、20%Cu、40%Cu、60%Cu、80%Cu、100%Cu 六组合金。
Cu20% Cu60%Cu80% Cu Ni Cu40%
1600
1500
1400
1400 1300
L
(L+ )
T
Ni
WCu(%)
Cu
将铸件加热到低于固相线100~200℃的温 度,进行长时间保温,使偏析元素充分进行扩 散,以达到成分均匀化。
设A、B组元的熔点分别为1450℃和1080℃,它们 在液态和固态都无限互溶,则这两种组元组成的 二元相图叫作二元 相图;先结晶的固溶体 中含 组元多,后结晶的固溶体中含 组元多,这种成分不均匀现象称为 , 通过 工艺可以减轻或消除这种现 象。
二元合金相图及Fe3C相图
➢铁素体:C在α-Fe的间隙固溶体。
强度差、硬度低、塑性好
➢奥氏体: C在γ-Fe的间隙固溶体。
硬度较低、塑性较高
➢渗碳体:C与Fe的化合物(Fe3C) 硬度高、塑性差
1534℃ 1394℃ δ- Fe
γ - Fe 912℃
α- Fe 时间
δ 第二节 铁碳合金相图
1600 A L+δ
1500
B
H
1400
• 相图的局限性
➢相图只给出平衡状态的情况,而平衡状态只有 很缓慢冷却和加热,或者在给定温度长时间保 温才能满足,而实际生产条件下合金很少能达 到平衡状态。因此用相图分析合金的相和组织 时,必须注意该合金非平衡结晶条件下可能出 现的相和组织以及与相图反映的相和组织状况 的差异。
➢相图只能给出合金在平衡条件下存在的相、相 的成分和其相对量,并不能反映相的形状、大 小和分布,即不能给出合金组织的形貌状态。
QL b% c% bc Q a% b% ab QL ab Q bc
•共晶相图 Ld 恒温c e
I:
II:
0~1 L
L
温 度
II
III
I
IV
1~2 α+β L+ α
2~3
α
0
0
0
0
3~4
α+βII
A
1
L
2
1
L+α
α D 2 t1
1
B
α +β
C
III
IV
1
L+β 2
E
β
3
0~1 L
L
1~2 L+α L+ β
液相作用,形成定成分的固相转变。
材料科学基础 -二元合金相图
1、相图分析
(1)相区 单相区:L, a, b 两相区: L+a, L+ b,a+b
(2)相变线
TAP及TBP:L→a, L→b。
TAC及TBD:初生a及b结晶终了线。
CE及DF:
a
→bII,b→
a
。
II
CDP: L+ a →b。
液相线:TAPTB
固相线:TACDTB
(3)相变点 P:包晶转变点,发生包晶反应的液相成分点。
相区
单相区:L, a, b 两相区: L+a, L+ b,a+b
相变线
TAE及TBE:初生(初晶)a及b析出线 即L→a, L→b
TAM及TBN:初生a及b结晶终了线 MF及NG: a及b溶解度变化线
即a→bII,b→aII MEN: 共晶线,即L→a+b
相变点
TA及TB:纯组元A、B的熔点 M及N:a及b的最大溶解度点 F及G:a及b室温溶解度点 E:共晶点,发生共晶反应的液相成分点
问题:假定合金分别冷却到1,2,3,4温度开始结晶,获得的组织特点有何不同?
