怀宁县金拱初中2017---2018学年度第一学期八年级数学期末试题

合集下载

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

FDBCAE 八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。

八年级2017-2018学年第一学期数学期末测试题及答案

八年级2017-2018学年第一学期数学期末测试题及答案
程 米。(用科学计算法表示)
18.如图所示,把一个长方形纸片沿 EF 折叠后,点 D,C 分别落在 D′,C′的位置.
若∠EFB=65°,则∠AED′等于
度.
A
E
D
D′
B
19. 如 图 , 在 Rt△ ABC 中 , ∠ CAB=90° , ∠ B=30 °,
FC C′
A
AD⊥CB 于 D,CD=2,则 CB=
得分 评卷人
26.(本题 10 分)
(1)已知△ABC 为正三角形,点 M 是 BC 上一点,点 N 是 AC 上一点,AM、 BN 相交于点 Q,BM = C N,证明△ABM≌△BCN,并求出∠BQM 的度数.
(2)将(1)中的“正△ABC”分别改为正方形 ABCD、正五边形 ABCDE、正
六边形 ABCDEF、正 n 边形 ABCD…,“点 N 是 AC 上一点”改为点 N 是 CD 上
A.4 对 B.3 对 C. 2 对 D.1 对
C
(请注意:以下选择题每题 3 分)
A
E
B
D
7.下列计算正确的是 (

A. 31 3 B. 32 35 310 C. (33)5 38 D.( 3 2)2 36 .
8. 下列式子正确的是(

A. 1 1 1 a b ab
A.25 海里 B.30 海里 C. 32 海里 D.34 海里

14.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都
乘以 1,纵坐标不变,并把得到的顶点依次连接,那么得到
的封闭图形与原来图形相比位置上(

A.向左平移了 1 个单位 B.关于 y 轴对称
C.关于 x 轴对称

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年度第一学期八年级数学期末试卷(精品)

2017-2018学年度第一学期八年级数学期末试卷(精品)

2017-2018学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1、在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、下列实数中,不属于无理数的是()A.B.C.100πD.3、下列说法不正确的是()A.1的平方根是1 B.﹣1的立方根是﹣1C.的算术平方根是2 D.是最简二次根式4、以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,65、下列正比例函数中,y的值随着x值的增大而减小的是()A.y=()x B.y=x C.y=2x D.y=0.2x6、如图,数轴上点P表示的数可能是()A.B.C.D.7、二元一次方程组的解是()A.B.C.D.8、下列命题中,属于真命题的是()A.同位角相等 B.任意三角形的外角一定大于内角C.多边形的内角和等于180° D.同角或等角的余角相等9、已知正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=kx﹣k的图象可能是()A.B.C.D.10、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3C.∠4=∠5 D.∠2+∠4=180°二、填空题11、已知一组数据为1,2,3,4,5,则这组数据的方差为_____.12、4是_____的算术平方根.13、函数y=kx的图象经过点P(1,﹣3),则k的值为_____.14、点P(2,﹣3)关于x轴的对称点坐标为_____.15、小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为_____米.16、如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组的解是_____.三、解答题17、计算:(+2)×﹣6. 18、解方程组:.19、△ABC在直角坐标系内的位置如图所示.(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称;(2)求△ABC的面积.20、甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:且=8,S乙2=1.8,S甲2=1.2,根据上述信息完成下列问题:(1)乙运动员射击训练成绩的众数是,中位数是.(2)求甲运动员射击成绩的平均数,并判断甲、乙两人在本次射击成绩的稳定性.21、如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22、为方便市民出行,减轻城市中心交通压力,佛山市掀起新一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁2、3号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元;且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3号线外,佛山市政府规划未来五年,还要再建108千米的地铁线网.据预算,这168千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?23、在准备“综合与实践”活动课时,小明关注了佛山移动公司手机资费两种套餐:A套餐:月租0元,市话通话费每分钟0.49元;B套餐:月租费48元,免费市话通话时间48分钟,超出部分每分钟0.25元.设A套餐每月市话话费为y 1(元),B套餐每月市话话费为y2(元),月市话通话时间为x 分钟.(x>48)(1)分别写出y1、y2与x的函数关系式.(2)月市话通话时间为多长时,两种套餐收费一样?(3)小明爸爸每月市话通话时间为200分钟,请说明选择哪种套餐更合算?24、图(1)是我们常见的“箭头图”,其中隐藏着哪些数学知识呢?下面请你解决以下问题:(1)观察如图(1)“箭头图”,试探究∠BDC与∠A、∠B、∠C之间大小的关系,并说明理由;(2)请你直接利用以上结论,回答下列两个问题:①如图(2),把一块三角板XYZ放置在△ABC上,使其两条直角边XY、XZ恰好经过点B、C.若∠A=50°,则∠ABX+∠ACX= ;②如图(3),∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度数.25、如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积;(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.。

2017-2018学年八年级上学期期末考试数学试题(20201014181103)

2017-2018学年八年级上学期期末考试数学试题(20201014181103)

( 1)计算:
3
2 ; ( 2)解方程组: 2
16.(本小题满分 10 分)
如图,方格纸中每个小方格都是长为 1 个单位的正方形,若学校位置坐标为 A( 1, 2),解答以下问
题:
( 1)请在图中建立适当的直角坐标系,并写出图书馆(
B)位置的坐标;
( 2)若体育馆位置坐标为 C(- 3, 3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书
二、解答题 ( 本大题共 3 个小题,共 30 分)
26.( 本小题满分 8 分)
某批发门市销售两种商品,甲种商品每件售价为
300 元,乙种商品每件售价为 80 元. 新年来临之
际,该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款 .
某公司为奖励员工,购买了甲种商品 20 件,乙种商品 x( x≥20)件 .
19.( 本小题满分 8 分)
某校九年级( 1)班所有学生参加 2016 年初中毕业生升学体育测试,根据测试评分标准,将他们的
成绩进行统计后分为 A、 B、C、 D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成)

