16.1_二次根式(第1课时)用

合集下载

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。

本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。

但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。

三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。

2.培养学生从实际问题中抽象出二次根式的能力。

3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算方法。

3.引导学生从实际问题中抽象出二次根式。

五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。

2.讲授法:讲解二次根式的定义、性质和运算方法。

3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。

4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。

2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。

例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。

2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。

16.1《二次根式》(第1-3课时)教案 新人教版

16.1《二次根式》(第1-3课时)教案 新人教版

16.1 二次根式教案第一课时二次根式的概念教学目标知识与技能 1 理解二次根式的概念2a≥0)的意义求被开方数中字母的取值范围.过程与方法从具体实例中建立二次根式模型,探索二次根式被开方数中字母的取植范围情感态度与价值观经历观察比较总结和应用等数学活动,体验发现的快乐教学重难点关键1a≥0)的式子叫做二次根式的概念;2.a≥0)的意义求被开方数中字母的取值范围教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以,.问题2:由勾股定理得问题3:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平a≥0)•的式子叫做二次根式,”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:有意义的条件例1.下列式子,哪些是二次根式,、1xx>0)、、、1x y+x≥0,y•≥0).分析”;第二,被开方数是正数或0.x>0)、x≥0,y≥0);不是二、1x、1x y+.例2.当x是多少时,2-x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,2-x•才能有意义.解:由x-2≥0,得:x≥2当x≥2时,2-x在实数范围内有意义.三、巩固练习教材练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+在实数范围内有意义,必须同时满足0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-111x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)+=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.七板书设计一、选择题1.下列式子中,是二次根式的是()A. B C.x 2.下列式子中,不是二次根式的是()A B.1 x3.已知一个正方形的面积是5,那么它的边长是() A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.16..1 二次根式教案教学内容 1.a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标知识与技能a ≥02=a (a ≥0),并利用它们进行计算和化简.过程与方法 经历探索二次根式的性质的过程,培养学生从简单到复杂从一般到特殊的思 维过程情感 态度与价值观 通过学生自主探索合作交流体会学习数学的乐趣 教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;2=_______;2=______;2=_______;)2=______;)2=_______;)2=_______.是4的算术平方根,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,)2=13,)2=72,)2=0,所以例1计算1.(5.1)2 2.(2 3.24.(2)2分析:我们可以直接利用(2=a (a ≥0)的结论解题.解:(5.1)2 =1.5,(2 =22·2=22×5=20,2=56,(2)2=22724=.三、巩固练习计算下列各式的值:2)2 (4)2)2()2 22-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4题都可以2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P97.七板书设计第二课时作业设计一、选择题1个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-516.1 二次根式教案第三课时教学内容a(a≥0)教学目标知识与技能(a≥0),(a≥0)并利用它进行计算和化简.过程与方法经历探索二次根式的性质的过程,培养学生分类的数学思想情感态度与价值观通过学生自主探索合作交流体会学习数学的乐趣及发散思维能力教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:110=23=37.例1化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?(学生讨论)分析:(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0时,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2分析:(略) 五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业板书设计第三课时作业设计一、选择题1的值是().A.0 B.23C.423D.以上都不对2.a≥0,比较它们的结果,下面四个选项中正确的是().AC.-二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+。

16-1-1 二次根式的概念(第一课时)(教学课件)-2023-2024八年级

16-1-1 二次根式的概念(第一课时)(教学课件)-2023-2024八年级
∴x>1.
(2)∵被开方数需大于或等于零,
∴3+x≥0,
∴x≥-3.
【点睛】要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不
∵分母不能等于零,∴x-1≠0,∴x≠1.
等式求解即可.若二次根式为分母或二次根式为分式的分母时,应同时考虑
分母不为零.
∴x≥-3 且x≠1.
1.单个二次根式如 A 有意义的条件: A≥0
第十六章 二次根式
16.1 二次根式
16.1.1 二次根式的概念
1.理解二次根式的概念.(重点)
2.掌握二次根式有意义的条件.(重点)
3.会利用二次根式的非负性解决相关问题.
(难点)
1.什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则这个数就叫做a的平方根.
a的平方根是 a (a≥0).
+2
6
8.已知 = 2 3 − + 3 − 9 + 2,则ab=_____.
9.已知等腰三角形ABC的两边满足 − 3 + 6 − = 0,则此三角形的
15
周长为_______.
2021
10.若 − 2021 + |2020 − | = ,则20202 − =________.
2.多个二次根式相加如 A B ... N 有意义的条件:
3.二次根式作为分式的分母如
4.二次根式与分式的和如
A
B

B
A

A
1
A
A≥0;
B≥0;


...