(2)晶内偏析共晶
晶内偏析共晶: 端部固溶体合金非平衡结晶时出现共晶组织
的现象。 由于晶内偏析共晶数量较少,往往以离异
共晶形式存在。 两种情况促使离异共晶形成: ►靠近极限溶解度的端部固溶体的非平衡冷却。 ►靠近极限溶解度的亚共晶合金的平衡冷却。
(3)x2合金
组织组成物:a0+ b包+aII +bII
Wa II
DF EF
Cx2 CD
100%
相 对 量
Wb II
CE Dx2 EF CD
100%
计 算
Wa0
4 第四章 相图(二元)
配制合金系中几种不同成分合金 熔化后,测试其冷却曲线 根据曲线上的转折点,确定各合金的凝固温度 将上述数据引入以温度为纵轴,成分为横轴的坐标
平面中 连接意义相同的点,作出相应的曲线 曲线将图面分成若干区域----相区。经过金相组织分 析,测出各相区所含的相,将相的名称标注其中, 相图工作就完成
4,过共晶合金
★ E点以右,D点以左,为过共晶合金,与亚 共晶合金类似,白色卵形为初晶β,黑色为共 晶体(α+β)。 ★α,β,αⅡ,βⅡ,(α+β)称组织组成物 ★α,αⅡ为一个相。(α+β)两相混合物,称共晶 体。 ★求组织组成物的相对量,同样可用杠杆定理 标明各区的组织---组织分区图
四、共晶组织和初晶形貌 1,共晶组织的形貌
测试时要求合金的成分准确,纯度高,冷却
速度要慢0.5~1.5℃/min
下面是Ni-Cu合金相图,是最简单的相图之一
Ni 1500 1400 1300 1200 1100 1000 900 20% 40% Cu Cu
80% Cu 60% Cu
Cu
Ni 20 40 60 80 Cu Cu%
2.2. 使用二元合金相图的基本方法
2 > 2 ;此时 2 -2 <0
dG<0
当α相与β相彼此平衡时,在dG=0, 同理 :------------------------------
= =
1
2
2
1
1.3. 相律
相律是分析和使用相图的重要依据。凝集态
受压力影响很小,在恒压下:相平衡条件的 数学表达式:f=c-p+1 (在物理化学中也指出) 式中C为组元数,P为共存的平衡相数,f为自 由度数。 单元系(纯金属) f=1-2+1=0,自由度为1,表 明恒温下平衡熔化或凝固。 二元系C=2,当f=0,p=3,在恒定温度下处于三 相平衡;两相共存时,自由度数目为1,表明 平衡凝固或熔化就在一定温度范围
二元合金相图4
第四章 二元合金相图
第四章 二元合金相图
Cu-Ni合金的平衡组织与枝晶偏析组织
这种结晶出的晶体与母相化学成分不同的结晶称为异分结 晶,或称选择结晶。 • (2)固溶体合金的结晶需要在一定的温度范围 • 固溶体合金的结晶需要在一定的温度范围内进行,在此温 度范围内的每一温度下,只能结晶出一定数量的固相。 • 随着温度的降低,固相的数量增加,同时固相和液相的成 分分别沿着固相线和液相线而连续地改变,直至固相的成 分与原合金的成分相同时,才结晶完成。
• 一个表象点的坐标值反
Pb + Sb
映一个给定合金的成分 Pb X1 X
Sb(X2)
和温度。
图 二元Pb-Sb合金相图
• 在相图中,由表象点所在的相区可以判定在该温 度下合金由哪些相组成。
• 二元合金在两相共存时,两个相的成分可由过表 象点的水平线与相界线的交点确定。
第四章 二元合金相图
• 2 相图的建立 • 建立相图的关键是要准确地测出各成分合金的相
图 70%Sn-Pb 合金显微组织
第四章 二元合金相图
图 铅锡合金组织分区图
第四章 二元合金相图
3.共晶组织的形态
图 层片状共晶的形成及前沿液相中原子扩散示意图 图 共晶生长的搭桥机制
第四章 二元合金相图
图 典型的共晶合金组织
第四章 二元合金相图
4.伪共晶 在非平衡凝固条件下,成分接近共晶成分的亚共晶或过 共晶合金,凝固后组织却可以全部是共晶体,称为伪共晶。 伪共晶的组织形态与共晶相同,但成分不同。 两组元熔点大致相同的,一般出现对称的伪共晶区;两 组元相差悬殊,伪共晶区偏向高熔点组元。
2.2二元合金相图
三、共晶相图:
二元共晶相图:两组元在液态时无限互溶,固态时 有限互溶,并发生共晶反应所构成的相图称为二元 共晶相图。
共晶反应:是指冷却时由液相同时结晶出两个固相 的复合混合物的反应。
共晶体:共晶反应的产物是共晶体。
共晶组织:共晶体的显微组织是共晶组织。
1、相图分析
(1)共晶点 C点-- α相+β相 (2)共晶线 ECF线-- LC恒→温αE+ ΒF
第五节 二元合金相图
相图:表示在平衡状态下,合金系的相与温度、成分之间关
系的图形。(又称状态图,平衡图)
注:
1、平衡状态是指在十分缓慢加热或冷却条件下,参与加热时 相的转变或冷却时结晶过程中的各相之间的成分及相对量,均 相对稳定所达到的一种平衡。 2、 物系为合金系的情况下,其压力通常视为定值,因此坐标 为温度和成分。
