线性代数期末考试试题(含答案)

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。

每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。

2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。

7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。

8. 一个向量空间的一组基的向量数量至少是_________。

9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。

10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。

三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。

12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。

四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。

14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。

线性代数期末试题

线性代数期末试题

线性代数试题(附答案)一、填空题(每题2分,共20分)1.行列式0005002304324321= 。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。

3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。

4.A 为n n ⨯阶矩阵,且ο=+-E A A 232,则1-A 。

5. 321,,ξξξ和321,,ηηη是3R 的两组基,且32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。

7.设=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(,111012111,321212113AB tr AB B A 之迹则 。

8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--⨯A A 。

9.二次型x x x x x x f 23222132123),,(--=的正惯性指数为 。

10.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1042024λλA 为正定矩阵,则λ的取值范围是 。

二、单项选择(每小题2分,共12分)1.矩阵()==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。

A 、1B 、2C 、3D 、4 2. 齐次线性方程组⎩⎨⎧=--=++-02023214321x x x x x x x 的基础解系中含有解向量的个数是( )A 、1B 、2C 、3D 、43.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )A 、-1B 、-2C 、0D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( )A 、B=EB 、A=EC 、A=BD 、AB=BA5.已知=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或26.下列矩阵中与矩阵合同的是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5000210002( ) A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200020001 B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-500020003 C 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020002三、计算题(每小题9分,共63分)1.计算行列式),2,1,0(0000002211210n i a a c a c a c b b b a i nnnΛΛΛΛΛΛΛΛΛΛ=≠其中2.当⎪⎪⎩⎪⎪⎨⎧=+++=-++=+++=+++ax x x x x x x x x x x x x x x x a 4321432143214321710535105363132,线性方程组取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。

左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。

线性代数期末试题及答案

线性代数期末试题及答案

线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。

答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。

答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。

答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。

答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。

答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。

2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。

3. 说明矩阵的相似对角化的条件。

答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。

四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。

答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。

2019-2020学年线性代数期末考试题(含答案)

2019-2020学年线性代数期末考试题(含答案)

线性代数2019-2020学年第二学期期末考试试卷一、填空题(本大题共5个小题,每小题3分,共15分。

)1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。

) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。

2. 设⎪⎪⎪⎭⎫ ⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫ ⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件.C 充分必要条件 .D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组;B. 321,,ααα的一个等秩向量组;C. 321221,,αααααα+++;D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。

线性代数期末试卷及详细问题详解

线性代数期末试卷及详细问题详解

一、 填空题 (将正确答案填在题中横线上。

每小题2分,共10分)1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。

2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)1、若方程13213602214x x x x -+-=---成立,则x 是 (A )-2或3; (B )-3或2;(C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+; (B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B3、设A 为可逆n 阶方阵,则()**A=(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭;(C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫ ⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。

线性代数期末考试试题及答案c1

线性代数期末考试试题及答案c1

线性代数期末考试试题及答案c1一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且满足\( A^2 = A \),则矩阵A的特征值只能是:A. 0B. 1C. 0或1D. 2答案:C2. 如果矩阵B是可逆矩阵,那么\( B^{-1} \)的特征值与B的特征值的关系是:A. 相反数B. 倒数C. 相等D. 互为相反数答案:B3. 向量\( \vec{a} = (1, 2, 3) \)和\( \vec{b} = (4, 5, 6) \)的点积为:A. 14B. 32C. 22D. 40答案:A4. 设\( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \),则\( A \)的行列式为:A. 2B. -2C. 5D. -5答案:C二、填空题(每题5分,共20分)1. 设矩阵\( A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} \),则\( A \)的迹为______。

答案:52. 向量\( \vec{a} = (3, -4) \)和\( \vec{b} = (-1, 2) \)的叉积为向量\( \vec{c} = (x, y) \),则\( x \)的值为______。