N≥0;
有意义的条件: A>0
C
有意义的条件: A≥0且B≠0

二次根式第一课时

二次根式第一课时

根 的长和宽之比为3:2,它的长、宽各应取多少?

答:
长应取 3 3 cm 宽应取 2 3 cm
新课讲解



根 式
识有
点意
二义



例1 当 x是怎样的实数时, x - 2 在实
数范围内有意义?
解:由 x-2 ≥0,得:
x ≥___2___ 当 x≥__2____ x - 2 在实数范围内有意义 练一练 当 a 是怎样的实数时,下列的各
答:(1)当x≥0时, x 在实数范围内有意义. (2)当x为任意实数时, x2 在实数范围内有意
义. (3)当 x≥0时, x3 在实数范围内有意义.
3、学习反思:________________________ ______________________________________ _.
强化训练
式在实数范围内有意义?
(1) a -1
解:由 a-1 ≥0,得:
a ≥___1___ a 当 ≥___1___ a -1 在实数范围内有意义



根 式
识有
点意
二义



(2) 2a 3
新课讲解 3
a≥ - 2
(3) - a
解:由 -a ≥0, 得:
a ≤____0_____
a当 ≤ 0 , - a 在实数范围内有意
1、判断下列各式是否是二次根式?
√ ① a ② 0.002
③ -5
2、下列式子中,是二次根式的是(A )
x A . - 7 B. 3 7 C. x D.
3、下列式子中,不是二次根式的是(D )
1

16.1二次根式第1课时爱的教育上课用

16.1二次根式第1课时爱的教育上课用

\
a - b + 6 = 0,a + b - 8 = 0
a- b = - 6 a+ b = 8 a + b- 8 = 0 a=1 b=7
∴ a - b+ 6 = 0
在实数范围内分解因式:4 x - 3
解: ∴ ∵ 3
2
2
3
2
2
4 x 3 (2 x) 3

2
(2 x 3 )(2 x 3 )
\ a=
2 2
2,b = 2
\ a + b - 2b + 1 =
( 2) + 2 2
2
2? 2 1
= 2 + 4- 4 + 1 = 3
10. 已知 a - b + 6与 a + b - 8互为相 反数,求 a、b的值。 解:
a- b+ 6 0,a + b - 8
0
பைடு நூலகம்
而 a - b + 6+ a + b - 8 = 0

a
2
先平方,后开方
2.从取值范围来看 , 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
a
a
2
2
2
=a
a (a≥ 0) -a (a<0)
= ∣ a∣ =
m4 思考:若 ( m 4 ) 4 m , 则 m 的取值范围是 _________
3, x + 1,
144,
7. 三角形三边长分别是a、b、c,且 a > c , 那么 c - a - (a + c - b)2等于( D )。

人教版《16.1二次根式》课件第一课时

人教版《16.1二次根式》课件第一课时

已知
1 a
有意义,那么A(a,
a)
在第 二 象限.
∵由题意知a<0 ∴点A在第二象限
结束语
谢谢大家聆听!!!
23
定义:式子 a(a 0) 叫做二次根式.
其中a叫做被开方式。
不要忽略
掌握二次根式有意义的条件
二次根式 a 有意义的条件: ____a__≥_0_____
例1.x是怎样的实数时,下列式子在实数范 围内有意义?
(1) x 1
(2) x2 2
(3) x2
(4) 1 3 2x
①被开方数大于或等于零;
②分母中有字母时,要保证分母不为零。
第十六章二次根式
16.1 二次根式
二次根式
(a≥0)表示非负数a的算术平方根,
形如(a≥0)的式子叫做二次根式.
它必须具备如下特点: 1、根指数为2; 2、被开方数必须是非负数.
例1.下列各式是二次根式吗?
(1)32, (2)6, (3)9,
(4)12, (5)m m0 ,
(6) xyx,y异号 , (7)a2,(8)3 5.
切入点:从字母的取值范围入手。 l2.已知 x 2y 9与 x y 3互为相反数,
求 x 、y 的值.
切入点:从代数式的非负性入手。
l3.已知 x 1 ,你能求出 x的取值范围吗?
3 x
切入点:分类讨论思想。
l4.若 1 0 a为一个非负整数,求非负整数 a 的值
若a.b为实数,且| 2a| b20 求 a2 b2 2b1的值。
又 ∵ a+2 +|3b-9|+(4-c) 2=0, ∴ a+2=0 , 3b-9=0 ,4-c=0 。 ∴ a= -2 , b= 3 ,c= 4。 ∴ 2a-b+c=2× (-2) -3+4 = -3。