t/s
Ag%
P57图3-20 包晶合金的平衡结晶过程
概括起来,包晶合金平衡结晶过程为:
包晶温度以上: 液态 L42.4 液相线到包晶温度之间: 液态L 包晶温度(1186℃):包晶转变 L66.3 10.5 42.4 包晶温度以下: Ⅱ 室温组织: + Ⅱ
➢包晶偏析——即包晶转变不能充分进行而产生的化学成分不 均匀现象。
冷却过程中不会发生共晶反应。如图合金Ⅳ冷却至1
点时结晶出α1 相,经过2点时全部转变为α1 相,经 过3点时,开始析出βⅡ相,即
L→1 L+α1→2 α1 →3 α1+ βⅡ
同理,F点右侧的合金在冷却过程中也会有β1 相和αⅡ相生成 。最终组织为 β1+αⅡ 。
§2-4 二元包晶相图
一、二元包晶相图分析
二、匀晶相图
两组元在液态和固态均能无限互溶时,结晶时发生匀晶转变(即从 液相中结晶出成分均匀一致的固溶体)所构成的相图称为二元合金相 图。
第三章二元合金相图和二元合金的结晶
第三章⼆元合⾦相图和⼆元合⾦的结晶第三章⼆元合⾦相图和⼆元合⾦的结晶§1 概述⼀、合⾦系由⼀定数量的组元配制成的不同成分的⼀系列合⾦组成的系统,称合⾦系。
两个组元的称⼆元合⾦系,三个组元的称三元合⾦系。
例如,Cu-Ni是⼆元合⾦系,⽽Pt-Pd-Rh是三元合⾦系。
⼆、什么是合⾦相图合⾦相图是表⽰平衡状态下合⾦系的合⾦状态和温度、成分之间关系的图解。
该定义中,“平衡状态”是指⼀定条件下,合⾦⾃由能最低的稳定状态;⽽“合⾦状态”是指合⾦由哪些相组成,各相的成分及其相对含量是多少。
三、合⾦相图的作⽤利⽤合⾦相图可以了解各种成分的合⾦,在⼀定温度的平衡条件下,存在哪些相、各相的成分及其相对含量。
但它不能指出相的形状、⼤⼩和分布状况,即不能指出合⾦的组织状况。
尽管如此,如果能把相图和相变机理、相变动⼒学结合起来,那么相图便可成为分析组织形成和变化的有利⼯具,成为⾦属材料⽣产、科研的重要参考资料,因此,相图是⾦属学的重要内容之⼀。
§2⼆元合⾦相图的建⽴⼀. ⼆元合⾦相图的表⽰⽅法1.⽤平⾯坐标系表⽰⼆元合⾦系物质的状态通常由成分、温度和压⼒三个因素确定。
由于合⾦的熔炼、结晶都是在常压下进⾏的,所以,合⾦的状态可由成分和温度两个因素确定。
对于⼆元合⾦系来说,⼀个组元的浓度⼀旦确定,另⼀个组元的浓度也随之⽽定,因此成分变量只有⼀个,另⼀个变量是温度,所以⽤平⾯坐标系就可以表⽰⼆元合⾦系。
通常⽤纵坐标代表温度,横坐标代表成分。
成分多⽤重量百分⽐来表⽰。
(如图3.1所⽰),横坐标的两个端点A、B代表组成合⾦的两个组元。
2.⼆元合⾦相图中的表象点和表象线在⼆元合⾦相图中,平⾯上任意⼀点称为表象点。
其坐标值表⽰合⾦的成分和温度。
例如图中的E点表⽰合⾦由40%的B组元和60%的A组元组成,合⾦的温度为500℃。
在⼆元相图上,过合⾦成分点的垂线,称合⾦的表象线。
⼆. ⼆元合⾦相图的测定⽅法建⽴相图的⽅法有两种:实验测定和理论计算。
第三章 二元合金相图汇总
TL
TA
mCo1
1 K0 K0
exp
RX D
(2) (3)
而界面温度: Ti (TL ) x0 TA mCo / K0 (4)
若自液-固界面开始的温度梯度为G,则距界面X处液体实 际温度为
T=Ti+Gx
(5)
将(4)式代入(5)式:T=TA-mCo/K0+Gx (6)
当液体实际温度T<TL (7),产生成分过冷,成分过 冷是由于界面前沿液相中成分差别与实际温度分布两 个因素共同决定的。
在稳态凝固过程中,固溶体溶质分布方程为:
CS
K eC0
1
X L
Ke 1
其中Ke为有效分配系数,
Ke
(CS )i (CL ) B
K0
K0 (1 K 0 )e R / D
常数
式中 R:凝固速度 δ:边界层厚度 D:扩散系数
19
Ke
(CS )i (CL ) B
K0
K0 (1 K 0 )e R / D
1 4
5
10
1.晶内偏析(枝晶偏析) ·定义:晶粒内部出现的成份不均匀现象。 ·通过扩散退火或均匀化退火,使异类原子互相
充分扩散均匀,可消除晶内偏析。
11
晶内偏析(枝晶偏析)
2.影响晶内偏析的因素 a、·冷却速度 b、 元素的扩散能力 c、 相图上液相线与固相 d、线之间的水平距离
12
四、固溶体合金凝固过程中的溶质分布
1.成分过冷
①成分过冷的产生 设一个K0<1的合金Co在 圆棒形锭模中自左向右 作定向凝固,假定溶质 仅依靠扩散而混合
C
Co1
1 K0 K0
exp
二元合金相图
教学内容
1
§4.1 二元合金相图的建立
§4.1.1 名词涵义
组元:组成合金的独立的最基本的单元。一般是 一种元素(如Pb-Sn合金中的Pb和Sn) 或一种稳 定的化合物(如Fe3C) 。
