uCOS-II内核原理
uCOS原理及应用

• 多任务系统工作原理
操作系统的调度程序对所有任务实现运行控制 调度程序对所有任务实现运行控制; 任务切换实际就是把当前任务所占用的CPU资源用其它任务来替 任务切换 换; CPU资源包括寄存器R0-R15、CPSR、SPRS和其它一些全局变量; 调度程序由系统节拍驱动 系统节拍驱动。
移植时需要 编写的代码
用于产生 系统时钟
周立功单片机
移植简介
• 概述
要移植 移植一个操作系统到一个特定的CPU体系结构 上并不是一件很容易的事情 并不是一件很容易的事情,它对移植者有以下要求: 1. 对目标体系结构要有很深了解; 2. 对OS原理要有较深入的了解; 3. 对所使用的编译器要有较深入的了解; 4. 对需要移植的操作系统要有相当的了解; 5. 对具体使用的芯片也要一定的了解。
栈底 任务环境开始
SP
周立功单片机
• 堆栈初始化函数
OS_STK *OSTaskStkInit (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT16U opt) { OS_STK *stk; opt = opt; stk = ptos; *stk = (OS_STK) task; *--stk = (OS_STK) task; *--stk = 0; 栈底 任务入栈的 *--stk = 0; 其它数据 *--stk = 0; *--stk = 0; PC *--stk = 任务环境开始 0; LR *--stk = 0; R12 *--stk = 0; R11 *--stk = 0; R10 *--stk = 0; R9 *--stk = 0; R8 *--stk = 0; ... *--stk = 0; R2 *--stk = (unsigned int) pdata; R1 *--stk = (USER_USING_MODE|0x00); R0 *--stk = 0; OSEnterSum SP return (stk); 空闲空间 } 周立功单片机
ucosII多核移植和扩展的原理以及注意事项

uC/OS-II是源码开放、可固化、可移植、可裁剪、可剥夺的实时多任务OS 内核,适用于任务多、对实时性要求较高的场合。
uC/OS-II适合小型系统,具有执行效率高、占用空间小、实时性优良和可扩展性等特点,最小内核可编译至2K。
uC/OS-II内核提供任务调度与管理、时间管理、任务间同步与通信、内存管理和中断服务等功能。
所谓RTOS移植,就是使一个实时内核能在某个微处理器或微控制器上运行。
大部分的uC/OS-II代码试用C写的,但仍需要用C和ASM写一些与处理器相关的代码,这是因为uC/OS-II在读写处理器寄存器时只能通过ASM实现。
要是uC/OS-II正常运行,处理器必须满足一定的条件:处理器的C编译器能产生可重入代码;用C语言就可以打开和关闭中断;处理器支持中断,并能产生定时中断;处理器支持能够容纳一定量数据的硬件堆栈;处理器有将SP和其他CPU reg读出和存储到堆栈或内存中的指令;uC/OS-II移植工作主要包括以下三个方面的内容:(1)修改与处理器核编译器相关的代码:主要在includes.h中,修改数据类型定义说明,OS_ENTER_CRITICAL()、OS_EXIT_CRITICAL()和堆栈增长方向定义OS_STK_GROWTH。
(2)用C语言编写10个移植相关的函数:主要在OS_CPU_C.C中,包括堆栈初始化OSTaskStkInit()和各种回调函数。
(3)编写4个汇编语言函数:主要在OS_CPU_A.ASM中,包括:_OSTickISR //时钟中断处理函数_OSIntCtxSW //从ISR中调用的任务切换函数_OSCtxSW //从任务中调用的任务切换函数_OSStartHighRdy //启动最高优先级的任务uC/OS-II移植的关键问题:(1)临界区访问:uC/OS-II需要先禁止中断再访问代码临界段,并且在访问完毕后重新允许中断,这就使得uC/OS-II能够保护临界段代码免受多任务或ISR的破坏。
uCOS-II

实验一、任务创建与删除1、uC/OS-II介绍对于操作系统的学习,创建任务和删除任务是最为基础的工作,uC/OS-II以源代码的形式发布,是开源软件, 但并不意味着它是免费软件。
可以将其用于教学和私下研究;但是如果将其用于商业用途,那么必须通过Micrium获得商用许可。
uC/OS-II属于抢占式内核,最多可以支持64个任务,分别对应优先级0~63,每个任务只能对应唯一的优先级,其中0为最高优先级。
63为最低级,系统保留了4个最高优先级的任务和4个最低优先级的任务,所有用户可以使用的任务数有56个。
uC/OS-II提供了任务管理的各种函数调用,包括创建任务,删除任务,改变任务的优先级,任务挂起和恢复等。
系统初始化时会自动产生两个任务:一个是空闲任务,它的优先级最低,该任务仅给一个整型变量做累加运算;另一个是系统任务,它的优先级为次低,该任务负责统计当前cpu的利用率。
μC/OS-II可管理多达63个应用任务,并可以提供如下服务,本章将针对以下服务分别以例程的方式来介绍1)信号量2)互斥信号量3)事件标识4)消息邮箱5)消息队列6)任务管理7)固定大小内存块管理8)时间管理2、任务创建与删除想让uC/OS-II管理用户的任务,用户必须要先建立任务,在开始多任务调度(即调用OSStart())前,用户必须建立至少一个任务。
uC/OS-II提供了两个函数来创建任务:OSTask Create()或OSTaskCreateExt()。
可以使用其中任意一个即可,其函数原型如下:INT8U OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U pri o)INT8U OSTaskCreateExt (void(*task)(void *pd),void *pdata,SD_STK *ptos,INT8U prio, INT16U id,OS_STK *pbos,INT32U stk_size, void *pext,INT16U opt)task:任务代码指针pdata:任务的参数指针ptos:任务的堆栈的栈顶指针prio:任务优先级id:任务特殊的标识符(uC/OS-II中还未使用)pbos:任务的堆栈栈底的指针(用于堆栈检验)stk_size:堆栈成员数目的容量(宽度为4字节)pext:指向用户附加的数据域的指针opt:是否允许堆栈检验,是否将堆栈清零,任务是否要进行浮点操作等等删除任务,是说任务将返回并处于休眠状态,任务的代码不再被uC/OS-II调用,而不是删除任务代码。
北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验北航 ARM9 实验报告:实验 3uCOSII 实验一、实验目的本次实验的主要目的是深入了解和掌握 uCOSII 实时操作系统在ARM9 平台上的移植和应用。
通过实际操作,熟悉 uCOSII 的任务管理、内存管理、中断处理等核心机制,提高对实时操作系统的理解和应用能力,为后续的嵌入式系统开发打下坚实的基础。
二、实验环境1、硬件环境:ARM9 开发板、PC 机。
2、软件环境:Keil MDK 集成开发环境、uCOSII 源代码。
三、实验原理uCOSII 是一个可裁剪、可剥夺型的多任务实时内核,具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点。
其基本原理包括任务管理、任务调度、时间管理、内存管理和中断管理等。
任务管理:uCOSII 中的任务是一个独立的执行流,每个任务都有自己的堆栈空间和任务控制块(TCB)。
任务可以处于就绪、运行、等待、挂起等状态。
任务调度:采用基于优先级的抢占式调度算法,始终让优先级最高的就绪任务运行。
时间管理:通过系统时钟节拍来实现任务的延时和定时功能。
内存管理:提供了简单的内存分区管理和内存块管理机制。
中断管理:支持中断嵌套,在中断服务程序中可以进行任务切换。
四、实验步骤1、建立工程在 Keil MDK 中创建一个新的工程,选择对应的 ARM9 芯片型号,并配置相关的编译选项。
2、导入 uCOSII 源代码将 uCOSII 的源代码导入到工程中,并对相关的文件进行配置,如设置任务堆栈大小、系统时钟节拍频率等。
3、编写任务函数根据实验要求,编写多个任务函数,每个任务实现不同的功能。
4、创建任务在主函数中使用 uCOSII 提供的 API 函数创建任务,并设置任务的优先级。
5、启动操作系统调用 uCOSII 的启动函数,使操作系统开始运行,进行任务调度。
6、调试与测试通过单步调试、查看变量值和输出信息等方式,对系统的运行情况进行调试和测试,确保任务的执行符合预期。
μCOS-II微小内核分析