答案:103. 设\( A \)为3阶方阵,且\( A \)的秩为2,则\( A \)的零空间的维数为______。

答案:14. 设\( \vec{u} \)和\( \vec{v} \)是两个非零向量,若\( \vec{u} \)和\( \vec{v} \)正交,则\( \vec{u} \cdot \vec{v} \)的值为______。

答案:0三、解答题(共60分)1. (15分)设矩阵\( A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 2 & 3 \end{pmatrix} \),求\( A \)的逆矩阵。

线性代数期末考试试题(含答案)

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题一、填空题(每空3分,共15分)1. 设矩阵,且,则______2.二次型是正定的,则t的取值范围__________3.为3阶方阵,且,则___________4.设n阶矩阵A的元素全为1,则A的n个特征值是___________5.设A为n阶方阵,为A的n个列向量,若方程组只有零解,则向量组()的秩为_____二、选择题(每题3分,共15分)6.设线性方程组,则下列结论正确的是()(A)当取任意实数时,方程组均有解(B)当a=0时,方程组无解(C)当b=0时,方程组无解(D)当c=0时,方程组无解7.A。

B同为n阶方阵,则()成立(A) (B)(C) (D)8.设,,,则()成立(A) (B)(C) (D)9.,均为n阶可逆方阵,则的伴随矩阵()(A) (B)(C) (D)10.设A为矩阵,<,那么A的n个列向量中()(A)任意r个列向量线性无关(B) 必有某r个列向量线性无关(C) 任意r个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n-1个列向量线性表示三、计算题(每题7分,共21分)11.设。

求12.计算行列式13.已知矩阵与相似,求a和b的值四、计算题(每题7分,共14分)14.设方阵的逆矩阵的特征向量为,求k的值15.设,,,(1)问为何值时,线性无关(2)当线性无关时,将表示成它们的线性组合五、证明题(每题7分,共14分)16.设3阶方阵,的每一列都是方程组的解(1)求的值(2)证明:17.已知为n维线性无关向量,设,证明:向量线性无关六、解答题(10分)18.方程组,满足什么条件时,方程组(1)有惟一解(2)无解(3)有无穷多解,并在此时求出其通解七、解答题(11分)19。

已知二次型,试写出二次型的矩阵,并用正交变换法化二次型为标准型。

(一)1、202、 3 4 5、n(二)ACCDB(三)11、12、() 13、()(四)14、(或)15、()(五)16 (略)17略(六)18、( (1)且;(2);(3),解略)(七)19、(,其余略)。

线性代数期末试题及答案

线性代数期末试题及答案

8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。

线性代数期末考试试卷合集(共十一套)

线性代数期末考试试卷合集(共十一套)

