八年级数学下册 第17章 勾股定理复习教案 (新版)新人教版
八年级数学下册 第17章 勾股定理复习导学案(新版)新人教版
学
习
目
标
1.进一步理解勾股 定理及其逆定理,弄清两定理之间的关系。
2.复习直角三角形的有关知识,形成知识体系。
3.运用勾股定理及其逆定理解决问题.
重点:复习直角三角形的有关知识,形成知识体系.
难点:运用勾股定理及其逆定理解决问题。
时间
分配
导入3分钟新课5分钟、练习巩固30分、课堂小结2分
活动二:
1、勾股定理 及其逆定理阐述的是哪种图形的性质及判定?
2、它们阐述的是直角三角形的哪方面(边、角)的性质?
3、你还知道直角三角形的哪些性质?
4、用框图总结直角三角形的性质及判定。
三、课堂练习:
1、在直角三角形ABC中,∠C=90°,
(1)已知a:b=3:4,c=25,求a和b
(2)已知∠A=30°a=3, 求b和c
(3)已知∠A=45°,c=8,求a和b
2、直角△的两边长为8和10,求第三边的长度.
3.已知三角形的三边长为9 ,12 ,15 ,则这个三角形的最大角是____度
4 、△ABC的三边长为9 ,40 ,41 ,则△ABC的面积为____
5、在△AB C中,∠C=90°,AC=3,CB=4.
(1)求△ABC的面积
学案(学习过程)
导案(学法指导)
学
习
过
程
一、导入新课:
在课前自主阅读课本22-33的内容,然后把本章的知识点用框图总结出来。
二、教学新课
活动一:
1、小组内展示自己总结的知识框图,相互交流完善知识框图。
2、每个小组选取一名代表,出示本组的知识框图。
设计意图:通过学生阅读,相互交流,整理知识框图复习本章知识点,自觉内化 到自身的知识体系中。
春八年级数学下册 第17章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中
17.1 勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A 的面积=4;B 的面积=9;C 的面积=52-4×12×(2×3)=13;所以A +B =C .A ′=9;B ′=25;C ′=82-4×12×(5×3)=34;所以A ′+B ′=C ′.所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图”证明勾股定理.解:朱实=12ab ;黄实=(a -b )2;正方形的面积=4朱实+黄实=(a -b )2+12ab ×4=a2+b 2-2ab +2ab =a 2+b 2.又正方形的面积=c 2,所以a 2+b 2=c 2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再作三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.证明:a 2+b 2=c 2.图1图2【互动探索】(引发学生思考)从整体上看,这两个正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等.又∵左边的正方形面积可表示为a 2+b 2+12ab ×4,右边的正方形面积可表示为c 2+12ab ×4,∴a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.【互动总结】(学生总结,老师点评)通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.【例2】 已知在Rt △ABC 中,∠C =90°,a 、b 为两直角边,c 为斜边. (1)若a =3,b =4,则c 2=____,c =____; (2)若a =6,b =8,则c 2=____,c =____; (3)若c =41,a =9,则b =____; (4)若c =17,b =8,则a =____.【互动探索】(引发学生思考)根据勾股定理求解.【分析】(1)c 2=a 2+b 2=32+42=25,则c =5.(2) c 2=a 2+b 2=62+82=100,则c =10.(3) 因为c 2=a 2+b 2,所以b =c 2-a 2=412-92=40.(4)因为c 2=a 2+b 2,所以a =c 2-b 2=172-82=15.【答案】(1)25 5 (2)100 10 (3)40 (4)15【互动总结】(学生总结,老师点评)本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a 、b ,斜边长为c ,那么a 2+b 2=c 2.a 2+b 2=c 2的常用变形b =c 2-a 2,a =c 2-b 2.活动2 巩固练习(学生独学)1.在△ABC 中,∠C =90°.若 a =5,b =12,则 c =13;若c =41,a =9,则b =40. 2.等腰△ABC 的腰长AB =10 cm ,底BC 为16 cm ,则底边上的高为6_cm ,面积为48_cm 2. 3.已知在△ABC 中,∠C =90°,BC =a ,AC =b ,AB =c . (1)若a =1,b =2,求c ; (2)若a =15,c =17,求b .解:(1)根据勾股定理,得c 2=a 2+b 2=12+22=5.∵c >0,∴c = 5. (2)根据勾股定理,得b 2=c 2-a 2=172-152=64.∵b >0,∴b =8. 活动3 拓展延伸(学生对学)【例3】在△ABC 中,AB =20,AC =15,AD 为BC 边上的高,且AD =12,求△ABC 的周长. 【互动探索】应考虑高AD 在△ABC 内和△ABC 外的两种情形.【解答】当高AD 在△ABC △ABD 中,由勾股定理,得BD 2=AB 2-AD 2=202-122=162,∴BD△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.当高AD在△ABC外部时,如图2.同理可得,BD=16,CD=9.∴BC=BD-CD=7,∴△ABC 的周长为7+20+15=42.综上所述,△ABC的周长为42或60.图1图2【互动总结】(学生总结,老师点评)题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC 外的情形.环节3 课堂小结,当堂达标(学生总结,老师点评)勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.练习设计请完成本课时对应练习!