概述| μC/OS-II微小内核分析
3、配置文件
μC/OS-II微小内核简介
配置文件是每个μC/OS-II程序必备的文件,而且不同的程序 一般不一样,但大小基本上相同。配置文件范例位于H目录下, 分别为INCLUDES.H和OS_CFG.H文件。
(1) INCLUDES.H:内核需要的头文件,对于特定的移植,一般 不需要改变; (2)OS_CFG.H:内核配置的头文件,一般需要根据程序的需求 修改其常量的内容。
OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL() 所属文件 移植代码 函数名称 OSTimeTick OSIntEnter 所属文件 OS_CORE.C OSTaskCreate OSSemCreate OSIntExit OSTaskDel OSStart OS_TASK.C 函数名称 OSSemDel 函数名称 OSSemPend OS_TIME.C OSInit OS_CORE.C OS_SEM.C 所属文件 OS_SEM.C 函数名称 OSSemPost 函数名称 OSTimeDly 由移植代码决定 (INT8U prio) 函数原型 void OSTimeTick(void) void OSIntExit(void) OS_EVENT *OSSemCreate (INT16U *pd), INT8U opt, INT8U *err) INT8U *OSSemDel OSStart(void) 函数原型 OS_EVENTOSTaskDel (void (*task)(voidINT16U timeout, INT8U *err) 函数原型 void OSSemPend (INT16U ticks) *pevent) OSTimeDly (OS_EVENT *pevent, cnt) void OSTaskCreate OSInit(void) 函数原型 INT8U OSSemPost (void)(OS_EVENT *pevent,void *pdata, OS_STK *ptos, INT8U prio) 函数原型 INT8U OSIntEnter (OS_EVENT 一般来说,OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()为定义的宏,用来 通知μC/OS-Ⅱ一个中断服务已开始执行,这有助于μC/OS-Ⅱ掌握中断嵌套的情 功能描述 删除信号量:在删除信号量之前,应当删除可能会使用这个信号量的任务 在每次时钟节拍中断服务程序中被调用,无函数参数和返回值。OSTimeTick()检查 建立并初始化一个信号量 通知μC/OS-Ⅱ一个中断服务已执行完毕,这有助于μC/OS-Ⅱ掌握中断嵌套的情 启动μC/OS-II的多任务环境,无函数参数和返回值 功能描述 发送信号量:如果指定的信号量是零或大于零,OSSemPost()函数递增该信号量 建立一个新任务。既可以在多任务环境启动之前,也可以在正在运行的任务中创建 删除一个指定优先级的任务。被删除的任务将回到休眠状态,任务被删除后可 初始化μC/OS-Ⅱ,无函数参数和返回值 功能描述 将一个任务延时若干个时钟节拍,无函数返回值。延时时间的长度可从0到65535个 功能描述 等待信号量:当任务调用OSSemPend()函数时,如果信号量的值大于零,那么 功能描述 功能描述 禁止、打开CPU的中断,无函数参数和返回值 况。通常OSIntExit()和OSIntEnter()联合使用,无函数参数和返回值 处于延时状态的任务是否达到延时时间,或正在等待事件的任务是否超时 任务 况。通常OSIntExit()和OSIntEnter()联合使用。当最后一层嵌套的中断执行完毕 以用函数OSTaskCreate()重新建立 时钟节拍,延时时间0表示不进行延时,函数将立即返回调用者,延时的具体时间 并返回。如果有任务在等待信号量,则最高优先级的任务将得到信号量并进入就绪 功能描述 pevent :指向信号量的指针,OSSemCreate()的返回值 cnt :建立的信号量的初始值,可以取0到65535之间的任何值 在调用OSStart( )之前必须先调用OSInit ( )。在用户程序中OSStart( )只能被调用 函数参数 OSSemPend()函数对该值减一并返回:如果调用时信号量等于零,那么OSSemPend() 必须在调用OSStart()函数之前调用OSInit(),而只有在调用OSStart()函数之后, 功能描述 特殊说明 函数将任务加入该信号量的等待列表,任务将等待直到获得信号量或超时 后,如果有更高优先级的任务准备就绪,μC/OS-Ⅱ会调用任务调度函数,在这 功能描述 opt OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()必须成对使用 依赖于系统每秒钟有多少时钟节拍(由文件OS_CFG..H中的常量 状态。然后进行任务调度,决定当前运行的任务是否仍然为处于最高优先级的就绪 特殊说明 OSTimeTick()的运行时间和系统中的任务数直接相关,在任务或中断中都可以调用。 在中断服务程序中,如果保证直接递增OSIntNesting“原子操作”,中断服务 prio :指定要删除任务的优先级,如果为OS_PRIO_SELF则删除自身 一次,第二次调用OSStart( )将不执行任何操作 :指向任务代码的指针(函数指针) 函数参数 task:定义信号量删除条件 μC/OS-Ⅱ才真正开始运行多任务 正常 : 态的任务 指向分配给所建立的信号量的事件控制块的指针 OS_TICKS_PER_SEC设定) 种情况下,中断返回到更高优先级的任务而不是被中断了的任务。无函数参数 函数参数 -OS_DEL_NO_PEND:没有任何任务等待信号量才删除 特殊说明 如果在任务中调用,任务的优先级应该很高(优先级数字很小),这是因为 函数返回值 pevent:传递给任务的参数(一个变量指针) 程序使用直接递增OSIntNesting的方法而不调用OSIntEnter()函数。 pdata :指向信号量的指针,OSSemCreate()的返回值 OS_NO_ERR:函数调用成功 和返回值 NULL :没有可用的事件控制块 特殊说明 pevent :指向信号量的指针,OSSemCreate()的返回值 函数参数 -OS_DEL_ALWAYS:立即删除 函数参数 timeout:最多等待的时间(超时时间),以时钟节拍为单位 OSTimeTick()负责所有任务的延时操作 ticks:要延时的时钟节拍数 函数参数 ptos :指向任务堆栈栈顶的指针 何为原子操作?在一个任务的执行过程中,如果有某些操作不希望在执行 OS_TASK_DEL_IDLE:错误,试图删除空闲任务(Idle task) :用于返回错误码 特殊说明 err 在任务级不能调用该函数。即使中断服务程序使用直接递增OSIntNesting的 OS_NO_ERR :发送信号量成功 延时时间0表示不进行延时操作,而立即返回调用者。为了确保设定的延时时间, err 必须先建立信号量,然后使用 过程中被别的任务或中断打断,那么这些不希望被打断的操作就是原子操作 :任务的优先级 特殊说明 prio :用于返回错误码 OS_TASK_DEL_ ERR:错误,指定要删除的任务不存在 函数返回值 方法(没有调用OSIntEnter()),也必须调用OSIntExit()函数 特殊说明 *err可能为以下值: 建议用户设定的时钟节拍数加1。例如,希望延时10个时钟节拍,可设定参数为11 OS_SEM_OVF :信号量的值溢出 函数返回 OS_NO_ERR :成功删除信号量 *err可能为以下值: OS_NO_ERR:函数调用成功 OS_PRIO_INVALID:参数指定的优先级大于OS_LOWEST_PRIO 值 OS_ERR_EVENT_TYPE :pevent 不是指向信号量的指针 OS_PRIO_EXIST:具有该优先级的任务已经存在 OS_TASK_DEL_ISR:错误,试图在中断处理程序中删除任务 函数返回 OS_ERR_DEL_ISR :在中断中删除信号量所引起的错误 函数返回 OS_NO_ERR :调用成功,得到信号量 OS_ERR_INVALID_OPT :错误,opt值非法 OS_ERR_PEVENT_NULL :错误,pevent为NULL OS_TIMEOUT :超过等待时间 值 值 OS_PRIO_INVALID:参数指定的优先级大于OS_LOWEST_PRIO 函数返回 OS_ERR_TASK_WAITING :有一个或多个任务在等待信号量 值 必须先建立信号量,然后使用 特殊说明 OS_ERR_EVENT_TYPE :错误,pevent不是指向信号量的指针 OS_ERR_PEND_ISR :在中断中调用该函数所引起的错误 OS_NO_MORE_TCB:系统中没有OS_TCB可以分配给任务了 OS_ERR_PEVENT_NULL :错误,pevent为NULL OS_ERR_EVENT_TYPE :错误,pevent 不是指向信号量的指针 任务堆栈必须声明为OS_STK类型。注意:在中断处理程序中不能建立任务。在任 (1)使用这个函数调用时,必须特别小心,因为其它任务可能还要用这个信号量 务中必须调用μC/OS提供的下述过程之一:延时等待、任务挂起、等待事件发生 特殊说明 OS_ERR_PEVENT_NULL :错误,pevent为NULL 特殊说明 (2)当挂起任务就绪时,中断关闭时间与挂起任务数目有关 (等待信号量,消息邮箱、消息队列),以便其它任务也能获得CPU的使用权 特殊说明 必须先建立信号量,然后使用,不允许在中断中调用该函数,因为中断不能被挂起
uCOS-II实时操作系统内核源代码注释