请结合图中所给信息解答下列问题:
( 1)、九年级( 1)班参加体育测试的学生有
式说明怎样购买最实惠 .
27.( 本小题满分 10 分)
如图,在平面直角坐标系 xOy 中,直线 y= 2x+ 2 与 y 轴交于点 A,与 x 轴交于点 B. 直线 l ⊥x轴
负半轴于点 C,点 D 是直线 l 上一点且位于 x 轴上方 . 已知 CO= CD= 4. (1)求经过 A, D 两点的直线的函数关系式和点 B 的坐标; (2)在直线 l 上是否存在点 P 使得△ BDP为等腰三角形, 若存在, 直接写出 P 点坐标, 若不存在,

2017-2018学年第一学期期末八年级数学试题(含答案)

2017-2018学年第一学期期末八年级数学试题(含答案)

2017—2018学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题选对得3分,满分30分. 1.在下列长度的三条线段中,能组成三角形的是A.1,2,3 B.3,8,4 C.10,6,5 D.2,4,22.下列图形:①角,②线段,③等腰三角形,④直角三角形,其中是轴对称图形的有A.①②③④ B.①②③C.②④D.①③3.△ABC中,若∠B =∠A+10°,∠C=∠B+10°,则下列结论错误的是A.∠C=∠A+20°B.∠A=50°C.∠B的外角是130°D.△ABC是一个锐角三角形4.下列数据能唯一确定三角形的形状和大小的是A.∠A=50°,∠B =60°,∠C=70°B.AB=6,∠B =70°,∠C=60°C.AB=4,BC =5,∠C=60°D.AB=4,BC =5,CA=105.下列运算正确的是A .2222x x x =B .326()x x =C .3412(2)8x x -=D .734()()x x x -÷-=-6.下列各因式分解正确的是A .22(2)(2)(2)x x x -+-=-+B .2221(1)x x x +-=-C .22441(21)x x x -+=-D .242(2)(2)x x x x -=+-7.若分式12x x -+的值为0,则x 应满足的条件是 A .x =-2 B .x =0 C.x =1或x =-2 D .x =18.下列计算错误的是A .0.220.77a b a b a b a b++=--B .3223x y x x y y=C .1a bb a-=--D .123c c c+= 9.如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应修建在△ABC 的 A .两条中线的交点处B .两条角平分线的交点处C .两条高的交点处D .两条边的垂直平分线的交点处10.如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是 A .22 cm B .20 cm C .18 cm D .15 cm(第9题图)第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分. 11.点(-7,9)关于y 轴对称的点的坐标是 .12.计算:0220183--+-()= . 13.如果216x kx ++可运用完全平方公式进行因式分解,那么k 的值是 . 14.张明3小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书.如果李强单独清点这批图书需要 小时. 15.一个多边形的内角和比它的外角和的3倍多180°,则它是 边形. 16.如图,∠1=∠2,∠3=∠4,∠BDC =130°,则∠A = .17.在Rt△ABC 中,∠ACB =90°,BC =2.1cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =4cm ,则AE = cm . 18.如图,∠A =61°,∠C ′=47°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =____ .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程.19.先化简,再求值:222693293x x x x x x-+-÷--+,其中2018x =-.20.计算:(1)23215)()ab ab a b --÷-(; (2)222)()()6x y x y x y y +-+--(. 21.分解因式:(1)4811m -; (2)43242025ab ab ab -+.22. 两个小组同时开始攀登一座600m 高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早20min 到达顶峰,两个小组的攀登速度各是多少m/min ?如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则请直接写出两组的攀登速度各是多少m/min ?23. 如图,在平面直角坐标系中,点A 的坐标为(-2,0),△AOB 是等边三角形,点C 为OA 延长线上的一个动点,以BC 为边在第二象限中作等边△BCE ,连接EA 并延长EA 交y 轴于点F .(1)求∠EAB 的度数;(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 .24. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 和BE 相交于点F ,DF =EF ,延长CF 交AB 于点G .(1)图中共有 个等腰三角形,共有 对全等三角形; (2)求证:CG 垂直平分AB .G FEDCBA(第23题图)(第24题图)2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+ =2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ……………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. …………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ……………………………………6分 =24xy y -. ……………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分(2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分 22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=……………………………… 3分 解得 x =20 ……………………………… 4分经检验,x =20是原方程的解. ……………………………… 5分此时,1.2x =24 ……………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,…………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) …………………………………… 5分 ∴∠EAB =∠AOB =60°. …………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 .…………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;……2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) …………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . ………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) …………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,…………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . …………………………………… 10分。

