圆:切线与弧计算习题2

合集下载

初三数学切线长定理练习题

初三数学切线长定理练习题

初三数学切线长定理练习题在初中数学中,学习切线是一个重要的内容,而切线的长度计算更是基础中的基础。

接下来,本文将为同学们提供一些切线长定理的练习题,帮助大家巩固和应用相关知识。

题目一:求切线长已知一个圆的半径为5cm,切线与半径的夹角为60°,求切线的长解题思路:根据数学知识,切线长定理表达式为:切线长 = 2 * 半径 * sin(夹角/2)。

其中sin函数需要转化为角度制进行计算。

解题步骤:1. 将给定的夹角60°转化为弧度制。

60° = π/3。

2. 代入切线长定理进行计算。

切线长= 2 * 5cm * sin(π/6)≈ 2 * 5cm * 0.5= 5cm。

因此,切线的长为5cm。

题目二:求切线长已知一个半径为8cm的圆,切线与半径的夹角为45°,求切线的长度。

解题思路:同样利用切线长定理,求解切线的长度。

解题步骤:1. 将给定的夹角45°转化为弧度制。

45° = π/4。

2. 代入切线长定理进行计算。

切线长= 2 * 8cm * sin(π/8)≈ 2 * 8cm * 0.383≈ 6.128cm。

因此,切线的长约为6.128cm。

题目三:已知切线长在一个半径为10cm的圆上,有一条长为12cm的切线,求切点与圆心连线和切线的夹角。

解题思路:由切线长定理的逆运算可得,夹角 = 2 * arcsin(切线长/2 * 半径)。

其中,arcsin函数结果需要转化为角度制。

解题步骤:1. 代入已知数据进行计算。

夹角 = 2 * arcsin(12cm/(2 * 10cm))≈ 2 * arcsin(0.6)≈ 73.74°。

因此,切点与圆心连线和切线的夹角约为73.74°。

通过以上练习题的解答,我们可以巩固切线长定理的应用,提高解题能力。

在实际问题中,我们常常需要用到切线长定理,因此熟练掌握此定理对于数学学习和实际运用都非常重要。

中考压轴题圆的切线证明与计算(中考真题)

中考压轴题圆的切线证明与计算(中考真题)

中考压轴题圆的切线证明与计算(中考真题)1.(24年湖北中考)Rt ABC 中,90ACB ︒∠=,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .(1)求证:AB 是O 的切线。

(2)连接OB 交O 于点F ,若1AD AE ==,求弧CF 的长.2.(24年成都中考)如图,在Rt ABC ∆中,90C ︒∠=,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于,E F 两点,连接,,BE BF DF .(1)BC DF BF CE ⋅=⋅(2)若,A CBF ∠=∠tan BFC AF ∠==,求CF 的长和O 的直径.3.(24年浙江中考)如图,在圆内接四边形ABCD中,AD<AC,ADC BAD∠<∠,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使AFE ADC∠=∠.(1)若60O∠的度数.∠=,CD为直径,求ABDAFE(2)求证:①EF∥BC ②EF=BD.4.(24年辽宁中考)如图,O是ABC的外接圆,AB是O的直径,点D在BC上,AC BD=,E ∠=∠.在BA的延长线上,CEA CAD(1)如图1,求证:CE是O的切线OA=,求BD的长.(2)如图2,若2CEA DAB∠=∠,85.(24年安徽中考)如图,O 是ABC ∆的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点,.F FA FE =(1)求证:;CD AB ⊥(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.6.(24年新疆中考)如图,在O 中,AB 是O 的直径,弦CD 交AB 于点E,AD BD =.(1)求证:△ACD ∽△ECB.(2)若AC=3,BC=1,求CE 的长.7.(24年江西中考)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线.(2)当3BC =时,求AC 的长.8.(24年呼伦贝尔中考)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=,求扇形OBD 的面积.9.(24年扬州中考)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD ,BD ,CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________【一般化探究】(2)如图2,若60ACB ∠=︒,点C ,D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由【拓展性延伸】(3)若ACB α∠=,直接写出AD ,BD ,CD 满足的数量关系.(用含α的式子表示)10.(24年赤峰中考)如图,ABC中,90ACB∠=︒,AC BC=,O经过B,C两点,与斜边AB交于点E,连接CO并延长交AB于点M,交O于点D,过点E作EF CD∥,交AC于点F.(1)求证:EF是O的切线;(2)若BM=,1tan2BCD∠=,求OM的长.11.(24年绥化中考)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的O 与AD相切于点E,与AC相交于点F.(1)求证:AB与O相切.(2)若正方形ABCD1,求O的半径.(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN OC⊥交CE于点N.当:1:4CM FM=时,求CN的长.12.(24年河北中考)已知O的半径为3,弦MN=ABC中.∠=︒==在平面上,先将ABC和O按图1位置摆放(点B与点N重90,3,ABC AB BC合,点A在O上,点C在O内),随后移动ABC,使点B在弦MN上移动,点A始终在O上=.随之移动,设BN x(1)当点B与点N重合时,求劣弧AN的长.(2)当OA MN∥时,如图2,求点B到OA的距离,并求此时x的值.(3)设点O到BC的距离为d.①当点A在劣弧MN上,且过点A的切线与AC垂直时,求d的值.①直接写出d的最小值.13.(24年滨州中考)【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: 如图,在锐角ABC 中,探究sin a A ,sin b B ,sin c C之间的关系.(提示:分别作AB 和BC 边上的高.)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C ===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A,B,D 三点的圆的半径.14.(24年苏州中考)如图,ABC 中,AB =为AB 中点,BAC BCD ∠=∠cos ADC ∠=. O 是ACD 的外接圆.(1)求BC 的长(2)求O 的半径.15.(24年乐山中考)如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D,点E 为CB 上一点,且AC CE =.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.16.(24年武汉中考)如图,ABC ∆为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.17.(24年甘肃武威中考)如图,AB 是O 的直径,BC BD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.18.(24年深圳中考)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥(2)若AB =5BE =,求O 的半径.19.(24年盐城中考)如图,点C 在以AB 为直径的O 上,过点C 作O 的切线l,过点A 作AD l ⊥,垂足为D,连接AC BC 、.(1)求证:ABC ACD △△∽;(2)若5AC =,4CD =,求O 的半径.20.(24年广西中考)如图,已知O 是ABC ∆的外接圆,AB AC =.点D,E 分别是BC ,AC 的中点,连接DE 并延长至点F,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形(2)求证:AF 与O 相切(3)若3tan 4BAC ∠=,12BC =,求O 的半径. 21.(24年四川广安中考)如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.22.(24年四川南充中考)如图,在O 中,AB 是直径,AE 是弦,点F 是AE 上一点,AF BE =,,AE BF 交于点C,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==求O 的半径长.23.(24年四川泸州中考)如图,ABC ∆是O 的内接三角形,AB 是O 的直径,过点B 作O 的切线与AC 的延长线交于点D,点E 在O 上,AC CE =,CE 交AB 于点F .(1)求证:CAE D ∠=∠;(2)过点C 作CG AB ⊥于点G,若3OA =,BD =求FG 的长.24.(24年四川德阳中考)已知O 的半径为5,B C 、是O 上两定点,点A 是O 上一动点,且60,BAC BAC ∠=︒∠的平分线交O 于点D .(1)证明:点D 为BC 上一定点;(2)过点D 作BC 的平行线交AB 的延长线于点F .①判断DF 与O 的位置关系,并说明理由;①若ABC 为锐角三角形,求DF 的取值范围.25.(24年四川宜宾中考)如图,ABC 内接于O ,10AB AC ==,过点A 作AE BC ∥,交O 的直径BD 的延长线于点E,连接CD .(1)求证:AE 是O 的切线;(2)若1tan 2ABE ∠=,求CD 和DE 的长.26.(24年内蒙古通辽中考)如图,ABC 中,90ACB ∠=︒,点O 为AC 边上一点,以点O 为圆心,OC 为半径作圆与AB 相切于点D ,连接CD .(1)求证:2ABC ACD ∠=∠;(2)若8AC =,6BC =,求O 的半径.27.(24年四川达州中考)如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.28.(24年四川遂宁中考)如图,AB 是O 的直径,AC 是一条弦,点D 是AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM .①求证:AM 是O 的切线;①若6DG =,5DF =,求O 的半径.29.(24年包头中考)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =求O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)30.(24年四川自贡中考)在Rt ABC △中,90C ∠=︒,O 是ABC 的内切圆,切点分别为D,E,F .(1)图1中三组相等的线段分别是CE CF =,AF =________,BD =________;若3AC =,4BC =,则O 半径长为________;(2)如图2,延长AC 到点M,使AM AB =,过点M 作MN AB ⊥于点N .求证:MN 是O 的切线.31.(24年山东枣庄中考)如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===. 以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线(2)求图中阴影部分面积.(结果保留π)32.(24年青海中考) 如图,直线AB经过点C,且OA OB=.=,CA CB(1)求证:直线AB是O的切线;(2)若圆的半径为4,30∠=︒,求阴影部分的面积.B中考压轴题圆的切线证明与计算答案1.(24年湖北中考)【答案】(1)略 (2)弧CF 的长为3π2.(24年成都中考)【答案】(1)略(2)CF =;O 的直径为3.(24年浙江中考)【答案】(1)30o (2)证明略4.(24年辽宁中考)【答案】(1)见详解 (2)2π5.(24年安徽中考)【答案】(1)略 (2).6.(24年新疆中考)【答案】(1) 略 (2)CE =.7.(24年江西中考)【答案】(1)见解析 (2)2π8.(24年呼伦贝尔中考)【答案】(1)略 (2)43π 9.(24年扬州中考)【答案】(1)AD BD CD -=.(2)AD BD CD -=(3)当D 在BC 上时,2sin 2CD AD BD α⋅=-.当D 在AB 上时,2sin 2CD AD BD α⋅=+10.(24年赤峰中考)【答案】(1)略 (2)OM =11.(24年绥化中考)【答案】(1)证明略 (2)12.(24年河北中考)【答案】(1)π (2)点B 到OA 的距离为2;3 (3)①3d =2313.(24年滨州中考)【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:6R =.14.(24年苏州中考)【答案】(1)4BC = (2)O 的半径为715.(24年乐山中考)【答案】(1)略 (2)3π-16.(24年武汉中考)【答案】(1)略 (2)4517.(24年甘肃武威中考)【答案】(1)略 (2)tan 3AEB ∠=18.(24年深圳中考)【答案】(1)略 (2)19.(24年盐城中考)【答案】(1)略 (2)25620.(24年广西中考)【答案】(1)略 (2)略 (3)1021.(24年四川广安中考)【答案】(1)略 (2)1422.(24年四川南充中考)【答案】(1)略 (2)23.(24年四川泸州中考)【答案】(1)证明略 (2)45 24.(24年四川德阳中考)【答案】(1)证明略(2)①DF 与O 相切,理由见解析;①DF 的取值范围为2DF <<25.(24年四川宜宾中考)【答案】(1)略 (2)CD =DE =. 26.(24年内蒙古通辽中考)【答案】(1)证明略 (2)327.(24年四川达州中考)【答案】(1)证明略 28.(24年四川遂宁中考)【答案】(1)证明略 (2)①证明略,①O 的半径为203. 29.(24年包头中考)【答案】(1)3 (2)略30.(24年四川自贡中考)【答案】(1)AD ;BE ;1 (2)略31.(24年山东枣庄中考)【答案】(1)略 3π32.(24年青海中考) 【答案】(1)详见解析 (2) 83S π=阴影。

初三数学圆相关复习重点及试题(二)

初三数学圆相关复习重点及试题(二)