/*********************************************************************************************************** uC/OS-II* 实时操作内核* 内存管理** (c) 版权 1992-2002, Jean J. Labrosse, Weston, FL* All Rights Reserved** 文件名 : OS_MEM.C* 作者 : Jean J. Labrosse* 注释 : 彭森 2007/9/2**********************************************************************************************************/#ifndef OS_MASTER_FILE#include "includes.h"#endif#if (OS_MEM_EN > 0) && (OS_MAX_MEM_PART > 0)/*********************************************************************************************************** 创建一个内存分区** 说明 : 创建一个固定大小的内存分区,这个内存分区通过uC/OS-II管理。
** 参数 : addr 内存分区的起始地址** nblks 来自分区的内存块的数目.** blksize 每个内存分区中的内存块的大小.** err 指向一个变量包含错误的信息,这个信息通过这个函数或其他来设置:** OS_NO_ERR 内存分区创建正确返回值. * OS_MEM_INVALID_ADDR 指定的是无效地址作为分区的内存存储空间* OS_MEM_INVALID_PART 没有未使用的有用的分区* OS_MEM_INVALID_BLKS 使用者指定一个无效的内存块(必须 >= 2)* OS_MEM_INVALID_SIZE 使用者指定一个无效的内存空间值* (必须大于指针的空间大小) * 返回值 : != (OS_MEM *)0 分区被创建* == (OS_MEM *)0 分区没有被创建由于无效的参数,没有未使用的分区可用**********************************************************************************************************/OS_MEM *OSMemCreate (void *addr, INT32U nblks, INT32U blksize, INT8U *err){#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register 为CPU状态寄存器分配存储空间 */OS_CPU_SR cpu_sr;#endifOS_MEM *pmem;INT8U *pblk;void **plink;INT32U i;#if OS_ARG_CHK_EN > 0if (addr == (void *)0) { /* Must pass a valid address for the memory part. 必须是一个有效的内存部分*/*err = OS_MEM_INVALID_ADDR;return ((OS_MEM *)0);}if (nblks < 2) { /* Must have at least 2 blocks per partition 每个分区至少有两个分区*/*err = OS_MEM_INVALID_BLKS;return ((OS_MEM *)0);}if (blksize < sizeof(void *)) { /* Must contain space for at least a pointer 必须包含空间至少有一个指针*/*err = OS_MEM_INVALID_SIZE;return ((OS_MEM *)0);}#endifOS_ENTER_CRITICAL();pmem = OSMemFreeList; /* Get next free memory partition 得到下一个未使用的内存分区*/if (OSMemFreeList != (OS_MEM *)0) { /* See if pool offree partitions was empty 查看是否有未使用的分区空间是空的*/OSMemFreeList = (OS_MEM *)OSMemFreeList->OSMemFreeList;}OS_EXIT_CRITICAL();if (pmem == (OS_MEM *)0) { /* See if we have a memory partition 查看是否我们有一个内存分区*/*err = OS_MEM_INVALID_PART;return ((OS_MEM *)0);}plink = (void **)addr; /* Create linked list of free memory blocks 创建未使用的内存块的可连接的列表*/pblk = (INT8U *)addr + blksize;for (i = 0; i < (nblks - 1); i++) {*plink = (void *)pblk;plink = (void **)pblk;pblk = pblk + blksize;}*plink = (void *)0; /* Last memory block points to NULL 最后的内存块指针指向NULL*/pmem->OSMemAddr = addr; /* Store start address of memory partition 保存内存分区的起始地址*/pmem->OSMemFreeList = addr; /* Initialize pointer to pool of free blocks 为未使用的内存块初始化指针*/pmem->OSMemNFree = nblks; /* Store number of free blocks in MCB 在内存控制块中保存许多未使用的内存块*/pmem->OSMemNBlks = nblks;pmem->OSMemBlkSize = blksize; /* Store block size of each memory blocks 保存每个内存块的块大小*/*err = OS_NO_ERR;return (pmem);}/*$PAGE*//********************************************************************** ************************************* 得到一个内存控制块** 说明 : 从分区中得到一个内存块** 参数 : pmem 指针指向一个内存分区控制块** err 指向一个变量包含一个错误信息,这个错误信息通过这个函数或其他来设计** OS_NO_ERR 假如内存分区被正确的创建. * OS_MEM_NO_FREE_BLKS 假如没有更多的内存块被分配给调用者* OS_MEM_INVALID_PMEM 假如已经为'pmem'通过一个空指针** 返回值 : 一个指针指向一个内存控制块,假如没有察觉错误* 一个指针指向空指针,假如有错误被察觉到********************************************************************* *************************************/void *OSMemGet (OS_MEM *pmem, INT8U *err){#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register 为CPU状态寄存器分配存储空间 */OS_CPU_SR cpu_sr;#endifvoid *pblk;#if OS_ARG_CHK_EN > 0if (pmem == (OS_MEM *)0) { /* Must point to a valid memory partition 必须指向一个有效的内存分区 */*err = OS_MEM_INVALID_PMEM;return ((OS_MEM *)0);}#endifOS_ENTER_CRITICAL();if (pmem->OSMemNFree > 0) { /* See if there are any free memory blocks 查看是否有其他未使用的内存块*/pblk = pmem->OSMemFreeList; /* Yes, point to next free memory block 是的,指针指向下一个未使用的内存块*/ pmem->OSMemFreeList = *(void **)pblk; /* Adjust pointer to new free list 调整指针指向一个新的未使用的空间列表*/pmem->OSMemNFree--; /* Oneless memory block in this partition 在这个分区中减少一个内存块*/OS_EXIT_CRITICAL();*err = OS_NO_ERR; /* Noerror 没有错误*/return (pblk); /* Return memory block to caller 返回内存控制块给调用者*/}OS_EXIT_CRITICAL();*err = OS_MEM_NO_FREE_BLKS; /* No, Notify caller of empty memory partition 告知调用者是空的内存分区*/return ((void *)0); /* Return NULL pointer to caller 返回NULL个调用者*/}/*$PAGE*//********************************************************************** ************************************* 释放一个内存块** 说明 : 返回一个内存块给分区** 参数 : pmem 指针指向内存分区控制块** pblk 指针指向被保留的内存块.** 返回值 : OS_NO_ERR 假如内存块是被插入的分区* OS_MEM_FULL 假如返回一个已经全部内存分区的内存块* (你释放了更多你分配的内存块!)* OS_MEM_INVALID_PMEM 假如指针'pmem'指向NULL。
ucos-ii的工作原理

