激光原理复习课

合集下载

激光原理复习课

激光原理复习课

I0:初光强,l:传播 距离, I:末光强
1 I G ln l I0
例: 激光束通过长0.5m的激光介质后,光强 增至初始光强的e倍,求此介质的增益系数.(不考 虑增益饱和) 解
eI0 1 I 1 G ln ln 2m1 z I 0 0.5 I 0
六、光腔按几何损耗(几何反射逸出)的分类:
c
0 υ υ ( ) 2、单色平波面——具有单一频率的平面波
简谐波波矢——空间角频率 光波模——以某一波矢
2 k n0
各种介质μ中传播时,保持其原有频率不变,而速度各不相同

为标记的驻波
自由空间中的电磁波:任意波矢k的平面波均可以存在! 受边界条件限制空间的电磁波:只能存在一系列独立的 具有特定波矢k的平面单色驻波。
3、 增益饱和:在抽运速率一定的条件下,当入射光的光强很 弱时,增益系数是一个常数;当入射光的光强增大到一定程度 后,增益系数随光强的增大而减小。
均匀增宽介质的增益饱和 (1) 和 谱线中心频率 0 是
G 0 ( )
G ( )
的对称轴, 在 0 处它们 有最大值; 0 越大, G ( ) 和
2
原因: v 偏离v0 越大, G ( )
饱和效应越弱,曲线下降越缓慢.
非均匀增宽介质的增益饱和
对均匀增宽工作物质, 入射光所引起的饱和效应使增 益曲线整体下降; 但在 0 处, 增益饱和最显著; 偏 离中心频率越远, 饱和越弱, 增益下降越小。 增益均匀饱和而不形成烧孔
2、决定腔模的形成:
v
v1
频率v1的准单色入射光入射时:
①当入射光频率为v1时,对表观中心频率为 va v1的粒子将与光有最大的相 A1 点 互作用,饱和作用最强,在光强为I的光波作用下,n(v1 ) 从A点下降到 . ②当入射光频率为v1时,对表观中心频率为 vb v1 dv 的粒子,由于入射光频 率v1偏离中心频率vb,所以引起的饱和效应较小,它仅下降到 B B1 点.

激光原理期末复习XX

激光原理期末复习XX

激光原理期末复习(2014-6)第一章:概述1. 激光的特性:方向性好、单色好、相干性好、亮度高;方向性、单色性、相干性、亮度的定义;为什么具有这些特性?2. 相干长度的概念及计算:v c L c ∆=/第二章:激光产生的基本原理1. 自发辐射、受激吸收、受激辐射概念;三种跃迁几率的定义式及计算;自发辐射和受激辐射的区别;三个爱因斯坦系数之间的关系。

2. 激光产生的两个基本(必要)条件:粒子数反转,光学谐振腔(减少模式数量);激光产生的两个充分条件:阈值条件,增益饱和。

为什么要具备这些条件?3. 以红宝石和Nd:YAG 为例,分析三能级系统和四能级系统的构成、特点;如何实现粒子数反转分布?4. 增益系数的定义和受激辐射光放大的概念。

5. 激光器的基本组成:工作物质、谐振腔、泵浦源;各部分所起的作用。

第三章:光学谐振腔与激光模式1. 光学谐振腔的构成:由全反射镜和部分反射镜放置在工作物质两端;特点:侧面开放。

2. 共轴球面腔的稳定性条件;稳定腔、非稳腔、临界腔的含义。

3. 激光纵模的概念,纵模间隔。

4. 激光横模的概念,横模形成的原因,几个低阶横模的光强分布图样。

5. 光学谐振腔的损耗种类:几何损耗,衍射损耗,透射损耗,非激活吸收损耗和散射损耗;衍射损耗和透射损耗的计算;损耗的最主要描述方法---平均单程损耗因子。

6. 自再现模的概念;自再现模积分方程;积分方程解的物理意义---本征函数代表光场分布,本征值与损耗和相位滞后相联系。

7. 方形镜对称共焦腔和圆形镜对称共焦腔的模式特征:基模的光腰半径、镜面上的光束半径、横截面上的光场分布、波面曲率半径、发散角、谐振频率;9. 一般稳定球面腔的模式特征:等价共焦腔概念、共焦参数、基模光腰半径、光腰位置、发散角、谐振频率的计算;平凹腔共焦参数和光腰半径的计算。