初三数学圆相关知识点及试题七.切线长定理考点速览: 考点1切线长概念:经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 考点2 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3 两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝, 求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分别切ABC ∆的三边AB 、BC 、CA 于点D 、E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当90C ∠=︒,求内切圆半径r .例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?例4 如图甲,直线343+-=x y 与x 轴相交于点A ,与y 轴相交于点B ,点C ()n m ,是第二象限内任意一点,以点C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F.(1)当四边形OBCE 是矩形时,求点C 的坐标;(2)如图乙,若⊙C 与y 轴相切于点D ,求⊙C 的半径r ; (3)求m 与n 之间的函数关系式;(4)在⊙C 的移动过程中,能否使OEF ∆是等边三角形(只回答“能”或“不能”)?· FDOAB· EFDCOAB考点速练1:1.如图,⊙O 是ABC ∆的内切圆,D 、E 、F 为切点,::4:3:2A B C ∠∠∠=,则DEF ∠= . FEC ∠= .2.直角三角形的两条直角边为5㎝、12㎝,则此直角三角形的外接圆半径为 ㎝,内切圆半径为 ㎝.3.如图,直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD ,若OB=6㎝,OC=8㎝,则BOC ∠= ,⊙O 的半径= ㎝,BE+CG= ㎝.4.如图,PA 、PB 是⊙O 的切线,AB 交OP 于点M ,若2,OM cm AB PB ==,则⊙O 的半径是 ㎝.·A O CDBEF· AO C D B E FG· AOPBM考点速练(2)1.如图,在Rt ABC ∆中,90,3,4C AC BC ∠=︒==,以BC 边上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切于C ,又⊙O 与BC 的另一个交点D ,则线段BD 的长 . 2.如图,ABC ∆内接于⊙O ,AB 为⊙O 直径,过C 点的切线交直径AB 的延长线于P ,25BAC ∠=︒,则P ∠= .4、(广西)PA 、PB 是⊙O 切线,A 、B 切点,∠APB =780,点C 是⊙O 上异于A 、B 任一点,那么∠ACB =_____。

2020年中考数学提优专题:《圆:切割线定理》(含答案)

2020年中考数学提优专题:《圆:切割线定理》(含答案)

《圆:切割线定理》知识梳理:(1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA•PB(切割线定理)(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(切割线定理推论)(割线定理)由上可知:PT2=PA•PB=PC•PD.一.选择题1.如图,P是⊙O的直径BC延长线上一点,PA切⊙O 于点A,若PC=2,BC=6,则切线PA的长为()A.无限长B.C.4 D.2.如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于()A.6 B.C.7 D.203.设H为锐角△ABC的三条高AD、BE、CF的交点,若BC=a,AC=b,AB=c,则AH•AD+BH•BE+CH•CF 等于()A.(ab+bc+ca)B.(a2+b2+c2)C.(ab+bc+ca) D.(a2+b2+c2)4.如图,MN切⊙O于A点,AC为弦,BC为直径,那么下列命题中假命题是()A.∠MAB和∠ABC互余B.∠CAN=∠ABC C.OA=BC D.MA2=MB•BC5.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.56.如图,AB是⊙O直径,AC是⊙O的弦,过弧BC 的中点D作AC的垂线交AC的延长于E,若DE=2,EC=1,则⊙O的直径为()A. B.C.5 D.47.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.58.如图,已知⊙O的弦A B、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=cm,则PE的长为()A.4cm B.3cm C.5cm D.cm9.如图,⊙O1与⊙O2相交于A、B两点,PQ切⊙O1于点P,交⊙O2于点Q、M,交AB的延长线于点N.若MN=1,MQ=3,则NP等于()A.1 B.C.2 D.310.同心圆O中,大圆的弦EF切小圆于K,EP切小圆于P,FQ切小圆于Q,G为小圆上一点,GE、GF 分别交小圆于M、N两点,下列四个结论:①EM=MG;②FQ2=FN•NG;③EP=FQ;④FN•FG=EM•EG.正确的结论为()A.①③B.②③C.③④D.②④二.填空题11.如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB 的周长是.12.已知:如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC=4,PB=8,则PA =,sin∠P=,CD=.13.如图,PA、PB与⊙O分别相切于点A、点B,AC 是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.14.如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,若PA=6,PB=4,弧AB的度数为60°,则BC =,∠PCA=度,∠PAB=度.15.如图,已知ABCD是一个半径为R的圆内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于点P,且BP=8,∠APD=60°,则R=.16.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D 点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).17.由⊙O外一点F作⊙O的两条切线,切点分别为B、D,AB是⊙O的直径,连接AD、BD,线段OF交⊙O 于E,交BD于C,连接DE、BE.有下列序号为①~④的四个结论:①BE=DE;②∠EBD=∠EDB;③DE∥AB;④BD2=2AD•FC其中正确的结论有.(把你认为正确结论的序号全部填上)三.解答题18.已知:如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)若AD=6,AE=6,求DE的长.19.如图,圆O是以AB为直径的△ABC的外接圆,D 是劣弧的中点,连AD并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF.参考答案一.选择题1.解:∵PC=2,BC=6,∴PB=8,∵PA2=PC•PB=16,∴PA=4.故选:C.2.解:∵TD•CD=AD•BD,CD=2,AD=3,BD=4,∴TD=6,∵PT2=PD2﹣TD2,∴PT2=PB•PA=(PD﹣BD)(PD+AD),∴PD=24,∴PB=PD﹣BD=24﹣4=20.故选:D.3.解:AH•AD=AC•AE=AC•AB•cos∠BAE=(b2+c2﹣a2),同理BH•BE=(a2+c2﹣b2),CH•CF=(a2+b2﹣c2),故AH•AD+BH•BE+CH•CF=(a2+b2+c2).故选:B.4.解:∵BC是⊙O的直径,∴∠BAC=90°,∴∠MAB+∠CA N=90°;∵MN切⊙O于A,∴MA2=MB•MC,(故D错误)∠CAN=∠CBA,(故B正确)∴∠MAB+∠CBA=90°;(故A正确)∵OA是⊙O的半径,BC是⊙O的直径,∴BC=2OA;(故C正确)故选:D.5.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设A D=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.6.解:连接OD,∵点D是弧BC的中点,∴OD⊥BC,∠OFC=90°,AB是直径,∴∠ACB=90°,DE⊥AE,∴∠E=90°,∴四边形CFDE是矩形,∴∠ODE=90°,∴ED是圆的切线.作OG⊥AC,则OG=CF=ED=2.∵DE2=EC•AE,∴AE=4,AC=3,AG=,∴AO=,∴AB=5.故选:C.7.解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.8.解:∵PA•PB=PC•PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED•EC,∴x(x+8)=20,∴x=2或x=﹣10(负值舍去),∴PE=2+2=4.故选:A.9.解:∵PN2=NB•NA,NB•NA=NM•NQ,∴PN2=NM•NQ=4,∴PN=2.故选:C.10.解:连接OK,∵EF切小圆于K,∴OK⊥EF,根据垂径定理得EK=FK,∵EP切小圆于P,FQ切小圆于Q,∴EP=EK,FQ=FK,∴EP=FQ,故③正确;∴由切割线定理得,FK2=FN•FG,EK2=EM•EG,∴FN•FG=EM•EG,故④正确;故选:C.二.填空题(共7小题)11.解:连接OM;∵PM切⊙O于点M,∴∠OMP=90°,∵OA=OM=a,PM=,∴tan∠MOP=MP:OM=,∴∠MOP=60°,∴OP=2a,∴PB=OP﹣OB=a;∵OM=OB,∴△OMB是等边三角形,MB=OB=a,∴△PMB的周长是(+2)a.12.解:∵PC切⊙O于点C,割线PAB经过圆心O,PC=4,PB=8,∴PC2=PA•PB.∴PA==2.∴AB=6.∴圆的半径是3.连接OC.∵OC=3,OP=5,∴sin∠P=.∴CE=,∴CD=.13.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AOtan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.14.解:∵PA2=PB•PC,PA=6,PB=4;∴PC=9,∴BC=5;∵弧AB的度数为60°,∴∠PCA=30°,∴∠PAB=30°.15.解:由切割线定理得PB•PA=PC•PD,则有8×20=PC(PC+6).解得PC=10.在△PAC中,由PA=2PC,∠APC=60°,得∠PCA=90°.从而AD是圆的直径.由勾股定理,得AD2=AC2+CD2=(PA2﹣PC2)+CD2=202﹣102+62=336.∴AD==4∴R=AD=2.故答案为2.16.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.17.解:∵BF,DF是⊙O的两条切线∴OF是∠DFB的角平分线,DF=FB,FO⊥BD,CD=CB∴=∴BE=DE(①正确)∵=∴∠EBD=∠EDB(②正确)∵FB切⊙O于B∴FB⊥OB∵BC⊥OF∵BC2=OC•FC∴(BD)2=OC•CE∵OC为△ABD的中位线∴OC=AD∴(BD)2=AD•CE∴BD2=2AD•FC(④正确)故其中正确的结论有①②④.三.解答题(共3小题)18.(1)证明:连接OE;(1分)∵⊙O是△BDE的外接圆,∠DEB=90°,∴BD是⊙O的直径,(不证直径,不扣分)∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,(2分)∴∠OEB=∠CBE,∴OE∥BC,(3分)∵∠C=90°,∴∠AEO=90°,∴AC是⊙O的切线;(4分)(2)解:∵AE是⊙O的切线,AD=6,AE=6,∴AE2=AD•AB,(5分)∴AB===12,∴BD=AB﹣AD=12﹣6=6;∵∠AED=∠ABE,∠A=∠A,∴△AED∽△ABE,(6分)∴;设DE=x,BE=2x,∵DE2+BE2=BD2,(7分)∴2x2+4x2=36,解得x=±(负的舍去),∴DE=2.(8分)19.(1)证明:∵AB为直径∴∠ACB=90°∴AC⊥BC又D为中点,∴OD⊥BC,OD∥AC,又O为AB中点,∴;(4分)(2)证明:连接CD,PC为切线,由∠PCD=∠CAP,∠P为公共角,∴△PCD∽△PAC,(6分)∴,又CD=BD,∴;(8分)(3)解:∵AC=6,AB=10,∴BC=8,BE=4,OE=3,∴DE=2,∴BD2=DE2+BE2=20,(9分)∴AD2=AB2﹣BD2=80,∴AD=4,(10分)CD=BD=2,由(2),∴,(11分)∴CP2=DP•AP=45×5,∴切线PC=15.(12分)20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,∴S△DEF=×a×a=a2.故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S△DEF=a2.。