16,1 二次根式 第一课时八年级数学下册课件(人教版)

16,1 二次根式 第一课时八年级数学下册课件(人教版)

例2 当x 是怎样的实数时, x 2 在实数范围内有意义? 解:由x-2≥0,得x ≥2.
当x ≥2时, x 2 在实数范围内有意义.
1 当a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1; (2) 2a 3;
(3) a;
(4) 5 a .
解:(1)由a-1≥0,得a≥1,所以当a≥1时, a 1 在实数范围内有意义.
当a>0时,-5a<0,则 -5a 不是二次根式.
∴ -5a 不一定是二次根式.
(4) a+1(a≥0)只能称为含有二次根式的式子,不能称为二次根式.
1
1
(5)当x=-3时,(x 3)2 无意义,∴ (x 3)2 也无意义;
1
1
当x≠-3时,(x 3)2 >0,∴ (x 3)2 是二次根式.
3 式子 a+1 有意义,则实数a 的取值范围是( C )
a-2
A.a≥-1
B.a≠2
C.a≥-1且a≠2
D.a>2
知识点 3 二次根式的“双重”非负性(a≥0, a≥0)
同时 a (a≥0)也是一个非负数,我们把这个性质叫做二次根
式的双重非负性.
例3 若 x y 1 (y 3)2 0,则x-y 的值为 ( C )
长的等腰三角形的周长是( B )
A.20或16
B.20
C.16
D.以上答案均不对
若式子
x1 ( x 3)2
有意义,则实数x 的取值范围是( B
)
A.x≥-1
B.x≥-1且x≠3
C.x >-1
D.x >-1且x≠3
本题易错在漏掉分母不为0这个条件,由题意
知x+1≥0且(x-3)2≠0,解得x ≥-1且x≠3.

八年级 下人教版数学16.1。1二次根式(第1课时)

八年级 下人教版数学16.1。1二次根式(第1课时)
2 (3) a +1;
×

√ √
(x ≤ 0) (4 ) - x .
(3)一个物体从高处自由落下,落到地面所用的时 间t(单位:s)与开始落下时离地面的高度h(单 位:m)满足关系h=5t2.如果用含有h的式子表示t, h 那么t为_________. 5
合作探究 形成知识
h 上面问题中,得到的结果分别是: 3 , S , 65 , . 5 (1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?
第十六章 二次根式
16.1 二次根式
第1课时
一、回顾与思考
0 2 ;0的平方根是______. 1.4的平方根是_____ 5 ;5的算术平方根是____. 5 2.5的平方根是_______ 3. 什么叫平方根? 什么叫算术平方根?
二、创设情境,引入新知
用带有根号的式子填空,看看写出的结果有什么特点: 3 ,面积 (1)面积为3的正方形的边长为 S 为S的正方形的边长为 . (2)一个长方形的围栏,长是宽的2倍,面积为 65 130 m2,则它的宽为 m.
∴ 当x≥-2时, x+2 在实数范围内有意义.
初步应用 巩固知识
例2 当x 是怎样的实数时, x 2 在实数范围内有意 义? x 3 呢?
初步应用 巩固知识
例3 a 取何值时,下列根式有意义?
(1) a+1
1 ;(2) 1- 2a
2 ;(3) (a -1)

解:(1)由a+1≥0,得 a≥-1; 1 (2)由1-2a>0,得 a< ; 2 2 (a-1 ) (3)由 ≥0,得 a为任何实数.
初步应用 巩固知识
练习 指出下列哪些是二次根式?
(1) 5 ; √ (2) -3 ; (3) 21 ;

16.1 二次根式 课件 2023-2024学年人教版数学八年级下册

16.1   二次根式   课件 2023-2024学年人教版数学八年级下册

(2)- 272× -722×(- π)-2.
解:原式=-27×72×π1=-π1.
6.已知一个圆柱体的体积为V,高为h,求它的底面半 径r(用含有V和h的代数式表示);求当V=80π,h=5时, 底面半径r的值. 解:圆柱体的体积V=πr2h,
∴r= πVh.
把V=80π,h=5代入上式,得r=4.
注意 利用数轴和二次根式的性质进行化简,关键是要要根据a,b的大小 讨论绝对值内式子的符号.
例题与练习
1.计算
( 3)2 = 3 (3 2 )2 = 32 ( 2 )2=18
( 25 )2 = ( 2 )2 =
2
2.说出下列各式的值
0.32 0.3
( 1)2 1 77
()2
102 =
( 1 )2 1
解:由题意,得
x+5≥0, x≠0,
解得x≥-5且
x
≠0.
∴当x≥-5且 x ≠0时,
x+5 x
有意义.
归纳
二次根式的实质是表示一个非负数(或式)的算术平方根. 对于任意一个二次根式 a ,我们知道:
(1)a为被开方数,为保证其有意义,可知a≥0; (2) 表示一个数或式的算术平方根,可知 a ≥0.
3.△ABC的三边长为a,b,c,其中a和b满足 b2-4b+4+ a-5 =0,求c的取值范围. 解:依题意,得(b-2)2+ a-5 =0,
∴b=2,a=5. 又∵a,b,c为三角形的三边长, ∴3条件下求 字母的取值范围
抓住被开方数必须为非负数, 从而建立不等式求出其解集.
a3 2
a≤5
例2 下列各式中,哪些是二次根式?哪些不是二次根式?
(1) 11;
(2) -5;

