2019福建高考数学试卷难度有些偏大精品教育.doc
2019年福建省高考理科数学试卷及答案【word版】
2019年福建高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +2.某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ).18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的() .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件7.已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,18.在下列向量组中,可以把向量()2,3=a 表示出来的是( )A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e eC.)10,6(),5,3(21==e eD.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.26 10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 二、填空题11、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________12、在ABC ∆中,3,2,60==︒=BC AC A ,则ABC ∆等于_________13、要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)14.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.15.若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.三.解答题:本大题共6小题,共80分.16.(本小题满分13分)已知函数1()cos (sin cos )2f x x x x =+-. (1)若02πα<<,且2sin 2α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.17.(本小题满分12分)在平行四边形ABCD 中,1AB BD CD ===,,AB BCD CD BD ⊥⊥.将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:CD ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.18.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. (1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
(完整word版)2019年福建省高考理科数学试卷及答案【word版】
2019年福建高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +2.某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ).18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的() .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件7.已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,18.在下列向量组中,可以把向量()2,3=表示出来的是( )A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e eC.)10,6(),5,3(21==e eD.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.26 10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 二、填空题11、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________12、在ABC ∆中,3,2,60==︒=BC AC A ,则ABC ∆等于_________13、要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)14.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.15.若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.三.解答题:本大题共6小题,共80分.16.(本小题满分13分)已知函数1()cos (sin cos )2f x x x x =+-. (1)若02πα<<,且2sin 2α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.17.(本小题满分12分)在平行四边形ABCD 中,1AB BD CD ===,,AB BCD CD BD ⊥⊥.将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:CD ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.18.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. (1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
2019年福建高考试题(理数,word解析版)word资料12页
2019年普通高等学校招生全国统一考试(福建卷)数学(理科)【整理】佛山市三水区华侨中学 骆方祥(lbylfx @sina )第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若复数z 满足i zi -=1,则z 等于( )A .i --1B .i -1C .i +-1D .i +1 考点:复数的运算。
难度:易。
分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可。
解答:iiz -=1 2. 等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为( )A .1B .2C .3D .4 考点:等差数列的定义。
难度:易。
分析:本题考查的知识点为复等差数列的通项公式d n a a n )1(1-+=。
解答:273104211=⇒⎩⎨⎧=+=+d d a d a 。
3. 下列命题中,真命题是( )A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 考点:逻辑。
难度:易。
分析:本题考查的知识点为复逻辑中的充要条件的判定。
解答:A 中,,R x ∈∀0>xe。
B 中,22,4,2x x x x===∃,22,x x x<∃。
C 中,⎩⎨⎧≠=+00b b a 的充要条件是1-=b a。
D 中,1,1>>b a 可以得到1>ab ,当1>ab 时,不一定可以得到1,1>>b a 。
4. 一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱考点:空间几何体的三视图。
难度:易。
分析:本题考查的知识点为空间几何体的三视图,直接画出即可。
解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
2019年普通高等学校招生全国统一考试数学卷(福建.文)含详解
