线性代数试题库(1)答案
线性代数试题库(1)答案
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C )A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫ ⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数试题1及答案
线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。
线性代数试题库(1)答案 (2)
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C )A .A+B B .aA+BC .aA+bBD .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C ) A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数复习题部分参考答案
线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
线性代数试题及答案
线性代数试题及答案线性代数(试卷⼀)1、填空题(本题总计20分,每⼩题2分)1. 排列7623451的逆序数是。
2. 若,则3. 已知阶矩阵、和满⾜,其中为阶单位矩阵,则。
4. 若为矩阵,则⾮齐次线性⽅程组有唯⼀解的充分要条件是_________5. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性⽅程组的解空间维数为__2___________。
6. 设A为三阶可逆阵,,则7.若A为矩阵,则齐次线性⽅程组有⾮零解的充分必要条件是8.已知五阶⾏列式,则9. 向量的模(范数)。
10.若与正交,则⼆、选择题(本题总计10分,每⼩题2分)1. 向量组线性相关且秩为s,则(D)A.B.C.D.2. 若A为三阶⽅阵,且,则(A)A.B.C.D.3.设向量组A能由向量组B线性表⽰,则( d )A.B.C.D.4. 设阶矩阵的⾏列式等于,则等于。
c5. 设阶矩阵,和,则下列说法正确的是。
则 ,则或三、计算题(本题总计60分。
1-3每⼩题8分,4-7每⼩题9分)1. 计算阶⾏列式。
2.设A为三阶矩阵,为A的伴随矩阵,且,求.3.求矩阵的逆4. 讨论为何值时,⾮齐次线性⽅程组①有唯⼀解;②有⽆穷多解;③⽆解。
5. 求下⾮齐次线性⽅程组所对应的齐次线性⽅程组的基础解系和此⽅程6.已知向量组、、、、,求此向量组的⼀个最⼤⽆关组,并把其余向量⽤该最⼤⽆关组线性表⽰.7. 求矩阵的特征值和特征向量.四、证明题(本题总计10分)设为的⼀个解,为对应齐次线性⽅程组的基础解系,证明线性⽆关。
(答案⼀)、填空题(本题总计20分,每⼩题 2 分)15;2、3;3、;4、;5、2;6、;7、;8、0;9、3;10、1。
.⼆、选择题(本总计 10 分,每⼩题 2分 1、D;2、A;3、D;4、C;5、B、计算题(本题总计60分,1-3每⼩题8分,4-7他每⼩题9分)1、解: ------3分-------6分----------8分此题的⽅法不唯⼀,可以酌情给分。
线性代数试题库(1)答案(2)
2 .设A 是数域F 上m X n 矩阵,则齐次线性方程组A .当m < n 时,有非零解B .当m > n 时,无解 零解 AX=O ( A )C .当m=n 时,只有零解D .当m=n 时,只有非3.在n 维向量空间V 中,如果「弋壬L (V ,关于V 的一个基{%,•••,□.}的矩阵分别为A ,B.那么对于 a ,b 亡 F ,a cr +b T 关于基{%,•••,«B. aA+BC . aA+bBD . A+Bb4.已知数域F 上的向量a 1,5,5 线性无关,下列不正确的是( D )中必有一个向量是其余向量的线性组合。
二.填空题(3X10=30分)I X 1 + X2 + X 3 = 0k= (-1或3)时,齐次线性方程组{ 3X 1、-X 2 +kX 3 =0有非零解I 2少^, + X 2 + k X 3 = 0a iH0,B=(b i ,b 2,b 3)H 0,则秩(AB )%( 1)。
〔丄丄丄、3.向量(X ,y ,Z )关于基(0,1/2, 0),(1/3, 0, 0),(0, 0,1/4)的坐标为 V?^,:丿线性代数试题库(1)答案、选择题: 1.n 阶行列式 (3X 7=21 分) D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是(C )A . A ij =M ijA ij =(-1) n M ij Co A ij =(-1)i *M ij D 。
A ij =-M ij n }的矩阵是(C )A . A+B1,52, A %,a 2线性无关B . Ct 2,(X 3线性无关C . a 3,5线性无关D . a 1,5035. R n中下列子集,哪个不是子空间(Cn{(印,…,an)|a^ R,i =1;" , n 且2 a^0}C . n{( ar" , a n ) | a ^ R, i =1,…,n 且S a i=1}D . {0}6.两个二次型等价当且仅当它们的矩阵( A 。