16.1 二次根式 第1课时:二次根式的概念(含答案)

16.1 二次根式 第1课时:二次根式的概念(含答案)

116.1二次根式第1课时二次根式的概念一、选择题1.下列各式中,一定是二次根式的是()A.-3 B.33 C. D.-32.要使二次根式 +1有意义,a 的值可以是()A.-1 B.-2 C.-3 D.-43.下列二次根式中,无论x 取何值,都有意义的是()A. B. 2-1 D. 2+14.已知二次根式 +3,当x=1时,此二次根式的值为()A.2B.±2C.4D.±45.若1-2 是二次根式,则x 的值不可能是()A.-2 B.-1 C.0 D.16.下列选项中,使根式有意义的a 的取值范围为a<1的是()A. -1 B.1- C.(1- )2二、填空题7.当x=54时,二次根式 +1的值为.1+ x 的取值范围是.9.若关于x 的式子4- +- +2有意义,且满足条件的所有整数x 的和为10,则a 的取值范围为.0有意义的条件是.三、解答题11.判断下列各式哪些是二次根式,哪些不是,为什么?3,-16,34,-5, 2+1.(1)求x 的取值范围;(2)求当x=-2x 的值.13.已知 -17+17- =b+8.(1)求a、b 的值;(2)求a 2-b 2的平方根和a+2b 的立方根.16.1二次根式第1课时:二次根式的概念一、选择题1.答案A A.-3符合二次根式的定义,故本选项符合题意;B.33是三次根式,故本选项不符合题意;C.当x<0时, 无意义,故本选项不符合题意;D.由于-3<0,所以-3无意义,故本选项不符合题意.故选A.2.答案A由题意得,a+1≥0,解得a≥-1,结合各选项知,只有-1符合题意,故选A.3.答案D A. ,当x≥0时,二次根式有意义,故此选项不符合题意;B. 2-1,当x2-1≥0,即x≥1或x≤-1时,二次根式有意义,故此选项不符合题意;2x≠0时,二次根式有意义,故此选项不符合题意;D. 2+1,无论x取何值,二次根式都有意义,故此选项符合题意.故选D.4.答案A当x=1时,原式=1+3=4=2,故选A.5.答案D∵1-2 是二次根式,∴1-2x≥0,解得x≤0.5,∴x的值不可能是1.故选D.6.答案D A项,当a≥1时,根式有意义;B项,当a≤1时,根式有意义;C项,无论a取何值,根式都有意义;D项,要使根式有意义,则11- ≥0且1-a≠0,解得a<1.故选D.二、填空题7.答案32解析当x=54时, +1==32.故答案为32.8.答案x>-1解析由题意得11+ ≥0且1+x≠0,∴1+x>0,解得x>-1,故答案为x>-1.9.答案1<a≤3解析∵关于x的式子4- + - +2有意义,∴4-x≥0,x-a+2≥0,解得a-2≤x≤4,∵满足条件的所有整数x的和为10,4+3+2+1=10,4+3+2+1+0=10,∴-1<a-2≤1,∴1<a≤3.10.答案x≥-2,x≠1且x≠-12解析由题意可得x+2≥0,x-1≠0且2x+1≠0,解得x≥-2,x≠1且x≠-12.2三、解答题11.解析3,-16,(a≥0), 2+1符合二次根式的定义,故是二次根式; 34是三次根式,故不是二次根式;-5中被开方数小于0,故不是二次根式.12.解析(1)根据题意,得3-12x≥0,解得x≤6.=3+1=2.(2)当x=-2∴3-12x=0,解得x=6.13.解析(1)由题意得a-17≥0,且17-a≥0,则a-17=0,解得a=17,把a=17代入 -17+17- =b+8,得b+8=0,解得b=-8.故a、b的值分别为17、-8.(2)由(1)得a=17,b=-8,∴± 2- 2=±172-(-8)2=±15,3 +2 =317+2×(-8)=31=1.故a2-b2的平方根为±15,a+2b的立方根为1.3。