第2课时勾股定理的应用教学目标一、基本目标【知识与技能】能运用勾股定理解决有关直角三角形的简单实际问题.【过程与方法】经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件.【情感态度与价值观】培养合情推理能力,体会数形结合的思维方法,激发学习热情.二、重难点目标【教学重点】勾股定理的简单应用.【教学难点】运用勾股定理建立直角三角形模型解决有关问题.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P25的内容,完成下面练习. 【3 min 反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方. 2.在△ABC 中,∠C =90°.若BC =6,AB =10,则AC =8. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知在△ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,CD ⊥AB 于点D ,求CD 的长.【互动探索】(引发学生思考)观察图形:“多直角三角形嵌套”图形→已知边长,求高CD →利用等面积法求解.【解答】∵△ABC 是直角三角形,∠ACB =90°,AB =5 cm ,BC =3 cm , ∴由勾股定理,得AC =AB 2-BC 2=4 cm. 又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC ·BC AB =4×35=125(cm). 【互动总结】(学生总结,老师点评)由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【例2】 如图,侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m ,你能帮小王算出敌方汽车的速度吗?【互动探索】(引发学生思考)要求敌方汽车的速度,需要算出BC 的长.在Rt △ABC 中利用勾股定理即可求得BC .【解答】由勾股定理,得AB 2=BC 2+AC 2,即5002=BC 2+4002,所以BC =300 m. 故敌方汽车10 s 行驶了300 m ,所以它1 h 行驶的距离为300×6×60=108 000(m), 即敌方汽车的速度为108 km/h.【互动总结】(学生总结,老师点评)用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.活动2 巩固练习(学生独学)1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为( D ) A .30 cm 2B .130 cm 2C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm 、12 cm ,则斜边上的高为6013cm.3.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 200 m ,结果他在水中实际游了520 m ,求该河流的宽度为多少?解:根据图中数据,运用勾股定理,得AB =AC 2-BC 2=5202-2002=480(m). 即该河流的宽度为480 m. 活动3 拓展延伸(学生对学)【例3】如图1,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有绳子从D 出发,沿长方体表面到达B ′点,问绳子最短是多少厘米?图1图2图3【互动探索】可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.【解答】如图2,由题易知,DD′=3 cm,B′D′=2×2=4(cm).在Rt△DD′B′中,由勾股定理,得B′D2=DD′ 2+B′D′ 2=32+42=25;如图3,由题易知,B′C′=2 cm,C′D=2+3=5 (cm).在Rt△DC′B′中,由勾股定理,得B′D2=B′C′ 2+C′D2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5 cm.【互动总结】(学生总结,老师点评)此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.环节3 课堂小结,当堂达标(学生总结,老师点评)勾股定理的简单运用:(1)由直角三角形的任意两边的长度,可以应用勾股定理求出第三边的长度.(2) 用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.练习设计请完成本课时对应练习!第3课时利用勾股定理表示无理数教学目标一、基本目标【知识与技能】进一步熟悉勾股定理的运用,掌握用勾股定理表示无理数的方法.【过程与方法】通过探究用勾股定理表示无理数的过程,锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力.【情感态度与价值观】让学生充分体验到了数学思想的魅力和知识创新的乐趣,体会数形结合思想的运用.二、重难点目标【教学重点】探究用勾股定理表示无理数的方法.【教学难点】会用勾股定理表示无理数.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P26~P27的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.教材P27,利用勾股定理在数轴上画出表示1,2,3,4,…的点.3.13的线段是直角边为正整数3,2的直角三角形的斜边.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图所示,数轴上点A所表示的数为a,则a的值是( )A.5+1 B.-5+1C.5-1 D. 5【互动探索】(引发学生思考)先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.【分析】图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5,那么点A所表示的数为5-1.故选C.【答案】C【互动总结】(学生总结,老师点评)本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.活动2 巩固练习(学生独学)1.