合金系: 由两个或两个以上组元按不同比例配制 成的一系列不同成分的合金(如Pb-Sn系,FeFe3C 系) 。
相图:用来表示合金系中各个合金的结晶过程的 简明图。
成分不均匀 组织不均匀 性能不均匀
富Ni区 富Cu区
18
§4.2.2 共晶相图 1. 相图分析
Pb-Sn合金相图
一定成分的均匀液相, 在一定温度下,从液相 中同时结晶出两种不同 固相的转变称为共晶转 变。所生成的两相混合 物叫共晶体。水平线ced 为共晶反应线。
L
19
共晶相图:两组元液态时彼此无限 互溶,固态下彼此部分固溶,并发 生共晶转变的合金系形成的相图。
Q0
ac
Qa a% ab
Q0
ac
运用杠杆定律时注意,它只适用于相图中的两相 区,并且只能在平衡状态下使用。
杠杆定律的应用: ①确定某一温度下两平衡相的成分; ②确定某一温度下两平衡相的相对量。
16
4. 非平衡结晶与枝晶偏析
实际金属的结晶主要以树枝状长大:这是由于当冷却 速度较大,特别是存在有杂质时,晶体与液体界面的 温度会高于近处液体的温度,形成负温度梯度,且晶 核棱角处的散热条件好,生长快,先形成一次轴,一 次轴又会产生二次轴……,树枝间最后被填充。
α固溶体中Sn 的溶解度极限曲线;
•
dg , Pb在Sn中溶解度线,或称β相的固溶线;
•
β固溶体中Pb的溶解度极限曲线。
20
④相区: 三个单相区: L、α、β(α、β是有限固溶体)
第6章 二元合金相图
3.2.3 固溶体合金的结晶与纯金属结晶的异同
(1) 相同点 ✓ 基本过程相同:形核-长大; ✓ 热力学条件相同:⊿T>0,存在过冷度;(目的何在?) ✓ 能量条件相同:能量起伏;(作用何在?) ✓ 结构条件相同:结构起伏。(作用何在?)
(2) 不同点 ✓ 纯金属有固定的熔点,恒温结晶,合金在一个温度范围内 结晶; ✓ 固溶体合金的平衡结晶存在溶质原子重新分配和均匀化; ✓ 合金结晶是异分结晶,需成分起伏。
C
%
ED CD
97.5 61.9 97.5 19.2
45.5%
D %
CE CD
61.9 97.5
19.2 19.2
54.5%
4.2.3 亚共晶合金的ห้องสมุดไป่ตู้衡结晶
II 1 E 2
3
亚共晶合金: 成分在共晶点E以左、C点以右(即Sn: 19.2 ~ 61.9%)的合金称 为亚共晶合金。亚共晶合金发生共晶转变之前,先进行匀晶 转变(L→α), 匀晶转变剩余的液相再进行共晶转变。
二元系相图简介
二元相图仅考虑体系在成分、温度两个变量下的热力学 平衡状态,表示了在缓冷条件下不同成分合金的组织随温度 变化的规律。
二元相图是制订熔炼、铸造、热加工及热处理工艺的重 要依据,是研究相与温度、成分之间关系的有力工具
二元相图中的成分可用质量分数和摩尔分数表示
质量分数(重量百分数)wt.% 摩尔分数(原子百分数)at.%
① 杠杆定律只能在平衡状态下使用。 ② 杠杆定律只适用于相图中的两相区。 ③ 杠杆的两个端点为给定温度时两相的成分点,
支点为合金的成分点。
第3节 二元匀晶相图
3.1 相图分析
两组元在液态和固态下均 无限互溶时所构成的相图称二 元匀晶相图。
第四篇__二元合金相图
固溶体合金在平衡结晶过程中,固相成分 沿固相线变化,液相成分沿液相线变化
α
匀晶转变的特点
➢合金在一定温度范围内结晶; ➢在合金结晶过程中,先结晶出的固相和剩余液
相的成分都与原来合金的成分不同,它们分别 沿着固相线和液相线变化。
➢结论:两相区中,相互处于平衡状态的两个
非常稳定。
它们的合理存在,可有效地提高钢的强度、 热强性、红硬性和耐磨性,是高合金钢和硬 质合金中的重要组成相。
间隙化合物
形成条件:非金属原子半径与金属原子半
径之比大于0.59时,具有复杂结构。如钢中的 Fe3C、Cr23C6、Fe4W2C、Cr7C3、Mn3C等。
特点:具有很高的熔点和硬度, 但比间隙相
第四章 二元合金
内容简介
本章介绍合金相结构和组织的基本概念、 二元合金相图的建立过程和分析相图的基本 方法,以及二元相图与合金性能之间带规律 性的一些关系。
重点掌握合金相结构,并学会分析二元 合金相图。
关于合金的基本概念
➢合金:一种金属元素同另一种或几种元素(k
可以是金属,也可以是非金属), 通过熔化或 其它方法结合在一起所形成的具有金属特性 的物质。
况,包括相的种类和相对量。
➢组织:在显微镜下所观察到的,具有一定大
小、形状和分布的金属内部的微观形貌。
➢在金属或合金中,由于形成的条件不同,各
种相将以不同的数量、形状、大小相互结合, 因此,在显微镜下,可以看到金属或合金具 有各种不同的组织。
➢合金的组织状态:合金在一定条件下,由哪
几个组织组成,以及它们的相对量。