2019年八年级数学下册二次根式16.1二次根式第1课时二次根式的概念课件

2019年八年级数学下册二次根式16.1二次根式第1课时二次根式的概念课件
第十六章 16.1 第1课时
二次根式 二次根式
二次根式的概念
1.开平方运算 (1)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的 平方根 . (2)一个正数有 2 个平方根,它们的关系是 互为相反数 ;0的平方根是 0
;负数
没有平方根
.
(3)算术平方根的定义:如果一个正数x的平方等于a,那么这个数x叫做a的 算术平方根 ; 0的算术平方根是 0 .
2.二次根式 定义: 一般地,把形如 为二次根号. 二次根式应满足两个条件: ①含有二次根号; ②被开方数为非负数. ③被开方数中的分母不等于 0.
a
(a≥0)的式子叫做二次根式,a 叫做 被开方数 ,“
”称
知识点1:二次根式有意义的条件
例1 当 x 是怎样的实数时, 3x 1 在实数范围内有意义?
(3)因为对于任意的 x,x +10 始终大于 0,所以满足 x 2 10 有意义的 x 值为全体实数.
2
(4)由题意得-x ≥0,解得 x=0.
2
D
)
B
)
(D)以上皆不对
5x 2 有意义的 x 的取值范围是 5x 2
x
4.使二次根式
2 5
.
5.要使下列式子有意义,x 的取值范围是什么? (1) 5 x 1 ; (2) 2 10 x ; (3) x 2 10 ; (4) x 2 .
1 解:(1)由题意得 5x+1≥0,解得 x≥- . 5 1 (2)由题意得 2-10x≥0,解得 x≤ . 5
1 x 0, 解:由题意得 y 0,
x 1, 解得 y 5.
所以 x+y=4.
1.下列式子中,是二次根式的是( (A) 7 (A)x<1 (A)5 (C)

16.1二次根式(第1课时 )

16.1二次根式(第1课时 )
(2) (3)(5)(7)均不是二次根式.
新知应用
两个必备特征
思考:当x是怎样的实数时,二次根式 x 2在实数范围内
有意义? 解:由x-2≥0,得 x≥2.
被开方数a ≥0
当x≥2时,二次根式 x 2在实数范围内有意义.
试一试 说一说 x取何值时,下列二次根式有意义?
(1) x 1 x ≥1 (2) 3x x≤0
“ ”称为二次根号.
新知应用
形如 a (a 0) 的式子
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 4
( 2 )✘6 ( 3 ) ✘1 2
( 4 ) - m (m≤0),
(6) a2 1
( 5 ) x✘y(x,y 异号)
( 7 )✘3 8
异号得负
解: (1)(4)(6)均是二次根①式外,貌特征:含有“ ” 两个必备特征 ②内在特征:被开方数a ≥0
(6) x 1 2x 3
a C D
2
2.式子 3x 6 有意义的条件是( A ) A. x>2 B.x≥2 C.x<2 D.x≤2
3.当x=_-_1__时,二次根式 x 1 取最小值,其最小值 为__0__.
0
课后作业
当a是怎样的实数时,下列各式在实数范围内有意义?
(5) x2 2x 1
我们知道,负数没有平方根. 因此,在实数范围

时,被开方数只能是正非数负或数0..
探究新知
思考 用带根号的式子填空,这些结果有什么特点?
(1)面积为3 的正方形的边长为____3___,面积为S 的正方形的
边长为____S___. 边长边长 3
边长边长 S
(2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽

16.1 二次根式(第1课时)

16.1 二次根式(第1课时)
课题:16.1二次根式(第一课时)
学习目标:
1、理解二次根式的概念和意义; 2、会确定被开方数中字母的取值 范围 。
自学指导:
请同学们认真默读课本第2页,熟看例1, 掌握“确定被开方数中字母取值范围 ”的 方法,并回答下列三个问题(请在8分钟内完 成): 1.二次根式的概念是什么?它表示 什么意思? 2.
2.求下列二次根式中字母的取值范围.
1 5 a 1 2 1 2a
2
3 a 3
a
选做题:求 (a 1) 中
的取值范围.
a 中的 a 为什么不能小于零?
2.回答课本第2页最后一个思考题.
随堂检测
学习竞赛开始!请在5分钟内完成课本第 3页的练习。
当堂训练
1.请把属于二次根式的式子的序号写出来.
(1) 32 , (2) 6, (3) 12 , (4) - m
2
(m≤0),
(5) xy (7)
3
(x,y 异号)

