阶段性测试题二(函 数)
函数测试试卷(含解析).doc

•、选择题(12题每题5分,共60分)1.函数/(x) = -^L + lg(3x + l)的定义域是0 A/1 -X2.给出下列三个等式:f (xy) =f (x) +f (y), f (x+y) =f (x) f (y), f(x+y)二"]¥"叭1- fix) fly)不满足英中任何一个等式的是()A. f (x) =3XB. f (x) =sinxC. f (x) =log2xD. f (x) =tanx3.已知函数/(X)关于直线x = -2对称,周期为2,当xe[-3,-2]时,/(x) = (x + 2)2,则/(」)=()A. 0B. —C. —D. 14 164.函数f (x)二的图象大致是()5.已知函数f(x)的定义域为R.当x〈0时,/(%) = x3-l ;当—15x51时,/(-x) = -f(x):当x>^时,•则f⑹二()(A) -2 (B) -1 (C) 0 (D) 2a x,(x > 1)6.已知函数/(x) = \ a在R上为增函数,则a的取值范围是( )(4-紗+ 2,(Ml)A. [5,9)B. [5,9]C. [4,8)D. [4,8]7.已知定义在R上的函数/(兀)是奇函数,且于(兀)在(一也0)上是减函数,/(2)=05<?(X)=/(X+2),则不等式xg(x)< 0的解集是()A. (―oo, —2]U[2,+<xjB. [―4, —2]U[0,+oo)c. (―00,—4]U[—2,+co) D. (YO,-4]U[0,+ocj阶段性测试试卷A・(一亍+°°)D. (-co,-)下列函数中B(£)8.已知定义的R上的函数/(x)满足f(x + l) = /(1-x)且在[1,4-00)上是增函数,不等式/(or+2)< /(x-1)对任意xe[-;l]fH 成立,则实数d的取值范围是()A. [-3,-1]B. [―2,0]C. [-5,-1]D. [-2,1]9.已知函数/*(兀)=-x2 + ax(a G /?,/?G /?),对任意实数兀都有/(l-x) = /(l + x)成立,若存在xe[-l,l]时,使得/(兀)—b = 0有解,则实数b的取值范国是( )A. (-1,0)B. [-3,1]C. (-3,1)D.不能确定10.已知函数f(x) = lnx-ax2 + or恰冇两个零点,则实数a的取值范围为()A. (一8, 0)B. (0, +8)C. (0, 1) U (1, +8)D. (—8, 0) U {1}11.已知a=log2*, b=305 , c=0.53 ,则有()A. a>b>cB. b> c> aC. c>b> aD. c>a>b12.定义在/?上的徜函数/(x)满足/(x + 2)-/(x) = 0 , K在[-1,0]上单调递增,设= /(log32),19 一b = /(log j 2), <? = /(一),则a, b , c的人小关系是( )27 12A. a>b>cB. a>obC. b> c> aD. ob>a二、填空题(每题5分,共30分)13.已知y = f(x) + x2是奇函数,且/(I) = 1,若gd ⑴+ 2,贝ijg(-l)= ___________________14./(x) = 2若/(x0)>l则如的取值范围是.y]x,X> 015.已知函数y = f(x-2)定义域是[0,4],则y=/(E)的定义域是.X— 1X + /716.若函数f(x)=—;——w (-oo,b)U(b + 2,+oo)是奇函数,贝^ia + b = .2x -11 —Y 1 —兀?17.已知f(—) = —则/(兀)的解析式为f(x)= ___________________________1+ 兀1 + x18.已知/(兀)是R上的偶函数,对xwR都有/(x + 6) = f(x) + /(3)成立,若/(1) = 2,则/(2011)=_ 三、解答题(共5道题,)19. ( 12分)设f(x)是定义在实数集R上的函数H. y(-x) = -/(4 /(X)在[0, + oo)是减函数H f(m-1)+ /(m-3)<0,求实数m 的取值范围.20. (12分)定义在非零实数集上的函数/(力满足/(^) = /(x) + /(j),且/(朗是区间(0,+8)上的递增函数.求:(1) /(1),/(一1)的值;(2)求证:/(-X)= /(X); (3)解不等式/(2) + /(x--)<0.21.(12分)求f(x) = x2 -2ax-\在区间[0,2]上的最大值和最小值。
江苏省南通市如皋市、连云港市2024届高三下学期阶段性调研测试(1.5模) 数学试题(含解析)

521πcm+B A.()2D(1)求证:PE BF ⊥;(2)若(0)PM PB λλ=> ,且直线18.已知椭圆2222:1(x y C a a b+=>和坐标原点,点P 为椭圆C 上异于(1)求C 的方程;(2)过椭圆C 的右焦点F 的直线中点G 作直线4x =的垂线,垂足为①求S 的取值范围;②求证:12Sk k -为定值.19.若x m =时,函数()f x 取得极大值或极小值,则称数()()2ln ,f x x g x ax x a=+=+(1)若函数()f x 有极值点,求a (2)当2120,x x x >>和1x 的几何平均数为①判断2121ln ln x x x x --与2x 和1x 的几何平均数和算术平均数的大小关系,并加以证明;②当1a ≥时,证明:()(f x g ≤12231323,O O O O O O O ===2(3)437,R R -=+=∴=(24π4π10221S R ∴==⋅+表故选:D.6.B【分析】根据已知条件可知求解.【详解】依题意,1lg lg n a +-故{}n a 是以10为公比的等比数列,所以212223242512345a a a a a a a a a a ++++++++所以12345a a a a a a ++++=故选:B.双曲线中2,c c e a ===设直线()(11:2,,,AB x ty A x y B =+所以()22211124m x y x x =-+=-221n x =-,从而()1222AB m n x x =+=+-,由双曲线定义知122AF m a =+=接下来我们证明如下引理:三个不共线的点心坐标为34DE x CE x CD G DE CE CD ⎛++ ++⎝先来证明G 是三角形CDE 的内心当且仅当若0DE GC CE GD CD GE ++= 则()DE GC CE GC CD CD +++ 则CE CDCD CG DE CE CD CD ⎛=+ ++⎝ 而由平行四边形法则可知CD CD + 所以CG 经过三角形CDE 的内心,内心,所以点G 是三角形CDE 的内心,由于上述每一步都是等价变形,反正亦然,所以G 是三角形CDE 的内心当且仅当则可得232PC =,而2PC ∈而[]324,6∈,所以存在P 故选:BC 10.ACD【分析】根据概率的加法公式及条件概率公式求解【详解】()()P A B P A P +=+1()()(),3P B P AB P AB =+∴ 1()112()1()62P AB P B A P A ===∣,故()()()(P B P AB P AB P AB =+=211(),(3212P AB P AB ∴=+-∴()(21,1,0,21,0,1OA OB OA OB == 设面OAB 的一个法向量(11n x = 所以111100x y x z +=⎧⎨+=⎩,222200y z x z -+=⎧⎨-+=⎩所以面OAB 的一个法向量1n = 设平面OAB 与平面ABC 夹角为()1OP xOA yOB x y OC =++-- 所以3232,,022OA ⎛⎫= ⎪ ⎪⎝⎭ ,|OP大正四面体内切球半径66,1,44a a V ∴≥∴≤=分别在OA 上取1Q 使1Q A 11222,2Q O Q A Q O Q ∴==12122Q Q =为半径的球面上,且661,33MM '∴=⨯=∴Q ∴的轨迹长度不为2π33⋅故选:ABC.【点睛】关键点点睛:第二问的关键是得到四点共面,转换为验算点面距离即可顺利得解12.80【分析】()522x x y +-中有2个括号提供【详解】()522x x y +-可看作5个(22x +是22x ,则()322326253C ()C 280y x x y -⋅=,系数为80.故答案为:80【详解】cos b C ,得2a +2222322b b b -+=⋅⨯⨯22249222c b ac +-+=⨯34,令,BP x =32≤≤,得32x ≤≤()(0,42,0,2,42,2B PB =-- (22,2,AM AP PM ∴=+=--((222,422,21λλ=----()(2,0,2,22,22,0FP FC ==-联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x 可得()234m y +所以()()222Δ3636341441m m m =++=+且12122269,3434m y y y y m m +=-=-++,可得(121211122ODES S y y y y ==⋅⋅-=+ 令21,1m t t +=≥,可得2661313t S t t t==++,由对勾函数性质可得所以可得663112331S t t=≤=++;即S 的取值范围为30,2⎛⎤⎥⎝⎦.②易知12002233,2343y y m m y x m m +--==∴=++可得222433,,4,343434m m G N m m m --⎛⎫⎛⎫ ⎪ ⎪+++⎝⎭⎝⎭所以1222121233343444m m y y m m k k x x ++++-=---()()1212233334m y my my y m ⎛⎫⎛+---+ ⎪ +⎝⎭⎝。
江苏省四校(常州北郊中学等)2022-2023学年高三下学期4月阶段性测试数学试题(原卷版)