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB ⊥OA,且ABO为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上( C )A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1= 2 ;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;….依此继续,得OP2018=2019,OP n=n+1(n为自然数,且n>0).3.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:面积为8平方单位的正方形的边长为8,8是直角边长为2,2的两个直角三角形的斜边长,画图如下:活动3 拓展延伸(学生对学)【例2】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【互动探索】(1)利用勾股定理,找长为有理数的线段,画三角形即可;(2)先找出几个能构成勾股数的无理数,再画出来即可,如画一个边长2,22,10的三角形;(3)画一个边长为10的正方形即可.【解答】(1)直角三角形的三边分别为3,4,5 ,如图1.(2)直角三角形的三边分别为2,22,10,如图2.(3)画一个边长为10的正方形,如图3.【互动总结】(学生总结,老师点评)本题考查了格点三角形的画法,需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.环节3 课堂小结,当堂达标(学生总结,老师点评)利用勾股定理表示无理数.练习设计请完成本课时对应练习!。
人教版八年级数学下册第十七章勾股定理复习课课程教学设计
勾股定理复习课教案一、教学目标1、理解勾股定理及逆定理2、体会并运用勾股定理及逆定理,理解应用分类讨论、方程、展开思想等。
二、教学重难点1、重点:勾股定理及逆定理的应用2、难点:勾股定理中分类讨论、方程、展开思想的理解应用三、教学过程(一)复习引入1、勾股定理:如果直角三角形的两直角边分别为 a, b ,斜边为 c ,则有222c b a =+勾股定理可由拼图、列式变形等方法来验证。
2、勾股定理的逆定理: 如果三角形a 、b 、c 有关系:222c b a =+,那么这个三角形是直角三角形。
常见的勾股数组有:3,4,5; 5,12,13; 8,15,17……3、勾股定理及其逆定理的区别与联系(二)勾股定理的应用运用勾股定理及其逆定理可以解决生活中的许多问题,如圆柱的侧面展开图问题、航海问题、判断垂直问题,解决问题的关键是根据题意画出正确的几何图形,建构数学模型。
类型一:分类思想例1. 已知,直角三角形的三边长分别是 3 , 4 , x , 则 2x 。
练习1: (复习资料P3-T3)已知a =3,b =4,若a ,b ,c 能组成直角三角形,则c = ( )A.5B.7C.5或7D.5或6小结1: (1)直角三角形中,已知两条边,不知道是直角边还是斜边时,应分类讨论。
(2)当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。
类型二:方程思想折叠矩形ABCD 的一边AD ,点D 落在BC 边上的点F 处,已知AB =8cm ,BC =10cm ,求 (1)CF =? (2)EC =?练习2-1、(复习资料P3-T8)如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 与点D ,若AB =5,BC =4,AC =6,则DE 的长为 。
练习2-2、(复习资料P4-T4)如图,在矩形ABCD 中,AB =16,BC =8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F ,那么AF = 。
人教版八年级数学下册第17章勾股定理(教案)
举例:
a)难点突破:通过动画或实体模型展示勾股定理的证明过程,帮助学生形成直观认识,再逐步引导到数学证明上。
b)问题解决:设计不同类型的题目,如直角三角形的不定方程问题,或斜边、腰长中有一个未知数的题目,指导学生如何应用勾股定理求解。
关于学生小组讨论环节,我认为这是一个很好的互动学习方式。学生们能够在这个过程中相互启发、共同进步。但在讨论过程中,我也发现有些学生过于依赖同伴,自己的思考不够独立。为了培养学生的独立思考能力,我将在以后的讨论中适当引导,鼓励他们提出自己的观点和解决方案。
最后,在总结回顾环节,我对学生们掌握的知识点进行了梳理,也解答了他们的一些疑问。但我认为,仅仅依靠课堂上的总结回顾还不够,还需要在课后加强学生的巩固练习,让他们在实际操作中不断巩固所学知识。
4.通过小组合作、讨论交流,培养学生的团队合作意识和沟通能力,增强数学表达与交流素养。
5.引导学生从不同角度思考问题,灵活运用勾股定理及其相关知识,提高学生的创新意识和数据分析素养。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念及其表达形式,即直角三角形中,斜边的平方等于两腰的平方和。
-学会运用勾股定理解决实际问题,如求直角三角形的斜边长或判断一个三角形是否为直角三角形。
人教版八年级数学下册第17章勾股定理(教案)
一、教学内容
人教版八年级数学下册第17章勾股定理,主要包括以下内容:
1.勾股定理的概念:理解直角三角形的特征,掌握勾股定理的内容及其表达形式。
2.勾股定理的证明:通过几何图形和数学推导,掌握勾股定理的证明方பைடு நூலகம்。
3.勾股定理的应用:学会运用勾股定理解决实际问题,如求直角三角形的斜边长、判断一个三角形是否为直角三角形等。
人教版八年级数学下册第十七章勾股定理复习课程教学设计
《勾股定理小结》教案一、教学目标【知识与技能】1.掌握勾股定理,能应用勾股定理进行简单的计算和实际应用.2.掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题.【过程与方法】体验勾股定理的探索过程,经历观察——猜想——归纳——验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.【情感态度与价值观】1.经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力.2.感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国悠久文化的思想感情.二、教学分析【教材分析】本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用.勾股定理是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它反映了直角三角形三边之间一种美妙的数量关系,将数与形密切联系起来,是数形结合的典范,在几何学中占有非常重要的位置,在理论和实践上都有广泛的应用.勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法.在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用.勾股定理及其逆定理是初中数学的重点内容之一。