(6) a 1 ,

人教版八年级数学下册课件:16.1二次根式(第1课时)

人教版八年级数学下册课件:16.1二次根式(第1课时)

上述问题的结果为
3、
S 、 65 、
,t 可以看出它们表示一些
5
正数的算术平方根. 那么类似于这样的式子,你能试着归纳
特点吗?
共同特点是被开方数为非负数,根指数为2.
新知探究
知识点1:二次根式的定义
一般地,我们把形如 a(a≥0)的式子叫做二次根式. 其中
“ ”称为二次根号.
二次根号
根号a
可以是非负的数或单项 式、多项式、分式等
学习目标
1.了解并掌握二次根式的概念. 2.利用二次根式的概念解决具体问题.
课堂导入
圆形喷泉的面积为 70πm², 那么它的半径是多少?
这个式子有什 么特点呢?
新知探究
思考 用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为 3 的正方形的边长为
的边长为
.
,面积为 S 的正方形
(2)一个长方形的围栏,长是宽的 2 倍,面积为 130m2,则
当 a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1
(2) 1
3a
(3) (a 1)2
本题源于《教材帮》
跟踪训练
当 a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1
(2) 1
3a
(3) (a 1)2
解:(3)因为不论a为何值,
≥0恒成立,所以a
取任意实数,
在实数范围内都有意义.
被开方数
新知探究
(1)被开方数 a 既可以是一个数,也可以是一个含有 字母的式子,但前提是 a 必须大于或等于 0. (2) a (a≥0)实际上就是非负数 a 的算术平方根, 它既可以表示开方运算,也可以表示运算的结果. (3)如果已知 a 是二次根式,就意味着满足 a≥0 这一 隐含条件.

八年级数学下册 16.1 二次根式(第1课时)课件

八年级数学下册 16.1 二次根式(第1课时)课件

- a在实数范围(fànwéi)内有意义.
(4) 5 a
a≤5
第七页,共十二页。
新课讲 解


知 识 点 二
根 式 有 意 义
思考 当 x是怎样的实数时, x在2 实数范围
x (fànwéi)内有意义? 3 呢?
答:(1)当 x为任意实数 时,
(fànwéi)内有意义.
在x实2 数范围
(yìyì)
内容(nèiróng)总结
16.1 二次根式 (第1课时(kèshí))。16.1 二次根式 (第1课时(kèshí))。第十六章 二次根式。一个 正数有 平方根,它们。知识点 一 二次根式。思考 用带有根号的式子填空,看看写出的结果有什
No 么特点:。⑵一个长方形的围栏,长是宽的2倍,面积为。知识点一 二次根式。如果用含有h的式子
a 当 ≥____1__
a≥___1___
a - 1在实数范围内有意义
第六页,共十二页。



知式
识 点 二
有 意 义
(yìyì)
的 条 件
12/13/2021
(2) 2a 3
新课讲 3解(jiǎngjiě)
a≥ - 2
(3) - a
解:由 -a ≥0, 得:
a≤____0_____
a 当 ≤ 0,
⑶一个物体从高处自由落下(luò xià),落到地面所
用的时间t(单位:s)与开始落下时离地
知 识
面 如果的用高含度有h(h的单式位子:表m示)t满,足那么关t系为__h____5__t_2__
h 5
点 一 二
1、上面(shàng miɑn)问题结果表示为一些正数算术平方根

八年级数学下册16.1二次根式第1课时二次根式的概念教案

八年级数学下册16.1二次根式第1课时二次根式的概念教案

16.1 二次根式第1课时二次根式的概念1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点)2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点)一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.问题2:上面得到的式子3,S,65,h5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x(x≤3);(7)-x(x≥0);(8)(a-1)2;(9)-x2-5;(10)(a-b)2(ab≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x (x≥0),-x2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】根据二次根式有意义求字母的取值范围求使下列式子有意义的x的取值范围.(1)14-3x;(2)3-xx-2;(3)x+5x.解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x>0,解得x<43.当x<43时,14-3x有意义;(2)由题意得⎩⎪⎨⎪⎧3-x≥0,x-2≠0,解得x≤3且x ≠2.当x ≤3且x ≠2时,3-xx -2有意义; (3)由题意得⎩⎪⎨⎪⎧x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x有意义. 方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】 利用二次根式的非负性求解(1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x的平方根.解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x的平方根.解:(1)根据题意得⎩⎨⎧2a +8=0,b -3=0,解得⎩⎨⎧a =-4,b = 3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)根据题意得⎩⎪⎨⎪⎧x -3≥0,3-x ≥0,解得x =3.则y =4,故y x=43=64,±64=±8,∴y x的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题先观察下列等式,再回答下列问题.①1+112+122=1+11-11+1=112; ②1+122+132=1+12-12+1=116; ③1+132+142=1+13-13+1=1112. (1)请你根据上面三个等式提供的信息,写出1+142+152的结果; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数). 解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120; (2)1+1n2+1(n +1)2=1+1n -1n +1=11n (n +1)(n 为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.三、板书设计1.二次根式的定义 一般地,我们把形如a (a ≥0)的式子叫做二次根式.2.二次根式有意义的条件 被开方数(式)为非负数;a 有意义⇔a ≥0.通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.。