2021年中考数学专题关于圆的切线长定理和面积计算习题含答案

2021年中考数学专题关于圆的切线长定理和面积计算习题含答案

2021年数学中考复习专题之圆的考察:切线长定理的运用(一)一.选择题1.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O 的半径为1,△PCD的周长等于2,则线段AB的长是()A.B.3 C.2D.32.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5 B.7 C.8 D.103.如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7 B.14 C.10.5 D.104.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O 的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.5.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.8 B.18 C.16 D.146.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P7.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是()A.4 B.8 C.12 D.不能确定8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20 B.30 C.40 D.509.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°10.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF 的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()A.①②③④B.只有①②C.只有①②④D.只有③④二.填空题11.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.12.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.13.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.14.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.15.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.16.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC 分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.三.解答题17.如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,(1)求证:AB∥CD;(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).18.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.19.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.参考答案一.选择题1.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于2,∴PA+PB=2,∴PA=PB=,链接PA和AO,∵⊙O的半径为1,∴tan∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.故选:A.2.解:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,故选:C.3.解:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,故选:B.4.解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.5.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.故选:C.6.解:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.故选:C.7.解:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.故选:B.8.解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选:C.9.解:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选:D.10.解:∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径.∴DE⊥AE∴DE∥OF故①正确;∵CD=CE,AB=BE∴AB+CD=BC故②正确;∵OD=OF∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了.故③不正确;连接OC.可以证明△OAB∽△CDO∴即:OA•OD=AB•CD∴AD2=4AB•DC故④正确.故正确的是:①②④.故选:C.二.填空题(共6小题)11.解:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.故答案为:.12.解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.13.解:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故答案为:44.14.解:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.15.解:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.16.解:连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,解得,x=10,∴△ABC的周长为12+5+13=30,故答案为30.三.解答题(共4小题)17.解:(1)∵∠BOC=90°,∴∠OBC+∠OCB=90°,又BE与BF为圆O的切线,∴BO为∠EBF的平分线,∴∠OBC=∠OBF,同理可得∠OCB=∠OCG,∴∠OBF+∠OCG=90°,∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°,∴AB∥CD;(2)连接OE,OF,OG,如图所示:由BE和BF为圆的切线,可得OE⊥AB,OF⊥BC,即∠OEB=∠OFB=90°,∴BE=BF,又OB=OB,∴Rt△OEB≌Rt△OFB(HL),∴∠BOE=∠BOF,S△OEB=S△OFB,∴S扇形OEM=S扇形OFM,∴S△OEB﹣S扇形OEM=S△OFB﹣S扇形OFM,即S阴影BEM=S阴影BFM,同理S阴影NFC=S阴影NCG,由∠BOC=90°,OB=3,OC=4,根据勾股定理得:BC=5,∵BC为圆的切线,∴OF⊥BC,∴OB•OC=BC•OF,即OF=,∴S△BOC=OB•OC=6,S扇形OMN==,则阴影部分面积S=2(S阴影BFM+S阴影NFC)=2(S△BOC﹣S扇形OMN)=12﹣.18.解:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.解:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=,∴AC=AB•cos∠BAC=2cos30°=.∵△PAC为等边三角形,∴PA=AC,∴PA=.20.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.(4分)方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.(2分)即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8.(4分)(2)存在符合条件的P点.设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,∴y=;(6分)②△ADP∽△BPC时,∴y=4.(7分)故存在符合条件的点P,此时AP=或4.(8分)2021年数学中考复习专题之圆的考察:扇形面积的计算的运用(一)一.选择题1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π2.如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A.2π﹣4 B.4π﹣8 C.D.3.如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣4.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10πC.24+4πD.24+5π5.如图,在等边△ABC中,AB=2,以点A为圆心,AB为半径画,使得∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A.π﹣2 B.π﹣1 C.2π﹣2 D.2π+16.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为()A.﹣4 B.7﹣4 C.6﹣D.7.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=2,则阴影部分的面积为()A.B.C.+D.8.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣49.如图,在Rt△ABC中,∠ABC=90°,AB=6cm,BC=8cm,分别以AC的长为半径作圆,将Rt△ABC截去两个扇形,则余下阴影部分的面积为()cm2.A.πB.24﹣πC.24﹣πD.24﹣π10.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D 为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A.B.C.D.二.填空题11.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是.12.如图,⊙O的半径是4,圆周角∠C=60°,点E时直径AB延长线上一点,且∠DEB=30°,则图中阴影部分的面积为.13.如图,Rt△ABC中,∠B=90°,AB=6,BC=8,将Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△A′B′C,则边AB扫过的面积(图中阴影部分)是.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.15.如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是.16.如图,在菱形ABCD中,∠B=60°,AB=2,扇形AEF的半径为2,圆心角为60°,则阴影部分的面积是.三.解答题17.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB 的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.(1)求劣弧PC的长;(结果保留π)(2)求阴影部分的面积.(结果保留π).18.如图,在Rt△ABC中,∠ACB=90°,以直角边BC为直径的⊙O交斜边AB于点D.点E为边AC的中点,连接DE并延长交BC的延长线于点F.(1)求证:直线DE⊙O的切线;(2)若∠B=30°,AC=4,求阴影部分的面积.19.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若CD=4,∠B=60°,求扇形OAC(阴影部分)的面积.20.如图,已知AB,CD是⊙O的两条直径,AE∥CD交⊙O于点E,连结BE交CD于点F.(1)求证:弧BD=弧ED;(2)若⊙O的半径为6,AE=6,求图中阴影部分的面积.参考答案一.选择题1.解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选:C.2.解:由题意当OP⊥AB时,阴影部分的面积最小,∵P(,),∴OP=2,∵OA=OB=4,∴PA=PB=2,∴tan∠AOP=tan∠BOP=,∴∠AOP=∠BOP=60°,∴∠AOB=120°,∴S阴=S扇形OAB﹣S△AOB=﹣•4•2=,故选:D.3.解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,4.解:作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG===8,又∵EF=8,∴DG=EF,∴=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=π.故选:A.5.解:∵等边△ABC中,∠BAD=105°,∴∠CAE=105°﹣60°=45°,∵CE⊥AD,AC=AB=2,∴AE=CE=2,∴S△ACE=2,S扇形ACD==π,∴阴影部分的面积为S扇形ACD﹣S△ACE=π﹣2,6.解:∵⊙O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°﹣(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=(AB+AC+BC)•EO=AC•BC,∴EO=﹣1,∴AE2=AO2+EO2=12+(﹣1)2=4﹣2,∴扇形EAB的面积==(2﹣),△ABE的面积=AB•EO=﹣1,∴弓形AB的面积=扇形EAB的面积﹣△ABE的面积=,∴阴影部分的面积=⊙O的面积﹣弓形AB的面积=﹣(﹣)=﹣4,故选:A.7.解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故选:C.8.解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.9.解:∵Rt△ABC中,∠ABC=90°,AB=6cm,BC=8cm,∴AC==10cm,△ABC的面积是:AB•BC=×8×6=24cm2.∴S阴影部分=×6×8﹣cm2故阴影部分的面积是:24﹣πcm2.故选:D.10.解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,,∴△DMG≌△DNH(ASA),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故选:D.二.填空题(共6小题)11.解:过F作FM⊥BE于M,则∠FME=∠FMB=90°,∵四边形ABCD是正方形,AB=2,∴∠DCB=90°,DC=BC=AB=2,∠DBC=45°,由勾股定理得:BD=2,∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,∴∠DCE=90°,BF=BD=2,∠FBE=90°﹣45°=45°,∴BM=FM=2,ME=2,∴阴影部分的面积S=S△BCD+S△BFE+S扇形DCE﹣S扇形DBF=++﹣=6﹣π,12.解:连接OD,∵∠C=60°,∴∠AOD=2∠C=120°,∴∠DOB=60°,∵∠DEB=30°,∴∠ODE=90°,∵OD=4,∴OE=2OD=8,DE=OD=4,∴阴影部分的面积是S=S△ODE﹣S扇形DOB=﹣=8﹣,故答案为:8﹣.13.解:∵∠B=90°,AB=6,BC=8,∴AC=10,∴边AB扫过的面积=﹣=9π,故答案为:9π.14.解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,15.解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=6×=3,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积=6×3﹣=18﹣9π.故答案为:18﹣9π.16.解:∵四边形ABCD是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=2,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC、△ADC都是等边三角形,∴AC=AD=2,∵AB=2,∴△ADC的高为,AC=2,∵扇形BEF的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF、DC相交于HG,设BC、AE相交于点G,在△ADH和△ACG中,,∴△ADH≌△ACG(ASA),∴四边形AGCH的面积等于△ADC的面积,∴图中阴影部分的面积是:S扇形AEF﹣S△ACD=﹣×2×=﹣,故答案为:﹣.三.解答题(共4小题)17.解:(1)∵点D是AB的中点,PD经过圆心,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,OA=2OD,∵PF⊥AC,∴∠OPF=30°,∴OF=OP,∵OA=OC,AD=BD,∴BC=2OD,∴OA=BC=2,∴⊙O的半径为2,∴劣弧PC的长===π;(2)∵OF=OP,∴OF=1,∴PF==,∴S阴影=S扇形﹣S△OPF=﹣×1×=π﹣.18.(1)证明:连接OD、CD,∵OC=OD,∴∠OCD=∠ODC,又∵BC是⊙O的直径,∴∠BDC=90°,∴△ACD是直角三角形,又∵点E是斜边AC的中点,∴EC=ED,∴∠ECD=∠EDC又∵∠ECD+∠OCD=∠ACB=90度,∴∠EDC+∠ODC=∠ODE=90°,∴直线DE是⊙O的切线;(2)解:由(1)已证:∠ODF=90°,∴∠B=30°,∴∠DOF=60°,∴∠F=30°,在Rt△ABC中,AC=4,∴BC===4,∴,在Rt△ODF中,,∴阴影部分的面积为:=.19.(1)证明:∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠A=∠BCD;(2)解:∵OC=OB,∠B=60°,∴△BOC为等边三角形,∴∠BOC=60°,∴∠AOC=120°,∵AB是⊙O的直径,弦CD⊥AB,∴CE=CD=2,在Rt△COE中,OC==4,∴扇形OAC(阴影部分)的面积==π.20.(1)证明:∵AB,CD是⊙O的两条直径,∴∠AOC=∠BOD,∴=,∵AE∥CD,∴=,∴=;(2)解:连接OE,作OH⊥AE于H,则AH=HE=AE=3,cos∠OAH==,∴∠OAH=30°,∴OH=OA=3,∠AOH=60°,∴∠AOE=120°,∴图中阴影部分的面积=﹣×6×3=12π﹣9.。