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。

2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。

3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。

4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效。

5.考试结束只上交答题卡。

第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。

1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。

2017-2018第一学期期末考试八年级数学试题及答案

2017-2018第一学期期末考试八年级数学试题及答案

2017-2018第一学期八年级期末数学测试题一、选择题(每小题3分,共30分)1、计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 62、若分式有意义,则x 的取值范围是( ) A . x ≠3 B . x ≠﹣3C . x >3D . x >﹣3 3、计算(x -3y ) ( x +3y )的结果是( )A .22y 3x -B .22y 6x -C .22y 9x -D .22y 6x 2- 4、满足下列哪种条件时,能判定△ABC 与△DEF 全等的是 ( )A .∠A=∠E ,AB = EF ,∠B =∠D ; B .AB=DE ,BC = EF ,∠C=∠F ;C .AB=DE ,BC = EF ,∠A=∠E ;D .∠A =∠D ,AB = DE ,∠B=∠E5、从长为2cm 、3cm 、5cm 、6cm 的四条线段中取出三条线段,能够组成三角形的取法有 ( ) A 、1种 B 、 2种 C 、3种 D 、 4种6、下列“表情”中属于轴对称图形的是( )A .B .C .D .7、.如图7在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E,DE=3,BD=2CD, 则BC=( )A.7B.8C.9D.108、计算(1a +1-1a -1)÷21a -1的结果是( ) A 、a B 、2a-2 C 、-2 D 、29、锐角三角形中,任意两个锐角的和必大于( )A 、120度B 、110度C 、100度D 、90度10、直角三角形斜边上的中线把直角三角形分成的两个三角形关系是( )A 、形状相同B 、 周长相等C 、面积相等D 、全等二、填空:(每小题3分,共30分)11、已知点A(m-1,3)与点B (2,n+1)关于y 轴对称,则m=______,n=________12、等腰三角形一腰上的高与另一腰的夹角为30o ,则顶角的度数为________13、直接写出因式分解的结果:___________________y y x 222=-14、如图,△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA到E ,连EF 则∠1,∠2,∠3的大小关系是_________.15、已知分式的值为零,那么x 的值是 _________16、用科学计数法表示:—0.0000000305 = _________ 17、等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 _________18、若5 a a =1,则a 的值可以是 _________19、某钢铁厂原计划生产150吨钢铁,由于采用新的技术,每天增产3吨,因此提前2天完 成任务,设原计划x 天完成任务,列方程为 _________20、瑞士中学教师巴尔末成功地从光谱数据,,, ...中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第n 个数据是 _________三、解答题(共60分)21、计算(每小题3分,共12分)(1)、﹣22++(3﹣π)0﹣|﹣3| (2)、2a 2-6a(a-b)+(a -3b)2(3) (4) 212m -9 + 2m +322、(5分)画出△ABC 关于X 轴对称的图形△A 1B 1C 1(要标出三点的坐标),求△A 1B 1C 1的面积。