2022-2023学年第二学期高三阶段性测试2023.4无锡市辅仁高级中学、江阴高中、宜兴一中、常州市北郊中学一、选择题:本题共8小题,每小题5分,共40分.1.已知复数z 满足()()31i 1i z -+=-,z=()A.B.C.D.2.设R U =,已知两个非空集合M ,N 满足()U M N ⋂=∅ð,则()A.RM N ⋂= B.M N⊆ C.N M⊆ D.RM N ⋃=3.大约公元前300年,欧几里得在他所著《几何原本》中证明了算术基本定理:每一个比1大的数(每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数在乘积中的顺序,那么写出来的形式是唯一的,即任何一个大于1的自然数N (N 不为素数)能唯一地写成1212k aaak N p p p =⋅⋅⋅L (其中i p 是素数,i a 是正整数,1i k ≤≤,12k p p p <<<L ),将上式称为自然数N 的标准分解式,且N 的标准分解式中有12k a a a +++ 个素数.从120的标准分解式中任取3个素数,则一共可以组成不同的三位数的个数为()A .6B.13C.19D.604.已知多项式()()562560125621x x a a x a x a x a x -+-=+++⋅⋅⋅++,则1a =()A.11B.74C.86D.1-5.勒洛三角形是一种典型的定宽曲线,以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形就是勒洛三角形.在如图所示的勒洛三角形中,已知2AB =,P 为弧AC 上的点且45PBC ∠=︒,则BP CP ⋅的值为()A.4 B.4+ C.4- D.4+6.在三棱锥A BCD -中,AB ⊥平面BCD ,224BC CD CD AB BC ⊥===,,则三棱锥A BCD -的外接球的表面积与三棱锥A BCD -的体积之比为()A.3π4B.3π2C.2πD.9π7.已知πsin 4sin 0,,21cos 4cos 2ααααα⎛⎫∈= ⎪+-⎝⎭,则tan 2α=()A.5 B.3C.15D.8.已知函数()ln x x xϕ=.设s 为正数,则在()2(),,(2)s s s ϕϕϕ中()A.()2sϕ不可能同时大于其它两个B.(2)s ϕ可能同时小于其它两个C.三者不可能同时相等D.至少有一个小于4二、选择题:本题共4小题,每小题5分,共20分.9.甲袋中装有4个白球,2个红球和2个黑球,乙袋中装有3个白球,3个红球和2个黑球.先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.用1A ,2A ,3A 分别表示甲袋取出的球是白球、红球和黑球,用B 表示乙袋取出的球是白球,则()A.1A ,2A ,3A 两两互斥B.()213P B A =C.3A 与B 是相互独立事件D.()13P B =10.已知经过点()2,4P 的圆C 的圆心坐标为()0,t (t 为整数),且与直线-=0l y 相切,直线:20m ax y a ++=与圆C 相交于A 、B 两点,下列说法正确的是()A.圆C 的标准方程为()2242x y +-=B.若PA PB ⊥,则实数a 的值为2-C.若AB =,则直线m 的方程为20x y -+=或7140x y -+=D.弦AB 的中点M 的轨迹方程为()()22125x y ++-=11.已知函数()y f x =的导函数()y f x '=,且()()()12f x x x x x =---',12x x <,则()A.2x 是函数()y f x =的一个极大值点B.()()12f x f x <C.函数()y f x =在1223x x x +=处切线的斜率小于零 D.1202x x f +⎛⎫>⎪⎝⎭12.如图1,在ABC 中,90ACB ∠=︒,AC =2CB =,DE 是ABC 的中位线,沿DE 将ADE V 进行翻折,连接AB ,AC 得到四棱锥A BCED-(如图2),点F 为AB 的中点,在翻折过程中下列结论正确的是()A.当点A 与点C 重合时,三角形ADE3π2⎛++ ⎝B.四棱锥A BCED -的体积的最大值为32C.若三角形ACE 为正三角形,则点F 到平面ACD 的距离为32D.若异面直线AC 与BD 所成角的余弦值为34,则A 、C 两点间的距离为三、填空题:本题共4小题,每小题5分,共20分.请将答案写在答题卡相应的位置上.13.在平面直角坐标系中,抛物线28y x =-的焦点为F ,准线为l ,P 为抛物线上一点,过点P 作PA l ⊥,交准线l 于点A .若PF AF =,则OP 的长为_________.14.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+<⎪⎝⎭,将()f x 的图像向右平移π8个单位长度后的函数()g x 的图像,若()g x 为偶函数,则函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域为___________.15.已知数列{}n a 的前n 项和为n S ,1a m =,22(1)n n na S n n =+-,若对任意N n *∈,等式2nnS k S =恒成立,则m =_______.16.如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A 、B 两点反射后,分别经过点C 和D ,且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{}n a 的前n 项和为n S ,且11a =,6328S S =,数列{}n b 满足()33log 1n n b a =+.(1)求数列{}n a 和{}n b 的通项公式;(2)若对任意的*n ∈N ,3n n b a λ<恒成立,求实数λ的取值范围.18.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,满足()221sin 3S a b C =-.(1)证明sin 2sin A B=(2)求所有正整数k ,m 的值,使得c mb =和tan tan A k C =同时成立19.如图,在四棱锥P ABCD-中,底面ABCD是边长为2的菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,PB BC⊥.(1)求点A到平面PBC的距离;(2)E为线段PC上一点,若直线AE与平面ABCD所成的角的正弦值为3010,求平面ADE与平面ABCD夹角的余弦值.20.互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量12m =,样本平均数18x =,样本方差2119s =;乙镇的样本容量18n =,样本平均数36y =,样本方差2270s =.(1)求由两镇样本组成的总样本的平均数z 及其方差2S ;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.当比赛在甲镇举行时,甲镇代表队获胜的概率为35,当比赛在乙镇举行时,甲镇代表队获胜的概率为12.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X ,求()E X .参考数据:2222212183888,183623328,28.8829.44,1210.81399.68,187.2933.12⨯=⨯==⨯=⨯=.21.已知曲线22:163x y E +=,直线:l y x m =+与曲线E 交于y 轴右侧不同的两点,A B .(1)求m 的取值范围;(2)已知点P 的坐标为()2,1,试问:APB △的内心是否恒在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.22.已知函数()2e xf x ax =-,R a ∈.(1)若e2a ≤,证明:()f x 在()0,∞+上单调递增.(2)若()()ln f x F x a x x=+存在两个极小值点12,x x ()12x x <.①求实数a 的取值范围;②试比较()1F x 与()2F x 的大小.。
名师同步岳麓历史必修二课时跟踪检测:阶段性测试题2 含解析

阶段性测试题二第二单元工业文明的崛起和对中国的冲击(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分)1.下图取材于欧洲画家斯泰达努斯的画作《新发现》(NOV A REPERTA)。
图中所描绘的新发现()A.有助于罗马帝国的海外扩张B.密切了世界各地之间的联系C.宣告了人文主义思想的诞生D.标志着英国海上霸权的确立解析:根据题目的“《新发现》(NOV A REPERTA)”以及图片中的“罗盘”、南、北美洲等信息可知,图片反映的是新航路开辟。
新航路开辟密切了世界各地之间的联系,B项正确;其他三项都与材料信息不符,排除。
答案:B2.(2019·全国卷Ⅰ)有研究认为,美国独立后不到半个世纪,拉丁美洲经过独立战争,推翻了殖民统治,但拉美国家并没有像近邻美国那样独立后进入现代化的快车道,而是发展停滞,究其原因,殖民统治难辞其咎。
“难辞其咎”主要是指殖民者在拉丁美洲()A.奴役掠夺土著居民B.建立的殖民统治最早C.进行了大量的移民D.移植了本国生产方式解析:由材料“美国独立后不到半个世纪”和所学知识可知,此时英国工业革命接近尾声,而这一时期推翻了殖民统治的拉丁美洲发展停滞,结合所学知识可知,这是由于在拉丁美洲进行殖民统治的西班牙、葡萄牙移植了它们的生产方式,故选D项;A、C两项属于殖民者在美国和拉丁美洲统治的共同点,不能揭示出拉丁美洲落后的原因,故排除;材料所述史实跟建立殖民统治的时间没有直接关系,排除B项。
答案:D3.(2018·天津卷)1830年,剑桥大学数学教授查尔斯·巴比奇出版《论英国科学的衰退》一书,分析了欧洲各国的科学状况,指出英国的业余科研传统正在使英国丧失曾经拥有的优势。
他呼吁英国人必须将科学作为一项事业来加以关注,科学家应受到良好的培养和教育,并成为一种职业。
这反映出() A.欧洲其他国家科学水平超越英国B.英国丧失原有优势地位C.英国科学家普遍缺乏培养和教育D.工业革命的不断扩展解析:1830年,英国即将完成工业革命,生产的发展对科学技术提出了更高的要求,促使科学向专业化、职业化发展,也对科学家的培养提出了新的要求,D项正确;1830年的英国在科学技术领域要领先于欧洲其他国家,A、B两项错误;材料反映的是业余科研不能适应社会的进步,不能表明英国科学家普遍缺乏培养和教育,C项错误。
九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习6期函数(二)同步练习

中考一轮复习:函数(二)同步练习 二次函数图象与性质同步练习(答题时间:30分钟)1. 已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )xyO -3A. 无实根B. 有两个相等实数根C. 有两个异号实数根D. 有两个同号不等实数根2. 下图中,哪个是二次函数y =2x 2-4x +3的图象( )123-1-2-3-1-21234yx 123-1-2-3-1-21234yx123-1-2-3-1-21234yx 123-1-2-3-1-21234yxA B C D3. (山东泰安)已知函数y =(x -m )(x -n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =xnm 的图象可能是( )A. B.C. D.*4. 已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴是x =1,则下列结论中正确的是( )xyOA. ac >0B. b <0C. b 2-4ac <0D. 2a +b =05. 已知二次函数y =ax 2+bx +c 的图象如图所示,则a ______0,b ______0,c ______0。
(填“>”“<”或“=”)xyO**6. (浙江杭州)设抛物线y =ax 2+bx +c (a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为__________.*7. (北京)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值。
例如,如图中的函数是有界函数,其边界值是1。
(1)分别判断函数 y =x1(x >0)和y =x +1(-4≤x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足43≤t ≤1?二次函数图象与性质同步练习参考答案1. D 解析:方程ax 2+bx +c +2=0即ax 2+bx +c =-2。
反洗钱阶段性测试题及答案(一)(二)可打印