第四章:高斯光束1. 基模高斯光束的表示形式、基本性质,与普通球面波的区别。

2. 高斯光束的特征参量:光腰半径和光腰位置,某一位置的光束半径和波面曲率半径,q 参数表示法。

激光原理复习知识点讲课教案

激光原理复习知识点讲课教案

激光原理复习知识点一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。

1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。

其与常规光的最大区别在于具有相干性和能量集中性。

2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。

受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。

自发辐射是指原子或分子自发地从激发态返回基态所发射的光。

3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。

光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。

电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。

4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。

5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。

相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。

方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。

单色性是指激光具有非常狭窄的波长,具有很高的色纯度。

高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。

6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。

激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。

7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。

激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。

8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。

激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。

激光原理复习自整理详解

激光原理复习自整理详解

激光原理复习自整理详解激光(Laser)是指将电能、化学能、光能等不同形式的能量转化为相干单色光束的一种装置。

激光器可精密控制光的时间、空间强度分布,因此被广泛应用于科学研究、医疗、通信、制造等领域。

激光的产生是基于光放大原理和光产生原理。

光放大原理即光在经过光学放大介质时,通过受激辐射过程放大而得到激光。

光产生原理则是指在光学放大介质中,通过受激辐射过程得到的初级激光,再经过多次光放大过程最终得到激光。

下面就详细介绍激光的产生原理。

1.激光器的组成激光器主要由光学谐振腔、激光介质和泵浦源三部分组成。

-光学谐振腔:用于延长光在激光器中的传播距离,增强激光的反射和放大效应。

-激光介质:负责将入射光转化为激光的介质,常见的激光介质有气体、固体和液体等。

-泵浦源:为激光介质提供能量,使其处于各能级的适当分布。

2.可逆过程和受激辐射受激辐射是产生激光的基本原理之一、当激光介质从低能级跃迁到高能级时,如果有一束与该过程产生的光子完全匹配的入射光通过,该过程将被增强。

这是一种受激辐射过程,其与自发辐射(即自发跃迁)形成了对称关系。

3.反射和放大过程激光器中的光线会在光学谐振腔内被多次反射,导致光线的衰减和放大。

谐振腔中有两个镜子,其中一个镜子是半透明的,称为输出镜,另一个镜子是全反射的,称为输入镜。

-当光线经过输出镜时,一部分光经过透射,成为激光器的输出光。

经过透射的光具有激光的特性,即单色、相干和定向等。

-另一部分光线经过反射,回到激光介质中,形成了反射光。

反射光在激光介质中被吸收、放大,然后再次被反射。

这个过程中,入射光不断放大,最终形成激光。

激光产生的过程可以概括为:泵浦源提供能量给激光介质,使其处于激发态;谐振腔内的光经过多次的反射和放大,形成激光。

总之,激光产生的原理是基于光放大和受激辐射过程,通过泵浦源提供能量给激光介质,经过光学谐振腔的多次反射和放大,最终形成相干单色激光。

激光具有独特的光学特性,广泛应用于各个领域。

激光原理复习课

激光原理复习课

激光原理复习重点题型:选择题,填空题,证明及计算题,简述题等第一章激光的原理及技术基础1.1激光的特点高方向性和空间相干性、单色性和时间相干性、高亮度和光子简并度1.2激光的产生掌握三四能级系统简图,粒子数反转条件1.3激光器的基本组成激光工作物质、泵浦源、光学谐振腔1.4光线在谐振腔内的行为和腔的稳定条件稳定条件,了解谐振腔稳定图1.5激光振荡模式纵模(谐振条件,纵模频率,纵模频率间隔,纵模数)、横模(根据横模指数确定光斑图像)1.6光腔损耗和激光振荡的阈值条件谐振腔内光子寿命的定义,掌握谐振腔的品质因子与光谱线宽度关系。