数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为B.23D.13 (7)函数y =cos x (x ∈R)的图象向左平移2个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ,则角B 的值为A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么 导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、a b∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2019年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==,又11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)AA解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。
福建高考数学试卷分析-教学文档
2019年福建高考数学试卷分析篇章一:文理科试题猜题命中(类似)的题目理科:共117分,只要你加入我们一对一,这些题目你肯定能轻松搞定一、选择题:1、2、3、4、5、6、8二、填空题:11、12、13、14三、解答题:16(数列与三角的交汇)、17(圆锥曲线前置)、18函数的应用、19(概率与统计)20、立体几何中涉及特殊点问题。
21、选做题文科:共113分,只要你加入我们一对一,这些题目你肯定能轻松搞定一、选择题:1、2、3、4、5、6、7、8、9二、填空题: 13、14、15三、解答题:17(数列求通项及求和)、19(概率与统计)、20(立体几何证明及求体积)21、三解函数的图像与性质。
22、导数的应用篇章二:文理科各知识点考查明细高考数学文科一、选择1、考察集合,集合中的交集,而且题目中集合的元素只有整数,属于容易题。
2、考察复数,复数计算中的值,属于容易题。
3、考察简易逻辑,充要条件中的主旨小范围推大范围,属于容易题。
4、考察抽样调查,分层抽样,要明白分层抽样就是按比例抽取样本,属于容易题。
5、考察算法程序,这道题属于算法中比较普遍的类型,把最初赋予的值进行循环计算,属于容易题。
6、考察二次函数,判别式,属于容易题。
7、考察概率,几何概型中的面积比,属于容易题。
8、考察分段函数,根据自变量的范围代入相应的解析式,属于中等题。
9、考察三角函数,二倍角公式和特殊角的值,属于中等题。
10、考察导数和不等式,导数中的极值,再用均值不等式,属于中等题。
11、考察圆锥曲线,离心率,根本上考的是椭圆和双曲线的定义,属于中偏难题。
12、创新题,主要在考数集,难点在负数的正余数的理解,属于难题。
二、填空13、考察向量,向量乘法法则,属于容易题。
14、考察解三角形,面积公式及特殊三角形,属于容易题。
15、考察立体几何,线面平行问题,属于中等题。
16、创新题,主要考等比中项公式,属于难题。
三、综合题17.已知等差数列的其中两项(第一、三项)。
高考理科数学试题及答案福建卷.docx
2019 年高考试题理科数学(福建卷)一.选择题:本大题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
( 1)设 a,b,c R, 则复数 (a bi )(c di ) 为实数的充要条件是( A ) ad bc0( B ) ac bd( C ) acbd 0( D ) ad bc 0( 2)在等差数列a n 中,已知 a 12,a 2 a 3 13,则 a 4 a 5 a 6 等于( A ) 40( B ) 42(C ) 43 ( D ) 45( 3)已知( , ),sin 3, 则 tan() 等于2541( B ) 7( C )1 ( D ) 7( A )77( 4)已知全集 UR, 且 A x | x 1 2 , Bx | x 2 6x8 0 , 则 (C U A) B 等于( A ) [ 1,4)(B ) (2,3)(C ) (2,3]( D ) ( 1,4)32( 5)已知正方体外接球的体积是,那么正方体的棱长等于3( A ) 2 2( B )2 3(C )4 2( D )4 3333( 6)在一个口袋中装有 5 个白球和 3 个黑球,这些球除颜色外完全相同。
从中摸出 3 个球,至少摸到 2 个黑球的概率等于( A )2( B )3( C )3( D )9787 28( 7)对于平面和共面的直线 m 、 n, 下列命题中真命题是( A )若 m , m n, 则 n ∥( B )若 m ∥ ,n ∥ , 则 m ∥ n( C )若 m,n ∥ , 则 m ∥ n ( D )若 m 、 n 与所成的角相等,则m ∥ n( 8)函数( A )( C )y log 2 x( x 1)的反函数是x 1y2x( x 0)( B ) y2x (x 0)2x2x11y2x1( x 0)( D ) y 2x1(x 0)2x2x( 9)已知函数 f ( x) 2sin x(0) 在区间,上的最小值是 2 ,则的最小值等于3 4( A )2( B )3( C ) 2( D )332( 10)已知双曲线x 2y 21(a 0, b 0) 的右焦点为 F ,若过点 F 且倾斜角为 60 o的直线与双曲a 2b 2线的右支有且只有一个交点,则此双曲线离心率的取值范围是( A ) (1,2]( B ) (1,2)( C ) [2, )( D ) (2, )( 11)已知 OA 1, OB3, OAOB. 0, 点 C 在 AOC30 o 。
2019年福建省高考(理科)数学试题及答案(Word解析版)
2019年福建省高考(理科)数学试题及答案(Word 解析版)一、选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( )A . 第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45 C.5 D.5【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d ==. 4.某校从高一年级学生中随机抽取部分学生,将他们块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80),[80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120【答案】B 【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++= 故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对 ②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2). (,)a b 共有4*4=16中实数对,故答案应为16-3=13. 6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n-的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A..5 D .10 【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出AC BD ==,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点.B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A NB N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或C .