2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)一.选择题1.如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC 等于()A.2 B.3 C.4 D.52.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB 与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.53.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB 于M,若CD=9,MD=3,则AB的长为()A.18 B.12 C.13.5 D.6√34.如图:PAB、PCD为⊙O的两条割线,若PA•PB=30,PC=3,则CD的长为()A.10 B.7 C.D.35.如图,点C、O在线段AB上,且AC=CO=OB=5,过点A作以BC为直径的⊙O切线,D 为切点,则AD的长为()A.5 B.6 C.D.106.如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点7.如图,圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,则AD的长为()A.B.C.D.28.如图,已知PA是⊙O的切线,A为切点,PC与⊙O相交于B、C两点,PB=2cm,BC=8cm,则PA的长等于()A.4cm B.16cm C.20cm D.2cm9.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,CD为直径的⊙O与AB相切于E,则⊙O 的半径是()A.2 B.2.5 C.3 D.410.如图,PA,PB为⊙O的切线,A,B分别为切点,∠APB=60°,点P到圆心O的距离OP =2,则⊙O的半径为()A.B.1 C.D.2二.填空题11.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.12.如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=.13.如图,某机械传动装置在静止状态时,连杆PA与点A运动所形成的⊙O交于B点,现测得PB=4cm,AB=5cm,⊙O的半径R=4.5cm,此时P点到圆心O的距离是cm.14.如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为.15.如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.三.解答题16.如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.17.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.18.如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.(1)求证:DA=DC;(2)当DF:EF=1:8,且DF=时,求AB•AC的值;(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O 于C,过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立?并证明你的结论.19.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;.(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF参考答案一.选择题1.解:∵PC、PB分别为⊙O的切线和割线,∴PC2=PB•PA,∵OB=3,PB=2,∴PA=8,∴PC2=PB•PA=2×8=16,∴PC=4.故选:C.2.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cos D=AD:BD=1:3,设AD=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.3.解:∵AB是两圆的一条外公切线,∴MA2=MD•MC,MB2=MD•MC,∵CD=9,MD=3,∴MA=MB=6,∴AB=12,故选:B.4.解:∵PA•PB=PC•PD,PA•PB=30,PC=3,∴PD==10,∴CD=10﹣3=7.故选:B.5.解:∵AD是⊙O的切线,ACB是⊙O的割线,∴AD2=AC•AB,又AC=5,AB=AC+CO+OB=15,∴AD2=5×15=75,∴AD=5.(AD=﹣5不合题意舍去).故选:C.6.解:连接OD,OC.∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE•AE即:36=2AE∴AE=18,则AC=AE﹣CE=18﹣2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB===20cm.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选:D.7.解:∵AC是圆O的切线,1∴∠CAB=∠D,又∵∠C=∠C,∴△ACD∽△BCA,∴∴AC2=BC•CD,∵AB=2,BD=3,BC=5,∴AC2=40,AC=2,∵,∴AD=故选:C.8.解:∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2,故选:D.9.解:∵AC,AE为⊙O的切线,∴AC=AE=6,根据勾股定理可知AB=10,∴BE=4;根据切割线定理有,BE2=BD×BC可得,BD=2,∴CD=6,∴⊙O半径为3.故选:C.10.解:连接OA∵PA为⊙O的切线∴PA⊥OA∵∠APO=∠APB=30°∴OA=OP×sin∠APO=2×=1∴⊙O的半径为1故选:B.二.填空题(共5小题)11.解:∵AD•BD=CD•DT,∴TD=,∵CD=2,AD=3,BD=4,∴TD=6,∵PT是⊙O的切线,PA是割线,∴PT2=PA•PB,∵CT为直径,∴PT2=PD2﹣TD2,∴PA•PB=PD2﹣TD2,即(PB+7)PB=(PB+4)2﹣62,解得PB=20.故答案为:20.12.解:设PA=x,∵∠PAC=∠D,∴△PAC∽△PDB,∴=,∵AC:DB=1:2,∴PD=2PA,∴由切割线定理得,PA•PB=PC•PD,即x(x+35)=2x(2x﹣35),解得x=45,故答案为45.13.解:连接PO交圆于C,并延长PO交圆于D;∵PB=4cm,AB=5cm,∴PA=9cm;由割线定理,得:PB•PA=PC•PD;设点P到圆心的距离是xcm,则有:(x﹣4.5)(x+4.5)=36,解得x=7.5cm.故P到O点的距离为7.5cm.14.解:∵PA切⊙O于A,PBC是⊙O的割线,PB=2,PC=4,∴PA2=PB×PC,∴PA==2.故答案为:2.15.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AO tan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.三.解答题(共5小题)16.解:(1)四边形ABCD为矩形,AB=4;∴CD=4.在Rt△ACD中,AC2=CD2+AD2;∴(2+AD)2=42+AD2;解得AD=3.(2)过A点作AG⊥EF于G;∵BC=3,BE=AB﹣AE=4﹣3=1.∴CE===.由CE•CF=CD2,得:CF===.又∵∠B=∠AGE=90°,∠BEC=∠GEA,∴△BCE∽△GAE;∴,即=.∴AG=.∴S=CF•AG=××=.△AFC17.证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以即PS2=PD•PO而由切割线定理知PS2=PA•PB所以即18.(1)证明:连接OC,则OC⊥DC,(1分)∴∠DCA=90°﹣∠ACO=90°﹣∠B.∵∠DAC=∠BAE=90°﹣∠B,∴∠DAC=∠DCA.∴DA=DC.(2)解:∵DF:EF=1:8,∵DF=,∴EF=8DF=8.∵DC为⊙O的切线,∴DC2=DF•DE=×9=18.∵DC=3,∴AF=2,AE=6.∴AB•AC=AE•AF=24.(3)解:结论DA=DC仍然成立.理由如下:延长BO交⊙O于K,连接CK,则∠KCB=90°;∵DC为⊙O的切线,∴∠DCA=∠CKB=90°﹣∠CBK.∵∠CBK=∠HBA,∴∠BAH=90°﹣∠HBA=90°﹣∠CBK.∴∠DCA=∠BAH.∴DA=DC.19.(1)证明:连接BC交OA于E点,∵AB、AC是⊙O的切线,∴AB=AC,∠1=∠2.∴AE⊥BC.∴∠OEB=90°.∵BD是⊙O的直径,∴∠DCB=90°.∴∠DCB=∠OEB.∴CD∥AO.(2)解:∵CD∥AO,∴∠3=∠4.∵AB是⊙O的切线,DB是直径,∴∠DCB=∠ABO=90°.∴△BDC∽△AOB.∴=.∴=.∴y=.∴0<x<6.(3)解:由已知和(2)知:,(8分)把x、y看作方程z2﹣11z+18=0的两根,解这个方程得z=2或z=9,∴(舍去).∴AB===.20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,于O,过E作EM⊥x轴于M,∵AO切⊙O1∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,=×a×a=a2.∴S△DEF故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S=a2.△DEF。

圆中与有关切线的问题

圆中与有关切线的问题

圆中与有关切线的问题基础知识:一、切线的定义:①与圆只有一个公共点的直线。

②若圆心到直线的距离与半径相等。

二、切线的性质:1、若L是圆的切线,则圆心到直线的距离等于半径。

2、圆的切线垂直过切点的半径。

3、推论:圆心、切点、垂直三、切线的判定:1、定义法:与圆只有一个公共点。

2、数量法:∵d=r ∴直线是圆的切线3、过半径的外端且与它垂直的直线。

方法:a、有明确的公共点,作半径,证垂直;b、无明确公共点,过圆心作垂直,证半径。

四、与切线有关的问题:1、切线长定理:a、切线长定义:b、切线长定理:过圆外一点引圆的两条切线,这两条切线相等,连接圆心与圆外的点平分两切线所成的角。

2、弦切角:a、弦切角的定义:b、弦切角定理(不能直接用)弦切角等于弦切角所夹弧所对的圆周角。

3、三角形的内切圆:a、定义:如果三角形的三边都与这个圆相切,则这个圆叫这个三角形的内切圆。

b、Rt△内切圆半径公式:Rt△内切圆半径等于两直角边的和与斜边的差的一半。

c、四边形内切圆:对边和相等。

d、公切线(长)五、常用辅助线:作半径。

能力测试:一、填空题。

1、直线L与半径为r的⊙O相交,且点O到直线L的距离为5,则r的取值范围是。

2、在射线OA上取一点P,使OP=4cm,以P为圆心作直径为4cm的圆,若⊙P与射线OB相交,则锐角∠AOB的取值范围是。

3、如图,CD是⊙O的直径,AE切⊙O于B,DC的延长线交AB于A,∠A=20°,则∠DBE=。

4、如图,AB为⊙O的直径,延长AB至D,使BD=OB,DC切⊙O于C,则AC:AD=。

5、如图,AB为⊙O的直径,C、D是⊙O的点,∠BAC=20°,⋂⋂=DCAD,DE是⊙O的切线,则∠EDC的度数为。

6、OA 、OB 是⊙O 的两条半径,BC 是⊙O 的切线,且∠AOB =84°,则∠ABC 的度数为 。

二、选择题。

1、下列命题中,错误的是( )A 、垂直于弦的直径平分这弦;B 、弦的垂直平分线过圆心;C 、垂直于切线的直线必过圆心;D 、经过圆心且垂直于切线的直线必过切点。

《圆》的计算及证明题之中考真题精选汇编(2)

《圆》的计算及证明题之中考真题精选汇编(2)

《圆》的计算及证明题之中考真题精选汇编(2)1.如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.2.如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)3.如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.4.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,以O为圆心,OA为半径的半圆分别交AC,BC,AB于点D,E,F,且点E是弧DF的中点.(1)求证:BC是⊙O的切线;(2)若CE=√2,求图中阴影部分的面积(结果保留π).5.如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;(2)若sin∠CAB=35,AB=10,求BD的长.6.如图,AB是⊙O的直径,点E,C在⊙O上,点C是BÊ的中点,AE垂直于过C点的直线DC,垂足为D,AB的延长线交直线DC于点F.(1)求证:DC是⊙O的切线;(2)若AE=2,sin∠AFD=1 3,①求⊙O的半径;②求线段DE的长.7.如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点M在线段AC上,CE交BM于N,CE交AB于G.(1)求证:ED是⊙O的切线;(2)若AC=√6,BD=5,AC>CD,求BC的长;(3)若DE•AM=AC•AD,求证:BM⊥CE.8.已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3√3,AE=3,求弦BC的长.9.如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=12∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sin B=35,⊙O的半径为3,求AC的长.10.如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=√7,求弦CD的长.11.如图,△ABC中,以AB为直径的⊙O交BC于点D,DE是⊙O的切线,且DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:AB=AC;(2)若AE=3,DE=6,求AF的长.12.如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,D是圆上一点,E是DC延长线上一点,连结AD,AE,且AD=AE,CA=CE.(1)求证:直线AE是⊙O是的切线;(2)若sin E=23,⊙O的半径为3,求AD的长.13.如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC,交AC的延长线于点E,交AB的延长线于点F,连接BD并延长交AC的延长线于点M.(1)求证:直线DE是⊙O的切线;(2)当∠F=30°时,判断△ABM的形状,并说明理由;(3)在(2)的条件下,ME=1,连接BC交AD于点P,求AP的长.14.如图所示,四边形ABCD是半径为R的⊙O的内接四边形,AB是⊙O的直径,∠ABD =45°,直线l与三条线段CD、CA、DA的延长线分别交于点E、F、G,且满足∠CFE =45°.(1)求证:直线l⊥直线CE;(2)若AB=DG.①求证:△ABC≌△GDE;②若R=1,CE=32,求四边形ABCD的周长.15.如图,在△ABC中,AB=4,∠C=64°,以AB为直径的⊙O与AC相交于点D,E为ABD̂上一点,且∠ADE=40°.(1)求BÊ的长;(2)若∠EAD=76°,求证:CB为⊙O的切线.16.在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.17.如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=45,OC=12OB.(1)求⊙O的半径;(2)求∠BAC的正切值.18.如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC 于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=52,sin∠ABD=√55,求⊙O的半径.19.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,P A交⊙O于点C,AB=4,PB=3.(1)填空:∠PBA的度数是,P A的长为;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是AĈ上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求EFFG的值.20.如图,AB为⊙O的直径,点C是AD̂的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).21.如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.22.如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求OGOD的值.23.在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△A′B′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.24.如图,⊙O是△ABC的外接圆,BD是⊙O的直径,AB=AC,AE∥BC,E为BD的延长线与AE的交点.(2)若∠ABC =75°,BC =2,求CD̂的长.25.我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB 是⊙O 的直径,直线l 是⊙O 的切线,B 为切点.P ,Q 是圆上两点(不与点A 重合,且在直径AB 的同侧),分别作射线AP ,AQ 交直线l 于点C ,点D .(1)如图1,当AB =6,BP 长为π时,求BC 的长;(2)如图2,当AQ AB =34,BP ̂=PQ ̂时,求BC CD 的值; (3)如图3,当sin ∠BAQ =√64,BC =CD 时,连接BP ,PQ ,直接写出PQ BP 的值.26.如图,在菱形ABCD 中,对角线AC ,BD 相交于点E ,⊙O 经过A ,D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG =GD .(2)已知⊙O的半径与菱形的边长之比为5:8,求tan∠ADB的值.27.如图,△ABC内接于⊙O,AB是⊙O的直径,D是⊙O上的一点,CO平分∠BCD,CE ⊥AD,垂足为E,AB与CD相交于点F.(1)求证:CE是⊙O的切线;(2)当⊙O的半径为5,sin B=35时,求CE的长.28.如图,AB是⊙O的直径,点C,F是⊙O上的点,且∠CBF=∠BAC,连接AF,过点C作AF的垂线,交AF的延长线于点D,交AB的延长线于点E,过点F作FG⊥AB于点G,交AC于点H.(1)求证:CE是⊙O的切线;(2)若tan E=3,BE=4,求FH的长.29.如图,AB是⊙O的直径,点P是⊙O外一点,P A与⊙O相切于点A,点C为⊙O上的一点.连接PC、AC、OC,且PC=P A.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=P A•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.̂=EF̂,过点E作直线CD⊥AF交AF 30.如图,以AB为直径的⊙O上有两点E、F,BE的延长线于点D,交AB的延长线于点C,过C作CM平分∠ACD交AE于点M,交BE于点N.(1)求证:CD是⊙O的切线;(2)求证:EM=EN;(3)如果N是CM的中点,且AB=9√5,求EN的长.31.如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC 于点E,交BA延长线于点F.(1)求证:DF是⊙O的切线.(2)若CE=√3,CD=2,求图中阴影部分的面积(结果用π表示).32.如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG=∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.33.如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.34.已知,AB是半径为1的⊙O的弦,⊙O的另一条弦CD满足CD=AB,且CD⊥AB于点H(其中点H在圆内,且AH>BH,CH>DH).(1)在图1中用尺规作出弦CD与点H(不写作法,保留作图痕迹);(2)连结AD,猜想:当弦AB的长度发生变化时,线段AD的长度是否变化?若发生变化,说明理由;若不变,求出AD的长度;(3)如图2,延长AH至点F,使得HF=AH,连结CF,∠HCF的平分线CP交AD的延长线于点P,点M为AP的中点,连结HM.若PD=12AD,求证:MH⊥CP.35.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD=CD,过点D的直线l交BA 的延长线于点M.交BC的延长线于点N且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB•CN;(3)当AB=6,sin∠DCA=√33时,求AM的长.36.如图,△ABC中,以AB为直径的⊙O交BC于点E,AE平分∠BAC,过点E作ED⊥AC于点D,延长DE交AB的延长线于点P.(1)求证:PE是⊙O的切线;(2)若sin∠P=13,BP=4,求CD的长.37.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线;(2)若sin C=45,DE=5,求AD的长;(3)求证:2DE2=CD•OE.38.如图,在⊙O 中,AB 是一条不过圆心O 的弦,点C ,D 是AB̂的三等分点,直径CE 交AB 于点F ,连结AD 交CF 于点G ,连结AC ,过点C 的切线交BA 的延长线于点H .(1)求证:AD ∥HC ;(2)若OG GC =2,求tan ∠F AG 的值;(3)连结BC 交AD 于点N ,若⊙O 的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF =52,求BC 的长;②若AH =√10,求△ANB 的周长;③若HF •AB =88,求△BHC 的面积.39.如图,CD是⊙O的直径,弦AB⊥CD,垂足为点F,点P是CD延长线上一点,DE⊥AP,垂足为点E,∠EAD=∠F AD.(1)求证:AE是⊙O的切线;(2)若P A=4,PD=2,求⊙O的半径和DE的长.40.如图,△ABC、△ABD内接于⊙O,AB=BC,P是OB延长线上的一点,∠P AB=∠ACB,AC、BD相交于点E.(1)求证:AP是⊙O的切线;(2)若BE=2,DE=4,∠P=30°,求AP的长.41.如图,AB与⊙O相切于点A,半径OC∥AB,BC与⊙O相交于点D,连接AD.(1)求证:∠OCA=∠ADC;(2)若AD=2,tan B=13,求OC的长.42.如图,AB是⊙O的直径,AB=2√10,⊙O的弦CD⊥AB于点E,CD=6.过点C作⊙O 的切线交AB的延长线于点F,连接BC.(1)求证:BC平分∠DCF;̂上一点,连接CG交AB于点H,若CH=3GH,求BH的长.(2)G为AD。