1、《金融机构大额交易和可疑交易报告管理办法》规定,交易一方为自然人、单笔或者当日累计等值()美元以上的跨境交易,金融机构应当向中国反洗钱监测分析中心报告.
C。 10000
2、《金融机构大额交易和可疑交易报告管理办法》第十条规定,银行对符合规定条件的大额交易,如未发现该交易可疑的,可以不报告。以下不属于规定条件的是()
反洗钱阶段性测试(一)
一、判断(共10题,20分)
1、反洗钱内部控制的信息与交流包括获取充足的信息、有效的管理和交流以及开辟畅通的信息反馈和报告渠道,保证发现的问题能够及时、完整地为最高层掌握。√
2、有效的反洗钱内部控制是金融机构从制定、实施到管理、监督的一个完整的运行机制。√
3、客户身份识别中的非面对面识别要求是指,金融机构利用电话、网络、自助银行ATM机以及其他方式为客户提供非柜台方式的服务时,应实行严格的身份认证措施,采取相应的技术保障手段,强化内部管理程序,识别客户身份.√
B。纸质档案保存环境应保持一定的温度、湿度,做到防霉、防蛀、防火。
D。借阅档案要按规定办理登记手续。
5、2006年2月,在XX银行发现一个新客户名称为XX农副产品公司,经常性地收取来自外地单位汇款,然后将资金分多次以现金形式取走,累计资金交易量非常大,该公司开启以后,从2006年2月10日到2月19日期间,该账户转入资金5笔,合计1000万元,支取现金50笔,合计950万元,汇款单位均不同,多是贸易公司等。经该行调查,这是经营范围为收购农副产品的公司,只有一名员工,真正的法人代表始终没有出现过.外地的汇款用途是买农副产品的。但这家农副产品公司经营面积约20㎡,工商注册为有限责任公司,注册资金50万元,平时顾客很少.请问该公司的交易符合以下哪些可疑点()
北京市衡中清大教育集团2024届高三2月阶段性测试数学试题

北京市衡中清大教育集团2024届高三2月阶段性测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图象关于点5,012M π⎛⎫ ⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②点,012π⎛⎫-⎪⎝⎭是函数()f x 的一个对称中心; ③函数1y =与()351212y f x x ππ⎛⎫=-≤≤⎪⎝⎭的图象的所有交点的横坐标之和为7π. 其中正确的判断是( ) A .①②B .①③C .②③D .①②③2.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( ) A .33-B .3C .332- D .323.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( ) A .48B .36C .42D .314.函数1()ln ||1xf x x+=-的图象大致为 A . B . C .D .5.已知△ABC 中,22BC BA BC =⋅=-,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++的最小值为( ) A .2B .34-C .2-D .2512-6.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.87.记等差数列{}n a 的公差为d ,前n 项和为n S .若1040S =,65a =,则( ) A .3d =B .1012a =C .20280S =D .14a =-8.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .69.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α10.若复数z 满足(1)12i z i +=+,则||z =( )A .2 B .3 C 10D .111.已知函数有三个不同的零点(其中),则 的值为( )A .B .C .D .12.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=( )A .52B .4C .2D .13+二、填空题:本题共4小题,每小题5分,共20分。
2023年新高考数学一轮复习2-3 二次函数与一元二次方程、不等式(真题测试)解析版

专题2.3 二次函数与一元二次方程、不等式(真题测试)一、单选题1.(2021·河北·沧县中学高一阶段练习)函数()()()[]224,,21,2,2,1x x x f x x x ∞∞⎧--+∈--⋃+⎪=⎨-+∈-⎪⎩的值域为( )A .(],4∞-B .(],2-∞C .[)1,+∞D .(),4-∞【答案】A 【解析】 【分析】利用分段函数的性质求解. 【详解】解:()()()[]224,,21,2,2,1x x x f x x x ∞∞⎧--+∈--⋃+⎪=⎨-+∈-⎪⎩, 当[]2,1x ∈-,()[]21,4f x x =-+∈,当()()1,,2x ∈+∞⋃-∞-,()()2154f x x =-++<,所以()(,4]∈-∞f x , 故选:A2.(2008·江西·高考真题(文))已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .[4,4]- B .(4,4)-C .(,4)-∞D .(,4)-∞-【答案】C 【解析】 【详解】当2160m ∆=-<时,显然成立当4,(0)(0)0m f g ===时,显然不成立; 当24,()2(2),()4m f x x g x x =-=+=-显然成立;当4m <-时12120,0x x x x +,则()0f x =两根为负,结论成立故4m <,故选C.3.(2014·北京·高考真题(文))加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p=at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟【答案】B 【解析】 【详解】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,所以930.7{1640.82550.5a b c a b c a b c ++=++=++=,解得0.2, 1.5,2a b c =-==-,所以20.2 1.52p t t =-+-=215130.2()416t --+,因为0t >,所以当153.754t ==时,p 取最大值, 故此时的t=3.75分钟为最佳加工时间,故选B.4.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x 轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】 由p 可得20Δ40a a a >⎧⎨=-<⎩,由q 可得1111a a ->-⎧⎨+>-⎩,进而判断两集合关系,即可得到答案. 【详解】由p ,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<;由q ,方程22210x ax a -+-=的两根为11x a =-,21x a =+,则1111a a ->-⎧⎨+>-⎩,解得0a >,因为{}04a a << {}0a a > ,所以p 是q 的充分不必要条件, 故选:A5.(2022·陕西·长安一中高一期中)设奇函数()f x 在[1,1]-上是增函数,(1)1f -=-.若函数()221f x t at ≤-+对所有的[1,1]x ∈-都成立,则当[1,1]a ∈-时,t 的取值范围是( ) A .22t -≤≤B .1122t -≤≤C .2t ≤-,或0=t ,或2t ≥D .12t ≤-,或0=t ,或12t ≥【答案】C 【解析】 【分析】求出函数()f x 在[1,1]-上的最大值,再根据给定条件建立不等关系,借助一次型函数求解作答. 【详解】因奇函数()f x 在[1,1]-上是增函数,(1)1f -=-,则max ()(1)(1)1f x f f ==--=, 依题意,[1,1]a ∈-,22211()20t at g a ta t -+≥⇔=-+≥恒成立,则有22(1)20(1)20g t t g t t ⎧-=+≥⎨=-≥⎩,解得2t ≤-或0=t 或2t ≥, 所以t 的取值范围是2t ≤-或0=t 或2t ≥. 故选:C6.(2016·浙江·高考真题(文))已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由题意知222()()24b b f x x bx x =+=+-,最小值为24b -.令2=+t x bx ,则2222(())()(),244b b b f f x f t t bt t t ==+=+-≥-,当0b <时,(())f f x 的最小值为24b-,所以“0b <”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0b =时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x 的最小值与()f x 的最小值相等”不能推出“0b <”.故选A .7.(2022·广东佛山·二模)设,,R a b c ∈且0a ≠,函数2(),()(2)()g x ax bx c f x x g x =++=+,若()()0f x f x +-=,则下列判断正确的是( ) A .()g x 的最大值为-a B .()g x 的最小值为-a C .()()22g x g x +=- D .()()2g x g x +=-【答案】D 【解析】 【分析】根据给定条件,用a 表示b ,c ,再结合二次函数的性质求解作答. 【详解】依题意,232()(2)()(2)(2)2f x x ax bx c ax a b x b c x c =+++=+++++,因()()0f x f x +-=,则()f x 是奇函数,于是得2020a b c +=⎧⎨=⎩,即2,0b a c =-=, 因此,22()2(1)g x ax ax a x a =--=-,而0a ≠,当0a >时,()g x 的最小值为-a ,当0a <时,()g x 的最大值为-a ,A ,B 都不正确;2(2)(1)g x a x a +=+-,2(2)(1)g x a x a -=-+-,22()(1)(1)g x a x a a x a -=---=+-,即()()22g x g x +≠-,()()2g x g x +=-,因此,C 不正确,D 正确. 故选:D8.(2022·浙江金华第一中学高一阶段练习)当11x -时,21ax bx c ++恒成立,则( )A .当2a =时,||||1b c +=B .当2a =时,||||2b c +=C .当1b =时,||0a c +=D .当1b =时,||||0a c +=【答案】AC 【解析】 【分析】先举出反例,排除BD 选项,对于A 选项,根据绝对值三角不等式,得到11b -≤≤,31c -≤≤-,再根据14b f ⎛⎫-≤ ⎪⎝⎭得到288c b ≥-,综合得到88c =-,288b -=-,求出1c =-,0b =,从而判断出A 正确;D 选项,利用类似方法得到0a c +=,验证后得到结论. 