人教版八年级下册数学教案:16.1二次根式(第1课时)

人教版八年级下册数学教案:16.1二次根式(第1课时)

16.1 二次根式(第1课时)内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.学习目标1. 理解二次根式的概念;2.了解被开方数必须是非负数,利用()0≥a a 的意义确定字母的取值范围. 学习重点二次根式定义的理解、确定字母的取值范围.学习难点灵活的应用二次根式定义的概念、确定字母的取值范围.教学设计1.创设情境用带有根号的式子填空,看看写出的式子有什么特点:1.面积为3的正方形的边长为 面积为S 的正方形的边长为 .2.一个长方形的围栏,长是宽的2倍,面积为130 m ²,则它的宽为 m.3.一个物体从高处自由落下,落到地面用的时间t (单位s )与开始落下时离地面的高度h (单位:m )满足关系h=5t ².如果用含有h 的式子表示t ,那么t 为2.课堂探究 上面的问题的结果分别是3,S ,65,5h1.这些式子分别表示什么意义?2.这些式子有什么共同特征?3.根据你的理解,请写出二次根式的定义.我们知道,一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方,被开方数只能是正数或零.(a ≥0)的式子叫做二次根式,”称为二次根号.例1、指出下列哪些是二次根式? (1)12+x ; (2)16-;(3)29; (4)39;(5)π; (6)12+a(7)13-x (x ≠-1) (8)37 例2、当x 是怎样的实数时,在实数范围内有意义? (1) 32-x ; (2) 321-x (3)237+x ; (4)513-x(5)2311--x x ; (6)274511--x x 3.巩固练习课本P3练习第1.2题4.小结通过本节课的学习,你有什么收获?本节课主要学习了:(1)二次根式的概念.(2)二次根式 有意义的条件:5.拓展练习x 取什么实数时,式子有意义?(1)x x 5445-+- (2)2845--x x 6.布置作业P5第1题。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5) x
3
x 0 (6) 12
x 1 0 ( x 2) (7) x3
x x 1, 且x 2
2
x0
(8)
x2 x
x 0 (9) x 1 x为全体实数
比较辨别 探索性质
问题 请比较 a 和0 的大小.
当a>0 时, a 表示a 的算术平方根,因此 a >0;
当a =0 时, a 表示0 的算术平方根,因此 a =0; 这就是说, a (a≥0)是一个非负数. 双重非负性
Байду номын сангаас
a
被开方数 二次根号
读作“根号
a”
归纳:
二次根式的定义
一般地,代数式形如 式子做叫二次根式。
a(a 0 ) 的
请你凭着自己已有的知识,说 说对二次根式 a 的认识!
?
1.
a 表示什么含义?
a 表示a的算术平方根;
答 :当 a ≥ 0时 ,
2. 当a满足什么条件时,
a
才有意义?
答:由于负数没有平方根,所以当a≥0时,
(3)一个物体从高处自由落下,落到地面所用的时 间t(单位:s)与开始落下时离地面的高度h(单 位:m)满足关系h=5t2.如果用含有h的式子表示t, h 那么t为_________. 5
三、探索新知,解决问题
你认为所得的各代数式有哪些共同特点?
3
S
65
h 5
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
一、回顾与思考
0 2 ;0的平方根是______. 1.4的平方根是_____ 5 ;5的算术平方根是____. 5 2.5的平方根是_______
二、创设情境,引入新知
用带有根号的式子填空,看看写出的结果有什么特点: 3 ,面积 (1)面积为3的正方形的边长为 S 为S的正方形的边长为 . (2)一个长方形的围栏,长是宽的2倍,面积为 65 130 m2,则它的宽为 m.
2
(5) xy (x,y 异号), (7)
3
5
在实数范围内,负数没有平方根
1、判断下列代数式中哪些是二次根式?