{|01},A x x B R =<<=D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,22323412R S R ππ⨯∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,22sin 32,33BAC AB AD ∠===则BD 的长为_______________3【解析】22sin sin()cos 23BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=∙ 22222(32)332323BD BD +-==⨯⨯14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线3()y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________31【解析】由直线方程3()y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c FM c F M ==∴由椭圆的第一定义可得21c a c a =∴==15.当,1x R x ∈<时,有如下表达式:211.......1nx x x x+++++=- 两边同时积分得:111112222220000011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰ 从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分.解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115.(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分.解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x . (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x,(1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x , 即20+-=x y .(Ⅱ)由()1,0-'=-=>a x af x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值. 综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分.解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤iP i N i 都在同一条抛物线上,且抛物线E 方程为210=x y (Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx 由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >. (1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值;(3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE //AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥ 1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD1AA CD ∴⊥,又1AA AD A =I , CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD u u u r u u u r u u u r的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-u u u r ,1(0,3,1)AB k =u u u r ,1(0,0,1)AA =u u u r 设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =- 设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2018个零点.本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 22x <<,10cos 22x <<所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈则()cos cos cos 22sin 2(2sin )G x x x x x x '=++-因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()042G π=>且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意(Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯= 综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点21.(本题满分14分) (1)(本小题满分7分)矩阵与变换 已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标.本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分. 解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x = 故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程; (2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离12d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分. 解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。
2019年福建省高考理科数学试卷及答案【word版】
2019年福建高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +2.某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ).18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的() .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件7.已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,18.在下列向量组中,可以把向量()2,3=a 表示出来的是( )A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e eC.)10,6(),5,3(21==e eD.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.26 10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 二、填空题11、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________12、在ABC ∆中,3,2,60==︒=BC AC A ,则ABC ∆等于_________13、要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)14.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.15.若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.三.解答题:本大题共6小题,共80分.16.(本小题满分13分)已知函数1()cos (sin cos )2f x x x x =+-. (1)若02πα<<,且2sin 2α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.17.(本小题满分12分)在平行四边形ABCD 中,1AB BD CD ===,,AB BCD CD BD ⊥⊥.将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:CD ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.18.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. (1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