【详解】当2a =时,221x bx c ++在11x -上恒成立,可取0,1b c ==-,验证可知符合题意,此时2b c +≠,B 错误;当1b =时,21ax x c ++在11x -上恒成立,可取11,44a c ==-,验证可知符合题意,故D 错误;对于A 选项,令()22f x x bx c =++,必有()()11,11f f ≤-≤,即21,21b c b c ++≤-+≤,则222222b c b c b c b c b ≥+++-+≥++-+-=, 解得:11b -≤≤,则()f x 的对称轴1,144b x ⎡⎤=-∈-⎢⎥⎣⎦,同理:2222222b c b c b c b c c ≥+++-+≥+++-+=+, 所以21c +≤,解得:31c -≤≤-,于是()1f x ≤要满足()()28114811212111b c b f f b c b c f ⎧⎧⎛⎫--≤≤⎪ ⎪⎪⎝⎭⎪⎪⎪⎪-≤⇒-+≤⎨⎨⎪⎪++≤≤⎪⎪⎪⎪⎩⎩①②③,由①知:288c b ≥-,因为11b -≤≤,故2888c b ≥-≥-④, 因为31c -≤≤-所以88c ≤-⑤,综合④⑤,可知:88c =-, 解得:1c =-,此时288b -=-,解得:0b =,所以()221f x x =-,经验证满足题意,且||||1b c +=,A 正确;对于C 选项,令()2g x ax x c =++,由()111g a c =++≤,()111g a c -=-+≤可得:2002a c a c -≤+≤⎧⎨≤+≤⎩,故0a c +=, 则()2g x ax x a =+-,所以211ax x a -≤+-≤恒成立,即211x ax a x --≤-≤-,易知:1122a -≤≤即可,故C 正确 故选:AC 【点睛】对于含有绝对值不等式的二次不等式问题,要充分考虑函数图象,以及对称轴和端点值的取值范围,结合绝对值三角不等式进行求解. 二、多选题9.(2021·江西·丰城九中高二阶段练习)如图,二次函数()20y ax bx c a =++≠的图像与x 轴交于A B ,两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为()10-,,则下面结论中正确的是( ) A .20a b += B .420a b c -+<C .240b ac ->D .当0y <时,1x -<或4x >【答案】ABC 【解析】 【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题的结论是否成立,即可求出答案.【详解】因为二次函数()20y ax bx c a =++≠的图象的对称轴为1x =,所以12bx a=-=得20a b +=,故A 正确; 当2x =-时,420y a b c =-+<,故B 正确;该函数图象与x 轴有两个交点,则240b ac ->,故C 正确;因为二次函数()20y ax bx c a =++≠的图象的对称轴为1x =,点B 坐标为()10-,,所以点A 的坐标为()3,0,所以当0y <时,1x -<或x 3>,故D 错误. 故选:ABC.10.(2022·全国·模拟预测)已知二次函数()()241230f x mx mx m m =-+-<,若对任意12x x ≠,则( )A .当124x x +=时,()()12f x f x =恒成立B .当124x x +>时,()()12f x f x <恒成立C .0x ∃使得()00f x ≥成立D .对任意1x ,2x ,均有()()831,2i f x m i ≤-=恒成立 【答案】AD 【解析】 【分析】二次函数开口向下,对称轴为2x =,结合二次函数的性质对选项逐一判断即可. 【详解】依题意,二次函数()()241230f x mx mx m m =-+-<的对称轴为422-=-=mx m. 因为0m <,所以其函数图象为开口向下的抛物线,对于A 选项,当124x x +=时,1x ,2x 关于直线2x =对称, 所以()()12f x f x =恒成立,所以A 选项正确;对于B 选项,当124x x +>,若12x x >,则不等式可化为1222x x ->-, 所以()()12f x f x <;若12x x <,则不等式可化为2122x x ->-,所以()()21f x f x <,所以B 选项错误; 对于C 选项,因为0m <,所以()()224412332120m m m m m ∆=---=-+<,所以二次函数()()241230f x mx mx m m =-+-<的图象开口向下,且二次函数与x 轴无交点,所以不存在0x 使得()00f x ≥成立,所以C 选项错误;对于D 选项,()()max 24812383f x f m m m m ==-+-=-,所以对任意1x ,2x ,均有()()831,2i f x m i ≤-=恒成立,所以D 选项正确, 故选:AD.11.(2022·河北·石家庄二中模拟预测)命题“23,208x R kx kx ∀∈+-<”为真命题的一个充分不必要条件是( )A .()30-,B .(]30-,C .()31--,D .()3∞-+,【答案】AC 【解析】 【分析】先求命题“23,208x R kx kx ∀∈+-<”为真命题的等价条件,再结合充分不必要的定义逐项判断即可.【详解】因为23,208x R kx kx ∀∈+-<为真命题,所以0k =或230k k k <⎧⎨+<⎩30k ⇔-<≤, 所以()30-,是命题“23,208x R kx kx ∀∈+-<”为真命题充分不必要条件,A 对, 所以(]30-,是命题“23,208x R kx kx ∀∈+-<”为真命题充要条件,B 错, 所以()31--,是命题“23,208x R kx kx ∀∈+-<”为真命题充分不必要条件,C 对, 所以()3∞-+,是命题“23,208x R kx kx ∀∈+-<”为真命题必要不充分条件,D 错, 故选:AC12.(2021·江苏·高一单元测试)已知函数()1y f x =-的图象关于直线1x =对称,且对于()()y f x x R =∈,当12,(,0)x x ∞∈-时,()()12210f x f x x x -<-恒成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则实数a 的范围可以是下面选项中的( )A .()B .(),1-∞C .(0D .)+∞【答案】AC 【解析】 【分析】根据题意求得函数()f x 为偶函数,且在()0-∞,上为减函数,在()0+∞,上为增函数,把不等式转化为2221ax x <+,得到不等式4224(44)10x a x +-+>恒成立,设20t x =≥,令()224(44)1g t t a t =+-+,结合二次函数的性质,即可求解. 【详解】因为函数()1y f x =-的图象关于1x =对称, 可得函数()f x 关于y 轴对称,即()f x 为偶函数,又当12,(,0)x x ∞∈-时,()()12210f x f x x x -<-恒成立,所以()f x 在()0-∞,上为减函数,则()f x 在()0+∞,上为增函数, 又因为()()2221f ax f x <+,所以2221ax x <+,即22424441a x x x <++恒成立,即4224(44)10x a x +-+>恒成立,设20t x =≥,令()224(44)1g t t a t =+-+,即()0g t >在区间[0,)+∞上恒成立,当2102a t -=≤时,即11a -≤≤时,()g t 在[0,)+∞为单调递增函数,则满足()min (0)10g t g ==>,符合题意;当当2102a t -=>时,即1a <-或1a >时,要使得()0g t >在区间[0,)+∞上恒成立,则满足22(44)160a ∆=--<,解得a <0a ≠,即1a <<-或1a <<综上可得,实数a 的取值范围是(, 结合选项,选项A 、C 符合题意. 故选:AC.三、填空题13.(2012·江苏·高考真题)已知函数的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为__________. 【答案】9. 【解析】 【详解】∵f(x)=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -24a =0,∴f(x)=x 2+ax +14a 2=12x a ⎛⎫+ ⎪⎝⎭2.又∵f(x)<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +24a-c =0的两根.由一元二次方程根与系数的关系得()226{64m a a m m c +=-+=-解得c =9.14.(2022·天津·耀华中学二模)已知不等式28(8)0x x a a -+-<的解集中恰有五个整数,则实数a 的取值范围为___________. 【答案】[)(]1,26,7⋃ 【解析】 【分析】根据一元二次不等式的解法,结合已知分类讨论进行求解即可. 【详解】28(8)0()[(8)]0x x a a x a x a -+-<⇒---<,当4a =时,原不等式化为2(4)0x -<,显然x ∈∅,不符合题意; 当4a >时,不等式的解集为8a x a -<<,其中解集中必有元素4,若五个整数是0,1,2,3,4时,可得18045a a -≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是1,2,3,4,5时,08156a a ≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是2,3,4,5,6时,18267a a ≤-<⎧⎨<≤⎩67a ⇒<≤,若五个整数是3,4,5,6,7时,28378a a ≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是4,5,6,7,8时,38489a a ≤-<⎧⎨<≤⎩,此时解集为空集;当4a <时,不等式的解集为8a x a <<-,其中解集中必有元素4,若五个整数是0,1,2,3,4时,可得10485a a -≤<⎧⎨<-≤⎩,此时解集为空集,若五个整数是1,2,3,4,5时,01586a a ≤<⎧⎨<-≤⎩,此时解集为空集, 若五个整数是2,3,4,5,6时,1212687a a a ≤<⎧⇒≤<⎨<-≤⎩, 若五个整数是3,4,5,6,7时,23788a a ≤<⎧⎨<-≤⎩,此时解集为空集, 五个整数是4,5,6,7,8时,38489a a ≤-<⎧⎨<≤⎩,此时解集为空集, 故答案为:[1,2)(6,7].15.(2015·湖北·高考真题(文))a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()h a . 当=a _________时,()h a 的值最小.【答案】2.【解析】【详解】因为函数2()||f x x ax =-,所以分以下几种情况对其进行讨论:①当0a ≤时,函数22()f x x ax x ax =-=-在区间[0,1]上单调递增,所以max ()()1f x g a a ==-;②当02a <<时,此时22()()2224a a a a f a =-⨯=,(1)1f a =-,而22(2)(1)2044a a a +--=-<,所以max ()()1f x g a a ==-; ③当22a ≤<时,22()f x x ax x ax =-=-+在区间(0,)2a 上递增,在(,1)2a 上递减.