【学生分析】学生刚刚学习完勾股定理这一章,对勾股定理及其逆定理有个大概的认识,但是,还没有综合运用。
学生分析问题、解决问题的能力还不是太理想。
许多学生不会审题、不会分析已知和未知条件,更不要说严密的推理。
三、教学重难点【重点】会灵活运用勾股定理进行计算及解决一些实际问题,掌握勾股定理的逆定理的内容及其证明过程,并会应用其解决一些实际问题.【难点】 掌握勾股定理的探索过程及适用范围,理解勾股定理及其逆定理.四、教学过程【概念复习】提问勾股定理及其逆定理(分别说出文字表达及几何表达形式)【知识点复习】知识点一 勾股定理的应用勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2要点解析:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c,b,a )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题典型例题 (1)在Rt △ABC ,∠C=90°,a=8,b=15,则c= .(2)在Rt △ABC ,∠B=90°,a=3,b=4,则c= .(3)如图,两个正方形的面积分别是64,49,则AC 的长为 .解析:(1)可根据题意画出图,c 为斜边,根据勾股定理(2)根据题意画出图,b 为斜边,c 为直角边,根据勾股定理此题,在牢记勾股定理公式的基础上,使学生更为清晰地认识到c 不仅仅代表斜边,必须根据题意具体分析。
第十七章-人教版勾股定理教案
第十七章勾股定理(一)教材所处的地位1、教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。
勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。
在理论和实践上都有广泛的应用。
勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法。
在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用。
2、教材特点:①在呈现方式上,突出实践性与研究性。
(对勾股定理是通过问题引出加以探索认识的。
②突出学数学、用数学的意识与过程,勾股定理的应用尽量和实际问题联系起来。
③对实际问题的选取,注意联系学生的实际生活。
④注意扩大学生的知识面。
(本章安排了两个阅读材料和一个课题学习)⑤注意训练系统的科学性,减少操作性习题,增加探索性问题的比重。
(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。
2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题。
3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。
4、运用勾股定理及其逆宣解决简单的实际问题。
情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。
(四)单元教学策略1、教学步骤:①整个章节的教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。
人教版初中数学八年级下册第十七章《勾股定理》复习教案
第17章勾股定理全章复习教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:(一)知识结构图:见PPT(二)基础知识:1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2 + b2 = c2几何语言:在Rt △ABC 中, ∠C=90°∴a2+b2=c2练习:1.求出下列直角三角形中未知的边.2.已知:直角三角形的三边长分别是 3,4,X,则X=3. 三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC8A 15B 30° 2C B A 2 45° A CB2 .勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a2 +b2=c2 ,那么这个三角形是直角三角形 几何语言: 在△ABC 中,∵a2+b2=c2∴ △ABC 是直角三角形,∠C=90°互逆定理 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.基础练习二:1.在已知下列三组长度的线段中,不能构成直角三角形的是 ( )A 5,12,13B 2,3,3C 4,7,5D 1, 2 , 52.若△ABC 中 ,AB=5 ,BC=12 ,AC=13 ,求AC 边上的高.三、典例分析:例1、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD 的面积变式 有一块田地的形状和尺寸如图所示,试求它的面积。
121334归纳: 转化思想例2、下图是学校的旗杆,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他D BA C归纳: 方程思想 例3、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
八年级数学下册第17章勾股定理17.1勾股定理(2)教案(新版)新人教版
**********精心制作仅供参照鼎尚出品*********17.1勾股定理课题17.1勾股定理(2)讲课种类新讲课课标依照知识与能娴熟运用勾股定理解决一些实际问题。
技术教课过程与经过对勾股定理的应用,建立学生对知识的应企图识。
目标方法感情态度与价经历解决问题的过程,并从中获取学习数学的快乐,提升学习数学的兴趣。