2、间隙固溶体(interstitial solid solution) 溶质原子溶入溶剂晶格的间隙而形成的固溶体
二元合金相图
⑵ 杠杆定律
处于两相区的合金,不仅由相图可知道两平衡相的 成分,还可用杠杆定律求出两平衡相的相对重量。
① 确定两平衡相的成分:设合金成分为x,过x做成
分垂线。在成分垂线相当 以Cu-Ni合金为例推导杠杆定律
于温度t 的o点作水平线,
其与液固相线交点a、b所 t
对应的成分x1、x2即分别
为液相和固相的成分。
二元合金相图
合金的结晶过程比纯金属复杂,常用相图进行分析。 相图是用来表示合金系中各合金在缓冷条件下结晶过程
的简明图解,又称状态图或平衡图。
合金系是指由两个或两个以上元素按不同比例配制 的一系列不同成分的合金。
组元是指组成合金的最简
单、最基本、能够独立存
L
在的物质。
温度(℃)
多数情况下组元是指组成 合金的元素。但对于既不 发生分解、又不发生任何 反应的化合物也可看作组 元, 如Fe-C合金中的Fe3C。
在分D和的相两G的一固机P区相线液定溶b械在:区分相温体混:别SL同度,合n、为L时下中形物+,结S的成、:n、由晶固这在L;出一溶两+P三两定b线个、中个成个。相+
固成固低溶线相分;而体C的和一下的EL转结DE个降溶。⇄变构三。解(称都相度C不作区随+ 相共:温D同晶)即度的转水降新变平
或共晶反应。
L
这种从液相中结晶出单一固相的 转变称为匀晶转变或匀晶反应。
成分变化是通过原子扩散完成的。当合金冷却到t3 时,最后一滴L3成分的液体也转变为固溶体,此时 固溶体的成分又变 回到合金成分3上 来。
液固相线不仅是相 区分界线,也是结晶 时两相的成分变化 线;匀晶转变是变 温转变。
(2) 枝晶偏析
合金的结晶只有在缓慢冷却 条件下才能得到成分均匀的 固溶体。但实际冷速较快, 结晶时固相中的原子来不及 扩散,使先结晶出的枝晶轴 含有较多的高熔点元素(如 Cu-Ni合金中的Ni), 后结晶 的枝晶间含有较多的低熔点 元素(如Cu-Ni合金中的Cu)。
二元合金相图
相:凡成分相同、结构相同并与其它部分有界面分开的物质均匀 组成部分,称之为相。
相图:相图又称为状态图,它是表示体系的成分、外界环境和组 成相与相之间的平衡关系的几何图形。它是研究材料组织变 化规律的重要参考工具。外界环境主要是温度和压力,例如 物理学中已经介绍的纯水和纯铁的相图。
二元合金相图
二元合金相图
组织特点
当两个固相都是金属性较强相时,共晶体一般生长成层片 状。当两相的相对数量比相差悬殊时,在界面能的作用下,数 量较小的相将收缩为条、棒状,更少时为纤维状,甚至为点 (球)状。
当有一相或两相都具有较强的非金属性时,它们表现出较强 的各向异性,不同方向的生长速度不同,并且有特定的角度关 系,同时生长过程要求的动态过冷度也有差异,往往有一个相 在生长中起主导作用,决定了两相的分布,共晶体的形态也具 有独特性,这时常见的形态有针状、骨肋状(鱼骨状)、蜘蛛网状、 螺旋状等。
L → L+α → α初+(L+α+β)→ (α初+ βII)+(α+β)共
二元合金相图
相对量的计算
组织组成物
wa
2C EC
100%, wa b
E2 EC
100%
相组成物
wa
2F EF
100%, wb
E2 EF
100%
二元合金相图
二元合金相图
四、共晶合金非平衡凝固
1、伪共晶 在共晶点附近非共 晶成分的合金在快速冷却时,少 量初生相的析出未进行就被冷却 到共晶温度以下,直接发生共晶 转变,可以得到全部的共晶体组 织,这种组织称为伪共晶。它们 的形貌和共晶体没有明显的差别, 仅内部两相的数量比有觉察不到 差别。
材料科学基础第五章二元合金相图
第五章二元合金相图第一节相图的基本知识一. 相律相图:研究合金在平衡的条件下,(无限缓慢冷却)合金的状态与温度、成分间的关系的图解称为相图或平衡图。
组元:组成合金的基本物质。
包括:单个元素或金属化合物如: Fe-C合金组元Fe、Fe3CCu-Ni合金组元Cu、Ni合金系:指研究的对象。
如:Fe-C系,Pb-Sn系等。
状态:指合金在一定条件下有那几项组成,称为合金在该条件下的状态。
如:水在零度时的状态是水和冰两项共存,在零度以上为水,在零度以下为固相冰。
组织:合金中的相以不同的大小、形状、分布组成为组织。
如:珠光体是由F和Fe3C组成的组织。
(二)相律(恒压状态下)系统平衡:如果某组元在各相中的化学位相同,那么就没有物质的迁移现象,系统处于平衡状态。
相律:处于平衡状态的合金,保持相数不变的条件下,独立可变的,且影响和金状态的内、外部因素的数目。