2017-2018八年级上期末数学试卷及答案

2017-2018八年级上期末数学试卷及答案

2017-2018八上期末数学试卷及答案一、你一定能选对(本大题共10小题,每小题3分,共30分)。

下列各题均有四个各选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.下列四个汽车标志图中,不是轴对称图形的是( )2.使分式1xx -有意义的x 的取值范围是( ) A.x ≠1 B.x ≠0 C.x ≠-1 D.x ≠0且x ≠1. 3.下列运算正确的是( )A. 2x+3y=5xyB.x 8÷x 2=x 4C.(x 2y)3=x 6y 3D.2x 3·x 2=2x 64.如图,已知AB=CD,添加一个条件后,仍然不能判定△ABC ≌△ADC 的是( ) A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x 2+2x+1=(x+1)2C.x 2-2xy-y 2=(x-y)2D.x 2+4=(x+2)2 6.点A 关于y 轴对称点是( ) A. (3,-4) B.(-3,4) C.(3,4) D.(-4,3) 7.下列各式从左到右的变形正确的是( ) A.2b a b +=12a + B. b a =22b a ++ C.a bc -+=-a b c+ D.22a a +-=224(2)a a --8.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的DCBA三角形的个数有(不包含△ABC 本身)( ) A. 4个 B.3个 C.2个 D.1个 9.已知P=717m-1, Q=m 2-1017m(m 为任意实数),则P 与Q 的大小关系为( ) A.P>Q B.P=Q C.P<Q D.不能确定10.如图△ABC 与△CDE 都是等边三角形,且∠EBD=65°,则∠AEB 的度数是( ) A. 115° B.120° C.125° D.130°二.填空题(每题3分,共18分) 11.若分式8x x的值为0,则x=_____. 12.计算: 6a 2b ÷2a=_____.13.如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=AD, ∠A=36°,则∠DBC=______.14.信息技术的存储设备常用B 、KB 、MB 、GB 等作为存储设备的单位,例如,我们常说的某计算机的硬盘容量是320GB,某移动硬盘的容量是80GB,某个文件夹的大小是156KB 等,其中1GB=210MB,1MB=210KB,1KB=210B(字节),对于一个容量为8GB 的内存盘,其容量为____B(字节).15.已知(x+p)(x+q)=x 2+mx+3,p 、q 为整数,则m=___.16.如图,点A(2,,0), ∠AON=60°,点M 为平面直角坐标系内一点,B C且MO=MA,则MN的最小值为_______.三.解下列各题(本大题共8小题,共72分)17.(8分)计算: (1) (3x+1)(x+2) (2) 123p++1 23p-18.(8分)因式分解: (1)4x2-9 (2) -3x2+6xy-3y219(8分)先化简,再求值: (m+2-52m-)×243mm--,其中m=4.20(8分)如图,“丰收1号”小麦试验田是一块边长为a米的正方形试验田上修建两条宽为1米的甬道后剩余的部分,“丰收2号”小麦试验田是边长为a米的正方形去掉一个边长为1米的蓄水池后余下的部分,两块试验田的小麦都收获了500千克.(1) “丰收1号”试验田的面积为_____平方米;“丰收2号”试验田的面积为_____平方米;(2)“丰收1号”小麦试验田的单位面积产量是“丰收1号”小麦试验田的单位面积产量的多少倍?21(8分)如图,△ABC 中, ∠BAC=∠ADB,BE 平分∠ABC 交AD 于点E,交AC 于点F,过点E 作EG//BC 交AC 于点G.(1)求证: AE=AF; (2)若AG=4,AC=7,求FG 的长.22(10分)从2007年4月18日开始,我国铁路第六次提速,某次列车平均提速v km/h.(1) 若提速前列车的平均速度为x km/h,行驶1200km 的路程,提速后比提速前少用多长时间?(2)若v=50,行驶1200km 的路程,提速后所用时间是提速前的45,求提速前列车的平均速度?(3)用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.23(10分)已知:在△ABC 中, ∠B=60°,D 、E 分别为AB 、BC 上的点,且AE 、CD 交于点F.(1)如图1,若AE 、CD 为△ABC 的角平分线. ①求证: ∠AFC=120°;②若AD=6,CE=4,求AC 的长?图1(2)如图2,若∠FAC=∠FCA=30°,求证:AD=CE.24(12分)如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分∠AOB 交AB 于点C,点D 为线段AB 上一点,过点D 作DE//OC 交y 轴于点E,已知AO=m,BO=n,且m 、n 满足n 2-12+36+|n-2m|=0. (1)求A 、B 两点的坐标?(2)若点D 为AB 中点,求OE 的长?(3)如图2,若点P(x,-2x+6)为直线AB 在x 轴下方的一点,点E 是y 轴的正半轴上一动点,以E 为直角顶点作等腰直角△PEF,使点F 在第一象限,且F 点的横、纵坐标始终相等,求点P 的坐标.图2Axx2017~2018学年度上学期期末试题八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11、812、3ab 13、36°14、23315、4或-4 16、32三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17、解:(1)原式=2362x x x +++…………(2分) =2372x x ++…………(4分) (2)112323p p ++- 解:原式=()()()()2-32323232323p p p p p p +++-+-…………(6分) =()()2-3232323p p p p +++-…………(7分)=2449pp -…………(8分) 18、解:(1)原式=()2223x -…………(2分) =(2x +3)(2x -3) …………(4分)(2)原式=22-3(2)x xy y -+…………(6分)=2-3()x y -…………(8分)19、解:原式=()()3422522--⋅---+m m m m m …………(2分)=()322292--⋅--m m m m =()()()322233--⋅--+m m m m m …………(4分)=2(m +3) …………(6分)当m =2时,原式=2×(2+3)=10…………(8分)20、解:(1) “丰收1号”试验田的面积为_(a -1)2_平方米;“丰收2号”试验田的面积为 (a 2-1)平方米.…………(4分) (2)()225005001-1a a ÷-…………(5分) =()()()211500500-1a a a +-⋅=()()()211500500-1a a a +-⋅=11a a +-…………(7分) ∴“丰收1号”小麦的单位面积产量是“丰收2号”小麦的单位面积产量的11a a +-倍……(8分)21、(1)∵BF 平分∠ABC∴∠ABF =∠CBF∵∠AFB =180°-∠ABF -∠BAF ∠BED =180°-∠CBF -∠ADB 又∵∠BAC =∠ADB∴∠AFB =∠BED …………(2分) ∵∠AEF =∠BED ∴∠AFB =∠AEF ∴AE =AF …………(4分)(2)如图,在BC 上截取BH =AB ,连接FH在△ABF 和△HBF 中∵⎪⎩⎪⎨⎧=∠=∠=BF BF HBF ABF BH AB ∴△ABF ≌△HBF (SAS )∴AF =FH ,∠AFB =∠HFB …………(5分) ∵∠AFB =∠AEF ∴∠HFB =∠AEF ∴AE ∥FH ∴∠GAE =∠CFH ∵EG ∥BC ∴∠AGE =∠C ∵AE =AF∴AE =FH …………(6分)H GFED CBA在△AEG 和△FHC 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠FH AE C AGE CFH GAE∴△AEG ≌△FHC (AAS ) ∴AG =FC =4…………(7分)∴FG =AG + FC -AC =1. …………(8分) 注:本题两问其它解法参照评分 22、解:(1)由题意得:12001200-x x v +…………(2分)…………(3分)∴提速后比提速前少用 小时. …………(4分) (2)依题意有:120041200505x x=⨯+…………(6分) 解得:x =200…………(7分)经检验x =200是原方程的解,且符合题意…………(8分) ∴提速前列车的平均速度为:200千米/时 (3) 提速前列车的平均速度为:50sv千米/时. …………(10分)1200()1200()()120012001200()x v xx x v x x v x v x x x v +=-+++-=+1200()v x x v =+1200()v x x v +23、(1)①∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =BAC ∠21,∠FCA =BCA ∠21…………(1分) ∵∠B =60°∴∠BAC +∠BCA =120°…………(2分)∴∠AFC =180-∠FAC -∠FCA =180-)21BCA BAC ∠+∠(=120°…………(3分)②在AC 上截取AG =AD =6,连接FG ∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =∠FAD ,∠FCA =∠FCE ∵∠AFC =120°∴∠AFD =∠CFE =60°…………(4分)在△ADF 和△AGF 中∵⎪⎩⎪⎨⎧=∠=∠=AF AF GAF DAF AG AD ∴△ADF ≌△AGF (SAS )∴∠AFD =∠AFG =60°…………(5分) ∴∠GFC =∠CFE =60° 在△CGF 和△CEF 中∵GFC EFC CF CF GCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CGF ≌△CEF (ASA ) ∴CG =CE =4∴AC =10…………(6分)GFDE BCA(2)在AE 上截取FH =FD ,连接CH ∵∠FAC =∠FCA =30° ∴FA =FC …………(7分)在△ADF 和△CHF 中∵⎪⎩⎪⎨⎧=∠=∠=HF DF CFH AFD CF AF ∴△ADF ≌△CHF (SAS )∴AD =CH ,∠DAF =∠HCF …………(8分) ∵∠CEH =∠B +∠DAF =60°+∠DAF ∠CHE =∠HAC +∠HCA =60°+∠HCF ∴∠CEH =∠CHE …………(9分) ∴CH =CE∴AD =CE …………(10分) 注:本题两问其它解法参照评分24、(1)∵2123620n n n m -++-= ∴()0262=-+-m n n …………(1分)∵()260n -≥,-20n m ≥ ∴()260n -=,-20n m =∴ m =3,n =6…………(2分)∴点A 为(3,0),点B 为(0,6)…………(3分)(2)延长DE 交x 轴于点F ,延长FD 到点G ,使得DG =DF ,连接BG 设OE =xHFDE BCA∵OC 平分∠AOB ∴∠BOC =∠AOC =45° ∵DE ∥OC∴∠EFO =∠FEO =∠BEG =∠BOC =∠AOC =45°…………(4分) ∴OE =OF =x在△ADF 和△BDG 中∵ ⎪⎩⎪⎨⎧=∠=∠=DG DF BDG ADF BD AD∴△ADF ≌△BDG (SAS )∴BG =AF =3+x ,∠G =∠AFE =45°…………(5分) ∴∠G =∠BEG =45° ∴BG =BE =6-x∴6-x =3+x …………(6分) 解得:x =1.5∴OE =1.5…………(7分)(3)分别过点F 、P 作FM ⊥y 轴于点M ,PN ⊥y 轴于点N 设点E 为(0,m )∵点P 的坐标为(x ,-2x +6) 则PN =x ,EN =m +2x-6…………(8分)∵∠PEF =90°∴∠PEN+∠FEM=90°∵FM⊥y轴∴∠MFE+∠FEM=90°∴∠PEN=∠MFE在△EFM和△PEN中∵MFE PENFME PNE EF EP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFM≌△PEN(AAS)∴ME=NP=x,FM=EN=m+2x-6…………(9分) ∴点F为(m+2x-6,m+x)…………(10分) ∵F点的横坐标与纵坐标相等∴m+2x-6=m+x…………(11分)解得:x=6∴点P为(6,-6)…………(12分)注:本题其它解法参照评分。