值观教课教课将实质问题转变为直角三角形模型。
要点要点教课难点怎样用解直角三角形的知识和勾股定理解决实质问题。
难点教课媒体选择剖析表知识点媒体教课作使用所得结论占用时媒体根源学习目标用方式间种类介绍知识目标PPT A G拓展知识 3 分钟自制过程与方D G10 分钟解说PPT成立表象自制法观看过程与方D B帮助理解15 分钟自制PPT法①媒体在教课中的作用分为: A. 供给事实,成立经验; B.创建情境,引起动机; C. 举例考证,成立观点; D. 供给示范,正确操作; E. 体现过程,形成表象; F.演绎原理,启迪思想;G.设难置疑,惹起思辩; H. 展现案例,宽阔视线; I.赏识审美,陶冶情操; J.归纳总结,复习稳固; K. 其余。
②媒体的使用方式包含: A. 设疑—播放—解说; B. 设疑—播放—议论; C. 解说—播放—归纳;D. 解说—播放—举例; E. 播放—发问—解说; F.播放—议论—总结; G.边播放、边解说;H. 设疑 _播放 _归纳 .I 议论 _沟通 _总结 J.其余教课过程师生活动设计企图鼎尚图文**********精心制作仅供参照鼎尚出品*********设计一、复习旧知复习旧知识,1 、什么是勾股定理?为学习新知识做好准备。
2 、求出以下直角三角形中未知的进一步领会勾边.求出以下直角三角形中未知的边。
股定理在现实二、解说新课生活中的宽泛问题 1:一个门框的尺寸如下图,一应用,提升解块长 3m ,宽 2.2m的薄木板可否从门框内通决实质问题的过?为何?能力。
八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八
勾股定理(1)知识与技能:掌握勾股定理和他的简单的应用,理解定理的一般探究方法。
过程与方法:在方格纸上通过计算面积的方法探索勾股定理的活动,让同学们经历观察、归纳、猜想和验证的数学发现过程,发展数与形结合的数学思想。
情感态度与价值观:在数学活动中发现探索意识和合作交流的良好学习习惯。
教学重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边的长。
教学难点:拼图法验证勾股定理,会利用两边求直角形另一边的长。
教具准备:方格纸、4个全等的三角形,小黑板等。
教与学互动设计:一、创设情境导入新课引导学生观察课本第64页的地面图形,说说你发现了什么?提问:①图中有些什么形状?②三个正方形之间有什么关系?③通过②的结论你能有什么猜想?说说看。
二、实验操作探求新知1.数格子(1)要求学生在准备好的方格纸中作一个任意的等腰直角三角形,分别以三角形的边为边向三角形的外部作正方形。
观察三个正方形的面积之间有什么关系。
(2)要求学生在方格纸中作一个任意的直角三角形,分别以三角形的边为边向三角形的外部作正方形。
观察三个正方形的面积之间有什么关系。
(3)要求学生在方格纸中作一个任意的非直角三角形,分别以三角形的边为边向三角形的外部作正方形。
观察三个正方形的面积之间有什么关系。
讨论、得出结论:在一个直角三角形中,两直角边的平方和等于斜边的平方。
2.证明猜想。
10c20cm要求用四个全等到的直角三角形拼成一个以斜边为边长的正方形,推理得出 a 2+b 2=c 23.得出结论定理:经过证明被确认的命题叫做定理。
勾股定理:在一个直角三角形中,两直角边的平方和等于斜边的平方。
三、应用迁移例1.求下图中的字母A ,B 所代表的正方形的面积。
例2.一个文具盒的尺如图,一根长30cm 的细 木棒能否放进这个文具 盒,为什么?练习:填空(1)在Rt ∆ABC 中,∠C=90°,a=5,b=12,则c = (2)在Rt ∆ABC 中,∠B=90°,a=3,b=4,则c =(3)在等腰Rt ∆ABC 中,AC=BC ,∠C=90°,AC :BC :AB= (4)在Rt ∆ABC 中,∠C=90°,∠A=30°,BC :AC :AB= 探究2.如图,一个3 m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 的距离为,如果梯子的顶端A 沿墙下滑,那么梯子的底端B 也外移吗?练习:1.如图,阴影部分是一个正方形,求此正方形的面积。
(新人教版)数学八年级下册 第十七章 勾股定理 单元复习讲义学案
人教版初中数学八年级下册第十七章句股定理章节复习教学设计一、教学目标z1.复习与回顾本擎的重要知识点;2.勾股定理及其逆定理的用途和相互关系;3.总结本章的重要思想方法及其应用;4.勾股定理及逆定理的综合运用.二、教学过程z 知识网络如果直角三角形的两条直角边长分别为a,b ,斜边长为c ,那么①a 2+bi=ι,l .句股定理的变式:(l)c=乓亏V;(2)a 2=c 2-旷;(3)b 2=C 2-a 2; ( 4 )a =正亡,T;(5)b=lc 亡歹.实际问题| ||二二二二|勾股定理(直角三角形边长的计算)'逆命题实际问题||勾股定理(判定直角三角形)|←一一一一|的逆定理知识梳理一、勾股定理已知直角三角形中的任意两边,均可求出第三边长;已知直角三角形的一边,可确定另两边的数量关系;证明含平方关系的问题等.如果三角形的三边长α,b,c 满足②α2+b 2=/,那么这个三角形是直角三角形.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2.两直角边的平方和等于斜边的平方.a:勾般因因回回a i +b i =c 2 c =U 工b2a 2=c 2-b 2 a =♂习Tb 2=c 2-a 2b =Jcf"习二、句股定理的实际应用利用勾股定理解决实际问题的一般步骤:(l)读懂题意,分析己知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.转T也题进臼川构’学l l l E ’我旬欣纯理利用三、利用句股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.l i-2-1IA2--1 o 1 2s : 4类似地,利用勾股定理,可以作出长为-./2,飞/言,-./5,…的线段按照同样方法,可以在数轴上画出表示飞斤,d ,飞/言,{'ii,-./5,…的点A一-··四、折叠问题中结合勾股定理求线段长的方法:(I)设一条未知线段的长为x(一般设所求线段的长为x); (2)用已失I]线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.c AB五、原命题与逆命题'-l唾晦哩,也DEc题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理勾股定理与勾股定理的逆定理为互逆定理.