圆的相关证明与计算--与切线有关的证明与计算(解析版)-中考数学重难点题型专题汇总

圆的相关证明与计算--与切线有关的证明与计算(解析版)-中考数学重难点题型专题汇总

圆的相关证明与计算-中考数学重难点题型与切线有关的证明与计算(专题训练)1.如图,ABC 内接于O ,AB 是O 的直径,E 为AB 上一点,BE BC =,延长CE 交AD 于点D ,AD AC =.(1)求证:AD 是O 的切线;(2)若1tan 3ACE ∠=,3OE =,求BC 的长.【答案】(1)见解析;(2)8【分析】(1)根据BE BC =,可得BEC BCE ∠=∠,根据对顶角相等可得AED BEC ∠=∠,进而可得BCE AED ∠=∠,根据AD AC =,可得ADC ACE ∠=∠,结合90ACB ∠=︒,根据角度的转化可得90AED D ∠+∠=︒,进而即可证明AD 是O 的切线;(2)根据ADC ACE ∠=∠,可得1tan tan 3EA D ACE DA ==∠=,设AE x =,则3AC AD x ==,分别求得,,AC AB BC ,进而根据勾股定理列出方程解方程可得x ,进而根据6BC x =+即可求得.【详解】(1) BE BC =,∴BEC BCE ∠=∠,AED BEC ∠=∠,∴BCE AED ∠=∠,AD AC =,∴ADC ACE ∠=∠,AB 是直径,∴90ACB ∠=︒,90D AED ACD BCE ACB ∴∠+∠=∠+∠=∠=︒,∴AD 是O 的切线;(2)AD AC = ,∴ADC ACE ∠=∠,1tan tan 3EA D ACE DA ∴==∠=,设AE x =,则3AC AD x ==,3,336OB OA AE OE x BC BE OE OB x x ==+=+==+=++=+,226AB OA x ==+,在Rt ABC 中,222AC BC AB +=,即()()()2223626x x x ++=+,解得122,0x x ==(舍去),68BC x ∴=+=.【点睛】本题考查了切线的判定,勾股定理解直角三角形,正切的定义,利用角度相等则正切值相等将已知条件转化是解题的关键.2.如图,ABC 内接于O ,AB AC =,AD 是O 的直径,交BC 于点E,过点D 作//DF BC ,交AB 的延长线于点F,连接BD .(1)求证:DF 是O 的切线;(2)已知12AC =,15AF =,求DF 的长.【答案】(1)见解析;(2)DF =【分析】(1)由题意根据圆周角定理得出90ABC CBD ∠+∠=︒,结合同弧或等弧所对的圆周角相等并利用经过半径外端并且垂直于这条半径的直线是圆的切线进行证明即可;(2)根据题意利用相似三角形的判定即两个角分别相等的两个三角形相似得出FBD FDA ~△△,继而运用相似比FB FD FD FA =即可求出DF 的长.【详解】解:(1)证明:∵AD 是O 的直径∴90ABD ∠=︒(直径所对的圆周角是直角)即90ABC CBD ∠+∠=︒∵AB AC=∴ABC C ∠=∠(等边对等角)∵ AB AB=∴ADB C ∠=∠(同弧或等弧所对的圆周角相等)∴ABC ADB∠=∠∵//BC DF ,∴CBD FDB∠=∠∴90ADB FDB ∠+∠=︒即90ADF ∠=︒∴AD DF⊥又∵AD 是O 的直径∴DF 是O 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).(2)解:∵12AB AC ==,15AF =∴3BF AF AB =-=∵F F ∠=∠,90FBD FDA ∠=∠=∴FBD FDA ~△△(两个角分别相等的两个三角形相似)∴FB FD FD FA=,∴231545FD FB FA =⋅=⨯=∴DF =【点睛】本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.3.如图,AB 为O 的直径,C 为O 上一点,D 为AB 上一点,BD BC =,过点A 作AE AB ⊥交CD 的延长线于点E,CE 交O 于点G,连接AC,AG,在EA 的延长线上取点F,使2FCA E ∠=∠.(1)求证:CF 是O 的切线;(2)若6AC =,AG ,求O 的半径.【答案】(1)见解析;(2)5【分析】(1)根据题意判定ADG DCB ∽,然后结合相似三角形的性质求得2AGD E ∠∠=,从而可得FCA AGD ∠∠=,然后结合等腰三角形的性质求得90FCO ∠︒=,从而判定CF 是O 的切线;(2)由切线长定理可得AF CF =,从而可得2FAC E ∠∠=,得到AC AE =,然后利用勾股定理解直角三角形可求得圆的半径.【详解】(1)证明:B AGC ∠∠ =,ADG CDB ∠∠=,ADG DCB ∴ ∽,BD BC GD GA∴=,BD BC =,GD GA ∴=,ADG DAG ∴∠∠=,又AE AB ⊥ ,90EAD ∴∠︒=,90GAE DAG E ADG ∴∠+∠∠+∠︒==,GAE E ∴∠∠=,AG DG EG ∴==,2AGD E ∠∠=,2FCA E ∠∠ =,FCA AGD B ∴∠∠∠==,AB 是O 的直径,90CAB B ∴∠+∠︒=,又OA OC Q =,ACO CAB ∴∠∠=,90FCA ACO ∴∠+∠︒=,90FCO ∴∠︒=,即CF 是O 的切线;(2) CF 是O 的切线,AE AB ⊥,AF CF ∴=,2FAC FCA E ∴∠∠∠==,6AC AE ∴==,又AG DG EG ==在Rt ADE △中,2AD ===,设O 的半径为x,则2AB x =,22BD BC x==﹣,在Rt ABC △中,2226222x x +(﹣)=(),解得:5x =,O ∴ 的半径为5.【点睛】本题考查了圆周角定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等,熟练4.如图,四边形ABCD 内接于⊙O,AB 为⊙O 的直径,过点C 作CE⊥AD 交AD 的延长线于点E,延长EC,AB 交于点F,∠ECD=∠BCF.(1)求证:CE 为⊙O 的切线;(2)若DE=1,CD=3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O 的半径是4.5【分析】(1)如图1,连接OC,先根据四边形ABCD 内接于⊙O,得CDE OBC ∠∠=,再根据等量代换和直角三角形的性质可得90OCE ∠︒=,由切线的判定可得结论;(2)如图2,过点O 作OG AE ⊥于G,连接OC,OD,则90OGE ∠︒=,先根据三个角是直角的四边形是矩形得四边形OGEC 是矩形,设⊙O 的半径为x,根据勾股定理列方程可得结论.【详解】(1)证明:如图1,连接OC,∵OB OC =,∴OCB OBC ∠∠=,∵四边形ABCD 内接于⊙O,∴180CDA ABC ∠+∠=︒又180CDE CDA ∠+∠=︒∴CDE OBC ∠∠=,∵CE AD ⊥,∴90E CDE ECD ∠∠∠︒=+=,∵ECD BCF ∠∠=,∴90OCB BCF ∠∠︒+=,∴90OCE ∠︒=,∵OC 是⊙O 的半径,∴CE 为⊙O 的切线;(2)解:如图2,过点O 作OG AE ⊥于G,连接OC,OD,则90OGE ∠︒=,∵90E OCE ∠∠︒==,∴四边形OGEC 是矩形,∴OC EG OG EC =,=,设⊙O 的半径为x,Rt△CDE 中,31CD DE =,=,∴EC =∴OG =1GD xOD x =﹣,=,由勾股定理得222OD OG DG +:=,∴222(1)x x =+-,解得: 4.5x =,∴⊙O 的半径是4.5.【点睛】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键.5.如图, ABC 内接于⊙O,且AB=AC,其外角平分线AD 与CO 的延长线交于点D.(1)求证:直线AD 是⊙O(2)若【答案】(1)见解析;(2)6π-【分析】(1)连接OA,证明OA⊥AD 即可,利用角平分线的意义以及等腰三角形的性质得以证明;(2)求出圆的半径和阴影部分所对应的圆心角度数即可,利用相似三角形求出半径,再根据特殊锐角三角函数求出∠BOC.【详解】解:(1)如图,连接OA 并延长交BC 于E,∵AB=AC,△ABC 内接于⊙O,∴AE 所在的直线是△ABC 的对称轴,也是⊙O 的对称轴,∴∠BAE=∠CAE,又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=12×180°=90°,即AD⊥OA,∴AD 是⊙O 的切线;(2)连接OB,∴△AOD∽△EOC,∴AD OA EC OE =,由(1)可知AO 是ABC ∆的对称轴,OE ∴垂直平分BC ,132CE BC ∴==,设半径为r ,在Rt EOC ∆中,由勾股定理得,OE∴,解得6r =(取正值),经检验6r =是原方程的解,即6OB OC OA ===,又6BC = ,OBC ∴∆是等边三角形,60BOC ∴∠=︒,OE ==BOC BOC S S S ∆∴=-阴影部分扇形2606163602π⨯=-⨯⨯6π=-【点睛】本题考查了切线的判定和性质、角平分线的性质,圆周角定理,三角形外接圆与外心,扇形面积的计算,灵活运用切线的判定方法是解题的关键.6.如图,△ABC 内接于⊙O,AB 是⊙O 的直径,过⊙O 外一点D 作//DG BC ,DG 交线段AC 于点G,交AB 于点E,交⊙O 于点F,连接DB,CF,∠A=∠D.(1)求证:BD 与⊙O 相切;(2)若AE=OE,CF 平分∠ACB,BD=12,求DE 的长.【答案】(1)见解析;(2)【分析】(1)如图1,延长DB 至H ,证明90ABD ∠=︒,即可根据切线的判定可得BD 与O 相切;(2)如图2,连接OF ,先根据圆周角定理证明OF AB ⊥,再证明EFO EDB △∽△,列比例式可得4OF =,即O 的半径为4,根据勾股定理可得DE 的长.