当2a x =时,()f x 取得最大值2()24a a f =; ④当2a ≥时,22()f x x ax x ax =-=-+在区间[0,1]上递增,当1x =时,()f x 取得最大值(1)1f a =-,则()21,2{,2241,2a a a h a a a a -<=≤<-≥在(,2)-∞上递减,2,)+∞上递增,即当2a =时,()g a 的值最小.故答案为:2.16.(2022·全国·高三专题练习(文))已知()283f x ax x =++,对于给定的负数a ,有一个最大的正数()M a ,使得()0,x M a ∈⎡⎤⎣⎦时,都有()5f x ≤,则()M a 的最大值为___________.【解析】【分析】二次函数配方得到()f x 的含有参数的最大值,研究二次函数最值与5的大小关系,分类讨论,求出()M a 的最大值.【详解】()22416833f x ax x a x a a ⎛⎫=++=++- ⎪⎝⎭,当1635a ->,即80a -<<时,要使()5f x ≤在()0,x M a ∈⎡⎤⎣⎦上恒成立,要使()M a 取得最大值,则()M a 只能是2835ax x ++=的较小的根,即()M a =当1635a-≤,即8a ≤-时,要使()M a 取得最大值,则()M a 只能是2835ax x ++=-的较大的根,即()M a =当80a -<<时,()12M a ==<,当8a ≤-时,()M a =()M a .四、解答题17.(2022·山西运城·高二阶段练习)已知函数2()2(0)f x ax ax b a =-+>的定义域为R ,且在区间[0,3]上有最大值5,最小值1.(1)求实数a ,b 的值;(2)若函数()()22g x f x mx m =-+-,求()0>g x 的解集.【答案】(1)1,2a b ==(2)答案见解析【解析】【分析】(1)由二次函数的性质可知函数在[0,1]上单调递减,在[1,3]上单调递增,则()()11,35,f f ⎧=⎪⎨=⎪⎩从而可求出a ,b 的值,(2)由(1)得2()(2)2(2)()g x x m x m x x m =-++=--,然后分2m =,2m >和2m <三种情况解不等式(1)∵22()2(1)(0)f x ax ax b a x b a a =-+=-+->,在[0,1]上单调递减,在[1,3]上单调递增,∴()()11,35,f f ⎧=⎪⎨=⎪⎩即21,965,a a b a a b -+=⎧⎨-+=⎩解得1,2.a b =⎧⎨=⎩ (2)由(1)知2()(2)2(2)()g x x m x m x x m =-++=--,①2m =时,()0>g x 的解集为{}2x x ≠;②2m >时,()0>g x ,则x m >或2m <,故2m >时,()0>g x 的解集为{x x m >或2}x <;③2m <时,()0>g x ,则2x >或x m <,故2m <时,()0>g x 的解集为{2x x >或}x m <.综上,当2m =时,解集为{}2x x ≠;当2m >时,解集为{x x m >或2}x <;当2m <时,解集为{2x x >或}x m <. 18.(2015·浙江·高考真题(理))已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是()f x 在区间[1,1]-上的最大值.(1)证明:当2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求a b +的最大值.【答案】(1)详见解析;(2)3.【解析】【详解】(1)分析题意可知()f x 在[1,1]-上单调,从而可知{}(,)max (1),(1)M a b f f =-,分类讨论a 的取值范围即可求解.;(2)分析题意可知,0{,0a b ab a b a b ab +≥+=-<,再由(,)2M a b ≤可得1(1)2a b f ++=≤,1(1)2a b f -+=-≤,即可得证.试题解析:(1)由22()()24a a f x xb =++-,得对称轴为直线2a x =-,由2a ≥,得 12a -≥,故()f x 在[1,1]-上单调,∴{}(,)max (1),(1)M a b f f =-,当2a ≥时,由 (1)(1)24f f a --=≥,得{}max (1),(1)2f f -≥,即(,)2M a b ≥,当2a ≤-时,由(1)(1)24f f a --=-≥,得{}max (1),(1)2f f --≥,即(,)2M a b ≥,综上,当2a ≥时,(,)2M a b ≥;(2)由(,)2M a b ≤得1(1)2a b f ++=≤,1(1)2a b f -+=-≤,故3a b +≤,3a b -≤,由,0{,0a b ab a b a b ab +≥+=-<,得3a b +≤,当2a =,1b =-时,3a b +=,且221x x +-在[1,1]-上的最大值为2,即(2,1)2M -=,∴a b +的最大值为3.19.(2014·辽宁·高考真题(文))设函数()211f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈⋂时,证明:221()[()]4x f x x f x +≤. 【答案】(1)4|03M x x ⎧⎫=≤≤⎨⎬⎩⎭;(2)详见解析. 【解析】【详解】试题分析:(1)由所给的不等式可得当1x ≥时,由()331f x x =-≤,或 当1x <时,由()11f x x =-≤,分别求得它们的解集,再取并集,即得所求.(2)由4g x ≤() ,求得N ,可得3{|0}4M N x x ⋂=≤≤.当x ∈M∩N 时,f (x )=1-x ,不等式的左边化为211()42x --,显然它小于或等于14,要证的不等式得证. (1)33,[1,)(){1,(,1)x x f x x x -∈+∞=-∈-∞ 当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4M N x x ⋂=≤≤. 当x M N ∈⋂时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +=+2111()(1)()424xf x x x x ==-=--≤. 20.(2021·河北·沧县中学高一阶段练习)已知二次函数()()223R f x x kx k =-+∈.(1)若()f x 在区间[)1,+∞上单调递增,求实数k 的取值范围;(2)若()2f x ≥在()0,x ∈+∞上恒成立,求实数k 的取值范围.【答案】(1)1k ≤(2)1k ≤【解析】【分析】(1)利用二次函数的单调性求解;(2)将()2f x ≥在()0,x ∈+∞上恒成立,转化为12k x x≤+在()0,x ∈+∞恒成立求解. (1)解:因为()f x 在()1,x ∈+∞单调递增,所以()212k --≤, 解得1k ≤;(2)因为()2f x ≥在()0,x ∈+∞上恒成立,所以2210x kx -+≥在()0,x ∈+∞恒成立, 即12k x x≤+在()0,x ∈+∞恒成立.令()1g x x x =+,则()12g x x x =+≥=, 当且仅当1x =时等号成立.所以1k ≤.21.(2021·江苏·无锡市市北高级中学高一期中)某运输公司今年初用49万元购进一台大型运输车用于运输.若该公司预计从第1年到第n 年(*)n ∈N 花在该台运输车上的维护费用总计为2(5)n n +万元,该车每年运输收入为25万元.(1)该车运输几年开始盈利?(即总收入减去成本及所有费用之差为正值)(2)若该车运输若干年后,处理方案有两种:①当年平均盈利达到最大值时,以17万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出.哪一种方案较为合算?请说明理由.【答案】(1)3年(2)方案①较为合算【解析】【分析】(1)由22549(5)0n n n --+≥,能求出该车运输3年开始盈利.(2)方案①中,22549(5)4920()6n n n n n n--+=-+≤.从而求出方案①最后的利润为59(万);方案②中,2222549(5)2049(10)51y n n n n n n =--+=-+-=--+,10n =时,利润最大,从而求出方案②的利润为59(万),比较时间长短,进而得到方案①较为合算.(1)由题意可得22549(5)0n n n --+≥,即220490n n -+≤,解得1010n ≤≤3n ∴≥,∴该车运输3年开始盈利.;(2)该车运输若干年后,处理方案有两种:①当年平均盈利达到最大值时,以17万元的价格卖出,22549(5)4920()6n n n n n n--+=-+≤, 当且仅当7n =时,取等号,∴方案①最后的利润为:25749(4935)1759⨯--++=(万);②当盈利总额达到最大值时,以8万元的价格卖出,2222549(5)2049(10)51y n n n n n n =--+=-+-=--+,10n ∴=时,利润最大,∴方案②的利润为51859+=(万),两个方案的利润都是59万,按照时间成本来看,第一个方案更好,因为用时更短, ∴方案①较为合算.22.(2009·江苏·高考真题)设a 为实数,函数2()2()f x x x a x a =+--.(1)若(0)1f ≥,求a 的取值范围;(2)求()f x 的最小值;(3)设函数()(),(,)h x f x x a =∈+∞,直接写出(不需给出演算步骤)不等式()1h x ≥的解集.【答案】(1) (2)22min 2,0(){2,03a a f x a a -≥=<(3) 当26(,)22a ∈时,解集为(,)a +∞;当62(,)22a ∈--时,解集为223232(,][,)33a a a a a --+-⋃+∞; 当[a ∈时,解集为)+∞. 【解析】【详解】(3)。
山东省实验中学2022-2023学年高一上学期第二次阶段性测试(12月)数学试题及答案

山东省实验中学2022~2023学年第二次阶段性测试高一数学试题2022.12说明:本试卷满分120分。
试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间60分钟。