2019年2月份福建省各地质检调研卷高三数学试题中难题比较福州泉州莆田龙岩
c c .由双曲线定义知 QF1 2a , 2 2
2 2 15 c c 2 在 Rt△FQF ,故选 C. 2c ,解得 C 的离心率 e 1 2 中, 2 a 2 2 7
【2019.2 龙岩市质检理,6】
答案:B 考虑到本题,离心率可以不一样,故 A 错,从而 C,D 错,选择 B. 事实上,由
B.
1,1
C.
0, 2
【简解】 由图象的相邻两条对称轴之间的距离为 解得 =2 .
2 , 所以 T , 又因为 0 , 所以 , 个单位长度后,得到函数 3
0,
, 将 函 数 f ( x) 的 图 象 向 左 平 移
-1-
2 2
【2019.2 莆田市质检理,12】
-4-Leabharlann 答案:C 提示:抓住三点共线,简单的分类讨论排除,然后可在一个直角三角形内列写方程。 【2019.2 福州市质检理,11】如图,以棱长为 1 的正方体的顶点 A 为 球心,以 2 为半径做一个球面,则该正方体的表面被球面所截得的 所有弧长之和为 A.
左、右焦点分别为 F1 , F2 ,过 F2 作线段 F2 P 与 C 交于点 Q ,且 Q 为 PF2 的 中点.若等腰△ PF1 F2 的底边 PF2 的长等于 C 的半焦距,则 C 的离心率为
2 2 15 A. 7
2 B. 3
2 2 15 C. 7
3 D. 2
第 10
【简解】连结 QF1 ,由条件知 QF1 PF2 ,且 QF2
因为 0 x
1, 2 ,故选 D.
【2019.2 莆田市质检理,9】
答案:B 【2019.2 龙岩市质检理,9】
文科数学福建卷点评
2019文科数学福建卷点评今年的文科数学试卷是2019年福建自主命题以来出的最容易的一份试卷。
由于题目基本都属于常规题,没有太多有新意的,或者偏题怪题出现,难度较低,大部分考生在考完数学后都能够一脸轻松地走出考场。
中等程度的考生只要认真答题,发挥正常,都可以考得高分。
这也导致了文科数学区分度过低的现象,使接下来考生填报志愿增加不少变数。
选择填空题:重基础,扣课本。
试卷的选填题部分十分注重基础,每个题目基本都只考察一个知识点,题型单一,没有特别的创新和难度,基本没有设置任何障碍,题目的意思以及对应的知识点对于大部分考生都能做到一目了然。
在审题方面不存在理解问题,那么在这里主要考察的是同学对知识点掌握的熟练程度,以及计算时能否做到细心、认真。
考察的知识点主要包括:集合,复数,逻辑,统计,算法,概率,三角函数,导数圆锥曲线,函数等等。
基本都属于高中数学需要重点掌握的部分。
值得一提的是,今年出现在试卷中的题目原型大多和教材有关联,这也是提醒广大考生在今后的复习过程中一定要注重紧贴教材,不能盲目地大量做题而忽视了回归教材的重要性。
选择题和填空题的最后一题相比较而言稍微有些难度。
但只要学生读懂题目的背景,就不难做出分析,通过数学方法得出正确的答案。
解答题:题型变化不大,注重考察计算能力。
今年的解答题题型和去年相比变化不大。
基本上还是就同学们学习中的重点难点部分进行了着重考察,比如数列、解析几何、统计、立体几何,三角函数等。
但是出题顺序略有改变,主要体现在,解析几何由去年的第题提前到今年第18题,呼应了考纲中对于圆锥曲线部分考察难度降低的要求。
没有出与实际相关联的应用题。
而对于三角函数的考察则由去年的第x 题推后至今年的x。
难度略有提升,但是不大。
这样提醒我们考生在复习阶段不要忽视对于考纲的研究比较,尤其要注意具体知识点在历年考纲中体现的要求变化,这样准备起来才能更加地有效率。
今年的解答题整体来说比去年降低了很多,没有难题,主要注重考察学生对公式掌握的熟练程度和相关计算能力。
2019福建省高考数学考试说明:难度控制在0.6左右精品教育.doc
2019福建省高考数学考试说明:难度控制在0.6左右精选教育.doc--2019 年福建省高考数学考试说明:难度控制在0.6 左右考试内容:文科数学考试内容为《一般高中数学课程标准 ( 实验 ) 》的必修课程与选修课程系列 1 的内容。
理科数学考试内容分为必考内容和选考内容。
必考内容为《一般高中数学课程标准( 实验 ) 》的必修课程和选修课程系列 2 的内容。
选考内容为《一般高中数学课程标准( 实验 ) 》的选修课程系列 4 的 4-2 《矩阵与变换》、 4-4《坐标系与参数方程》、 4-5《不等式选讲》等三个专题的内容。
试卷构造:考试时间 120 分钟,考试方式为闭卷、笔试。
全卷满分 150 分,考试不使用计算器。
理科数学试卷选择题共10 题,每题 5 分,总合 50 分 ; 填空题共5 题,每题 4 分,合计 20 分 ; 解答题共 6 题,此中必考题 5 题,选考题 1 题 ( 包括 3 小题,每题 7 分,考生从中任选 2小题作答,满分 14 分 ) ,合计 80 分。
2019福建省高考数学考试说明:难度控制在0.6左右精选教育.doc文科数学试卷选择题共12 题,每题 5 分,合计 60 分 ; 填空题共4 题,每题 4 分,合计 16 分 ; 解答题共 6 题,合计 74 分。
试卷难度:整卷难度值应控制在0.6 左右。
试卷中各道试题第 1页----的难度值一般控制在0.2~0.8 之间,整份试卷中各样难度的试题得分数散布应该适合。
试卷应由简单题、中等题和难题构成。
难度值在0.7 以上的试题为简单题,难度值在0.4~0.7的试题为中等题,难度值在 0.4 以下的试题犯难题。
易、中、难试题的比率约为4:4:2,全卷难度控制在0.6 左右。
根源 :第 2页--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年福建高考数学试卷难度有些偏大
2009年福建高考数学试卷难度有些偏大
理科考生觉得不容易
昨日下午两个小时的数学考试结束之后,不少考生都愁容满面。
数学比部分考生预期的要难,很多考生有不少题目都没答出来,这些考生大部分是理科生。
文科生的反映要好得多,不少同学觉得试卷与省质检差不多,变化不大。
形式很新难度不小
□张海峰(泉州五中高三数学备课组组长)
今年理科数学题目比较新颖,利于高校选拔合适人才。
试题重在考查学生归纳问题、探究问题的能力,既考查学生的基本功,又考查学生大胆推理、小心求证的能力。
考试题型与省质检题目相比,有较大差别。
应用题与三角函数结合,非常新颖,难度大。
后面大题的难度较大,第一、第二小题解出来比较困难,一般同学解不出来。
尽管如此,试卷也注重基本知识、主干知识的考查,主干知识有110多分,考查新知识点的题目30多分。
文科数学比较平稳,题型与考试说明和省质检的题目差别不大。
考生只要按部就班,细心解题,应该会考出好成绩。
试卷难度有些偏大
□孙经(惠安一中高三数学备课组组长)
从今天下午学生的反映来看,普遍感觉数学试卷难度偏大
了。
比如,一个题需要三个步骤来解答,现在第一步骤就很难,不同程度的学生都无法得分,只有极少数较优的学生能够能到一点分数,这样无法从分数上将考生的水平区分开来。
另外,从考生的意见上看,今年的数学试卷同平时的一些练习、模拟卷的整个方向有所不同。
总的来说,就是试卷难度偏大,导致考生无法按真实水平答题得分。