数学表达式:f=C-P+1(恒压)f 为系统的自由度数(系统中独立可变因素);C系统的组元;P相数实例:1.纯金属—正在结晶时相数不变(P=2)f=02.二元合金--正在结晶时两相平衡,(P=2)若温度独立可变(T1 T2)则两相的成分随之变化(T1:L I αH)⑩(T2:L M αN)反之相成分独立可变,温度随之而变f=1正在结晶时三相平衡(P=3)T=T C相成分温度、均不可变f=0图5-2错误二元相图图5-1二元相图应用:(1)确定平衡系中的最大平衡相数(2)判断相图正确与否(3)分析合金的平衡结晶二、二元合金相图的表示方法横坐标表示成分A%+B%=100%纵坐标表示温度C点(表象点)成分:30%Sb,70%Bi温度:450三、二元相图的建立(Cu-Ni系以匀晶相图为例)图5-3 二元相图的表示方法(一)用热分析方法建立相图。
1)配制不同成分的合金( T mA > T Mb)(1)100%Cu,0%Ni (2)70%Cu,30%Ni (3)50%Cu,50%Ni(4)30%Cu,70%Ni (5)0%Cu,100%Ni2)熔化后作各合金的冷却曲线(T-t)3)将各T-t曲线上、下各临界点投影到温度-成分坐标系中4)连接同类型的临界点即得到Cu-Ni二元相图。
二元合金相图
第二章二元合金相图纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。
合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。
合金相图正是研究这些规律的有效工具。
一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有金属特性的物质叫做合金。
其中组成合金的独立的、最基本的单元叫做组元。
组元可以是金属、非金属元素或稳定化合物。
由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。
二元以上的合金称多元合金。
合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。
合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。
利用相图可以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。
掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。
在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。
本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。
2.1 合金中的相及相图的建立在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成部分叫做相。
液态物质为液相,固态物质为固相。
相与相之间的转变称为相变。
在固态下,物质可以是单相的,也可以是由多相组成的。
由数量、形态、大小和分布方式不同的各种相组成合金的组织。
组织是指用肉眼或显微镜所观察到的材料的微观形貌。
由不同组织构成的材料具有不同的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章二元合金相图纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。
合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。
合金相图正是研究这些规律的有效工具。
一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有金属特性的物质叫做合金。
其中组成合金的独立的、最基本的单元叫做组元。
组元可以是金属、非金属元素或稳定化合物。
由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。
二元以上的合金称多元合金。
合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。
合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。
利用相图可以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。
掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。
在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。