第二章激光工作物质及基本原理2.1黑体辐射与普朗克公式掌握黑体辐射的普朗克公式2.2光和物质的三种相互作用及爱因斯坦关系式掌握光与物质的三种相互作用:自发辐射、受激吸收和受激跃迁。

重点掌握三个爱因斯坦关系式之间的关系及证明。

2.3谱线加宽及谱线宽度均匀加宽(自然加宽,碰撞加宽以及晶格振动加宽):定义,洛伦兹线型函数,掌握自然加宽的谱线宽度与自发辐射能级寿命之间的关系。

非均匀加宽(多普勒加宽,晶格缺陷加宽):定义,高斯函数考虑各种谱线加宽机制后,对自发辐射、受激辐射和受激吸收几率的表达式做修正。

掌握原子与连续辐射场的相互作用,原子和准单色光辐射场的相互作用,重点掌握原子和准单色光辐射场相互作用中,受激辐射截面积和受激吸收截面积公式(并推导证明之)。

2.4激光器的速率方程重点掌握:根据速率方程理论,画出三能级系统和四能级系统的能级简图,证明该能及系统的的单模速率方程组。

2.5增益系数与增益饱和()均匀加宽谱线的增益饱和和非均匀加宽谱线的增益饱和特性非均匀加宽谱线(“烧孔”效应)以及增益特性第三章光学谐振腔3.1共焦腔中的光束特性掌握沿z轴传播的高斯光束的电矢量表达式(3.3)、(3.4)(3.5)(3.6),共焦参数。

了解等价共焦腔两方面的含义3.2共焦光学谐振腔中的基膜分布重点掌握:给定两球面镜的曲率半径及它们的距离,能找出在这两面镜之间来回反射并形成合适驻波的高斯光束,包括高斯光束的“腰的位置”,腰粗,两镜面的光斑大小掌握共焦腔基模远场发散角和基模束腰掌握横模体积的定义及计算公式3.3谐振腔中高阶振荡模掌握高阶横模的振荡频率,及公式(3.49),其中包含参数J1,J2。

激光原理与应用复习

激光原理与应用复习

第3章:激光纵模:每一个q值对应有正反两列沿相反方向传播的同频率光波两列光波的结果,将在腔内形成驻波。

谐振腔形成的每一列驻波称为一个纵模。

激光谐振腔的谐振频率主要决定于纵模序数Vmnq=qc/2μL.腔内两个相邻纵模频率之差为纵模的频率间隔:△Vq=Vq+1-Vq=c/2μL.激光纵模:激光的模式也常采用微波中标志模式的符号来标记,极为TEMmnq,其中TEMoo是基横模。

激光横模:在激光谐振腔存在的稳定的横向分布,就是自再现模,通常称为横模。

m、n 的值正好分别等于光强在x,y方向上的节线(光强为0的线)数目,而且由Fm(X)和Fn(Y)函数的机制分布看出,m、内的值越大,光场也越向外扩展。

基横模行波输出在与光束前进方向的垂直平面上的强度呈高斯型分布,通常称为高斯光束。

高斯光束与普通光束有很大区别,它的传播方向性好很好,同时也会不断的发散,其发散的规律不同于球面波,在传播过程中她的波面曲率一直在变化,但是永远不会变成0,除光束中心外,高斯光束并不沿直线传播。