一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各角中,与735°终边相同的角是A .5°B .15°C .25°D .35°2.已知扇形的半径是2,面积是8,则扇形的中心角的弧度数是A .1B .4C .2D .143.函数()2ln 6x f x x =+-的零点所在区间为A .()1,2B .()2,3C .()3,4D .()4,54.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx=+B .2y a bx =+C .e xy a b =+D .ln y a b x=+5.若α是第四象限角,则点P (cos α,tan α)在A .第一象限B .第二象限C .第三象限D .第四象限6.已知2log 0.2a =,0.22b =,0.30.2c =,则A .a b c<<B .a c b<<C .c a b<<D .b c a<<7.已知函数()23log ,031,0x x a x f x x +>⎧=⎨+≤⎩,若()15f f -=⎡⎤⎣⎦,则a =A .-2B .2C .-3D .38.奇函数()f x 的定义域为R ,若(1)f x +为偶函数,且(1)2f =,则(2022)(2023)f f +的值为A .2B .1C .-1D .-29.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是A .1()|1|f x x =-B .1()1f x x =-C .21()1f x x =-D .21()1f x x =+10.已知函数()21,23,21x x f x x x ⎧-≤⎪=⎨>⎪-⎩,若方程()()()210f x a f x a -++=⎡⎤⎣⎦有五个不同的实数根,则实数a 的取值范围为A .()0,1B .()0,2C .()0,3D .()1,3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)11.下列函数中在区间()0,1上单调递减的函数有A .12y x =B .()12log 1y x =+C .1y x =-D .12x y +=12.已知33log log a b >,则下列不等式一定成立的是A .110a b<<B .()3log 0a b ->C .31a b->D .1132a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭13.已知函数()21xf x =-,实数,a b 满足()()()f a f b a b =<,则下列结论正确的有A .222a b +>B .,,a b ∃使01a b <+<C .222a b +=D .0a b +<14.已知函数()f x 是定义在[)(]4,00,4-⋃上的奇函数,当(]0,4x ∈时,()f x 的图象如图所示,那么满足不等式()310xf x -+≥的的可能取值是A .4- B.1-C .12D.2三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)15.函数()f x =的定义域为________.16.某火电厂对其使用的燃煤进行精细化碳排放污染物控制,产生的废气经过严格过滤后排放,己知过滤过程中废气的剩余污染物数量P (单位:mg/L )与过滤时间t (单位:小时)之间的关系式为0e kt P P -=其中0P 为废气中原污染物总量,k 为常数.若过滤开始后经过3个小时废气中的污染物被过滤掉了原污染物总量的50%,那么要使废气中剩余污染物含量不超过5%,过滤开始后需要经过n 小时,则正整数n 的最小值为___________.(参考数据:ln 20.693≈,ln 5 1.609≈)17.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =.18.已知函数1,0()22(1),0xx f x f x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,则(3)f =________,若方程3()2f x x a =+有且只有一个实根,则实数a 的取值范围是________.四、解答题(本大题共3小题,共30分.解答时应写出必要的文字、证明过程或演算步骤)19.(本小题8分)已知角θ的终边上有一点P (x,3)(0)x <,且cos θ=1010x ,求sin θ+tan θ的值.20.(本小题10分)已知函数()3log y ax b =+的图像过点()2,1A 和()5,2B .(1)求此函数的表达式并注明定义域;(2)已知函数31log 2y t x ⎛⎫=+ ⎪-⎝⎭,若两个函数图像在区间[)1,2上有公共点,求t 的最小值.21.(本小题12分)已知函数()25255x xf x a =-⋅+.(1)若1a =,[]0,1x ∈,求()y f x =的值域.(2)当[]1,1x ∈-时,求()y f x =的最小值()h a .(3)对于(2)中的函数()y h a =,是否存在实数m ,n ,同时满足:①5n m >>;②当()y h a =的定义域为[m ,n ]时,其值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;若不存在,请说明理由.山东省实验中学2022~2023学年第二次阶段性测试高一数学试题 2022.12参考答案与评分标准一.单项选择题 BBCDD BBDBA二、多项选择题11.BC ;12.ACD ;13.CD ;14.AC 。
二次函数测试题及答案(完整资料).doc

【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】二次函数一、 选择题:1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x2. 二次函数c bx ax y ++=2的图象如右图,则点),(ac b M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c 5. 已知反比例函数xk y =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )x6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )B D7.抛物线322+-=xxy的对称轴是直线()A. 2-=xB. 2=xC. 1-=xD. 1=x8.二次函数2)1(2+-=xy的最小值是()A. 2-B. 2C.1- D. 19.二次函数cbxaxy++=2的图象如图所示,若cbaM++=24cbaN+-=,baP-=4,则()A. 0>M,0>N,0>PB. 0<M,0>N,0>PC. 0>M,0<N,0>PD. 0<M,0>N,0<P二、填空题:10.将二次函数322+-=xxy配方成khxy+-=2)(的形式,则y=______________________.11.已知抛物线cbxaxy++=2与x轴有两个交点,那么一元二次方程02=++cbxax的根的情况是______________________.12.已知抛物线cxaxy++=2与x轴交点的横坐标为1-,则ca+ =_________.13.请你写出函数2)1(+=xy与12+=xy具有的一个共同性质:_______________.14.有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线4=x;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15. 已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.16. 如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.三、解答题:1. 已知函数12-+=bx x y 的图象经过点(3,2). (1)求这个函数的解析式;(2)当0>x 时,求使y ≥2的x 的取值范围.2. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .【最新整理,下载后即可编辑】(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系). (1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?提高题 1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m. (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2.某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由; (4)请把(2)中所求的二次函数配方成ab ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?参考答案一、选择题:1. 2)1(2+-=x y2. 有两个不相等的实数根3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 358512+-=x x y 或358512-+-=x x y 或178712+-=x x y 或178712-+-=x x y 6. 122++-=x x y 等(只须0<a ,0>c ) 7. )0,32(-8.3=x ,51<<x ,1,4三、解答题:1. 解:(1)∵函数12-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解【最新整理,下载后即可编辑】得2-=b .∴函数解析式为122--=x x y .(2)当3=x 时,2=y .根据图象知当x ≥3时,y ≥2.∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4. 在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上.①当PB =PA 时,17=PB . ∴417-=-=OB PB OP .此时点P 的坐标为)417,0(-.②当PA =AB 时,OP =OB =4 此时点P 的坐标为【最新整理,下载后即可编辑】(0,4).3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a∴t t s 2212-=. (2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去)答:截止到10月末公司累积利润可达到30万元. (3)把7=t 代入,得.5.10727212=⨯-⨯=s把8=t 代入,得.16828212=⨯-⨯=s5.55.1016=-. 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为1092+=ax y .【最新整理,下载后即可编辑】因为点)0,25(-A 或)0,25(B 在抛物线上,所以109)25(·02+-=a ,得12518-=a .因此所求函数解析式为109125182+-=x y (25-≤x ≤25).(2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245±=x .所以点D 的坐标为)209,245(-,点E 的坐标为)209,245(. 所以225)245(245=--=DE .因此卢浦大桥拱内实际桥长为385227501.01100225≈=⨯⨯(米).5. 解:(1)∵AB =3,21x x <,∴312=-x x . 由根与系数的关系有121=+x x . ∴11-=x ,22=x .∴OA =1,OB =2,2·21-==amx x .∵1tan tan =∠=∠ABC BAC ,∴1==OBOC OAOC .∴OC =2. ∴2-=m ,1=a .【最新整理,下载后即可编辑】∴此二次函数的解析式为22--=x x y .(2)在第一象限,抛物线上存在一点P ,使S △PAC =6. 解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结PA 、PC 、MC 、NA .∵MN ∥AC ,∴S △MAC =S △NAC = S △PAC =6.由(1)有OA =1,OC =2.∴6121221=⨯⨯=⨯⨯CN AM . ∴AM =6,CN =12.