线性代数期末考试试卷合集(共十一套)目录线性代数期末试卷及参考答案(第一套) .............................................................................. 1 线性代数期末试卷及参考答案(第二套) .............................................................................. 9 南京工程学院期末试卷(第一套) ........................................................................................ 17 南京工程学院期末试卷(第二套) ........................................................................................ 24 南京工程学院期末试卷(第三套) ........................................................................................ 30 线性代数 期末试卷(A 卷) .................................................................................................. 36 线性代数 期末试卷(B 卷) .................................................................................................. 41 线性代数 期末试卷(C 卷) .................................................................................................. 46 线性代数 期末试卷(D 卷) .................................................................................................. 51 线性代数 期末试卷(E 卷) .................................................................................................. 57 线性代数 期末试卷(F 卷) (62)线性代数期末试卷及参考答案(第一套)一、单项选择题(本大题共5小题,每小题3分,共15分)1、设矩阵⎪⎪⎭⎫ ⎝⎛=3223A 满足B AB =,则矩阵=B ( )(A ) ⎪⎪⎭⎫⎝⎛21k k ; (B )⎪⎪⎭⎫ ⎝⎛11; (C ) ⎪⎪⎭⎫ ⎝⎛--2121k k k k ; (D ) ⎪⎪⎭⎫ ⎝⎛-2111k k .(21k k ,为任意常数) 2、设n 阶方阵A ,B 满足E AB =,则下列一定成立的是 ( ) (A )E B A == ; (B )E B A =+ ; (C )1=A 或1=B ; (D )1=⋅B A .3、设矩阵,⎪⎪⎪⎭⎫ ⎝⎛=001010100A 则 =-++)()(E A R E A R ( )(A ) 2; (B ) 3; (C ) 4; (D ) 5 .4、设向量组A :r a a a,,,21可由向量组B :s b b b ,,,21线性表示,则正确的是 ( )(A )当s r >时,向量组A 必线性相关; (B ) 当s r <时,向量组A 必线性相关; (C )当s r >时,向量组B 必线性相关; (D ) 当s r <时,向量组B 必线性相关.5、设A 为n m ⨯的矩阵,0=x A 是非齐次线性方程组b x A =所对应的齐次线性方程组,则下列结论正确的是( )(A ) 若0=x A 仅有零解,则b x A =有唯一解;(B ) 若b x A =有无穷多解,则0=x A 有非零解;(C ) 若n m =,则b x A=有唯一解;(D ) 若A 的秩m A R <)(,则b x A=有无穷多解.二、填空题(本大题共5小题,每小题3分,共15分)1、设方阵⎪⎪⎪⎭⎫⎝⎛=010002cb a A ,当c b a ,,满足 时,A 为可逆方阵.2、若可逆方阵A 的有一个特征值3,则13-)(A 必有一个特征值为 .3、设A 为54⨯的矩阵,且秩2=)(A R ,则齐次方程组0=x A 的基础解系所含向量个数是 .4、若三阶行列式222023z y x =1,则行列式1117110111------z y x = . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13232121,,x 线性相关,则常数x= .三、计算题(本题共6小题,共50分)1、(6分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=b a a A 140132121的秩2=)(A R , 求常数b a ,及一个最高阶非零子式.2、(8分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值和特征向量. 3、(8分)设3阶方阵A 与B 满足BA A BA A 22+=*, 其中,⎪⎪⎪⎭⎫⎝⎛=400030001A 求B .4、(10分)设向量组A :.,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 1301 3192 01414321αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式aa a a D ++++=4321432143214321,其中0≠a .6、(10分)设线性方程组⎪⎩⎪⎨⎧=+-=--=--532403321321321x x x b ax x x x x x , 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、判断题(本大题共5小题,每小题2分,共10分) 1、设矩阵B A ,为3阶方阵,且42==B A ,,则121=-AB.