本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。
2.1 合金中的相及相图的建立在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成部分叫做相。
液态物质为液相,固态物质为固相。
相与相之间的转变称为相变。
在固态下,物质可以是单相的,也可以是由多相组成的。
由数量、形态、大小和分布方式不同的各种相组成合金的组织。
组织是指用肉眼或显微镜所观察到的材料的微观形貌。
由不同组织构成的材料具有不同的性能。
如果合金仅由一个相组成,称为单相合金;如果合金由二个或二个以上的不同相所构成则称为多相合金。
如含30%Zn 的铜锌合金的组织由α相单相组成;含38%Zn 的铜锌合金的组织由α和β相双相组成。
这两种合金的机械性能大不相同。
合金中有两类基本相:固溶体和金属化合物。
2.1.1 固溶体与复杂结构的间隙化合物2.1.1.1 固溶体合金组元通过溶解形成一种成分和性能均匀的、且结构与组元之一相同的固相称为固溶体。
与固溶体晶格相同的组元为溶剂,一般在合金中含量较多;另一组元为溶质,含量较少。
固溶体用α、β、γ等符号表示。
A 、B 组元组成的固溶体也可表示为A(B ),其中A 为溶剂,B 为溶质。
例如铜锌合金中锌溶入铜中形成的固溶体一般用α表示,亦可表示为Cu (Zn )。
图2.1 置换与间隙固溶体示意图⑴固溶体的分类①按溶质原子在溶剂晶格中的位置(如图2.1)分为:⎩⎨⎧--的间隙之中;溶质原子进入溶剂晶格间隙固溶体格某些结点上的原子;溶质原子代换了溶剂晶置换固溶体②按溶质原子在溶剂中的溶解度(固溶度)(溶质在固溶体中的极限浓度)分为:⎩⎨⎧--(可达100%);溶质可以任意比例溶入无限固溶体相生成;溶质超过溶解度即有新有限固溶体③按溶质原子的分布规律:⎩⎨⎧--溶质原子无规则分布;无序固溶体溶质原子有规则分布;有序固溶体有序化-在一定条件(如成分、温度等)下,一些合金的无序固溶体可变为有序固溶体。
⑵影响固溶体类型和溶解度的主要因素影响固溶体类型和溶解度的主要因素有组元的原子半径、电化学特性和晶格类型等。
原子半径、电化学特性接近、晶格类型相同的组元,容易形成置换固溶体,并有可能形成无限固溶体。
当组元原子半径相差较大时,容易形成间隙固溶体。
间隙固溶体都是有限固溶体,并且一定是无序的。
无限固溶体和有序固溶体一定是置换固溶体。
⑶固溶体的性能固溶体随着溶质原子的溶入晶格发生畸变。
对于置换固溶体,溶质原子较大时造成正畸变,较小时引起负畸变(见图2.2)。
形成间隙固溶体时,晶格总是产生正畸变。
晶格畸变随溶质原子浓度的增高而增大。
晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。
这种随溶质原子浓度的升高而使金属强度和硬度提高的现象称为固溶强化。
固溶强化是金属强化的一种重要 图2.2 晶格正、负畸变示意图形式。
在溶质含量适当时可显著提高材料的强度和硬度,而塑性和韧性没有明显降低。
例如,纯铜的σ为 220MPa,硬度为 40HB,断面收缩率ψ为70%。
当加入 1%镍形成单相固b溶体后,强度升高到 390MPa,硬度升高到70HB,而断面收缩率仍有50%。
所以固溶体的综合机械性能很好,常常被用作为结构合金的基体相。
固溶体与纯金属相比,物理性能有较大的变化,如电阻率上升,导电率下降,磁矫顽力增大等等。
2.1.1.2 复杂结构的间隙化合物合金组元相互作用形成的晶格类型和特性完全不同于任一组元的新相即为金属化合物,或称中间相。
金属化合物一般熔点较高,硬度高,脆性大。
合金中含有金属化合物时,强度、硬度和耐磨性提高,而塑性和韧性降低。
金属化合物是许多合金的重要强化相。
金属化合物有许多种,其中较常用的是具有复杂结构的间隙化合物(当非金属原子半径与金属原子半径之比大于0.59时形成的)。
如钢中的C,其中Fe原子可以部分地被Mn、Cr、Mo、WFe3等金属原子所置换,形成以间隙化合物为基的固溶体,如Fe(、C)等。
复杂结构的间隙Cr3化合物具有很高的熔点和硬度,在钢中起强化作用,是钢中的主要强化相。
2.1.2 相图概述前面已经简述过,合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系,是了解合金中各种组织的形成与变化规律的有效工具。
进而可以研究合金的组织与性能的关系。
何为合金系呐?两组元按不同比例可配制成一系列成分的合金,这些合金的集合称为合金系,如铜镍合金系、铁碳合金系等。
我们即将要研究的相图就是表明合金系中各种合金相的平衡条件和相与相之间关系的一种简明示图,也称为平衡图或状态图。