六、勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a,b, c满足矿+b2=c2,那么这个三角形是直角三角形AbB c七、句股数如果三角形的三边长a,b, c满足a2+b2=c2那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数固回回因因常见勾股数:3.4, 5; 6, 8, 10; 5, l2, l3; 8, 15, l7; 7, 24, 25等等.回国团团团回因一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.如:3, 4, 5; 6, 8, 10: 9, 12, 15; 12, 16, 20…考点梳理考点解析考点1:句股定理的简单应用例1.在Rt.6.ABC中,LC=90。
八年级数学下册 第十七章 勾股定理说课稿 (新版)新人教版 教案
勾股定理17.1勾股定理说课稿(模版一)一、教材分析(一)教材所处的地位及作用:勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途也很大。
它在数学的发展中起过重要的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)学情分析:前面,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用多媒体等手段进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
(三)教学目标:1、知识与能力:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;2、过程与方法:经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。
3、情感态度与价值观:通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。
(三)教学重点、难点:教学重点:探索和掌握勾股定理;教学难点:用面积法(拼图法)证明勾股定理二、教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
三、学法分析:在教师的组织引导下,学生采用自主探究、合作交流的研讨式学习方式,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人.四、教学过程设计:(一)回顾交流:通过回顾交流让学生复习直角三角形的相关性质,设疑其三边有何关系,为引入勾股定理奠定基础。
(二)图片欣赏:通过图片欣赏,感受数学美,感受勾股定理的文化价值.以激发学生的学习欲望。
八年级数学下册第十七章勾股定理复习教案新版新人教版
第十七章 勾股定理教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:一、出示目标1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
二、知识结构图三、知识点回顾1.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。
求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题(4)勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长.这里一定要注意找准斜边、直角边;二要熟悉公式的变形: 22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理.2.如何判定一个三角形是直角三角形(1) 先确定最大边(如c )(2) 验证2c 与22b a +是否具有相等关系(3) 若2c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠22b a +,则△ABC 不是直角三角形。
3、三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边4、勾股数 满足22b a +=2c 的三个正整数,称为勾股数如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17(5)7,24,25 (6)9, 40, 41四、典型例题分析例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?分析: 这里知道了直角三角形的两条边的长度,应用勾股定理可求出第三条边的长度,再求周长.但题中未指明已知的两条边是_________还是_______,因此要分两种情况讨论.例2: 如图19—11是一只圆柱形的封闭易拉罐,它的底面半径为4cm ,高为15cm ,问易拉罐内可放的搅拌棒(直线型)最长可以是多长?分析:搅拌棒在易拉罐中的位置可以有多种情形,如图中的BA1、BA2,但它们都不是最长的,根据实际经验,当搅拌棒的一个端点在B点,另一个端点在A点时最长,此时可以把线段AB放在Rt△ABC中,其中BC为底面直径.例3:已知单位长度为“1”,画一条线段,使它的长为29.分析:29是无理数,用以前的方法不易准确画出表示长为29的线段,但由勾股定理可知,两直角边分别为________的直角三角形的斜边长为29.例4:如图,在正方形ABCD中,E是BC的中点,F为CD上一点,且.求证:△AEF是直角三角形.分析:要证△AEF是直角三角形,由勾股定理的逆定理,只要证_________________________________________即可.例5:如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.分析:可将直线的互相垂直问题转化成直角三角形的判定问题.例6:已知:如图△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.求:BD的长.分析:可设BD长为xcm,然后寻找含x的等式即可,由AB=AC=10知△ABC为等腰三角形,可作高利用其“三线合一”的性质来帮助建立方程.例7:一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是__________________________________.(分析:可以)分析:将点A与点B展开到同一平面内,由:“两点之间,线段最短。