( )2、由3维向量构成的向量组4321a a a a,,,中必有一个可由其余向量线性表示. ( ) 3、对任意n 阶方阵C B A ,,,若AC AB =,且O A ≠,则一定有C B =.( )4、设向量21ηη ,是线性方程组b x A =的解,则212ηη -也是此方程组的一个解.( ) 5、正交向量组321a a a ,,线性无关.( )五、证明题(本题共2小题,每小题5分,共10分) 1、设n 阶对称矩阵A 满足关系式O E A A =++862,证明:(1)E A 3+是可逆矩阵,并写出逆矩阵; (2) E A 3+是正交矩阵.2、若3210a a a a,,,是n 元非齐次线性方程组b x A =的线性无关解,且,)(3-=n A R证明:030201a a a a a a---,,是其对应的齐次线性方程组0 =x A 的基础解系.参考答案一、选择题(本题5小题, 每小题3分, 共15分)1. C ;2. D ;3. B ;4. A ;5. B .二、填空题(本题5小题, 每小题3分, 共15分)1. c ab 2≠;2.91; 3. 3; 4. 23- ; 5. 5. 三、计算题(本题6小题, 共50分)1. 解: A →⎪⎪⎪⎭⎫ ⎝⎛------210022170121b a a a (2分), 由R (A ) = 2知,⎩⎨⎧=-=--0201b a , ⎩⎨⎧=-=∴21b a ,一个最高阶非零子式3221-. 2.解: 由λλλλ-----=-314020112E A (),)(0212=-+-=λλ 得A 的特征值为.,21321==-=λλλ当11-=λ时, 解 ().0=+x E A,⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛--=+000010101414030111r E A得基础解系:,⎪⎪⎪⎭⎫⎝⎛=1011p 对应11-=λ的全部特征向量为)(0111≠k p k当232==λλ时, 解().02=-x E A,⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎭⎫⎝⎛--=-000000414111140001142r E A 得基础解系:,⎪⎪⎪⎭⎫ ⎝⎛=401 2p ,⎪⎪⎪⎭⎫ ⎝⎛=041 3p对应232==λλ的特征向量为)0,(323322不全为k k p k p k+ 3. 解: B= 2(|A |E -2A ) -1 A |A |=12(|A |E -2A ) -1 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4100061000101, B=2⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛410061000101⎪⎪⎪⎭⎫⎝⎛400030001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛20001000514. 解: ),,,(4321αααα=A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------71307311100943121→⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000110024103121 → ⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110020102001 所以,秩3=A R , (1分)一个最大线性无关组为,,,321ααα(2分)且321422αααα++-=5. 解:aa a a D ++++=43214321432143214321c c c c +++aa a a a a a +++++++432104321043210432101r r i -aa a a 00000000043210+=)(103+a a 6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛-----==5312410131b ab A B ),( →⎪⎪⎪⎭⎫⎝⎛+---120011100131b a(1) 当12-≠=b a ,时, 32=<=)()(B R A R ,此时方程组无解. (2) 当b a ,2≠取任意数时, 3==)()(B R A R ,此时方程组有唯一解. (3) 当12-==b a ,时, 32<==)()(B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛--000011100131 →⎪⎪⎪⎭⎫ ⎝⎛000011103201即⎩⎨⎧+-=+-=1323231x x x x 原方程组的通解为)(R c c ∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--013112.四、判断题(本题5小题, 每小题2分, 共10分)1. ×;2. √;3. ×;4. √;5. √.五、证明题(本题2小题, 每小题5分, 共10分)1.证明: (1)由O E A A =++862得E E A A =++962,即E E A E A =++))((33 所以E A 3+可逆,且E A E A 331+=+-)(.(2)由A 为n 阶对称矩阵知,E A E A E A TT T 333+=+=+)()(,故()()()E E A E A E A E A T=++=++333)3(,所以E A 3+是正交矩阵.2. 证明: 3210a a a a,,,是n 元非齐次线性方程组b x A =的解,030201a a a a a a---∴,,是对应齐次方程组0 =x A 的解;又,)(3-=n A R 所以0 =x A 的基础解系中含向量个数为3)(=-A R n 个; 下证 030201a a a a a a---,,线性无关即可.