1 2
2

16
x ( x 0)
a9
a 2a 2 ⑷
2
⑸ m 3

a 1 (a 3)
初步应用 巩固知识
例1 意义? 当x 是怎样的实数时, x+2 在实数范围内有
a 1 时 即当 a 1 有意义 看到分数线 ,, 分母不为 0 .
1 看到偶次根式 0 (2) a (3) a,被开方数大于等于 为任意实数 看到02 指数,底数不为0 最后画数轴,写出解集来
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0 1 2 (3) 4 x x为全体实数 (4) x0 x
七、布置作业

1.教材第3页练习1、2题. 2.教材第5页习题16.1第1、3、 5、6、7、10题.
解:由 x+2≥0, 得: x≥ - 2.

当x≥-2时, x+2 在实数范围内有意义.
试着在本子上完成 课本第3页的练习 第2题。
例题吧
例1 x为何值时,下列各式在实数范围内有意义。
1 x 5 x 5
(1)
(2) 1 x
2
(3) 1 x 3 x
解: (1) 由x-5 ≥ 0,得x ≥ 5 ∴当 x ≥ 5时, x 5有意义.
综合应用 深化提高
练习2 当x 是什么实数时,下列各式有意义.
x (1) 3-4 x ;(2) ; x -1
(3) - x 2 ; (4) x-2 - 2-x .
练习3 若 16-4n 是整数,则自然数n 的值为 0, 3 , 4 ___________.
课堂小结
(1)本节课你学到了哪一类新的式子? 一般地,我们把形如 a(a≥0)的式子叫做二次 根式,“ ”称为二次根号. (2)二次根式有意义的条件是什么?二次根式的值的 范围是什么? ≥ 0. 双重非负性 a 中的a≥0; a (3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算 术平方根是二次根式.
(2) 因为不论x是什么实数,都有 1 x >0.
2
∴当 是任何实数时, 1 x 2 有意义.
1 x 0 (3)由题意可知: 3 x 0
∴当 -1≤ x ≤3时, 1 x 3 x 有意义.
变式:
当x取何值时,
1 x5
1 在实数范围内有意义。(默2) x 5
a2 0 ∵无论 a 取何值, 说明 : 1. 当被开方数本身为非负数或能化为非负 2 字母 a 的取值范围是全体实数 都有 a 1 0 2 数形式时,其字母的取值范围为:全体实数; (2)解: - a 0
a
2
a
2
(2)
(a 1)
2
∴字母 a 的取值 2.当被开方数本身为非正数或能化为非正数形式 a2 0 范围是全体实数 . 时,其字母的取值范围为:使被开方数为 0的值。
3.
a 才有意义!
a
(a≥0)有如下特征:
a≥0, a ≥0 ( 双重非负性) a可以是数,也可以是式.
既可表示开方运算,也可表示运算的结果.
(1) 答: (2)
a
是二次根式吗?
a 只有在条件a≥0的情况下,才属于二次根式!
二次根式是属于有特殊条件的代数式.
答:符合条件(1)被开方数 22 为非负数; (2) 含 有二次根号,所以 22 是二次根式. 1 ( x 0) 是二次根式 (3) 代数式 a 2(a 2), x 吗? 答:是的,二次根式的被开方数可以是整式或分式.
a 0
2


∵ a 2a 2
(a 2a 1) 1
2
(a为任何实数) (a为任何实数)
∴字母 a 的取值范围是全体实数.
(a 1) 2 1 0
(a 1) (a=1)
2
求下列二次根式中字母的取值范围:

1 2 2 3 a 3 1 a 1 1 2a 解:( 1)由题意得: 求字母的取值范围的口诀(默 5) a 1 a 1 0 ; 从左看到右 从上看到下
x 5 0 1 0 x 5
解:由题意得 ∴ 当x>5时,

x-5

0
在实数范围内有意义。 1
x 5
1 x-5 2
(默3)
解:由题意得,
5 x 20 20 x 5 x 5 20
x2 5
求下列二次根式中字母 a 的取值范围 (1) (1)解:
人教版数学教材八年级下
第16章 二次根式
16.1 二次根式
回忆与思考
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根。
a的平方根是 a
⑵什么是一个数的算术平方根?如何表示? 正数的正的平方根叫做它的算术平方根。 0的算术平方根平方根是0 用
a
(a≥0)表示。
22 是二次根式吗?
注意
a 1 这类式子只能称为含有二次根 如: 式的代数式,不能称之为二次根式;

2 x2 2 x 3
2, 3 这些二次根式看 这类代数式,应把 做系数或常数项,整个代数式仍看做整式。
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (6) a 1 ,
相关文档
最新文档