∴M (5,0),N (0,10). ∴直线MN 的解析式为102+-=x y .由⎩⎨⎧--=+-=,2,1022x x y x y 得⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x (舍去) ∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 解法二:设AP 与y 轴交于点),0(m D (m >0)∴直线AP 的解析式为m mx y +=.⎩⎨⎧+=--=.,22m mx y x x y ∴02)1(2=--+-m x m x . ∴1+=+m x x P A ,∴2+=m x P .又S △PAC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(21P x AO CD +.∴6)21)(2(21=+++m m ,0652=-+m m∴6=m (舍去)或1=m .∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 提高题1. 解:(1)∵抛物线c bx x y ++=2与x 轴只有一个交点,∴方程02=++c bx x 有两个相等的实数根,即042=-c b . ① 又点A 的坐标为(2,0),∴024=++c b . ② 由①②得4-=b ,4=a .(2)由(1)得抛物线的解析式为442+-=x x y . 当0=x 时,4=y . ∴点B 的坐标为(0,4).在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB . ∴△OAB 的周长为5265241+=++.2. 解:(1)76)34()10710710(1022++-=--⨯++-⨯=x x x x x S .当3)1(26=-⨯-=x 时,16)1(467)1(42=-⨯-⨯-⨯=最大S . ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是13316=-万元.经分析,有两种投资方式符合要求,一种是取A 、B 、E各一股,投入资金为13625=++(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元); 另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B . ∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时),货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元.(2)54065101)5402()1027040(2++-=----=x x x x x y .∴540651012++-=x x y .(说明:此处不要写出x 的取值范围)(3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套. 因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套. (4)5.11102)325(1015406510122+--=++-=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.二次函数测试题(B)一、选择题(每小题4分,共24分)1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点.(B)只有一个交点.(C)有且只有两个交点.(D)有且只有三个交点.2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( )(A)2.(B)1.(C)3.(D)4.3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )(A)6.(B)4.(C)3.(D)1.4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( )(A)没有交点.(B)有两个交点,都在x轴的正半轴.(C)有两个交点,都在x轴的负半轴.(D)一个在x轴的正半轴,另一个在x轴的负半轴.5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( )(A)x=a.(B)x=2.(C)x=4.(D)x=3.b6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )二、填空题(每小题4分,共24分)7.二次函数y =2x 2-4x +5的最小值是______.8.某二次函数的图象与x 轴交于点(-1,0),(4,0),且它的形状与y =-x 2形状相同.则这个二次函数的解析式为______.9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是______.10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下: 为获得最大利润,销售商应将该品牌电饭锅定价为 元.11.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______.12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.三、解答题(本大题共52分) 13.(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.14.(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8分)如图4,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q 两点,且点P到x轴的距离为2.(1)求抛物线和直线l的解析式;(2)求点Q的坐标.16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元),g 也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;(2)求纯收益g 关于x 的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱A 3B 3=50m ,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m ,B 1B 5∥A 1A 5,将抛物线放在图4-②所示的直角坐标系中. (1)直接写出图4-②中点B 1、B 3、B 5的坐标; (2)求图4-②中抛物线的函数表达式; (3)求图4-①中支柱A 2B 2、A 4B 4的长度.图4-①B A 5A 4A 31A 2四、附加题(本题为探究题20分,不计入总分)19、 (湘西自治州附加题,有改动)如图5,已知A (2,2),B (3,0).动点P (m ,0)在线段OB 上移动,过点P 作直线l 与x 轴垂直.(1)设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;(2)试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明理由.参考答案一、1.B 2.D 3.C 4.D 5.D 6.B二、7.3 8.y =-x 2+3x +4 9.-2<x <2 10.130 11.a =0,(13-,0);a =1,(-1,0);a =9,(13,0)12.2154y x =-三、13.抛物线的顶点为(1,-3),点B 的坐标为(0,-2).直线AB 的解析式为y =-x -214.依题意可知抛物线经过点(1,0).于是a +2a +a 2+2=0,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为(-3,0)15.(1)依题意可知b =0,c =1,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1,x =1.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 16.设降价x 元时,获得的利润为y 元.则依意可得y =(45-x )(100+4x )=-4x 2+80x +4500,即y =-4(x -10)2+4900.故当x =10时,y 最大=4900(元)17.(1)将(1,2)和(2,6)代入y =ax 2+bx ,求得a =b =1.故y =x 2+x ;(2)g =33x -150-y ,即g =-x 2+32x -150;(3)因y =-(x -16)2+106,所以设施开放后第16个月,纯收益最大.令g =0,得-x 2+32x -150=0.解得x =16x ≈16-10.3=5.7(舍去26.3).当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资18.(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,【最新整理,下载后即可编辑】 ∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==. 四、19.(1)当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3-m )(-2m +6)=-m 2+6m -6.(2)若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 阶段性测试题二(函 数) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(2019·烟台市检测)已知函数f(x)=lg(1-x)的定义域为M,函
数y=1x的定义域为N,则M∩N =( ) A.{x|x<1且x≠0} B.{x|x≤1且x≠0} C.{x|x>1} D.{x|x≤1} [答案] A [解析] M={x|x<1},N={x|x≠0},M∩N={x|x<1且x≠0},故选A. 2.(文)(2019·东北三省第一次大联考)已知函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x-1)是奇函数,若f(0.5)=3,则f(2019)+f(2019)+f(-2.5)等于( ) A.-9 B.9 C.-3 D.3 [答案] C [解析] ∵f(x)为偶函数,f(x-1)为奇函数,∴f(-x)=f(x),f(-x-1)=-f(x-1),∴f(x+1)=-f(x-1), ∴f(2019)=-f(2019),∴f(2019)+f(2019)=0; 第 2 页
又f(-2.5)=f(-1.5-1)=-f(1.5-1)=-f(0.5)=-3,故选C. (理)(2019·泰安市期末)下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( ) A.y=|log3x| B.y=x3 C.y=e|x| D.y=cos|x| [答案] C [解析] y=|log3x|是非奇非偶函数,y=x3为奇函数;y=cos|x|即
y=cosx在(0,1)上单调递减,故选C.