ucos-ii的工作原理自我感觉对ucos-ii已经很熟悉了,但是在一次面试的时候,被问及ucos的工作原理,却不知道怎么叙说,从那叙说,恨啊现在网络上搜了一篇,感觉写的蛮好的,借用一下,留作以后回顾(具体作者不详,所以无法署其姓名,望原创见谅)。
uC/OS-II是一种基于优先级的可抢先的硬实时内核。
要实现多任务机制,那么目标CPU必须具备一种在运行期更改PC 的途径,否则无法做到切换。
不幸的是,直接设置PC指针,目前还没有哪个CPU支持这样的指令。
但是一般CPU都允许通过类似JMP,CALL这样的指令来间接的修改PC。
我们的多任务机制的实现也正是基于这个出发点。
事实上,我们使用CALL指令或者软中断指令来修改PC,主要是软中断。
但在一些CPU上,并不存在软中断这样的概念,所以,我们在那些CPU上,使用几条PUSH指令加上一条CALL指令来模拟一次软中断的发生。
在uC/OS-II里,每个任务都有一个任务控制块(Task Control Block),这是一个比较复杂的数据结构。
在任务控制快的偏移为0的地方,存储着一个指针,它记录了所属任务的专用堆栈地址。
事实上,在uC/OS-II内,每个任务都有自己的专用堆栈,彼此之间不能侵犯。
这点要求程序员在他们的程序中保证。
一般的做法是把他们申明成静态数组。
而且要申明成OS_STK类型。
当任务有了自己的堆栈,那么就可以将每一个任务堆栈当前位置,记录到前面谈到的任务控制快偏移为0的地方。
以后每当发生任务切换,系统必然会先进入一个中断,这一般是通过软中断或者时钟中断实现。
然后系统会先把当前任务的堆栈地址保存起来,紧接着恢复要切换的任务的堆栈地址。
由于所要切换的任务堆栈里一定也存的是地址(还记得我们前面说过的,每当发生任务切换,系统必然会先进入一个中断,而一旦中断CPU就会把地址压入堆栈),这样,就达到了修改PC为下一个任务的地址的目的。
uCOS-II移植总结