设0033022011 =-+-+-)()()(a a k a a k a a k 即00321332211=++-++a k k k a k a k a k )(又 3210a a a a ,,,线性无关, 故⎪⎪⎩⎪⎪⎨⎧=++-===0000321321)(k k k k k k 有唯一解0321===k k k所以030201a a a a a a---,, 线性无关,从而030201a a a a a a---,,是其对应的齐次方程组0 =x A 的基础解系线性代数期末试卷及参考答案(第二套)一、填空题(本大题共7小题,每小题3分,共21分)1、设向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=123,321βα ,则当k = 时,.正交与βαα +k2、设方阵A 满足关系式O A A =+322,则1)(-+E A = .3、若三阶行列式930021-=x xxx ,则 =x . 4、设矩阵⎪⎪⎭⎫⎝⎛-=0211A ,多项式x x x f 2)(2+=,则=)(A f . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-13,032,101λ线性相关,则常数λ= .6、n 元非齐次线性方程组b x A=有无穷多解的充要条件是 .7、设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111,则 ._______________,______,===b a λ二、单项选择题(本大题共5小题,每小题3分,共15分)1、设A ,B 是任意n 阶方阵(2≥n ),则下列各式正确的是 ( )(A ) B A B A +=+; (B ) 22B A B A B A -=-⋅+; (C ) B A B A ⋅=; (D ) A B AB T⋅= .2、下列4个条件中,①A 可逆 ; ②A 为列满秩(即A 的秩等于A 的列数); ③A 的列向量组线性无关; ④ O A ≠ ;可使推理“ 若O AB =, 则O B = ”成立的条件个数是 ( )(A ) 1个 ; (B ) 2个; (C ) 3个; (D ) 4个.3、向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ ,,,21线性表示, 则下列结论中不成立的是( )(A ) 向量组s βββ,,,21线性无关;(B ) 对任一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性相关;(C ) 存在一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性无关;(D ) 向量组s ααα,,,21与向量组s βββ ,,,21等价. 4、设A ,B 均为3阶方阵, 3)(=A R ,2)(=B R , 则=)(AB R( )(A ) 1; (B ) 2; (C ) 3; (D ) 6 .5、设A 为n m ⨯的矩阵,r A R =)(,则非齐次线性方程组b x A=( )(A ) 当n r = 时有唯一解; (B ) 当n m r == 时有唯一解;(C ) 当n m = 时有唯一解; (D ) 当n r < 时有无穷多解. 三、计算题(本题共6小题,共54分)1、(7分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=61011152121λλA 的秩2)(=A R , 求常数λ及一个最高阶非零子式.2、(9分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230001A 的全部特征值和特征向量.3、(8分)设3阶方阵C B A ,,满足方程 A B A C =-)2(,试求矩阵A ,其中 ⎪⎪⎪⎭⎫ ⎝⎛=100010301B , ⎪⎪⎪⎭⎫ ⎝⎛=300020001C .4、(10分)设向量组A :.6721 ,11313 ,5652 ,21214321⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式cc b b a a x x x x D ---=000000, 其中x c b a ,,,全不为0.6、(12分)设线性方程组⎪⎩⎪⎨⎧=++=++=++bx x x x a x x x x x 3213213214231202, 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、证明题(本题共2小题,每小题5分,共10分)1、若向量321,,ααα线性无关, 求证 2132αα +,324αα +,135αα + 也线性无关.2、设矩阵T E A ηη -=, 其中E 是3阶单位矩阵,⎪⎪⎪⎭⎫⎝⎛=321x x x η 是单位向量,证明:(1) A A =2; (2) A 不可逆.参考答案一、填空题(本题7小题, 每小题3分, 共21分)1. 75-; 2. E A +2; 3. 3±; 4. ⎪⎪⎭⎫ ⎝⎛--2631 ; 5. 6 ; 6. n b A R A R <=),()(; 7. -1 ,-3 ,0 .二、选择题(本题5小题, 每小题3分, 共15分)1. D ;2. C ;3. C ;4. B ;5. B .三、计算题(本题6小题, 共54分)1. 解: A →⎪⎪⎪⎭⎫⎝⎛--+---3390022110121λλλλλ(3分), 由R (A ) = 2知,⎩⎨⎧=-=-03039λλ,3=∴λ (2分), 一个最高阶非零子式5221 .2.解: 由λλλλ---=-32230001E A (),01)5(2=--=λλ得A 的特征值为.1,5321===λλλ当51=λ时, 解 ().05=-x E A,0001100012202200045⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛---=-r E A得基础解系:,1101⎪⎪⎪⎭⎫⎝⎛=p 对应51=λ的全部特征向量为)(0111≠k p k当132==λλ时, 解().0=-x E A,000000110220220000⎪⎪⎪⎭⎫ ⎝⎛−→−⎪⎪⎪⎭⎫ ⎝⎛=-r E A 得基础解系:,001 2⎪⎪⎪⎭⎫ ⎝⎛=p ,110 3⎪⎪⎪⎭⎫ ⎝⎛-=p对应132==λλ的特征向量为)0,(323322不全为k k p k p k+.3. 