高斯光束的强度分布:在z处基膜的有效截面半径w(z)=根号下λL[1+(2z/L) ²]/2π。

在共焦腔中心(z=0)的截面内光斑有极小值束腰半径:Wo=Ws/根号2=根号下λL/π除以根号2;在共焦腔的焦平面上,束腰半径Wo最小。

该处称为高斯光束的“光腰”或“束腰”。

基膜光斑尺寸:Ws=根号下Xs²+Ys²=根号下λL/π。

高斯光束共焦场的相位分布由相位函数φ(x,y,z)描述,φ(x,y,z)随坐标而变化,与腔的轴线相交于Zo的等相位面的方程为:φ(x,y,z)=φ(0,0,Zo),则偏离实际广州的程度Z-Zo=(根号下Ro²-(x²+y²))-Ro。

当zo>0时,Z-Zo<0;当Zo<0时,Z-Zo>0.这就表示,共焦场的等相位面都是凹面向着腔的中心(z=0)的球面。

激光原理复习知识点

激光原理复习知识点

激光原理复习知识点
激光(Laser)是一种特殊的光源,具有高亮度、高单色性和高直线度等特点,广泛应用于医疗、通信、材料加工等领域。

激光的产生是基于激光原理,本文将围绕激光原理展开复习,帮助读者更好地理解激光的工作原理及常见应用。

1. 光的特性:
光是电磁波的一种,具有波粒二象性。

在光学中,我们常常将光看作是一束光线,使得光的传播更易于理解。

光的主要特性包括波长、频率、振幅和相位等。

2. 激射过程:
激光的产生是通过光子在外部受激辐射的作用下,从处于激发态的原子或分子中重新退激而产生。

这个过程需要一种激光介质,如气体、固体或液体,以及与之匹配的能量源,如泵浦光源或电子束。

3. 受激辐射:
在激光介质中,经过泵浦作用,一部分原子或分子被激发到激发态。

当这些处于激发态的粒子受到外界能量刺激时,会从高能级跃迁到较低能级,释放出额外的光子,这就是受激辐射。

这些受激辐射的光子可以与其他激发态粒子进行相互作用,进一步增强受激辐射的效果。

4. 波导结构:
为了通过受激辐射实现激光的放大和反射,激光器通常采用波导结构。

波导结构允许激光光束在其中传播,而不会发生较大的损耗。

波导结构可以是导光纤、半导体器件或光学腔等形式。

5. 消谐:
在激光器中,为了保持单一频率的输出,需要进行消谐。

消谐可以通过调整激光介质的性质或使用消谐元件来实现。

消谐的目的是确保激光器输出的光具有较窄的频谱宽度,以便于在通信和光谱分析等应用中的有效使用。

6. 光的放大:。

激光原理及应用复习资料(1)

激光原理及应用复习资料(1)
3. 为什么自然界没有天然的增益介质 自然界中物质种类丰富,并不是每一种介质都能够产生激光,作为激光增益介质, 这种介质必须具有适于产生受激辐射的能级结构,即有三个或三个以上的能级, 这样才能够实现粒子数反转分布,它可以是气体、液体或固体状态,还要具有良 好的光学特性,如光学性质均匀,光学透明性良好,且性能稳定,以及具有有较 高的量子效率。现有能够作为激光增益介质的材料种类繁多,可产生的激光波长 覆盖从真空紫外到红远外波段。
尖峰:激光器开启时所发生的不连续的、尖锐的、大振幅脉冲。 (激光尖峰与弛豫振荡具体内容见书) 24.兰姆下陷:当激光器振荡模的频率被调谐至介质跃迁中心频率 0 时,输出功 率呈现出某种程度的降低。下陷宽度(介质中均匀加宽的线宽)。 25.均匀加宽激光器的模竞争:当数个模同时起振时必然存在诸模竞争反转原子
(3.添加)激光器的分类(记两三个例子):
①按工作物质的物态分类:气体激光器:氦氖激光器,co2 激光器,氩离子激
光器等。
②固体激光器:红宝石激光器,钇铝石榴石激光器,硅酸盐等。
③半导体激光器:砷化镓,硫化镉。
④液体激光器:。。化学激光器:。。自由电子激光器:。。X 射线激光器。。光纤激
光器。
第二章:激光的物理学基础
q q 1 -q C (详见书)。 2nL
29.横模图形及线偏振腔模结构见书 30.解释①横模:腔内电磁场在垂直于其传播方向的横向 X-Y 面内也存在稳定的 场分布,称为横模。 解释②横模:在腔镜面上经过一次往返传播后能“自再现”的稳定光场分布称 为自再现模或横模。 ③横模特点:光能集中在光斑中心部分,而边缘部分光强甚小。
则处于低能级 E1 上的院子由于吸收这个能量为 h 21 的光子而受到激发跃迁到高
能级 E2 上去,此物理过程称为光的受激吸收。