u C/OS-II移植总结RTOS移植牵涉到软件平台—编译器、硬件平台—CPU,移植前需要了解CPU及编译器的一些基本特点。
1、编译器a、堆栈运行原理本次移植的软件平台为CodeVision编译器,它的堆栈由两部分组成:硬件堆栈(HardStack)用来保存中断及函数调用的返回地址,它的大小将影响函数调用嵌套的深度,实际大小应根据中断及函数嵌套的深度来决定,并留有一定的裕度。
硬件堆栈由CPU中的指针SP实现。
软件堆栈(SoftStack)用来分配局部变量及传递参数。
在此次移植中,由CPU中的Y指针模拟实现。
b、堆栈指针所指向的单元是否为可用单元大多数编译器生成的代码,其堆栈指针所指向的单元为可用单元,也就是说在将数据压入堆栈前不用再调整堆栈指针,堆栈指针在上一次使用完后已经调整好了。
前面所说的硬件堆栈(HardStack)即为这种类型。
还有一种堆栈,其指针所指向的单元为不可用单元,在向堆栈压入数据前需调整堆栈指针,软件堆栈(SoftStack)即为这种类型。
软件堆栈设计为这种形式完全是为了适应A VR指令和软件堆栈增长方向与硬件堆栈增长方向相同。
软件堆栈(SoftStack)由Y指针模拟实现,但在A VR的指令集中只有:LD Rd,Y+ LD Rd,–Y ST Y+,Rr ST –Y,Rr要实现向下增长的堆栈就只能使用ST –Y,Rr和LD Rd,Y+。
指针指向的单元已压入数据,因此使用前需调整指针,而ST –Y,Rr正好能完成这个动作。
c、多字节变量在宽度为单字节的存储器中的分配规则多字节变量指定义为int、long int、float、double等类型的变量。
在CodeVision编译器遵循的原则是:变量低字节部分分配在内存的低地址单元,变量高字节部分分配在内存高地址单元。
如:int a a为双字节变量,其低字节保存在内存的0x24H,则高字节保存在内存的0x25H。
了解这些变量在内存中存储形式是为了能够在在线汇编中正确操作它们。
uCOS-II内核详解

UC/OS-II内核详解一.内核概述:多任务系统中,内核负责管理各个任务,或者说为每个任务分配CPU时间,并且负责任务之间的通讯。
内核提供的基本服务是任务切换。
之所以使用实时内核可以大大简化应用系统的设计,是因为实时内核允许将应用分成若干个任务,由实时内核来管理它们。
内核本身也增加了应用程序的额外负荷,代码空间增加ROM的用量,内核本身的数据结构增加了RAM的用量。
但更主要的是,每个任务要有自己的栈空间,这一块吃起内存来是相当厉害的。
内核本身对CPU的占用时间一般在2到5个百分点之间。
UC/OS-II有一个精巧的内核调度算法,实时内核精小,执行效率高,算法巧妙,代码空间很少。
UC/OS-II的内核还可以被裁剪,Hmax中RTOS的就是一个被高度裁剪过的UC/OS-II。
二.任务控制块 OS_TCB:uC/OS-II的TCB数据结构简单,内容容易理解,保存最基本的任务信息,同时还支持裁减来减小内存消耗,TCB是事先根据用户配置,静态分配内存的结构数组,通过优先级序号进行添加,查找,删除等功能。
减少动态内存分配和释放。
因为依靠优先级进行TCB分配,每个任务必须有自己的优先级,不能和其他任务具有相同的优先级。
typedef struct os_tcb{OS_STK *OSTCBStkPtr;#if OS_TASK_CREATE_EXT_ENvoid *OSTCBExtPtr;OS_STK *OSTCBStkBottom;INT32U OSTCBStkSize;INT16U OSTCBOpt;INT16U OSTCBId;#endifstruct os_tcb *OSTCBNext;struct os_tcb *OSTCBPrev;#if (OS_Q_EN && (OS_MAX_QS >= 2)) || OS_MBOX_EN || OS_SEM_ENOS_EVENT *OSTCBEventPtr;#endif#if (OS_Q_EN && (OS_MAX_QS >= 2)) || OS_MBOX_ENvoid *OSTCBMsg;#endifINT16U OSTCBDly;INT8U OSTCBStat;INT8U OSTCBPrio;INT8U OSTCBX;INT8U OSTCBY;INT8U OSTCBBitX;INT8U OSTCBBitY;#if OS_TASK_DEL_ENBOOLEAN OSTCBDelReq;#endif} OS_TCB;.OSTCBStkPtr是指向当前任务栈顶的指针。
关于DSP2812上uCOS-II操作系统的说明

关于uCOS-II操作系统的说明一、工程文件的说明工程的所有文件在ucos目录下,打开工程文件后可以看到下面一些源文件·cmd文件工程的CMD文件与一般程序中的CMD 文件相同。
由F2812.cmd和DSP281x_Headers_nonBIOS.cmd两个文件组成。
其中对F2812.cmd文件进行了一些修改,将代码段定义在FLASH中,.bss和.ebss段都定义在低64K的数据空间中,以保证定义在.ebss段中的人物堆栈可以通过堆栈指针被访问。
·C语言和汇编源文件这部分文件在CCS窗口的Source文件夹下可以看到,主要有下面一些文件:Ucos_ii.c:操作系统的头文件包含文件。
OS_TickISR.asm:主要是OSTickISR( )函数,是操作系统时钟节拍中断的服务函数。
OS_Sw.asm:主要是OSCtxSw( )函数,非中断级任务切换函数,也是系统完成任务切换调用的30号中断(即USER 11 软中断)的中断服务函数。
OS_StartHighRdy.asm:主要是OSStartHighRdy()函数,在操作系统开始运行后(OSStart()函数开始执行以后)启动优先级最高的任务,一般情况下该任务是TaskStart任务。
OS_ISR.asm:中断服务程序的汇编源文件,尽量把要使用的中断服务程序放在这个文件中,使用汇编语言按照OS_SCIARXISR( )的结构编写。
关于中断服务程序后面会进一步加以说明。
OS_IntSw.asm:主要包含中断级任务切换函数OSIntCtxSw( ),完成中断级任务切换。
OS_GlobalStack.c:该文件中主要是全局任务堆栈的定义。
OS_cpu_c.c:该文件中主要是任务堆栈初始化函数OSTaskStkInit( )及其他一些与CPU相关的C语言函数的定义。
Ex1l.c:工程的主函数文件。
DSP281x_xxxx.c:例程中DSP2812外设操作的一些源代码,可以在这些文件中添加必要的操作外设的函数。
μCOS-Ⅱ操作系统