解: CB A E C =-)2( ;⎪⎪⎪⎭⎫ ⎝⎛=-5000300012E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=--51000310001)2(1E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛=⋅-=-5300032030110001030130002000151000310001)2(1CB E C A . 4. 解: ),,,(4321αααα =A →⎪⎪⎪⎪⎪⎭⎫⎝⎛---00210045101321 → ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000021********001 (初等变换步骤不一,请酌情给分)所以,秩3=A R , (1分) 一个最大线性无关组为,,,321ααα(2分)且32142617αααα--=5. 解:)1,2,3(1=++i c c i i Dcb a xx x x---0000000234=xabc 4- .6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛==b a b A B 4231120211),( →⎪⎪⎪⎭⎫⎝⎛----120014100211b a a , (1) 当b a ,2≠取任意数时, 3)()(==B R A R , 此时方程组有唯一解; (2). 当1,2≠=b a 时, 3)(2)(=<=B R A R ,此时方程组无解;(3) 当1,2==b a 时, 32)()(<==B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛-000012100211 →⎪⎪⎪⎭⎫⎝⎛-000012101001 即⎩⎨⎧--==121321x x x原方程组的通解为)(011120R c c ∈⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-.四、证明题(本题2小题, 每小题5分, 共10分)1.证明: 由题意 ⎪⎪⎪⎭⎫⎝⎛=+++540013102),,()5,4,32(321133221ααααααααα , 记 AK B = .K K ∴≠=,022 可逆, 又321,,ααα线性无关,所以)5,4,32(133221αααααα +++R 3),,(321==αααR , 即 2132αα +,324αα +,135αα+ 也线性无关.2. 证明: (1) η为单位向量,1=∴ηηT ,A E E E E A T T T T T T T =-=+--=--=∴ηηηηηηηηηηηηηη)())((2.(2) 由(1)知,A A =2, 即 O E A A =-)(,3)()(≤-+∴E A R A R ,η为单位向量,O E A T ≠-=-∴ηη , 1)(≥-E A R ,从而32)(<≤A R , 所以0=A , 故A 不可逆.另一证法: 0)(=-=-=-=ηηηηηηηηηηT T E A ,的非零解,为线性方程组0=∴ηηA所以0=A , 故A 不可逆.南京工程学院期末试卷(第一套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院试卷共 6 页第 4 页南京工程学院期末试卷(第二套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院期末试卷(第三套)共6 页第1页课程所属部门:数理部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科线性代数 期末试卷(A 卷)一、(本大题共8小题,每题3分,共24分)1. 设B A ,均为n 阶方阵,则下面各式正确的是----------------------------------( C ) (A)TTTB A AB =)( (B) 222)(B A AB = (C) || ||AB BA = (D)AB BA = 2. 下列命题正确的是--------------------------------------------------------------------( C ) (A) 若02=A ,则0=A (B) 若A A =2,则0=A 或E A = (C) 若E A =,则E A n = (D) 若E A =2,则E A ±=3. 若行列式的所有元素都变号,则--------------------------------------------------( D ) (A) 行列式一定变号 (B) 行列式一定不变号 (C) 偶阶行列式变号 (D) 奇阶行列式变号4. 设k c c c b b b a a a =321321321,则112311231123232323a a a a b b b b c c c c ++=+-------------------------------( B ) (A) k 6 (B) k 3 (C) k 2 (D) k5. 若某线性方程组的系数行列式为零,则该方程组------------------------------( D ) (A) 有唯一解 (B) 有非零解 (C) 无解 (D) 有非零解或无解6.已知TT T t ),3,1(,)3,2,1(,)1,1,1(321===ααα线性相关的,则t =-----( B )(A) 4 (B) 5 (C) 6 (D) 77. 设方阵A 相似于(1,1,1)diag -,则10A =---------------------------------------- ( A )(A) E (B) 10E (C) E - (D) 10E - 8. 设A 为n 阶方阵,则下列说法中正确的是--------------------------------------( B ) (A) 若A 可对角化,则A 为实对称阵 (B) 若A 为实对称阵,则A 可对角化 (C) 若A 可对角化,则A 必可逆 (D) 若A 可逆,则A 可对角化二、填空题(本大题共4小题,每题4分,共16分)1.设2110A ⎛⎫=⎪-⎝⎭,则*A =0112-⎛⎫ ⎪⎝⎭,1A-=0112-⎛⎫ ⎪⎝⎭。