【详解】(1)证明:如图1,延长DB 至H ,,DG BC//∴∠=∠,CBH D,∠=∠A D∴∠=∠,A CBH的直径,Q是OAB∴∠=︒,ACB90∴∠+∠=︒,A ABC90∴∠+∠=︒,90CBH ABC∴∠=︒,90ABD∴AB⊥BD,相切;∴与OBD(2)解:如图2,连接OF,CF平分ACB∠,∴∠=∠,ACF BCF∴=,AF BF∴∠AOF=∠BOF=90°,OF AB ∴⊥,BD AB ⊥ ,//OF BD ∴,EFO EDB ∴△∽△,∴OF OE BD BE=,AE OE = ,∴13OE EB =,∴1123OF =,4OF ∴=,4OA OB OF ∴===,246BE OE OB ∴=+=+=,DE ∴=.【点睛】此题考查了相似三角形的判定与性质,切线的判定,圆周角定理,勾股定理等知识,解答本题需要我们熟练掌握切线的判定,第2问关键是证明EFO EDB △∽△.7.如图,在Rt△ACD 中,∠ACD=90°,点O 在CD 上,作⊙O,使⊙O 与AD 相切于点B,⊙O 与CD 交于点E,过点D 作DF∥AC,交AO 的延长线于点F,且∠OAB=∠F.(1)求证:AC 是⊙O 的切线;(2)若OC=3,DE=2,求tan∠F 的值.【答案】(1)见详解;(2)12.【分析】(1)由题意,先证明OA 是∠BAC 的角平分线,然后得到BO=CO,即可得到结论成立;(2)由题意,先求出BD=4,OD=5,然后利用勾股定理求出6AB AC ==,10AD =,结合直角三角形ODF,即可求出tan∠F 的值.【详解】解:(1)∵DF∥AC,∴∠CAO=∠F,∵∠OAB=∠F,∴∠CAO=∠OAB,∴OA 是∠BAC 的角平分线,∵AD 是⊙O 的切线,∴∠ABO=∠ACO=90°,∴BO=CO,又∵AC⊥OC,∴AC 是⊙O 的切线;(2)由题意,∵OC=3,DE=2,∴OD=5,OB=3,CD=8,∴4BD ==,由切线长定理,则AB=AC,设AB AC x ==,在直角三角形ACD 222AC CD AD +=,即2228(4)x x +=+,解得:6x =,∴6AB AC ==,6410AD =+=,∵∠OAB=∠F,∴10DF AD ==,∵90FDO ACO ∠=∠=︒,∴51tan 102OD F DF ∠===.【点睛】本题考查了圆的切线的判定和性质,勾股定理,角平分线的性质,以及三角函数,解题的关键是熟练掌握所学的知识,正确的求出所需的长度,从而进行解题.8.如图,在Rt ABC 中,90ACB ︒∠=,以斜边AB 上的中线CD 为直径作O ,与BC 交于点M ,与AB 的另一个交点为E ,过M 作MN AB ⊥,垂足为N .(1)求证:MN 是O 的切线;(2)若O 的直径为5,3sin 5B =,求ED 的长.【答案】(1)见解析;(2)75ED =.【解析】【分析】(1)欲证明MN 为⊙O 的切线,只要证明OM⊥MN.(2)连接,DM CE ,分别求出BD=5,BE=325,根据ED BE BD =-求解即可.【详解】(1)证明:连接OM ,OC OM = ,OCM OMC ∴∠=∠.在Rt ABC 中,CD 是斜边AB 上的中线,12CD AB BD ∴==,DCB DBC ∴∠=∠,OMC DBC ∴∠=∠,//OM BD ∴,MN BD ⊥ ,MN OM ∴⊥,MN ∴是O 的切线.(2)连接,DM CE ,易知,DM BC CE AB ⊥⊥,由(1)可知5BD CD ==,故M 为BC 的中点,3sin 5B =,4cos 5B ∴=,在Rt BMD △中,cos 4BM BD B =⋅=,28BC BM ∴==.在Rt CEB 中,32cos 5BE BC B =⋅=,327555ED BE BD ∴=-=-=.【点睛】本题考查切线的判定和性质,等腰三角形的性质,解直角三角形等知识;熟练掌握切线的判定定理是解题的关键.9.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.【答案】()1证明见解析;()2证明见解析.【解析】【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB 为直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠再证明,CBF DAF ∠=∠利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠从而可得答案.【详解】()1证明:,AD BC = ,AD BC∴=,ABD BAC ∴∠=∠AB Q 为直径,90,ADB BCA ∴∠=∠=︒,AB BA = CBA DAB ∴ ≌.()2证明:,90,BE BF ACB =∠=︒ ,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠∠ ,DAF FBC EBC ∴∠=∠=∠BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒ 90,CAB ABC ∴∠+∠=︒,CAB EBC ∴∠=∠,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.10.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交 BC于点D,过点D 作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【答案】(1)见解析;(2)【解析】【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【详解】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,AB为⊙O的直径,90,ACB∴∠=︒∵DE∥BC,∴∠E=ACB=∠90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BF BA BD=,∴BD2=BF•BA=2×6=12.∴BD=【点睛】本题考查的是圆的基本性质,圆周角定理,切线的判定,同时考查了相似三角形的判定与性质.(1)中判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”,有切线时,常常“遇到切点连圆心得半径”;(2)中能得△DBF∽△ABD是解题关键.11.如图,在⨀O中,AB为⨀O的直径,C为⨀O上一点,P是 BC的中点,过点P作AC的垂线,交AC 的延长线于点D.(1)求证:DP 是⨀O 的切线;(2)若AC=5,5sin 13APC ∠=,求AP 的长.【答案】(1)见解析;(2)AP=.【解析】【分析】(1)根据题意连接OP,直接利用切线的定理进行分析证明即可;(2)根据题意连接BC,交于OP 于点G,利用三角函数和勾股定理以及矩形的性质进行综合分析计算即可.【详解】解:(1)证明:连接OP;∵OP=OA;∴∠1=∠2;又∵P 为 BC的中点;∴ PCPB =∴∠1=∠3;∴∠3=∠2;∴OP∥DA;∵∠D=90°;∴∠OPD=90°;又∵OP 为⨀O 半径;∴DP 为⨀O 的切线;(2)连接BC,交于OP 于点G;∵AB 是圆O 的直径;∴∠ACB 为直角;∵5sin 13APC ∠=∴sin∠ABC=513AC=5,则AB=13,半径为132由勾股定理的12=,那么CG=6又∵四边形DCGP 为矩形;∴GP=DC=6.5-2.5=4∴AD=5+4=9;在Rt△ADP ==.【点睛】本题考查圆的综合问题,熟练掌握圆的切线定理和勾股定理以及三角函数和矩形的性质是解题的关键.12.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE =12,求CD 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD 是⊙O 的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC =tan∠BCE=BE CE =12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC =CD AD =12,∵AD=8,∴CD=4.【点睛】本题考查了切线的判定定理,相似三角形的判定与性质以及解直角三角形的应用,熟练掌握性质定理是解题的关键.13.如图,AB 是O 的直径,点C 是O 上一点,CAB ∠的平分线AD 交 BC于点D ,过点D 作//DE BC 交AC 的延长线于点E .(1)求证:DE 是O 的切线;(2)过点D 作DF AB ⊥于点F ,连接BD .若1OF =,2BF =,求BD 的长度.【答案】(1)见解析;(2)BD =【解析】【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC 得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB 的值,进而得出AF 和BA 的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD 2的值,求算术平方根即可得出BD 的值.【详解】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD 平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°−∠E=90°,∴DE 是⊙O 的切线;(2)因AB 为直径,则90ADB ∠=︒∵1OF =,2BF =∴OB=3∴4AF =,6BA =∵∠ADB=∠DFB=90°,∠B=∠B∴△DBF∽△ABD ∴BF BD BD AB=∴22612BD BF BA =⋅=⨯=所以BD .【点睛】本题考查了切线的判定、相似三角形的判定与性质、平行线的性质等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(答案解析)(2)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试卷(答案解析)(2)