μC/OS-Ⅱ操作系统的简介2009-05-26 22:06μc/os-ii是由jean brosse于1992年编写的一个嵌入式多任务实时操作系统。
最早这个系统叫做μc/os,后来经过近10年的应用和修改,在1999年jean j.labrosse推出了;μc/os-ii,并在2000年得到了美国联邦航空管理局对用于商用飞机的、符合rtca do178b标准的认证,从而证明μc/os-ii具有足够的稳定性和安全性。
μc/os-ii是一个可裁减、源代码开放、结构小巧、可抢占式的实时多任务内核,是专为微控制器系统和软件开发而设计的,是控制器启动后首先执行的背景程序,并作为整个系统的框架贯穿系统运行的始终。
它具有执行效率高、占用空间小、可移植性强、实时性能良好和可扩展性强等特点。
采用μc/os-ii实时操作系统可以有效地对任务进行调度;对各任务赋予不同的优先级可以保证任务及时响应,而且采用实时操作系统,降低了程序的复杂度,方便程序的开发和维护。
μc/os-ii的文件体系结构如图1所示。
图1 μc/os-ii的文件体系结构图基于μC/OS—II的嵌入式构件系统设计2009-05-26 22:08引言近些年来,随着嵌入式产品需求的不断增加,嵌入式软件正变得越来越复杂,而产品的开发周期也越来越短。
嵌入式软件开发迫切需要更高效的软件重用手段。
随着软件复用研究成为热点,其核心技术——构件化软件开发方法(CBD)引起了软件工程领域的高度关注,并且在工程应用领域获得了极大的成功。
这种开发方法已在办公应用、电子商务、因特网及分布式网络应用中广泛使用;但在嵌入式领域,构件技术仍处于起步阶段,目前没有一个统一通用的构件规范。
尽管如此,由于基于构件的软件设计方法能够极好地满足嵌入式软件几乎所有的特性(如定制、裁剪、动态演变等),有效缩短产品开发周期,这种设计方法无疑将给嵌入式系统的开发带来巨大的好处。
本文尝试将构件化软件设计思想引入嵌入式软件设计中,提出了一种适用于嵌入式软件的基于构件的软件体系结构,并且在常用输入设备键盘的应用实践中,验证了此体系结构的可行性。
嵌入式实时操作系统ucosii

医疗电子
ucosii在医疗电子领域 中应用于医疗设备、监
护仪、分析仪等。
物联网
ucosii在物联网领域中 应用于传感器节点、网
关、路由器等设备。
02
ucosii的体系结构与内核
任务管理
任务创建
ucosii提供了创建新任务的函数,如 OSTaskCreate(),用于创建新任务。
任务删除
ucosii提供了删除任务的函数,如 OSTaskDelete(),用于删除不再需要的任 务。
时间管理
01
02
03
时间节拍
ucosii通过定时器产生固 定时间间隔的节拍信号, 用于任务调度和时间管理 。
超时处理
ucosii支持超时机制,当 某个任务等待时间超过预 定阈值时触发相应的处理 函数。
时间函数
ucosii提供了一系列时间 函数,如OSTimeDly()、 OSTimeTick()等,用于时 间相关的操作和控制。
智能家居
ucosii适用于智能家居领域,可应用于 智能家电控制、家庭安全监控等场景。
02
03
医疗电子
ucosii适用于医疗电子领域,如医疗设 备控制、病人监控等,其可靠性和实 时性为医疗系统提供了有力保障。
THANKS。
应用软件的开发
任务管理
在UCOSII中,任务是用来实现应用程序功能的。在进行应用软件的开发时,需要创建和管理任务。这包括任务的创 建、删除、挂起和恢复等操作。
任务间通信
为了实现任务间的协同工作,需要进行任务间通信。UCOSII提供了信号量、消息队列、互斥量等机制来实现任务间 通信。在进行应用软件的开发时,需要利用这些机制来实现任务间的同步和数据交换。
uCOSII原理及应用

任务控制块
用于存储任务的运行状态和控制信息,包括任 务的优先级、状态、堆栈指针等。
任务切换函数
用于实现任务之间的切换,包括保存当前任务的上下文和恢复下一个任务的上 下文。
ucosii的任务管理
创建任务
通过调用ucosii提供的函数, 创建新的任务并分配相应的 资源。
在物联网应用中,ucosii能够为各种智能硬件提供统一的操 作系统平台,实现设备的互联互通和智能化管理。同时, ucosii还提供了丰富的中间件和驱动程序,方便开发者快速 开发出各种智能硬件和应用软件。
ucosii在嵌入式系统中的应用
嵌入式系统是指嵌入到硬件中的计算机系统,具有特定的功能和性能要求。ucosii作为一种实时操作 系统,在嵌入式系统中也有着广泛的应用。
调试工具
使用JTAG、SWD等调试工具,通过串口、网络等方式与目标板进行通信,实现程序的 下载、运行、断点设置等操作。
调试步骤
首先确认硬件连接正确,然后通过调试工具将程序下载到目标板中,设置断点并运行程 序,观察程序运行过程中变量的变化和程序的执行流程。
常见问题
硬件连接问题、调试工具配置问题、程序编译错误等。
ucosii的性能分析
性能指标
响应时间、吞吐量、资源利用率等。
分析方法
通过代码审查、性能测试、瓶颈分析等方法,找出影响性能的 关键因素,如算法复杂度、内存访问模式、IO性能等。
优化建议
针对分析结果,提出优化建议,如改进算法、优化数据结 构、减少IO操作等。
ucosii的优化建议
算法优化
通过改进算法,减少计算量和复杂度,提高程序执行效率。
易用性
uCOS-II嵌入式操作系统介绍与移植