线性代数试题及答案
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n)(C *-A kn 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
线性代数试题库(1)答案
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij 2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A )A . 当m < n 时,有非零解B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C )A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ 二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数试题及答案
线性代数试题及答案 线性代数是数学的重点知识,多进⾏试题练习提⾼⾃⼰的能⼒。
以下是由店铺整理线性代数试题及答案,希望⼤家喜欢! 线性代数试题及答案(⼀) 说明:在本卷中,AT表⽰矩阵A的转置矩阵,A*表⽰矩阵A的伴随矩阵,E表⽰单位矩阵。
表⽰⽅阵A的⾏列式,r(A)表⽰矩阵A的秩。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分) 在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错癣多选或未选均⽆分。
1.设3阶⽅阵A的⾏列式为2,则 ( )A.-1B. C. D.1 2.设则⽅程的根的个数为( )A.0B.1C.2D.3 3.设A为n阶⽅阵,将A的第1列与第2列交换得到⽅阵B,若则必有( ) A. B. C. D. 4.设A,B是任意的n阶⽅阵,下列命题中正确的是( ) A. B. C. D. 5.设其中则矩阵A的秩为( )A.0B.1C.2D.3 6.设6阶⽅阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.10 8.已知线性⽅程组⽆解,则数a=( ) A. B.0 C. D.1 9.设3阶⽅阵A的特征多项式为则 ( )A.-18B.-6C.6D.18 10.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3 ⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分) 请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
11.设⾏列式其第3⾏各元素的代数余⼦式之和为__________. 12.设则 __________. 13.设A是4×3矩阵且则 __________. 14.向量组(1,2),(2,3)(3,4)的'秩为__________. 15.设线性⽆关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表⽰,则r与s的关系为__________. 16.设⽅程组有⾮零解,且数则 __________. 17.设4元线性⽅程组的三个解α1,α2,α3,已知则⽅程组的通解是__________. 18.设3阶⽅阵A的秩为2,且则A的全部特征值为__________. 19.设矩阵有⼀个特征值对应的特征向量为则数a=__________. 20.设实⼆次型已知A的特征值为-1,1,2,则该⼆次型的规范形为__________. 三、计算题(本⼤题共6⼩题,每⼩题9分,共54分) 21.设矩阵其中均为3维列向量,且求 22.解矩阵⽅程 23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和⼀个极⼤⽆关组. 24.设3元线性⽅程组 , (1)确定当λ取何值时,⽅程组有惟⼀解、⽆解、有⽆穷多解? (2)当⽅程组有⽆穷多解时,求出该⽅程组的通解(要求⽤其⼀个特解和导出组的基础解系表⽰). 25.已知2阶⽅阵A的特征值为及⽅阵 (1)求B的特征值; (2)求B的⾏列式. 26.⽤配⽅法化⼆次型为标准形,并写出所作的可逆线性变换. 四、证明题(本题6分) 27.设A是3阶反对称矩阵,证明|A|=0. 线性代数试题及答案(⼆)【线性代数试题及答案】。
线性代数试题库
题号
一
二
三
四
五
六
总分
得分
评卷人
一、选择题:(3X5=15 分)
1.n 阶行列式 D 的元素 a ij 的余子式 M ij 与 a ij 的代数余子式 A ij 的关系 是( C )
A . A ij =M ij
B。 A ij =(-1)
M n ij
C。A ij =(-1) i
M j ij
D。 A ij =-M ij
22
1,1 T 分别单位化,得 1
T
22
,
,
22
3.设二次型 f ( x1 , x2 , x3 )
x12
2
x
2 2
5x32
2x1 x2
2x1 x3
6x2x3 ,回答下列问题:
(1)将它化为典范型。
(2)二次型的秩为何?
(3)二次型的正、负惯性指标及符号差为何?
(4)二次型是否是正定二次型?