线性代数期末试题与答案

线性代数期末试题与答案

第一部分 选择题 (共 28 分)一、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

a11a12a13a11=n ,则行列式a11 a12 a13等于()1.设行列式a 22 =m ,a 21a 21 a 22 a 23 a 21 a 23A. m+nB. - (m+n)C. n- mD. m - n1 0 0 ,则 A -12.设矩阵 A = 0 20 等于()0 031 0 031 0 01A.0 0B.1 02211311 0 00 0 231C.1 0D.0 031 0123 1 23.设矩阵 A =1 0 1 , A *是 A 的伴随矩阵,则A * 中位于( 1,2)的元素是()214A. –6B. 6C. 2D. –24.设 A 是方阵,如有矩阵关系式AB =AC ,则必有()A. A =0B.B C 时 A =0C.A 0时B =CD. |A | 0 时 B =C5.已知 3×4 矩阵 A 的行向量组线性无关,则秩(A T )等于( )A. 1B. 2C. 3D. 46.设两个向量组 α 1, α 2,⋯, α s 和 β 1, β 2,⋯, β s 均线性相关,则( )A. 有不全为 0 的数 λ 1,λ 2,⋯,λ s 使 λ 1α 1+λ 2α 2+⋯ +λs α s =0 和 λ 1β 1+λ 2β 2+⋯λ s β s =0B. 有不全为 0 的数 λ 1, λ 2,⋯, λs 使 λ 1( α 1+β 1) +λ 2(α 2+β 2) +⋯ +λs ( α s +β s )=0C. 有不全为 0 的数 λ 1,λ 2,⋯, λ s 使λ 1(α 1- β 1)+λ 2( α 2- β 2) +⋯ +λ s ( α s - β s )=0D. 有不全为 0 的数 λ 1, λ2 ,⋯, λs 和不全为 0 的数 μ1, μ 2,⋯, μ s 使λ 1α 1+λ 2α 2+⋯ +λs α s =0 和 μ 1β 1+μ 2β 2+⋯+μ s β s =07.设矩阵 A 的秩为 r ,则 A 中()A. 所有 r- 1 阶子式都不为 0B. 所有 r- 1 阶子式全为 0C. 至少有一个 r 阶子式不等于 0D. 所有 r 阶子式都不为 08.设 Ax=b 是一非齐次线性方程组,η 1, η 2 是其任意 2 个解,则下列结论错误的是()A. η 1+η2 是 Ax=0 的一个解1 1B.η 1+ η 2 是 Ax=b 的一个解22C. η 1-η 2 是 Ax=0 的一个解D.2 η 1-η 2 是 Ax=b 的一个解 9.设 n 阶方阵 A 不可逆,则必有( )A. 秩 (A )<nB. 秩 (A )=n- 1C. A=0D. 方程组 Ax=0 只有零解 10.设 A 是一个 n(≥3) 阶方阵,下列陈述中正确的是( )A. 如存在数 λ 和向量 α使 A α=λ α ,则 α 是 A 的属于特征值 λ的特征向量B. 如存在数 λ 和非零向量 α ,使 (λ E - A )α =0,则 λ 是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如 λ1, λ 2, λ 3 是 A 的 3 个互不相同的特征值, α 1,α 2, α 3 依次是 A 的属于 λ 1,λ 2, λ3 的特征向量,则 α 1,α 2, α 3 有可能线性相关 11.设λ 0 是矩阵 A 的特征方程的 3 重根, A 的属于 λ 0 的线性无关的特征向量的个数为 k ,则必有( ) A. k ≤ 3 B. k<3 C. k=3 D. k>3 12.设 A 是正交矩阵,则下列结论错误的是( )A.| A|2 必为 1B.|A |必为 1C. A - 1=A TD. A 的行(列)向量组是正交单位向量组13.设 A 是实对称矩阵, C 是实可逆矩阵, T)B =C AC .则(A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同14.下列矩阵中是正定矩阵的为( )2 33 4A.4B.63 210 0 1 1 1C. 02 3 D. 1 2 0351 0 2第二部分 非选择题(共 72 分)二、填空题(本大题共10 小题,每小题 2 分,共 20 分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西理工大学《线性代数》考题
一、 填空题(每空3分,共15分)
1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222
111
c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333
222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________
3. A 为3阶方阵,且2
1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________
5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____
二、选择题(每题3分,共15分)
6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-032231
3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解
(C) 当b =0时,方程组无解 (D)当c =0时,方程组无解
7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A
8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221
131211
a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( )
(A) **B A (B) 11--B A AB (C) 11--A B (D)**A B
10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中( )
(A )任意r 个列向量线性无关
(B) 必有某r 个列向量线性无关
(C) 任意r 个列向量均构成极大线性无关组
(D) 任意1个列向量均可由其余n -1个列向量线性表示
三、计算题(每题7分,共21分)
11. 设⎪⎪⎪⎭
⎫ ⎝⎛=300041003A 。