OSStartHighRd
1、该函数是在OSStart函数中调用 2、负责从最高优先级任务的TCB中获得该任务的堆
栈指针sp,并依次将cpu现场恢复,这时系统就将 控制权交给用户创建的该任务进程,直到该任务被 阻塞或者被其他更高优先级的任务抢占cpu 3、该函数仅在多任务启动时被执行一次,用来启 动之前创建的第一个,也就是最高优先级的任务执 行
3、可从网站上获 得全部源码及其在各种体系结构平 台上的移植范例。
uC/OS-II特点
1、uC/OS-II内核具有可抢占的实时 多任务调度功能
2、提供了许多系统服务,如信号量、 消息队列、邮箱、内存管理、时间 函数等
3、这些功能可以根据不同的需求进 行裁减。
uC/OS-II的移植
ARM处理器相关宏定义
1、退出临界区
#defineOS_ENTER_CRITICAL() ARMDisableInt()
2、进入临界区
#defineOS_EXIT_CRITICAL() ARMEnableInt()
堆栈增长方向
1、堆栈由高地址向低地址增长,这个也 是和编译器有关的,当进行函数调用时, 入口参数和返回地址一般都会保存在当 前任务的堆栈中,编译器的编译选项和 由此生成的堆栈指令就会决定堆栈的增 长方向。
#define OS_STK_GROWTH 1
OS_CPU.c的移植
1、任务堆栈初始化 2、系统hook函数 3、中断级任务切换函数
任务堆栈初始化OSTaskStkInit
1、由OSTaskCreate或OSTaskCreateExt调用 2、用来初始化任务的堆栈并返回新的堆栈指针stk。
退出/进入临界区函数 ARMDisableInt/ARMEnableInt
嵌入式实时操作系统ucosII

嵌入式实时操作系统ucosIIucosII是一款源代码公开、可免费使用的嵌入式实时操作系统。
它是由德国嵌入式系统专家brosse于1992年编写完成的,主要适用于嵌入式系统的开发。
ucosII具有源代码短小精悍、可移植性好、稳定性高等优点,被广泛应用于各种嵌入式系统中。
源代码短小精悍:ucosII的源代码只有几百KB,相对于其他RTOS来说,其代码量较小,易于理解和修改。
可移植性好:ucosII采用了可移植性的设计方法,可以在不同的处理器和编译器上进行移植和优化。
稳定性高:ucosII在各种嵌入式系统中得到了广泛应用,其稳定性和可靠性得到了充分的验证。
支持多任务:ucosII支持多任务处理,可以同时运行多个任务,提高系统的效率和响应速度。
实时性:ucosII具有较高的实时性,可以满足各种实时性要求高的应用场景。
可扩展性:ucosII具有较好的可扩展性,可以根据需要进行功能扩展和优化。
系统内核:包括任务调度、任务管理、时间管理、内存管理等核心功能。
中断处理程序:处理各种中断请求,包括硬件中断、软件中断等。
系统API:提供了一套完善的API函数,方便应用程序的开发和调试。
调试和测试工具:包括各种调试和测试工具,如内存检查工具、性能分析工具等。
ucosII被广泛应用于各种嵌入式系统中,如工业控制、智能家居、智能交通、航空航天等。
其应用场景涵盖了消费类电子产品、医疗设备、通信设备、汽车电子等领域。
ucosII作为一款源代码公开、可免费使用的嵌入式实时操作系统,具有短小精悍、可移植性好、稳定性高等优点。
它广泛应用于各种嵌入式系统中,为应用程序的开发提供了便利和支持。
其可扩展性和实时性也使得它在各种领域中具有广泛的应用前景。
随着嵌入式系统的广泛应用,对嵌入式操作系统的需求也日益增长。
uCOSII是一种流行的实时嵌入式操作系统,具有轻量级、实时性、可扩展性等优点。
本文将介绍如何在AT91平台上实现uCOSII的移植。
uCOS-II操作系统

uC/OS-II操作系统
根据就绪表确定最高优先级
• 通过OSRdyGrp值确定高3位,假设OSRdyGrp=
0x08,对应OSRdyTbl[3],高优先级为2; • 通过OSRdyTbl[3]的值来确定低3位,假设 OSRdyTbl[3]=0x3a,最高优先级的任务为25
uC/OS-II操作系统
μC/OS-Ⅱ初始化
• •
•
在调用μC/OS-Ⅱ的任何其它服务之前,μC/OS-Ⅱ 要求用户首先调用系统初始化函数OSInit()。 OSInit()建立空闲任务idle task,这个任务总是处 于就绪态的。空闲任务OSTaskIdle()的优先级 总是设成最低,即OS_LOWEST_PRIO。
uC/OS-II操作系统
第6章uC/OS-II操作 系统
uC/OS-II操作系统
内 容
• • • • • • •
6.1 uCOS-II操作系统简介 6.2 uCOS-II操作系统内核结构 6.3 uCOS-II操作系统任务管理 6.4 uCOS-II操作系统内存管理 6.5 uCOS-II操作系统时间管理 6.6 uCOS-II操作系统任务间的通讯 6.7 uCOS-II操作系统移植
• 一旦任务建立了,任务控制块OS_TCBs将被
赋值。
• 所有的任务控制块分为两条链表,空闲链表
和使用链表。
uC/OS-II操作系统
任务控制块结构的主要成员
OS_STK struct os_tcb struct os_tcb OS_EVENT void INT16U INT8U INT8U INT8U INT8U INT8U INT8U */ *OSTCBStkPtr; /*当前任务栈顶的指针*/ *OSTCBNext; /*任务控制块的双重链接指针*/ *OSTCBPrev; /*任务控制块的双重链接指针*/ *OSTCBEventPtr; /*事件控制块的指针*/ *OSTCBMsg; /*消息的指针*/ OSTCBDly; /*任务延时*/ OSTCBStat; /*任务的状态字*/ OSTCBPrio; /*任务优先级*/ OSTCBX; /*用于加速进入就绪态的过程*/ OSTCBY; /*用于加速进入就绪态的过程*/ OSTCBBitX; /*用于加速进入就绪态的过程*/ OSTCBBitY; /*用于加速进入就绪态的过程
uCOS-II简介