( 10 分)
线性代数试题库( 1)答案
题号
一
二
三
四
五
六
总分
得分
评卷人
一、选择题:(3×7=21 分) 1.n 阶行列式 D 的元素 a ij 的余子式 M ij 与 a ij 的代数余子式 A ij 的关系是( C )
A . A ij =M ij B。 A ij =(-1) n M ij C。A ij =(-1) i j M ij D。A ij =-M ij 2.设 A 是数域 F 上 m x n 矩阵,则齐次线性方程组 AX=O ( A ) A . 当 m < n 时,有非零解 B.当 m > n 时,无解 C.当 m=n 时,只有零解 D.当 m=n 时,只有非零解 3.在 n 维向量空间 V 中,如果 , L(V )关于 V 的一个基 { 1 , , n } 的矩阵分别为 A ,B.那么对于 a,b F,
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
线性代数试题及答案
线性代数(试卷一)1、 填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是。
2. 若,则3. 已知阶矩阵、和满足,其中为阶单位矩阵,则。
4. 若为矩阵,则非齐次线性方程组有唯一解的充分要条件是_________5. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A为三阶可逆阵,,则7.若A为矩阵,则齐次线性方程组有非零解的充分必要条件是8.已知五阶行列式,则9. 向量的模(范数)。
10.若与正交,则二、选择题(本题总计10分,每小题2分)1. 向量组线性相关且秩为s,则(D)A. B.C. D.2. 若A为三阶方阵,且,则(A)A. B.C. D.3.设向量组A能由向量组B线性表示,则( d )A. B.C. D.4. 设阶矩阵的行列式等于,则等于。
c5. 设阶矩阵,和,则下列说法正确的是。
则 ,则或三、计算题(本题总计60分。
1-3每小题8分,4-7每小题9分)1. 计算阶行列式。
2.设A为三阶矩阵,为A的伴随矩阵,且,求.3.求矩阵的逆4. 讨论为何值时,非齐次线性方程组①有唯一解;②有无穷多解;③无解。
5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。
6.已知向量组、、、、,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示.7. 求矩阵的特征值和特征向量.四、证明题(本题总计10分)设为的一个解,为对应齐次线性方程组的基础解系,证明线性无关。
(答案一)、填空题(本题总计20分,每小题 2 分)15;2、3;3、;4、;5、2;6、;7、;8、0;9、3;10、1。
.二、选择题(本总计 10 分,每小题 2分 1、D;2、A;3、D;4、C;5、B、计算题(本题总计60分,1-3每小题8分,4-7他每小题9分)1、解: ------3分-------6分----------8分此题的方法不唯一,可以酌情给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C ) A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫⎝⎛b b b B a a a ,则秩(AB )为(1)。
⎪⎭⎫ ⎝⎛41,21,313.向量(x ,y ,z )关于基(0,1/2,0),(1/3,0,0),(0,0,1/4)的坐标为 。
4.设向量空间F 2的线性变换=--=+=),)((),0,(),(),,(),(,21212122121x x x x x x x x x x x τστστσ则为(2x 1,x 2)。
5.已知V={}02|),,,(4214321=-+x x x x x x x ,则dimV=(3)。
6.已知实矩阵A= 是正交阵,则b=(0)。
7.设,,V 43214321,,,ααααααααα--+=的一个标准正交基是四维欧氏空间()()().1),(,6,3,,2||,321=⎪⎭⎫⎝⎛==〉〈=-+=βαπθβαβαααααβd 的夹角与则三、计算题1.求矩阵方程的解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛3113101121101x , (10分) 解:x=2.设 (10分)解:由 ()()T T X X A E 1,1,1,1,3,1,02121=-====-λλ分别单位化,得 , ,所以3.设二次型32312123222132162252),,(x x x x x x x x x x x x f +++++=,回答下列问题:(1)将它化为典范型。
(2)二次型的秩为何?(3)二次型的正、负惯性指标及符号差为何? (4)二次型是否是正定二次型? (10分)解:(1)25242322213215),,(y y y y y x x x f --++= ,(2)r=5 ,(3)p=3;s=1 ,(4)A=6>0,是正定二次型 。
四、证明题1.设V 是数域F 上一个一维向量空间。
证明V 的变换σ是线性变换的充要条件是:对于任意ξ∈V ,都有σ(ξ)=a ξ,a 为F 中一个定数。
(10分) 证明:(),是线性变换,则,由,此时得基,存在的是假设ηλησσληξλη1F V ==∈⇒所以 ()()()()()ξξσλξλληληλληλσλησξσa a ======则,令a 1111;()()()()2121212121F V ξσξσξξξξξξσξξ+=+=+=+∈∈⇐a a a a ,由,,任意()()()是线性变换。
σξσξξξσ∴===1111k a k ak k2。