2017-2018学年八年级数学上学期期末考试卷(考试版)

2017-2018学年八年级数学上学期期末考试卷(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2017—2018学年上学期期末卷八年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回. 5.考试范围:人教版八上第11~15章。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列交通标志图案是轴对称图形的是A .B .C .D .2.在下列长度的四组线段中,不能组成三角形的是 A .3 cm ,4 cm,5 cm B .5 cm ,7 cm ,8 cm C .3 cm ,5 cm,9 cmD .7 cm ,7 cm ,9 cm3.下列分解因式正确的是A .3(1)(1)m m m m m -=-+B .26(1)6x x x x --=--C .()222a ab a a a b ++=+D .()222x y x y -=-4.下列各式计算正确的是 A .2a 2+a 3=3a 5 B .(-3x 2y )2÷(xy )=9x 3y C .(2b 2)3=8b 5D .2x •3x 5=6x 55.如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC =60°,∠ABE =25°,则∠DAC 的大小是A .15°B .30°C .25°D .20°6.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是A .AM=CNB .∠M=∠NC .AB=CDD .AM ∥CN7.如图,在四边形ABCD 中,∠A =140°,∠D =90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC 等于A .115°B .125°C .105°D .135°8.某单位向一所希望小学赠送1080本课外书,现用A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为 A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x=-+D .10801080615x x=++ 9.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A′DB 的度数为数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .10°B .15°C .20°D .25° 10.如图,△ABC 和△ADE 是等边三角形,AD 是△ABC 的角平分线,有下列结论:①AD ⊥BC ;②EF =FD ;③BE =BD ,其中正确结论的个数是A .0B .1C .2D .3第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:20213(π3)()3-+---= .12.若5a b +=,3ab =,则22a b +=____________. 13.若关于x 的分式方程1322x mx x -=+--无解,则m 的值为 ______ . 14.如图,是一个风筝骨架.为使风筝平衡,须使∠AOP =∠BOP .我们已知PC ⊥OA ,PD ⊥OB ,那么PC和PD 应满足_________,才能保证OP 为∠AOB 角平分线.15.如图,等腰三角形ABC 底边BC 的长为4 cm,面积是12 cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最短为______cm .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)解方程:(1)263x x x x -=--; (2)115126x +=+. 17.(本小题满分9分)如图,在△ABC 中,CD 是AB 边上的高,BE 为角平分线,若∠BFC =113°,求∠BCF 的度数.18.(本小题满分9分)如图,△A C B 和△ADE 均为等边三角形,点C 、E 、D 在同一直线上,在△ACD 中,线段AE 是CD 边上的中线,连接BD .求证:CD =2BD .19.(本小题满分9分)如图,△ABC 中,90BAC AB AC AD BC ∠==⊥,,,垂足是D ,AE 平分BAD ∠,交BC 于点E ,在△ABC 外有一点F ,使FA AE FC BC ⊥⊥,. (1)求∠ACF 的度数;(2)求证:BE CF =;(3)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证:ME BC ⊥.20.(本小题满分9分)如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________使点E ,A 在直线DC 同侧,连接AE .求证:(1)△AEC ≌△BDC ; (2)AE ∥BC .21.(本小题满分10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕,第二次购进时发现每件文具的进价比第一次上涨了2.5元,老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,已知两批文具的售价均为每件15元. (1)第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?22.(本小题满分10分)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC .(1)证明:BC =DE ;(2)若AC =12,求四边形ABCD 的面积.23.(本小题满分11分)小丽同学要画∠AOB 的平分线,却没有量角器和圆规,于是她用三角尺按下面方法画角平分线:①在∠AOB 的两边上,分别取OM=ON ; ②分别过点M 、N 作OA 、OB 的垂线,交点为P ; ③画射线OP ,则OP 为∠AOB 的平分线. (1)请问:小丽的画法正确吗?试证明你的结论;(2)如果你现在只有刻度尺,能否画一个角的角平分线?请你在备用图中试一试.(不需要写作法,但是要让读者看懂,你可以在图中标明数据)。

2017-2018学年度第一学期期末八年级数学试题(可打印修改)

2017-2018学年度第一学期期末八年级数学试题(可打印修改)