一、选择题1.下列事件是必然事件的是()A.有两边及一角对应相等的两个三角形全等 B.若a2=b2则有a=bC.二次函数的图象是双曲线D.圆的切线垂直于过切点的半径2.如图,点A、B、C在⊙O上,点D是AB延长线上一点,若∠CBD=65°,则∠AOC的度数为()A.115°B.125°C.130°D.135°3.如图平面直角坐标系中,点A,B均在函数y=kx(k>0,x>0)的图像上,⊙A与x轴相切,⊙B与y轴相切,若点B(1,8),⊙A的半径是⊙B半径的2倍,则点A的坐标为()A.(2,2)B.(2,4)C.(3,4)D.(4,2)4.如图,ABC是O的内接三角形,BD为O的直径.若10BD=,2ABD C∠=∠,则AB的长度为()A.4 B.5 C.5.5 D.65.如图,在半径为1的⊙O中,将劣弧AB沿弦AB 翻折,使折叠后的AB恰好与OB、OA 相切,则劣弧AB的长为()A .12πB .13π C .14π D .16π 6.数轴上有两个点A 和B ,点B 表示实数6,点A 表示实数a ,B 半径为4.若点A 在B 内,则( ) A .2a <或10a > B .210a <<C .2a >D .10a < 7.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,4CE =,6CD =,则AC 的长为( )A .7B .8C .9D .10 8.如图,四边形ABCD 中,对角线AC ,BD 交于点E . 若BAC BDC ∠=∠,则下列结论中正确的是( )①AE BE DE CE = ②ABE △与DCE 的周长比为BE CE③ADE ABC =∠∠ ④ABE DCE ADE BCE SS S S ⋅=⋅ A .③④B .①②③C .①②④D .①②③④9.“圆材埋壁”是我国古代数学名著《章算术》中的一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问:径几何?”转化为数学语言:如图,CD 为O的直径,弦AB CD ⊥,垂足为E ,1CE =寸,10AB =寸,直径CD 的长是( )A .13寸B .26寸C .28寸D .30寸10.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75° 11.如图,AB 为O 的切线,点A 为切点,OB 交O 于点C ,点D 在O 上,连接,,AD CD OA ,若20ABO ︒∠=,则ADC ∠的度数为( )A .20︒B .25︒C .30︒D .35︒12.如图,AB 为⊙0的直径,点C 在⊙0上,且CO ⊥AB 于点O ,弦CD 与AB 相交于点E ,若∠BEC= 68°,则∠ABD 的度数为( )A .20°B .23°C .25°D .34°二、填空题13.如图,从点P 引⊙O 的切线PA ,PB ,切点分别为A ,B ,DE 切⊙O 于C ,交PA ,PB 于D ,E .若△PDE 的周长为20cm ,则PA =______cm .14.如图,AB 是O 的直径,点C 是上半圆的中点,1AC =,点P 是下半圆上一点(不与点A ,B 重合),AD 平分PAB ∠交PC 于点D ,则PD 的最大值为______.15.如图,四边形ABCD 是O 的内接四边形,且AC BD ⊥, OF CD ⊥,垂足分别为E F 、,若52OF =,则AB =_____.16.已知O 的半径为1,AB 是O 的弦,2AB =,P 为O 外一点,且PA 切O 于点A ,1PA =,则线段PB 的长为________.17.如图,已知矩形ABCD 中3AB =,4BC =,将三角板的直角顶点P 放在矩形内,移动三角板保持两直角边分别经过点B 、C ,则PD 的最小值为________.18.如图,菱形ABCD 中,已知2AB =,60DAB ∠=︒将它绕着点A 逆时针旋转得到菱形ADEF ,使AB 与AD 重合,则点C 运动的路线CE 的长为________.19.如图,AB 是O 的直径,40AB =,PA 切O 于点A ,线段PO 交O 于点C .连接BC ,若36P ∠=︒,则劣弧BC 的长度是______20.在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论: ①APE AME ∆≅∆;②PM PN AC +=;③222PE PF PO +=;④POF BNF ∆∆∽;⑤点O 在M 、N 两点的连线上,其中正确的是____________.三、解答题21.如图1,四边形ABCD 内接于,O AC 是O 的直径,AD BD =.延长AD 交BC的延长线于点E .(1)证明:ACD ECD ∠=∠.(2)当8,5AB CD ==时,①求AD 的长度.②如图2,作BF 平分ABC ∠交O 于点F ,连结,DF AF ,求ADF 的面积. 22.如图,在直角坐标系中,点(0,8)A ,点B 是x 轴负半轴上的动点,以OA 为直径作圆交AB 于点D .(1)求证:AOD ABO ∠=∠.(2)当30ABO ∠=︒时,求点D 到y 轴的距离.(3)求OD AB的最大值. 23.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线. 24.已知EF 为O 的一条弦,OB EF ⊥交O 于点B ,A 是弦EF 上一点(不与E ,F 重合),连接BA 并延长交O 于点C ,过点C 作O 的切线交EF 的延长线于点D .(1)如图1,若EF 在圆心O 的上方,且与OB 相交于点H ,求证:ACD △是等腰三角形;(2)如图2,若EF 是O 的直径,25AB =,O 的半径为4,求线段DC 的长; (3)如图3,若EF 在圆心O 的下方,且与BO 的延长线相交于点H ,试判断线段DA ,DE ,DF 之间的数量关系,并说明理由.25.如图所示,AC 与O 相切于点C ,线段AO 交O 于点B .过点B 作//BD AC 交O 于点D ,连结,CD OC ,且OC 交DB 于点E .若30,53cm ∠=︒=CDB DB .(1)求COB ∠的大小和O 的半径长.(2)求由弦,CD BD 与弧BC 所围成的阴影部分的面积(结果保留π).26.如图,ABC 中,AB AC =,以AC 为直径的半圆交 BC 于点D ,DE AB ⊥于点E .(1)求证:DE 为半圆的切线;(2)若23BC =120BAC ∠=︒,求 AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角形全等的判定方法可判断,A 由平方根的含义可判断,B 由二次函数的图像可判断,C 由圆的切线的性质可判断.D 再结合必然事件的概念可得答案.解:有两边及一角对应相等的两个三角形不一定全等,所以是随机事件,故A 不符合题意;若22a b =则有,a b =±所以是随机事件,故B 不符合题意;二次函数的图象是抛物线,所以是不可能事件,故C 不符合题意;圆的切线垂直于过切点的半径,是必然事件,故D 符合题意;故选:.D【点睛】本题考查的是确定事件与随机事件的概念,同时考查了二次函数的图像,圆的切线的性质,掌握以上知识是解题的关键.2.C解析:C【分析】求出∠ABC ,再求出它所对的弧对的圆心角,即可求∠AOC .【详解】解:∵∠CBD =65°,∴∠ABC=180°-65°=115°,优弧AC 所对的圆心角的度数为:115°×2=230°,∠AOC=360°-230°=130°,故选:C .【点睛】本题考查了圆周角的性质,解题关键是求出圆周角,根据同弧所对的圆周角和圆心角的关系求角.3.D解析:D【分析】把B 的坐标为(1,8)代入反比例函数解析式,根据⊙B 与y 轴相切,即可求得⊙B 的半径,则⊙A 的半径即可求得,即得到B 的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B 的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x, ∵B 的坐标为(1,8),⊙B 与y 轴相切,∴⊙B 的半径是1,则⊙A 的半径是2,把y=2代入y=8x得:x=4, 则A 的坐标是(4,2).故选:D .本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B 的坐标利用反比例函数图象上点的坐标特征求出k 值是解题的关键.4.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.5.A解析:A【分析】如图画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ,根据题意可得O 'B ⊥OB 、O 'A ⊥OA ,且OB=OA=O 'B=O 'A,得到四边形O 'BOA 是正方形,即∠O=90°,最后根据弧长公式计算即可.【详解】解:如图:画出折叠后AB 所在的⊙O ',连O 'B ,O 'A∵AB 恰好与OA 、OB 相切∴O 'B ⊥OB 、O 'A ⊥OA∵OB=OA=O 'B=O 'A,∴四边形O 'BOA 是正方形∴∠O=90°∴劣弧AB 的长为9011801802n r πππ︒⨯⨯==︒. 故选择:A .【点睛】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.6.B解析:B【分析】根据点与圆的位置关系可得出AB=∣a ﹣6∣<4,解之即可解答.【详解】解:∵点A 在B 内,∴AB=∣a ﹣6∣<4,即﹣4<a ﹣6<4,解得:2<a <10,故选:B .【点睛】本题考查点与圆的位置关系、数轴上两点间的距离、解一元一次不等式组,熟练掌握点与圆的位置关系是解答的关键.7.C解析:C【分析】首先连接BC ,由AC 平分∠BAD ,易证得∠BDC=∠CAD ,继而证得△CDE ∽△CAD ,然后由相似三角形的对应边成比例求得AE 的长,进而求出AC 的长.【详解】解:∵AC 平分∠BAD ,∴∠BAC=∠CAD∴=BC CD ,∴∠BDC=∠CAD ,∵∠ACD=∠DCE ,∴△CDE ∽△CAD ,∴CD :AC=CE :CD ,∴CD 2=AC•CE ,∴62=4(4+AE ),∴AE=5,∴AC=AE+CE=9,故选:C .【点睛】此题考查了圆周角定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.C解析:C【分析】根据相似三角形可得①②正确,由四点共圆可知③不符合题意,面积比转化成边长比可得④正确.【详解】解:∵BAC BDC ∠=∠,AEB DEC ∠=∠∴ABE DCE ∴AE BE DE CE= ∴①正确;相似三角形周长比等于相似比,②正确∵BAC BDC ∠=∠,且△BDC 和△BAC 共有底BC∴得到A ,B ,C ,D 四点共圆;若ADE ABC =∠∠,则=ADE ABC ACB =∠∠∠,则AB=AC ,但题目中并没有告诉这个条件,所以③不一定正确;∵△ABE 和△ADE 共有高,∴ABEADE SBE S DE=, ∵△CBE 和△CDE 共有高,∴BCE DCE BE S DE S = ∴ABEBCEADE DCE S BE S S DE S ==即,ABE DCE ADE BCE S S S S ⋅=⋅,故 ④正确;∴①②④正确,选C.【点睛】此题主要考查了相似三角形的判断及其性质,解决本题的关键是合理作辅助圆,熟练掌握相似三角的性质定理.9.B解析:B【分析】连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =x−1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD 的长.【详解】解:如图,连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =(x−1)寸,∵222OA OE AE =+,∵AB=10,且AB CD ⊥∴AE=12AB=5 则()22125x x =-+,解得:x =13.则CD =2×13=26(寸).故选:B .【点睛】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.10.B解析:B【分析】连接CD ,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD ⊥BC ,求得BD=CD ,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD ,∵ ∠A=50°,∴∠CDB=180°-∠A=130°,∵ E 是边BC 的中点,∴ OD ⊥BC ,∴ BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故选:B.【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.11.D解析:D【分析】根据切线的性质得∠OAB=90°,利用互余计算出∠AOB的度数,然后根据圆周角定理得到∠ACD=35°,.【详解】解:∵AB为⊙O的切线,点A为切点,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°-20°=70°,∵∠AOB=2∠ADC=70°,∴∠ADC=1×70°=35°.2故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.12.B解析:B【分析】连接OD,可得∠ODC=∠OCD=22°,从而可求得∠AOD=46°,结合圆周角定理,即可求解.【详解】连接OD,∵CO⊥AB,∠BEC= 68°,∴∠OCD=90°-68°=22°,∵CO=CD,∴∠ODC=∠OCD=22°,∴∠COD=180°-22°-22°=136°,∴∠AOD=136°-90°=46°,∠AOD=23°,∴∠ABD=12故选B.【点睛】本题主要考查圆周角定理以及等腰三角形的性质,掌握“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键.二、填空题13.10【分析】由于PAPBDE都是⊙O的切线可根据切线长定理将△PDE的周长转化为切线PAPB长的和【详解】解:∵PAPBDE分别切⊙O于ABC∴PA=PBDA=DCEC=EB;∴C△PDE=PD+D解析:10【分析】由于PA、PB、DE都是⊙O的切线,可根据切线长定理将△PDE的周长转化为切线PA、PB 长的和.