行列式2221112222221111112c b a c b a cb ab a ac c b b a a c c b ba a c cb =+++++++++ ,(10分) )0(,3131>⎪⎪⎪⎪⎭⎫⎝⎛a b a ⎪⎪⎭⎫ ⎝⎛=2112A 为对角形使求可逆矩阵AT T T 1-T⎪⎪⎭⎫ ⎝⎛-=22,221λT⎪⎪⎭⎫⎝⎛=22,222λ⎪⎪⎪⎪⎭⎫ ⎝⎛-=22222222T证:原式=2221112221112221112221112221112c b a c b a c b a c b a c b a c b a c b a c b a c b a b a c b a c b a c a c b a c b a c b =+=+线性代数试题库(2 )答案2005—2006学年 第一学期 考试时间 120分钟一、选择题:(3X5=15分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij 2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解 C .当m=n 时,只有零解D .当m=n 时,只有非零解3.已知n 维向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
4.若A 是mxn 矩阵,且r (A )=r ,则A 中( D ) A. 至少有一个r 阶子式不等于0,但没有等于0的r-1阶子式; B. 必有等于0的r-1阶子式,有不等于0的r 阶子式; C. 有等于0的r-1阶子式,没有等于0的r 阶子式; D. 有不等于0的r 阶子式,所有r+1阶子式均等于0。
5.4.设A 是三阶矩阵,|A|=1,则|2A 2|=( A )A .2,B ,1,C8 ,D 4 二.填空题(3X6=18分) 1.当且仅当k=(-1或3)时,齐次线性方程组 有非零解2.设A= ,则秩(AB )为(1)。
3.行列式4.已知实矩阵A= 是正交阵,则b=(0)。
5.向量(x ,y ,z )关于基(0,1/2,0),(1/3,0,0),(0,0,1/4)的坐标为 。
6.设A ,B 为n 阶可逆矩阵,则=⎪⎪⎭⎫⎝⎛-1B o o A ⎪⎪⎭⎫ ⎝⎛--11B o o A 。
(10分) 三、计算题1.求矩阵方程的解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛3113101121101x , (10分) 解:x=2.设 (15分)解:由 ()()T T X X A E 1,1,1,1,3,1,02121=-====-λλ分别单位化,得 , ,所以⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x ()0,,,0321321≠=≠⎪⎪⎪⎭⎫ ⎝⎛b b b B a a a ().0000=---zy z xy x )0(,3131>⎪⎪⎪⎪⎭⎫ ⎝⎛a b a ⎪⎭⎫⎝⎛41,21,31T⎪⎪⎭⎫ ⎝⎛-=22,221λT⎪⎪⎭⎫⎝⎛=22,222λ⎪⎪⎪⎪⎭⎫ ⎝⎛-=22222222T ⎪⎪⎭⎫⎝⎛=2112A 为对角形使求可逆矩阵AT T T 1-3.设二次型32312123222132162252),,(x x x x x x x x x x x x f +++++=,回答下列问题:(1)将它化为典范型。
(2)二次型的秩为何?(3)二次型的正、负惯性指标及符号差为何? (4)二次型是否是正定二次型? (12分)解:(1)25242322213215),,(y y y y y x x x f --++= ,(2)r=5 ,(3)p=3;s=1 ,(4)A=6>0,是正定二次型 。
4.设向量组 求向量组的秩及其一个极大无关组。
(10分) 解:A=其中 由此r(A)=3, 是一个极大无关组, 四、证明题1. A 是正交矩阵,证明()()ααβαβα==A A A ,,,。
(10分) 证明:()()()()βαβαβαβαβαβα,,=====T T T T T T A A A A A A A A ,()()αααααα===,,A A A2。
行列式2221112222221111112c b a c b a cb a b a ac c b b a a c c b b a a c cb =+++++++++ ,(10分) 证:原式=2221112221112221112221112221112c b a c b a c b a c b a c b a c b a c b a c b a c b a b a c b a c b a c a c b a c b a c b=+=+⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0211,6512,14703,2130,421154321ααααα()2141521421321151413215432122300400000002130421123402130213021304211021165121470321304211a a a a a a a a a a a a a a a a a a a a a a a a a a ----------→------→--()02,0341412213=----=--a a a a a ααα421,,a αα4215213,3a a a a +--=+=ααα线性代数试题库(3)答案一、选择题(3×5=15分)1.已知m 个方程n 个未知量的一般线性方程组AX=B 有解,则无穷多解的条件是( C ) A .m ≠n B .m=n C .秩A < n D .秩A=n2.设A= 则 秩A=( A ) A . 0 B .1 C .2 D .33.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。