2017-2018学年度第一学期期末联考试题(卷)八年级 数学题号一二三总分得分考试时间:120分钟 试题满分:150分一、选择题(每题3分,共30分)1.下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④A .①②③ B. ②③④ C.①②④ D. ①③④2.下列方程是分式方程的为( )A .B .C .D .4121=-x x x 2111-=-12114-=-x x 4231xy =-3.一个多边形内角和是l080°,则这个多边形的边数为( ) A .6B .7C .8D .94. 等腰三角形的两边长为3和6,则此等腰三角形的周长为( )A .12或15 B.12 C.15 D.185.已知A ,B 两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A,B 关于x 轴对称;②A,B 关于y 轴对称;③A,B 关于原点对称;④A,B 之间的距离为4, 其中正确的有( )A.1个B.2个C.3个D.4个6.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF 等于( )A .5 B. 4 C. 3D. 27. 已知2m +3n =5,则4m ·8n =(  )A .16B .25C .32D .648. 下列计算正确的是( )A . B. C. D.842a a a =⋅532)(--=a a422)(ab ab =623)(a a =--9.化简的结果是( )xx x -+-1112A . B.C . D.1+x 11+x 1-x 1-x x 10.若是一个完全平方式,那么的值是 ( )224y mxy x ++m A. B. C. D.4±2-2±4二、填空题(每题4分,共32分)11.雾霾已经成为现在生活中不得不面对的重要问题,PM 2.5是大气中直径小于或等于0.000 002 5米的颗粒物,0.000 002 5用科学记数法表示为_____________________.12. 分解因式:=  .a a 1682-13. 如果,,那么的值为 .2311=-b a 2=ab b a -14.一个多边形的每一个外角都等于360,则该多边形的内角和等于.15.三角形的三边长分别为,则的取值范围为 .5,,3a a 16.如图,AD 是△ABC 的对称轴,点E ,F 是AD 的三等分点,若△ABC 的面积为12,17.如图所示,在四边形ABCD 中,∠A=45°。

2017-2018学年第一学期期末检测八年级数学试题(附答案)

2017-2018学年第一学期期末检测八年级数学试题(附答案)

2017--2018学年度第一学期期末检测八年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(共12小题,每小题4分,共48分)1、第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行。

在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A B C D2、下列各组线段,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,8cm3、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A. 150°B. 135°C. 120°D. 100°4、下列运算结果正确的是()。

A B: C: D:A.2≠aB.0≠aC.02≠≠a a 且D.一切实数 6、若()()A b a b a +-=+22,则A 为( )A. 2abB. -2abC. 4abD. -4ab 7、下列各式能用平方差公式分解因式的有( ) ①x 2+y 2;②x 2-y 2;③-x 2-y 2;④-x 2+y 2;⑤-x 2+2xy-y 2. A 、1个B 、2个C 、3个D 、4个8、如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从4321,,,P P P P 四个点中找出符合条件的点P ,则点P 有( )个。