3.(文)已知a=3 34 ,b=0.6- 34 ,c=(13) 14 ,则a、b、c的大小关系是( ) A.a>b>c B.b>c>a C.a>c>b D.b>a>c [答案] A
[解析] b=0.6- 34 =(35)- 34 =(53) 34 , ∵y=x 34 在[0,+∞)上是增函数,3>53>1,
∴334>(53) 34 >1,
又c=(13) 14 <1,∴a>b>c,故选A.
(理)(2019·东北三省联考)设a=(34)0.5,b=(43)0.4,c=log34 (log34),则( ) 第 3 页
A.cC.c[答案] C [解析] 01,∵log34>1, ∴c=log3
4 (log34)<0,∴c
4.(2019·四川达州市一诊)若函数f(x)=x|x-4|-5-a有三个零点,则实数a的取值范围是( ) A.-5-1 C.a<-5 D.-5≤a≤-1 [答案] A [解析] 由条件知直线y=a与函数h(x)=x|x-4|-5的图象有三个不同交点,
∵h(x)=
x-22
-9 x≥4,
-x-22-1 x<4.
∴h(4)∵h(2)=-1,h(4)=-5,∴-55.(文)(2019·烟台市检测)已知f(x)=ax-2,g(x)=loga|x|(a>0,a≠1),若f(4)·g(-4)<0,则y=f(x),y=g(x)在同一坐标系内的大致图象是( ) [答案] B
[解析] 由f(4)·g(-4)<0知a2·loga4<0,∴loga4<0,∴0为减函数,因此可排除A、C,而g(x)在x>0时也为减函数,故选B. 第 4 页
(理)(2019·日照市阶段训练)函数y=lg|x|x的图象大致是( ) [答案] D [解析] 当x=1时,y=0,排除A、C;又已知函数是奇函数,其图象关于原点对称,排除B,故选D. 6.(文)(2019·南昌市上学期调研)已知奇函数f(x)在[-1,0]上为单调递减函数,又α,β为锐角三角形两内角,下列结论正确的是( ) A.f(cosα)>f(cosβ) B.f(sinα)>f(sinβ) C.f(sinα)>f(cosβ) D.f(sinα)[答案] D [解析] ∵奇函数f(x)在[-1,0]上单调递减,∴f(x)在[0,1]上单调递
减,∵α、β为锐角三角形的两内角,∴α+β>π2,∴π2>α>π2-β>0,1>sinα>cosβ>0, ∴f(sinα)(理)(2019·北大附中河南分校月考)已知定义域为R的函数f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,如果x1+x2<4且(x1
-2)(x2-2)<0,则f(x1)+f(x2)的值( )
A.恒小于0 B.恒大于0 C.可能为0 D.可正可负 [答案] A [解析] 因为函数满足f(-x)=-f(x+4),即f(4-x)=-f(x),所以函数f(x)的图象关于点(2,0)对称,由(x1-2)(x2-2)<0,知x1-2与x2-2异号.不妨设x1>2,x2<2,则由x1+x2<4得22
,而f(4第 5 页
-x2)=-f(x2),当x>2时,函数单调递增,根据函数的单调性可知,
f(x1)
7.(2019·济南外国语学校质检)已知函数f(x)= 0x>0,πx=0,π2+1x<0.则f(f(f(-1)))的值等于( ) A.π2-1 B.π2+1 C.π D.0 [答案] C [解析] f(f(f(-1)))=f(f(π2+1))=f(0)=π,选C.
8.(文)(2019·唐山一中月考)已知函数f(x)=x-4+9x+1,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=(1a)|x+b|的图象为( ) [答案] B [解析] 解法1:f ′(x)=1-9x+12,由f ′(x)>0得x>2,∴x∈
(0,2)时,f ′(x)<0,x∈(2,4)时,f ′(x)>0, ∴当x=2时,f(x)取到最小值f(2)=1,
∴a=2,b=1,g(x)=(12)|x+1|,故选B. 解法2:f(x)=x-4+9x+1=(x+1)+9x+1-5
≥2x+1·9x+1-5=1,等号成立时,x=2. 第 6 页
∴a=2,b=1. ∴g(x)= 12x+1,x≥-1,2x+1,x<-1.故选B. (理)(2019·北大附中河南分校月考)由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为( )
A.329 B.2-ln3 C.4+ln3 D.4-ln3 [答案] D
[解析] 由xy=1得y=1x.令1x=3,解得xB=13,由 xy=1,y=x.解
得xC=1,由 y=3,y=x.得xD=3.所以根据积分的应用知所求面积为
13
1
(3-1x)dx+13(3-x)dx=(3x-lnx) 113+(3x-12x2)|31
=4+ln13=4-
ln3.选D. 9.(文)(2019·河北冀州中学期中)下列函数中,与函数y=x- 13 定义域相同的函数为( )
A.y=1sinx B.y=lnxx C.y=sinxx D.y=xex [答案] C 第 7 页
[解析] y=x- 13 的定义域为{x|x≠0},A中x≠kπ(k∈Z);B中x>0;D中x∈R,只有C中x≠0. (理)(2019·云南省名校统考)函数f(x)=loga(6-ax)在[0,2]上为减函数,则a的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) [答案] B [解析] ∵a>0,∴u=6-ax为减函数,又f(x)在[0,2]上为减函数,∴a>1,且6-ax>0在[0,2]上恒成立, ∴110.(文)(2019·山师大附中三模)设函数f(x)=x3-4x+a(0三个零点x1、x2、x3,且x1A.x1>-1 B.x2<0 C.02 [答案] C
[解析] f ′(x)=3x2-4,令f ′(x)=0得,x=±233,当x<-233
时,f ′(x)>0,当-233233时,f ′(x)>0,
∴f(x)在(-∞,-233)和(233,+∞)上单调增,在(-233,233)上单
调减,∴极大值f(-233)=1639+a>0,极小值f(233)=-1639+a<0,∵f(x)有三个零点x1、x2、x3,且x1