新人教版八年级数学下册第17章-勾股定理教案
第十七章勾股定理17.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗? 五、例习题分析例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
人教版八年级数学下册第17章勾股定理复习课程教学设计
勾股定理复习设计学习目标1.从“探索勾股定理”中温故知新.2.从“验证勾股定理”中提高逻辑推理能力.3.从“应用勾股定理”中提高分析问题、解决问题能力.教学重难点重点:利用勾股定理求解线段长度,建立四种思想。
难点:从“应用勾股定理”中提高解决问题能力.较复杂的展开及分类问题。
教学流程安排活动一:探索勾股定理、温故知新活动二:“验证勾股定理”中提高逻辑推理能力.活动三:“应用勾股定理”中提高分析问题、解决问题能力.活动四:反思小结,布置作业【活动一】探索勾股定理、温故知新师生行为采用分割、拼接、数格子的个数等等方法探索勾股定理,温习知识,教师引导学生回忆探索勾股定理的过程,培养学生多角度解决问题的能力设计意图:巩固在方格中快速求解图形面积的能力。
【活动二】验证勾股定理设计意图:培养学生逻辑推理能力,感受推理的严谨性。
【活动三】应用勾股定理设计意图通过探究、等学习,逐渐形成结论性,培养学生分析问题、建立数学模型等思想,从知识、技能、数学思考等方面加以归纳,养成良好的学习习惯,学会解决问题的能力。
1、勾股定理与面积的思想形成性结论:直角三角形的斜边上的高线的求法:等于两条直角边的乘积与斜边的商。
以直角三角形的三边向外作正方形、半圆、正三角形、等腰直角三角形等,两直角边向外所作的图形面积和等于斜边向外所作的图形面积。
2、建模、方程、折叠思想形成性结论:直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中隐藏的等量关系,构造直角三角形,利用勾股定理列方程求解。
3、展开思想形成性结论:几何体的表面路径最短的问题,一般应画出展开表面成平面,再利用两点之间线段最短,及勾股定理求解。
4、分类思想形成性结论:直角三角形中,已知两边长、斜边不确定时,应分类讨论,当已知条件中没有给出图形时,应认真读句画图,避免遗漏情况。
【活动四】课堂小结,布置作业设计目的:分层教学,培养学生持续对数学的激情,养成不断探究出新的良性学习习惯,将数学知识延伸道课外、感受生活中大量的数学知识存在。
八年级数学下册 17 勾股定理复习教案 新人教版(2021学年)
八年级数学下册17 勾股定理复习教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册17勾股定理复习教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册17 勾股定理复习教案(新版)新人教版的全部内容。
第17章勾股定理一、复习目标1、进一步理解勾股定理及其逆定理,弄清两定理之间的关系。
2、复习直角三角形的有关知识,形成知识体系。
3、运用勾股定理及其逆定理解决问题.二、课时安排1课时三、复习重难点重点:勾股定理以及逆定理.难点:定理的应用.四、教学过程(一)知识梳理1.勾股定理:直角三角形中的平方和等于的平方.即:如果直角三角形的两直角边分别是a、b,斜边为c,那么.2。
勾股定理的逆定理:如果三角形的三边长为a、b、c满足,那么这个三角形是直角三角形.3。
如果一个命题的题设和结论与另一个命题的题设正好相反,那么把这样的两个命题叫做,如果把其中叫做原命题,另一个叫做它的_________。
4。
一般的,如果一个定理的逆命题经过证明是正确的,它也是一个__________,我们称这两个定理为。
5、应用勾股定理和它的逆定理来解决实际问题,在应用定理时,应注意:(1)没有图的要按题意画好图并标上字母;(2)不要用错定理(3)求有关线段长问题,通常要引入未知数,根据有关的定理建立方程,从而解决问题;(4)空间问题要通过它的展开图转化为平面图形来解决(二)题型、技巧归纳考点一勾股定理及逆定理例1、下列说法正确的是( )A。
若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C。
人教版初中数学八年级下册第十七章《勾股定理》复习教案设计
《第17章勾股定理的复习(1)》教学设计学习目标:知识与技能:掌握勾股定理以及变式的简单应用,理解定理的一般探究方法。
过程与方法:让学生经历观察、思考、动手实践和求解的活动过程;培养学生独立思考能力和动手实践能力。
发展同学们数与形结合的数学思想。
情感态度与价值观:在数学活动中发展学生的探究意识和合作交流良好学习的习惯。
使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、用数学的意识,体会勾股定理的文化价值。
教学重点与难点:应用勾股定理及逆定理解决实际问题是本节课的教学重点;而把实际问题化归成勾股定理的几何模型(直角三角形)则是本节课的教学难点.教学过程一、复习引入1、请一位同学说说勾股定理的内容是什么?(直角三角形两直角边的平方和等于斜边的平方.)2、RtΔABC中,∠C=90°时AC2+BC2=AB2,有哪些不同的表示形式?今天我们来看看这个定理的应用。
3、学生进行练习:在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90゜.①已知a=3,b=4,求c;②已知a=12,c=5,求b(请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题)4、勾股定理只能在直角三角形中运用【例1】在△ABC中,AC=3,BC=4,则AB的长为().A. 5B. 10C. 4D. 大于1且小于7只能用“两边之和大于第三边,两边之差小于第三边”判断出AB的范围.正确答案:D.5、运用勾股定理时要分清斜边和直角边【例2】已知直角三角形的两边长分别为3、4,求第三边长.正解:(1)当两直角边为3和4时,第三边长为(2)当斜边为4,一直角边为3时,第三边长为.6、给定三角形要分形状运用勾股定理【例3】在△ABC中,AB=15,AC=20,AD是BC边上的高,AD=12,试求出BC边的长.【分析与解】 此题没有给出图示,又由于三角形的高可能在三角形内部也可能在三角形外部,所以其高的位置应分两种情况来求.如下图所示,△ABC 有两种情况.综上可得BC 边的长为25或7.配套练习:等腰三角形的一个内角为30°,腰长为4,求这个等腰三角形腰上的高及这个等腰三角形的面积.解:⑴等腰三角形ABC 顶角为30°时; ⑵等腰三角形ABC 底角为30°时;(高在形内) (高在形外); 接着通过问题“试一试”进一步直观体会勾股定理与实际问题之间的关系.引导学生讨论“应用勾股定理解决实际问题的一般思路是什么?”7、折叠问题与方程思想:【例4】如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