激光原理考试复习资料.doc

激光原理考试复习资料.doc

1•激光原理(概念,产生):激光的意想、是“光的受激辐射放大”或“受激发射光放人”,它包含了激光产生的由来。

刺激、激发,散发、发射,辐射2•激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好:3•激光雷达:激光雷达,是激光探测及测距系统的简称。

丄作在红外和町见光波段的雷达称为激光雷达。

4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硕目标。

软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硕FI标则是指陆地、地物以及空间飞行物等宏观实体探测对象。

软目标的回波机制:(1)Mie散射是一种散射粒了的氏径与入射激光波长相当或比之更人的一种散射机制。

M ie 散射的散射光波长与入射光波氏相当,散射时光与物质Z间没冇能量交换发生。

因此是一种弹性散射。

(2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而散射粒了远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。

(3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,英最大特点是散射光的波长和入射光不同,产生了向长波或煎波方向的移动。

而且散射光波长移动的数值与散射分子的种类密切相关。

(4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级Z间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。

(5)吸收:吸收是指当入射激光的波长被调整到与原了分了的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。

硬冃标的冋波机制:激光与由宏观实体构成的硕冃标作用机制反射、吸收和透射。

当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一•部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。

硕冃标对激光能量的反射机制最为重耍。

硬目标冋波机制包括:镜面反射、漫反射,方向反射1•机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空I'可姿态参数的高精度惯性导航系统(IMU)、用丁•确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所冇部分Z间的时间同步的同步控制装置、搭载平台等部分纽成。