2017-2018学年八年级(上)期末数学试卷含答案解析

2017-2018学年八年级(上)期末数学试卷含答案解析

2017-2018学年八年级(上)期末数学试卷一、选择题(本题共8小题,每小题3分,共24分,每小题给出4个选项,有且只有一个答案是正确的)1.下列四个汉字中,可以看作是轴对称图形的是()A.魅B.力C.黄D.冈2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷(xy)=3xy C.(2b2)3=8b5D.2x•3x5=6x6 3.一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm,18cm B.12cm,12cmC.6cm,12cm D.6cm,18cm或12cm,12cm4.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣25.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A.1种 B.2种 C.3种 D.4种6.已知a﹣b=3,ab=2,则a2﹣ab+b2的值为()A.9 B.13 C.11 D.87.已知﹣=5,则分式的值为()A.1 B.5 C.D.8.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3 B.4.5 C.6 D.7.5二、填空题(本题共8小题,每小题3分,共24分)9.因式分解3x3+12x2+12x=.10.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.11.计算(2m2n﹣2)2•3m﹣2n3的结果是.12.若分式的值为0,则x=.13.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为.14.计算2016×512﹣2016×492,结果是.15.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.16.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共72分)17.计算下列各题:(1)(﹣2)3+×0﹣(﹣)﹣2.(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y.18.解方程:.19.先化简,再求值:(﹣)÷,其中x=3.20.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.21.如图所示,△ABC的顶点分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△ABC的面积.22.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?23.如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.24.如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.2017-2018学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,每小题给出4个选项,有且只有一个答案是正确的)1.下列四个汉字中,可以看作是轴对称图形的是()A.魅B.力C.黄D.冈【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、“魅”不是轴对称图形,故本选项错误;B、“力”不是轴对称图形,故本选项错误;C、“黄”是轴对称图形,故本选项正确;D、“冈”不是轴对称图形,故本选项错误.故选C.2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷(xy)=3xy C.(2b2)3=8b5D.2x•3x5=6x6【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的除法法则,单项式乘单项式的运算法则,对各选项计算后利用排除法求解.【解答】解:A、2a2与a3不是同类项不能合并,故本选项错误;B、应为(3xy)2÷(xy)=9x2y2÷xy=9xy,故本选项错误;C、应为(2b2)3=23×(b2)3=8b6,故本选项错误;D、2x•3x5=6x6,正确.故选D.3.一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm,18cm B.12cm,12cmC.6cm,12cm D.6cm,18cm或12cm,12cm【考点】等腰三角形的性质;三角形三边关系.【分析】由等腰三角形的周长为30cm,三角形的一边长6cm,分别从6cm是底边长与6cm为腰长去分析求解即可求得答案.【解答】解:∵等腰三角形的周长为30cm,三角形的一边长6cm,∴若6cm是底边长,则腰长为:(30﹣6)÷2=12(cm),∵6cm,12cm,12cm能组成三角形,∴此时其它两边长分别为12cm,12cm;若6cm为腰长,则底边长为:30﹣6﹣6=18(cm),∵6+6<18,∴不能组成三角形,故舍去.∴其它两边长分别为12cm,12cm.故选B.4.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.5.长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A.1种 B.2种 C.3种 D.4种【考点】三角形三边关系.【分析】根据任意两边之和大于第三边判断能否构成三角形.【解答】解:选其中3根组成一个三角形,不同的选法有3cm,5cm,7cm;3cm,5cm,10cm;5cm,7cm,10cm;3cm,7cm,10cm;能够组成三角形的只有:3cm,5cm,7cm;5cm,7cm,10cm;共2种.故选B.6.已知a﹣b=3,ab=2,则a2﹣ab+b2的值为()A.9 B.13 C.11 D.8【考点】完全平方公式.【分析】根据完全平方公式即可求出答案.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴32=a2+b2﹣2×2∴a2+b2=9+4=13,∴原式=13﹣2=11故选(C)7.已知﹣=5,则分式的值为()A.1 B.5 C.D.【考点】分式的值.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选A8.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为()A.3 B.4.5 C.6 D.7.5【考点】等边三角形的性质;角平分线的性质.【分析】由在等边三角形ABC中,DE⊥BC,可求得∠CDE=30°,则可求得CD的长,又由BD平分∠ABC交AC于点D,由三线合一的知识,即可求得答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD平分∠ABC交AC于点D,∴AD=CD=3,∴AB=AC=AD+CD=6.故选C二、填空题(本题共8小题,每小题3分,共24分)9.因式分解3x3+12x2+12x=3x(x+2)2.【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式3x,进而利用完全平方公式分解因式即可.【解答】解:3x3+12x2+12x=3x(x2+4x+4)=3x(x+2)2.故答案为:3x(x+2)2.10.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.11.计算(2m2n﹣2)2•3m﹣2n3的结果是.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】直接利用积的乘方运算法则进而结合同底数幂的乘法运算法则求出答案.【解答】解:(2m2n﹣2)2•3m﹣2n3=4m4n﹣4•3m﹣2n3=12m2n﹣1=.故答案为:.12.若分式的值为0,则x=﹣1.【考点】分式的值为零的条件.【分析】根据分式的值等于0的条件:分子=0且分母≠0即可求解.【解答】解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.13.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为36°.【考点】等腰三角形的性质.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故答案为:36°.14.计算2016×512﹣2016×492,结果是403200.【考点】因式分解的应用.【分析】利用提取公因式法和平方差公式分解因式,再计算即可得到结果.【解答】解:2016×512﹣2016×492=2016=2016(51+49)(51﹣49)=2016×100×2=403200;故答案为:403200.15.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【分析】由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB﹣BE=AB﹣BC,则△AED的周长为AD+DE+AE=AC+AE.【解答】解:DE=CD,BE=BC=7cm,∴AE=AB﹣BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.16.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180゜,即可求得答案;【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共72分)17.计算下列各题:(1)(﹣2)3+×0﹣(﹣)﹣2.(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y.【考点】整式的混合运算;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据完全平方公式、整式的加减法和除法可以解答本题.【解答】解:(1)(﹣2)3+×0﹣(﹣)﹣2=(﹣8)+×1﹣9=(﹣8)+﹣9=﹣16;(2)[(x2+y2)﹣(x﹣y)2﹣2y(x﹣y)]÷4y=[x2+y2﹣x2+2xy﹣y2﹣2xy+2y2]÷4y=2y2÷4y=.18.解方程:.【考点】解分式方程.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.19.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值;约分;分式的乘除法;分式的加减法.【分析】先根据分式的加减法则算括号里面的,同时把除法变成乘法,再进行约分,最后把x=3代入求出即可.【解答】解:原式=[﹣]÷,=×,=×,=,当x=3时,原式==1.20.如图,点E,C在BF上,BE=CF,AB=DF,∠B=∠F.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】根据等式的性质可以得出BC=EF,根据SAS可证明△ABC≌△DEF就可以得出结论.【解答】证明:∵BE=CF,∴BE+CE=EC+CF,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.21.如图所示,△ABC的顶点分别为A(﹣2,3),B(﹣4,1),C(﹣1,2).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)分别作出各点关于x轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出其坐标即可;(3)利用矩形的面积减去三角形各顶点上三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(﹣2,﹣3),B1(﹣4,﹣1),C1(﹣1,﹣2);=2×3﹣×1×3﹣×1×1﹣×2×2=6﹣﹣﹣2=2.(3)S△ABC22.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.23.如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得到∠A=∠B=45°,根据等腰三角形的性质计算即可;(2)作AF⊥CD,证明△AFD≌△CEB,根据全等三角形的性质证明即可.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)证明:作AF⊥CD,∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,∴BE=DF,∴CD=2BE.24.如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【考点】三角形综合题;全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.【解答】解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

怀宁县初二期末试卷数学

怀宁县初二期末试卷数学

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. √-12. 下列各式中,正确的是()A. a² = aB. a³ = aC. a² = -aD. a³ = -a3. 已知a < b,那么下列不等式中正确的是()A. a² < b²B. a³ < b³C. a² > b²D. a³ > b³4. 下列函数中,定义域为全体实数的是()A. y = √xB. y = x²C. y = 1/xD. y = |x|5. 下列图形中,是圆的是()A. 正方形B. 等腰三角形C. 梯形D. 圆形6. 在直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)7. 已知等腰三角形ABC中,AB = AC,AD是BC边上的高,则下列结论正确的是()A. ∠B = ∠CB. ∠BAD = ∠CADC. ∠BAD = ∠BACD. ∠CAD = ∠BAC8. 下列各式中,表示直线x+y=2的是()A. y = -x + 2B. y = x + 2C. y = 2x + 1D. y = -2x + 19. 下列函数中,单调递增的是()A. y = 2x + 3B. y = -2x + 3C. y = 2x - 3D. y = -2x - 310. 下列各数中,不是整数的是()A. -1/2B. 0C. 1D. -3/2二、填空题(每题3分,共30分)11. 完全平方公式(a+b)²=______,其中a=______,b=______。