求1)2(--E A
12. 计算行列式1111111
1111
1111
1--+---+---x x x x
13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002a A 与⎪⎪⎪⎭
⎫ ⎝⎛-=b B 00020001相似,求a 和b 的值
四、计算题(每题7分,共14分)
14. 设方阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量为⎪⎪⎪⎭
⎫ ⎝⎛=11k ξ,求k 的值
15. 设⎪⎪⎪⎭⎫ ⎝⎛=111λα,⎪⎪⎪⎭⎫ ⎝⎛=1102α,⎪⎪⎪⎭
⎫ ⎝⎛=λα113,⎪⎪⎪⎭⎫ ⎝⎛=111β(1)问λ为何值时,321,,ααα线性无关(2)当321,,ααα线性无关时,将β表示成它们的线性组合
五、证明题(每题7分,共14分)
16. 设3阶方阵0≠B ,B 的每一列都是方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321
321321x x x x x x x x x λ的解
(1)求λ的值(2)证明:0=B
17. 已知4321,,,αααα为n 维线性无关向量,设
⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0,1,0,144332211αβαβαβαβ,证明:向量4321,,,ββββ线性无关
六、 解答题(10分)
18.方程组⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321
321321)1(3)1(0)1(x x x x x x x x x ,满足什么条件时,方程组
(1) 有惟一解(2)无解(3)有无穷多解,并在此时求出其通解
七、解答题(11分)
19. 已知二次型32212322213214432),,(x x x x x x x x x x f --++=,试写出二次型的矩阵,并用正交变换法化二次型为标准型。

(一)1、20 2、44 t - 3
2716- 40,21====n n λλλ 5、 n
(二)ACCDB (三)11、⎪⎪⎪⎪⎭
⎫ ⎝⎛-10002121001 12、(4x ) 13、(2,0-==b a ) (四)14、(2-=k 或0=k ) 15、(3212
1)1(2121)2(1)1(ααλαβλ+--=-≠) (五)16 ( )2(1)1(=λ略 ) 17略
(六)18、( (1)3-≠λ且0≠λ;(2)0=λ;(3)3-=λ,解略) (七)19、(5,2,1-=λ,其余略)。

相关文档
最新文档