最新八年级数学下册 第十七章《勾股定理》教案2 (新版)新人教版【复习必备】
第17章 勾股定理教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.教学过程一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有:————————————.这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据. 22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.二.课堂展示例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD .三.随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521C .3,4,5D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B .2倍C .3倍D .4倍3.三个正方形的面积如图1,正方形A 的面积为( )A . 6B . 36C . 64D . 84.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cm D .1360cm 5.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?四.课后练习1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm3.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =___4.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为___.5.等边△ABC 的高为3cm ,以AB 为边的正方形面积为___. 6.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是__。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七、作业布置
作业:课本P38,复习题17
必做: 1---7题;(完成在练习本上,不抄题)
选做 :9、10、11.(完成在书上)
知识梳理有助于帮助学生构建知识体系
通过基础训练,让学生熟练掌握基础知识
提升运用知识解决问题的能力
小结归纳,提升课堂效果,培养学生知识的归纳能力
其中能构成直角三角形的有.
练习3小明想知道学校旗杆的高,他发现旗杆上 的绳子垂到地面还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为().
A.8 mB.10 mC.12 mD.14 m
四、综合运用
例1如图,每个小正方形的边长都为1. (课本39页第9题)
(1)求四边形ABCD的面积与周长;
理解
情感态度价值观
图片
A
I
升华感情
2分钟
自制
①媒 体在教学中的作用分为:A.提供事实,建立经验 ;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I .欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
六、课堂检测
1、已知等边三角形的边长为2厘米,则它的高为,面积为
2、判断以线段a、b、c为边的△ABC是不是直角△
(1)a= , b= , c=2
(2)a=9,b=8,c=6
3.已知三角形的三边长为9 ,12 ,15 ,则这个三角形的最大角是____度;
4.△ABC的三边长为9 ,40 ,41 ,则△ABC的面积为____;
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括.I讨论_交流_总结J.其他
教学过程设计
师生活动
设计意图
一、知识梳理:
1.勾股定理及逆定理;
2.互逆命题与互逆定理。
勾股定理
课题
第17章勾股定理复习
授课类型
复习
课标依据
勾股 定理知识点的梳理
教学目标
知 识与
技能
回顾本章知识,在回顾过程中主动构建起本章知识结构
过程与
方法
知识梳理和知识点的实际应用
情感态度与价值观
思考勾股定理及其逆 定理的发现证明和应用过程,体会数形结合、转化思想在解决数学问题中 的作用.
教学重点难点
检测课堂效果
此资源为word格式,您下载后可以自由编辑,让智慧点亮人生,用爱心播种未来。感谢您的选用。
教学
重点
勾股定理及其逆定理的应用.
教学
难点
寻找或构造适当的直角三角形,应用勾股定理及其逆定理解决问题.
教学媒体选择分析表
知识点
学习目标
媒体类型
教学作用
使用
方式
所得结论
占用时间
媒体来源
介绍
知识目标
图片
A
G
拓展知识
2分钟
自制
讲解
过程与方法
图片
A
E
建立表象
5分钟
自制
观看
过程与方法
图片
A
E
帮助理解
5分钟
自制
(2)∠BCD是直角吗?
例2如图所示,测得长方体的木块长4 cm,宽3 cm,高4 cm.一只蜘蛛潜伏在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛
究竟应该沿着怎样的路线爬上去,所走的路程会最短,并求最短路径.
五、课堂小结
1.两个定理(勾股定理及其逆定理);
2.两种重要思想(出入相补思想、数形结合思想).
二、本章知识结构(课件展示)
(师生活动:学生自主梳理,教师知a=1,b=3,∠B=90°,则第三边c的长为.
变式 在Rt△ABC中,已知a=1,b=3,则第三边c的长为 .
练习2分别以下列四组数为一个三角形的边长:
①3,4,5;②5,12,13;③8,15,17;④4,5,6.