12. 下列函数中,是二次函数的是______,其对称轴是______。

13. 在直角坐标系中,点P(-3,4)关于x轴的对称点是______,关于y轴的对称点是______。

怀宁初二期末考试数学试卷

怀宁初二期末考试数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -2.5B. √3C. 0D. -π2. 下列各式中,正确的是()A. a^2 = b^2,则a = bB. a^2 = b^2,则a = ±bC. a^2 = b^2,则a = ±b或a = bD. a^2 = b^2,则a = b或a = -b3. 已知方程2x - 5 = 3x + 1,则x的值为()A. -6B. -4C. 4D. 64. 在等腰三角形ABC中,若底边BC的长度为6cm,腰AB和AC的长度分别为5cm 和8cm,则三角形ABC的周长为()A. 19cmB. 23cmC. 25cmD. 29cm5. 下列函数中,为一次函数的是()A. y = 2x^2 + 3B. y = 3x + 4C. y = √xD. y = 5x^3 - 26. 下列各数中,不是实数的是()A. -2.5B. √9C. -πD. 3/27. 在平面直角坐标系中,点P的坐标为(-2,3),则点P关于x轴的对称点坐标为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 89. 下列各数中,不是有理数的是()A. 0.1B. √4C. -√9D. 3/210. 在等腰三角形ABC中,若底边BC的长度为8cm,腰AB和AC的长度分别为6cm 和10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题3分,共30分)11. 下列各数中,最小的数是______。

12. 已知a = 2,b = -3,则a + b的值为______。

13. 在平面直角坐标系中,点P的坐标为(-1,2),则点P关于y轴的对称点坐标为______。

14. 已知方程3x + 2 = 7,则x的值为______。

怀宁初二期末考试数学试卷

怀宁初二期末考试数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 0.1010010001…B. √2C. 1/3D. -22. 下列各数中,有最大值的是()A. 3 + 2√2B. 3 - 2√2C. 3 + √2D. 3 - √23. 已知方程 2x - 3 = 5,解得 x = ()A. 2B. 3C. 4D. 54. 若 |x - 2| = 3,则 x 的值为()A. -1 或 5B. -3 或 1C. -1 或 -3D. 1 或 55. 在直角坐标系中,点 A(-2,3)关于 x 轴的对称点为()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)6. 若 a + b = 0,且 |a| > |b|,则 a 的值为()A. 0B. 1C. -1D. 无法确定7. 已知函数 y = -x^2 + 4x + 3,当 x = 2 时,y 的值为()A. 1B. 3C. 5D. 78. 在三角形 ABC 中,∠A = 90°,∠B = 45°,则∠C 的度数为()A. 45°B. 90°C. 135°D. 180°9. 已知等腰三角形 ABC 的底边 BC = 4,腰 AC = 6,则顶角 A 的度数为()A. 30°B. 45°C. 60°D. 90°10. 若 a、b、c 是等差数列的前三项,且 a + b + c = 9,则 b 的值为()A. 3B. 4C. 5D. 6二、填空题(每题5分,共50分)11. 若 x^2 - 5x + 6 = 0,则 x 的值为 _______。

12. 已知函数 y = 2x - 3,当 x = 4 时,y 的值为 _______。

13. 在直角坐标系中,点 P(-1,2)关于原点的对称点为 _______。

14. 若 a、b、c 是等比数列的前三项,且 a b c = 27,则 b 的值为 _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.三角形纸片ABC 中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),则∠1+∠2的度数为_________.
15.甲乙两同学就读于同一所学校,已知甲同学家到学校距离为4km,乙同学家到学校的距离是3km,记甲乙两同学家间距离为dkm,则d 应为:_______________.
16.如图,点C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE

CD 交于点Q,连接PQ,以下五个结论:①AD=BE,②PQ ∥AE,
③AP=BQ,④DE=DP,⑤ ∠AOB=60°.一定成立的是________________(把你认为正确的序号都填上).
三.解答题(共7小题,满分66分)
17.(6分)如图所示,A 、B 是4×5网格中的格点(网格线的
交点),网格中的每个小正方形的边长都是1.请在图中标出
使以A 、B 、C为顶点的三角形是等腰三角形的所有格点C的
位置.
18.(8分)点P(x,y)在第一象限,且它在直线y =-x +6上,直线与x 轴相交于点A ,O 为坐标原点,若△PAO 的面积为S.
(1)求出S 与x 之间的函数解析式.
(2)在第一象限内是否存在点P,使△POA 的面积为8,若存在,求点P 的坐标,不存在,请说明理由.
第13题 第14题 第16题
19.(10分)已知点A(1,0),B(2,3),点P为y轴上一动点,求当△PAB周长最小时P点的坐标.
18.(10分)函数,方程,不等式都是刻画量与量之间变化规律的重要模型,它们之间存在密切联系.在学习了一次函数与一次不等式的关系之后,运用所学的解题思想方法,探究下列问题:已知两个函数y1,y2,它们的图象如图所示, 其中y1是一条直线,y2是一条曲线,请你根据图象回答:
=0;
(1)当x取何值时,y
(2)当x取何值时,y1= y2 ;
(3)当x取何值时,y1>y2.
21.(8分)如图,点M、N分别在正三角形ABC的边BC、CA上,且∠BQM=60°,AM、MN交于点Q.
求证:BM=CN.
22.(12分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
23.(12分)如图1,在△ABC中,BC=AC,∠ACB=90°,点D在BC的延长线上,连接AD,过点B作BE⊥AD,垂足为点E,交AC于点F,连接CE.
(1)求证:△BCF≌△ACD.
(2)为了探究∠BEC的度数,甲、乙两个同学进行讨论:
甲同学:我认为,以我们现在所学的几何知识不能求出∠BEC的度数,除非添加辅助线.
乙同学:哦,想起来了,在BE上截取BG=AE,如图2……,再就可以了.
根据两个同学的讨论,请你猜想∠BEC的度数,并说明理由。

相关文档
最新文档