所谓平衡是指在一定条件下合金系中参与相变过程的各相的成分和相对重量不再变化所达到的一种状态。
此时合金系的状态稳定,不随时间而改变。
合金在极其缓慢冷却条件下的结晶过程,一般可认为是平衡结晶过程。
在常压下,二元合金的相状态决定于温度和成分。
因此二元合金相图可用温度-成分坐标系的平面图来表示。
我们先来认识一下相图。
图2.3为铜镍二元合金相图,它是一种最简单的基本相图。
横坐标表示合金成分(一般为溶质的质量百分数),左右端点分别表示纯组元(纯金属)Cu和Ni,其余的为合金系的每一种合金成分,如C点的合金成分为含Ni20%,含Cu80%。
坐标平面上的任一点(称为表象点)表示一定成分的合金在一定温度时的稳定相状态。
例如,A点表示,含30%Ni的铜镍合金在1200℃时处于液相(L)+α固相的两相状态;B点表示,含60%Ni的铜镍合金在1000℃时处于单一α固相状态。
2.1.3 相图的建立过程合金发生相变时,必然伴随有物理、化学性能的变化,因此测定合金系中各种成分合金的相变的温度,可以确定不同相存在的温度和成分界限,从而建立相图。
图2.3 Cu-Ni合金相图常用的方法有热分析法、膨胀法、射线分析法等。
下面以铜镍合金系为例,简单介绍用热分析法建立相图的过程。
⑴配制系列成分的铜镍合金。
例如:合金Ⅰ:100%Cu;合金Ⅱ:75%Cu+25%Ni;合金Ⅲ:50%Cu+50%Ni;合金Ⅳ:25%Cu+75%Ni;合金Ⅴ:100%Ni。
⑵合金熔化后缓慢冷却,测出每种合金的冷却曲线,找出各冷却曲线上的临界点(转折点或平台)的温度。
如图2.4。
⑶画出温度—成分坐标系,在各合金成分垂线上标出临界点温度。
⑷将具有相同意义的点连接成线,标明各区域内所存在的相, 即得到Cu -Ni 图2.4 Cu-Ni 合金冷却曲线及相图建立合金相图。
(图2.4)。
铜镍合金相图比较简单,实际上多数合金的相图很复杂。
但是,任何复杂的相图都是由一些简单的基本相图组成的。
下面介绍几个基本的二元相图。
2.1.4 二元合金的杠杆定律由相律可知,二元合金两相平衡时,两平衡相的成分与温度有关,温度一定则两平衡相的成分均为确定值。
确定方法是:过该温度时的合金表象点作水平线,分别与相区两侧分界 线相交,两个交点的成分坐标即为相应的两平衡相成分。
例如图2.5中,过b 点的水平线与相区分界线交于a 、c 点,a 、c 点的成分坐标值即为含Ni b %的合金1T 时液、固相的平衡成分。
含Ni b %的合金在1T 温度处于两相平衡共存状态时,两平衡相的相对质量也是确定的。
见图2.5,表象点b 所示合金含Ni b %,1T 时液相L (含Ni a %)和α固相(含Ni c %)两相平衡共存。
设该合金质量为 Q ,液相、固相质量为L Q 、αQ ,显然,由质量平衡:合金中Ni的质量等于液、固相中Ni 质量之和,即: 图2.5 杠杆定律的证明及力学比喻 %%%c Q a Q b Q L ⋅+⋅=⋅α;合金总质量等于液、固相质量之和,即:αQ Q Q L+=;二式联立得:=⋅+%)(b Q Q L α%%c Q a Q L⋅+⋅α;化简整理后得: ab bc b a c b Q Q L=--=%%%%α或bc Q ab Q L⋅=⋅α 因该式与力学的杠杆定律(如图 2.5)相同,所以我们把bc Q ab Q L ⋅=⋅α称为二元合金的杠杆定律。
杠杆两端为两相成分点LQ 、αQ ,支点为该合金成分点b %。
利用该式,还可以推导出合金中液、固相的相对质量的计算公式,如下:设液、固相的相对质量分别为L w 、αw ,即L w Q Q L =、αw Q Q α=;将ab bc Q Q L =α两端加1得11+=+ab bc Q Q Lα,即ab ac ab ab bc Q Q Q Q Q L =+==+ααα。
则αw =ac ab ;用1减去该式两端得: 1-αw =ac ab-1即L w =ac bcac ab ac =-必须指出,杠杆定律只适用于相图中的两相区,即只能在两相平衡状态下使用。
2.2 匀晶相图两组元在液态无限互溶,在固态也无限互溶,冷却时发生匀晶反应的合金系,称为匀晶系并构成匀晶相图。
例如NiFe-、AgCu-、CrAu-合金相图等。
现以NiCu-合金相图为例,对匀晶相图及其合金的结晶过程进行分析。
2.2.1 相图分析Cu-相图(见图2.3)为典型的匀晶相图。
图中acb线为液相线,该线以上合金处Ni于液相;adb线为固相线,该线以下合金处于固相。
液相线和固相线表示合金系在平衡状态下冷却时结晶的始点和终点以及加热时熔化的终点和始点。
L为液相,是Cu和Ni形成的液溶体;α为固相,是Cu和Ni组成的无限固溶体。