4.1OC/OS-II简介UC/OS-II 是一种基于优先级的可抢先的硬实时内核。
自从92 年发布以来,在世界各地都获得了广泛的应用,它是一种专门为嵌入式设备设计的内核,目前已经被移植到40 多种不同结构的CPU 上,运行在从8 位到64 位的各种系统之上。
尤其值得一提的是,该系统自从2.51版本之后,就通过了美国FAA 认证,可以运行在诸如航天器等对安全要求极为苛刻的系统之上。
鉴于UC/OS-II 可以免费获得代码,对于嵌入式RTOS 而言,选择UC/OS 无疑是最经济的选择。
需要说明的是,UC/OS-II 作为一个实时操作系统只提供了多任务调度等基本功能,这在实际应用中显然是不够的。
除了移植好的操作系统内核部分,还必须有文件系统,全部硬件的驱动程序,图形API,控件函数,综合提高的消息函数以及几个系统必须的基本任务,象键盘,触摸屏,LCD 刷新等。
有了这些,UC/OS-II 才能实现复杂的功能。
特殊需求的地方还需要像USB通信协议,TCP/IP 协议等更复杂的软件模块。
博创提供的UC/OS-II 库文件中包含了上述大部分功能,基于库的开发变的非常简单,在基本的程序框架下应用我们提供的丰富API 函数即可。
实际开发中,用户的工程中无需包括UC/OS-II 的源代码,只需要包括库文件即可。
当然,用户也可以了解库中部分代码的源文件,可以根据自己的需求就行重新编译,也可以对自己的一系列源文件生成一个专门的库,方便自己后续工作。
UC/OS-II 的开发中,应用程序和操作系统是绑在一起编译的,所生成的system.bin 文件是唯一的可执行文件,其中包括了所需要的UC/OS-II 代码和被用到的驱动程序等函数代码,以及应用程序的代码。
system.bin 文件是存放在平台的16M FLASH 中的,在系统启动时由BIOS依靠文件系统从FLASH 中读入到SDRAM 中,然后把控制转移到该代码上,完成所谓的引导。
ucos-ii工作原理

ucos-ii工作原理uC/OS-II(Micro C/Operating System-II)是一种用于嵌入式系统的实时操作系统。
它的工作原理可以简单归纳为以下几个步骤:1. 任务管理:uC/OS-II使用优先级调度算法管理多个任务。
每个任务都有一个优先级,高优先级的任务会优先执行。
uC/OS-II通过一个任务控制块(TCB)来管理每个任务的信息,包括任务的状态、堆栈信息、优先级等。
2. 中断处理:uC/OS-II可以处理多种类型的中断。
当发生中断时,uC/OS-II会根据中断类型进行相应的处理,并且可以自动切换到中断服务程序(ISR)进行执行。
中断服务程序中的代码通常是短小且高效的,用于处理特定的中断事件。
3. 任务切换:uC/OS-II使用抢占式的任务调度方式,因此任务切换可以发生在任何时刻。
当一个任务的时间片用尽或者有更高优先级的任务需要执行时,uC/OS-II会保存当前任务的上下文信息,并切换到下一个任务的执行。
任务切换时,uC/OS-II会保存当前任务的栈指针等信息,并从下一个任务的栈指针中恢复相应的上下文,以使下一个任务继续执行。
4. 事件同步:uC/OS-II提供了多种事件同步机制,如信号量、事件标志、消息邮箱等,用于任务之间的同步和通信。
这些机制可以帮助任务之间按照一定的顺序进行执行,实现数据共享和互斥访问等功能。
5. 内存管理:uC/OS-II提供了内存管理功能,可以动态分配和释放内存块。
这种内存管理机制可以帮助节省内存空间,提高系统的效率。
总而言之,uC/OS-II通过任务管理、中断处理、任务切换、事件同步和内存管理等机制,实现了对嵌入式系统的实时调度和资源管理,以提供稳定、可靠的操作系统支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uC/OS-II是一个源码公开应用于嵌入式的小型的RTOS(实时),由于其内核精简,可理解性和可移植性强,因此广泛应用于小型的嵌入式系统中.
内核工作原理:
实时嵌入式操作系统mC/OS-II内核的工作原理如图1所示。首先,在主程序中对操作系统进行初始化,完成 uC/OS-II所有变量和数据结构的初始化,包括任务控制块(TCB)初始化,TCB优先级表初始化,TCB链表初始化,事件控制块(ECB)链表初始化以及空闲任务的创建等。
在理解了处理器和C编译器的技术细节后,uC/OS的移植只需要修改与处理器相关的代码就可以了。具体有如下内容:
·OS_CPU.H中需要设置一个常量来标识堆栈增长方向;
·OS_CPU.H中需要声明几个用于开关中断和任务切换的宏;
·OS_CPU.H中需要针对具体处理器的字长重新定义一系列数据类型;
程序进入Task1()后,首先初始化时钟和启动时钟节拍源开始计时。此节拍源给系统提供周期性的时钟中断信号,实现延时和超时确认。然后根据应用程序要求,完成该任务的基本功能。最后,调用OSTimeDly(),将自己挂起,即从就绪表中删除。直到等待延时时间到,才将该任务恢复到就绪表中,并等待调度器的调度。
OSTimeDly()将任务挂起的同时,为其做好延时记号,然后调用OS_Sched()进行任务级的任务调度。若此时没有任何任务进入就绪态,就切换到空闲任务。
当时钟中断来临时,系统进入中断服务程序OSTickISR()。系统把当前正在执行的任务挂起,保护现场,进行中断处理OSTimeTick(),判断有无任务延时到期,若有,则使该任务进入就绪态。最后调用OSIntExit()进行中断级的任务调度,从而切换到优先级最高的任务,若没有别的任务进入就绪态,则恢复现场继续执行原任务
然后,根据应用程序的需要,用户可以调用OSTaskCreate()函数创建多个任务(至少1个)。该函数为新任务建立任务堆栈(OSTaskStkInit())以及初始化任务控制块TCB(OS_ TCBInit())。
最后,通过调用OSStart()启动多任务调度。程序将跳到就绪表中优先级最高的任务开始执行。这里假设启动多任务调度前创建了一个任务Task1()。
要移植uC/OS,目标处理器必须满足以下要求;
·处理器的C编译器能产生可重入代码,且用C语言就可以打开和关闭中断;
·处理器支持中断,并能产生定时中断;
·处理器支持足够的RAM(几K字节),作为多任务环境下的任务堆栈;
·处理器有将堆栈指针和其他CPU寄存器读出和存储到堆栈或内存中的指令。
·OS_CPU_A.ASM需要改写4个汇编语言的函数;
·OS_CPU_CH,将上面的三个文件和其他自己的头文件加入。