激光原理及应用期末复习

激光原理及应用期末复习

激光原理及应用期末复习激光是指具有高度一致性、单色性和高亮度的光。

它是由一束能量密度非常高的光束组成的,并且这些光束在空间和时间上非常集中。

激光的产生是基于激光器的原理,激光器是一种将能量转换为激光的装置。

激光的应用非常广泛,涵盖了医学、通信、材料加工、科学研究等多个领域。

激光的产生是基于激光器的原理。

激光器是由工作物质、泵浦源和谐振腔三部分构成的。

工作物质是激发激光产生的基础,它可以是气体、固体或液体。

当工作物质受到泵浦源的能量输入时,其能级结构会发生变化,激发了一部分电子从低能级跃迁到高能级。

当这些电子从高能级跃迁回到低能级时,它们会释放出能量,这部分能量就是激光。

谐振腔是激光产生的输出通道。

它由两个镜子构成,一个是半透射镜,另一个是高反射镜。

当激光通过半透射镜时,一部分激光能量会透过镜面,形成输出光束。

另一部分激光能量会被高反射镜反射回腔体内,继续被工作物质激发放出。

通过不断的激发和放出,激光会在腔体内不断倍增,最终形成较强的激光输出。

激光具有高度一致性和单色性。

一致性是指激光的波长、频率和相位都非常稳定,不同激光器产生的激光具有相同的水平。

单色性是指激光只有一个非常狭窄的频带,不同于其他光源产生的光谱带宽很宽的现象。

这些特点使得激光能够在大范围内传播,并且可以通过光谱分析得到非常准确的结果。

激光的应用非常广泛。

在医学领域,激光被用于手术切割、激光腔镜手术、激光治疗和激光诊断等方面。

激光切割手术可以精确控制切割深度和切割位置,减少对周围组织的破坏。

激光腔镜手术可以取代传统的开腔手术,减少手术创伤和恢复时间。

激光治疗可以用来治疗肿瘤、减轻疼痛和促进伤口愈合。

激光诊断可以用于眼科、皮肤科、口腔科等各个领域。

在通信领域,激光被用于光纤通信。

激光可以通过光纤传输,具有很高的传输速率和大容量。

激光的一致性和单色性保证了信号传输的稳定性和可靠性。

激光还被用于激光雷达、光通讯、光存储等领域。

在材料加工领域,激光被用于切割、焊接、打孔和表面处理等方面。

激光课程复习(学生用)

激光课程复习(学生用)

激光课程复习(学生用)第一部分知识点1.自发辐射受激辐射受激吸收的概念及相互关系2.激光器的主要组成部分有哪些?各个部分的基本作用。

激光器有哪些类型?如何对激光器进行分类。

3.什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度?4.如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强?5.EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN关系?6.产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么?7.什么是粒子数反转,如何实现粒子数反转?8.如何定义激光增益,什么是小信号增益?什么是增益饱和?9.什么是自激振荡?产生激光振荡的基本条件是什么?10.如何理解激光横模、纵模?11.描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件?12.如何计算纵模的频率、纵模间隔?13.如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系?14.写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射15.什么是激光谐振腔的稳定性条件?16.什么是自再现模,自再现模是如何形成的?17.基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积18.如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征19.高斯光束的特征参数?q参数的定义?20.非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。

21.什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么?23.自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关?24.光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。

激光原理复习

激光原理复习

激光原理第一章1. 激光器的组成部分及作用(1)工作物质(激活物质):用来实现粒子数反转和产生光的受激发射作用的 物质体系。

(2)泵浦源:提供能量,实现工作物质的粒子数反转。

(3)谐振腔:①提供轴向光波模的正反馈②模式选择,保证激光器单模振荡,从而提高激光器的相干性。

2. 模式数的计算单色模密度:计算例:封闭腔在5000 Å处单色模密度。

3. 光谱宽度的计算其中,为波列长度。

4. 本征状态的定义给定空间内任一点处光的运动情况,在初始条件和边界条件确定后,原则上就可求解麦克斯韦方程组,一般可得到很多解,而且这些解的任何一种线性组合都可满足麦克斯韦方程,每一个特解,代表一种光的分布,即代表光的一种本振振动状态。

5. 光子简并度的定义光子简并度对应于线度光源λ,在单位时间单位立体角内发出单位频宽的光子数(处于同一个相格中的光子数,处于一个模式中的光子数,处于相干体积内的光子数,处于同一量子态内的光子数,都有相同的含义,均定义为光子简并度)。

并用表示:V c V c g 322824νπννλπ∆=⨯⨯∆=328c n πνν=Hz c14108106105000103⨯=⨯⨯==-λυ353821432s 1035.310310614.388-⋅⨯=⨯⨯⨯⨯==m c n )()(πυυc l c t //1=∆≈δνc l δνλνδ∆∆Ω∆==∆ΩS h Pg n )/2(26. 光子简并度与单色亮度之间的关系光源的光子简并度,从微观上反映出光源的单色亮度。

单色亮度:。

光子简并度与单色亮度之间的关系为:7. 光子平均能量的表达同一种光子运动状态(或同一种光波模式)的光子平均能量:8. 光的自发辐射、受激吸收、受激辐射自发辐射:处于的原子在无外来光子情况下自发地向能级跃迁,发射能量以光辐射形式放出即自发辐射。

特点:自发辐射是仅与原子自身性质有关的随机过程,自发辐射的光在方向、偏振、相位方面都没有确定的关系,因此是不相干的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档