【详解】解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=20;∴PA=PB=10,故答案为10.【点睛】此题主要考查的是切线长定理,能够发现△PDE的周长和切线PA、PB长的关系是解答此题的关键.14.【分析】由同弧所得的圆周角相等得到直径所得的圆周角是90°得到继而证明再根据角平分线的性质解得结合三角形外角的性质可证接着由线段的和差解得由此可知当为直径时值最大然后证明为等腰直角三角形最后根据等腰1【分析】由同弧所得的圆周角相等得到APC ABC ∠=∠,直径所得的圆周角是90°得到90ACB ∠=︒,继而证明45APC ABC ,再根据角平分线的性质解得BAD DAP ∠=∠,结合三角形外角的性质可证CAD ADC ∠=∠,接着由线段的和差解得1PD CP CD CP =-=-,由此可知当CP 为直径时PD 值最大,然后证明ACB △为等腰直角三角形,最后根据等腰直角三角形的性质及勾股定理解题.【详解】 解:点C 是上半圆的中点,AC BC ∴=APC ABC1AC BC ∴== AB 是O 的直径,90ACB ∴∠=︒45CAB CBA ∴∠=∠=︒45APC ABC AD 平分PAB ∠12BAD DAP BAP ∴∠=∠=∠ 45,45ADC APC DAP DAP CAD CAB BAD BAD ∠=∠+∠=︒+∠∠=∠+∠=︒+∠ CAD ADC ∴∠=∠1AC AD ∴==1PD CP CD CP ∴=-=-要使PD 最大,即使得CP 最大,当CP 为直径时值最大,在Rt ACB 中,45,CAB AC BC ∠=︒=ACB ∴为等腰直角三角形,AB ∴==CP ∴PD ∴1,1-.【点睛】本题考查同弧所得的圆周角相等、直径所得的圆周角是90°、角平分线的性质、三角形外角的性质、等腰直角三角形的判定与性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.15.【分析】连接DO并延长与⊙O相交于点G连接BGCG由AC⊥BDDG是直径可得∠DBG=90°=∠DCG可证AC∥BG可得可得AB=CG由OF⊥CD可证OF∥CG 可证△DOF∽△DGC由性质由OF=可解析:【分析】连接DO并延长,与⊙O相交于点G,连接BG,CG,由AC⊥BD, DG是直径,可得∠DBG=90°=∠DCG可证AC∥BG,可得AB CG=,可得AB=CG,由OF⊥CD,可证OF∥CG,可证△DOF∽△DGC,由性质DO OF1==DG CG2,由OF=52,可求CG5=2OF=2=52⨯即可.【详解】解:如图,连接DO并延长,与⊙O相交于点G,连接BG,CG,∵AC⊥BD,DG是直径,∴∠DBG=90°=∠DCG,∴BG⊥DB,∴AC∥BG,∴AB CG=,∴AB=CG,∵OF⊥CD,∴OF∥CG,∴∠DOG=∠DGC∴△DOF∽△DGC,,∴DO OF1==DG CG2,∵OF=52,∴CG5=2OF=2=52⨯,所以AB=CG=5.故答案为:5.【点睛】本题考查平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质,掌握平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质是解题关键.16.1或【分析】先利用勾股定理逆定理求出∠AOB是直角再利用一组对边平行且相等得到四边形APBO是平行四边形从而PB的长等于半径OA另当B在右侧时还需讨论【详解】解:①如图所示:连接OAOB∵OA=OB解析:1或5【分析】先利用勾股定理逆定理求出∠AOB是直角,再利用一组对边平行且相等得到四边形APBO 是平行四边形,从而PB的长等于半径OA.另当B在右侧时,还需讨论.【详解】解:①如图所示:连接OA、OB.∵OA=OB=1,2,∴根据勾股定理的逆定理,得∠AOB=90°,根据切线的性质定理,得∠OAP=90°,则AP∥OB,又AP=OB=1,所以四边形PAOB是平行四边形,所以PB=OA=1;②当B在右侧时,如图所示:与①同理可证四边形APOB 是平行四边形,且∠AOB=90°, ∴11,222OC AC BP BC ===, 在Rt △OBC 中,根据勾股定理 222215()122BC OC OB =+=+=, ∴PB=25BC =故答案为:15【点睛】考查了圆的性质、平行四边形判定和性质以及勾股定理,解题关键是能够根据勾股定理的逆定理发现直角三角形,进一步发现特殊四边形平行四边形.17.【分析】点P 的运动轨迹是以BC 为直径在矩形内的半圆圆心在线段BC 的中点处连接圆心和点D 交半圆于点P 则此时PD 最短利用勾股定理求出OD 的长再减去OP 的长即可【详解】由题意可得:点P 的运动轨迹是以BC 为 132【分析】点P 的运动轨迹是以BC 为直径,在矩形内的半圆,圆心在线段BC 的中点处,连接圆心和点D ,交半圆于点P ,则此时PD 最短,利用勾股定理求出OD 的长,再减去OP 的长即可【详解】由题意可得:点P 的运动轨迹是以BC 为直径,在矩形内的半圆,圆心在线段BC 的中点处,设圆心为点O ,如图:连接OD ,交半圆与点P ,则此时PD 最短,4 BC=∴圆的半径122OP OC BC===3AB DC==在Rt DCO中22222313OD DC OC=+=+=132PD OD OP∴=-=-故答案为:132-.【点睛】本题考查了最值问题,矩形的性质,勾股定理,解题关键是能准确分析出点P的运动轨迹.18.【分析】连接ACBD交于点O由菱形的性质得出AC的长由旋转的性质∠EAC=60゜再根据弧长公式求解即可【详解】解:连接ACBD交于点O如图∵四边形ABCD是菱形∴AC⊥BDOA=OC∠BAC=∠DA解析:23π【分析】连接AC,BD交于点O,由菱形的性质得出AC的长,由旋转的性质∠EAC=60゜,再根据弧长公式求解即可.【详解】解:连接AC,BD交于点O,如图,∵四边形ABCD 是菱形∴AC ⊥BD ,OA=OC ,∠BAC=12∠DAB=30゜ ∴ 112OB AB ==由勾股定理得,OA =∴AC =连接AE , 当AB 与AD 重合时,旋转了60゜,则∠EAC=60゜ ∴60232CE π==故答案为:3 【点睛】此题主要考查了旋转的性质、菱形的性质以及求弧长,运用菱形的性质求出AC 是解答此题的关键.19.【分析】先求出圆心角和半径再用弧长公式求出结果【详解】解:∵切于点∴∵∴∴∵∴∴故答案是:【点睛】本题考查弧长公式解题的关键是掌握弧长的计算方法解析:14π【分析】先求出圆心角和半径,再用弧长公式求出结果.【详解】解:∵PA 切O 于点A ,∴90OAP ∠=︒,∵36P ∠=︒,∴903654AOP ∠=︒-︒=︒,∴18054126BOC ∠=︒-︒=︒,∵40AB =,∴20OB =,∴1262014180BC ππ⨯==. 故答案是:14π.【点睛】本题考查弧长公式,解题的关键是掌握弧长的计算方法.20.①②③⑤【分析】根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°然后利用角边角证明△APE 和△AME 全等由此判断①;根据全等三角形对应边相等可得PE=EM=PM同理FP=FN=NP解析:①②③⑤【分析】根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°,然后利用“角边角”证明△APE和△AME全等,由此判断①;根据全等三角形对应边相等可得PE=EM=12PM,同理,FP=FN=12NP,证出四边形PEOF是矩形,得出PF=OE,证得△APE为等腰直角三角形,得出AE=PE,PE+PF=OA,即可得到PM+PN=AC,由此判断②;根据矩形的性质可得PF=OE,再利用勾股定理即可得到PE2+PF2=PO2;由此判断③;判断出△POF不一定等腰直角三角形,△BNF是等腰直角三角形,从而确定出两三角形不一定相似;⑤证出△APM和△BPN以及△APE、△BPF都是等腰直角三角形,从而判断④由垂直平分线的性质求得点O是直角三角形PMN的外接圆圆心,从而结合圆周角定理判断⑤.【详解】解:①∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵PM⊥AC,∴∠AEP=∠AEM=90°,在△APE和△AME中,BAC DAC AE AEAEP AEM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APE≌△AME(ASA),故①正确;②∵△APE≌△AME,∴PE=EM=12PM,同理,FP=FN=12 NP,∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形.∴PF=OE,∵在△APE中,∠AEP=90°,∠PAE=45°,∴△APE为等腰直角三角形,∴AE=PE,∴PE+PF=OA,又∵PE=EM=12PM ,FP=FN=12NP ,OA=12AC , ∴PM+PN=AC ,故②正确;③∵四边形PEOF 是矩形,∴PE=OF ,在直角△OPF 中,OF 2+PF 2=PO 2,∴PE 2+PF 2=PO 2,故③正确;④∵△APE ≌△AME ,∴AP=AM△BNF 是等腰直角三角形,而△POF 不一定是,∴△POF 与△BNF 不一定相似,故④错误;∵OA 垂直平分线段PM .OB 垂直平分线段PN ,∴OM=OP ,ON=OP ,∴OM=OP=ON ,∴点O 是△PMN 的外接圆的圆心,∵∠MPN=90°,∴MN 是直径,∴M ,O ,N 共线,故⑤正确.故答案为:①②③⑤【点睛】此题主要考查了正方形的性质、矩形的判定、勾股定理的综合应用、等腰直角三角形的判定与性质、相似三角形的判定与性质等知识;熟记各性质并准确识图是解决问题的关键.三、解答题21.(1)见详解;(2)①203AD =;②259 【分析】(1)由题意易得∠BAD=∠ACD ,由圆内接四边形的外角等于它的内对角得∠ECD=∠BAD ,然后问题可求解;(2)①由(1)及题意易得△CDE ∽△ABE ,则有58CD CE AB AE ==,进而可得54CE DE =,然后设5,4CE x DE x ==,最后根据勾股定理可求解;②连接CF ,过点F 作FH ⊥AE 于点H ,由题意易得∠ABF=∠ACF=∠ADF=45°,由①可得253CE =,203AD =,则有253=AC ,进而可得6AF =,△FHD 是等腰直角三角形,然后设DH=FH=x ,则203AH x =-,由勾股定理可求解x 的值,最后根据三角形面积计算公式可求解. 【详解】(1)证明:∵AD BD =,∴∠BAD=∠ACD ,∵四边形ABCD 内接于O ,∴∠ECD=∠BAD ,∴ACD ECD ∠=∠; (2)解:①由(1)得:ACD ECD ∠=∠,∵AC 是⊙O 的直径,∴∠ADC=∠CDE=90°,∵CD=CD ,∴△ADC ≌△EDC (ASA ),∴AD=DE ,AC=CE ,∵∠E=∠E ,∴△CDE ∽△ABE ,∵8,5AB CD ==,∴58CD CE AB AE ==, ∴528CD CE AB DE ==, ∴54CE DE =, 设5,4CE x DE x ==,在Rt △CDE 中,222CE DE CD =+,∴22251625x x =+,解得:53x =, ∴203AD DE ==; ②连接CF ,过点F 作FH ⊥AE 于点H ,如图所示:由①得:203AD DE ==,253AC CE ==,∵BF 平分ABC ∠,∠ABC=90°,∴∠ABF=45°,∴∠ACF=∠ADF=45°,∵AC 是是⊙O 的直径,∴∠AFC=90°,∴△AFC 和△FHD 是等腰直角三角形,∴AF=FC ,FH=DH ,∴26AF AC ==, 设DH=FH=x ,则203AH x =-,∴在Rt △AHF 中,2222036x x ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 解得:12535,66x x ==(不符合题意,舍去) ∴56FH =, ∴112052522369AFD S AD FH =⋅=⨯⨯=. 【点睛】本题主要考查圆的基本性质及相似三角形的性质与判定,熟练掌握圆的基本性质及相似三角形的性质与判定是解题的关键.22.(1)见解析;(2)3)12 【分析】(1)根据圆周角定理可得∠ADO=90°,再根据余角的性质可证;(2)根据直角三角形的性质得到AD ,从而求出OD ,再利用面积法求出点D 横坐标的绝对值,可得结果;(3)过D 作DH ⊥AO ,垂足为H ,证明△DHO ∽△AOB ,得到8OD DH DH AB AO ==,求出OH 的最大值即可得到结果.【详解】解:(1)∵OA 为直径,∴∠ADO=90°,则∠AOD+∠OAD=90°,∵∠AOB=90°,∴∠ABO+∠OAD=90°,∴∠AOD=∠ABO ;(2)∵A (0,8),OA=8,∠ABO=30°,∴∠OAD=60°,∠AOD=30°,∴AD=12OA=4,OD=22AO AD -=43, ∴S △OAD =12AD·OD=12D OA x ⨯⨯, ∴11443822D x ⨯⨯=⨯⨯, ∴23D x =,即点D 到y 轴的距离为23;(3)过D 作DH ⊥AO ,垂足为H ,∵∠AOD=∠ABO ,∠AOB=∠DHO ,∴△DHO ∽△AOB ,∴8OD DH DH AB AO ==, ∴当DH 最大时,OD AB 最大, ∴当DH=12AO=4时,OD AB最大值为12.【点睛】本题考查了圆周角定理,直角三角形的性质,面积法,解题的关键是根据直径得到90°的角.23.(1)作图见解析;(2)见解析.【分析】(1)先作AC 的中垂线,找到AC 的中点O ,然后以AC 为直径作圆,与AB 的交点即为所求;(2)由题意可知DE 为Rt BEC △斜边BC 上的中线,从而得到CD=DE ,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键. 24.(1)见解析;(2)线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由见解析.【分析】(1)连接OC ,由题意易得OC DC ⊥,∠B=∠OCB ,则有9090DCA ACO B ∠=︒-∠=︒-∠,进而可得DAC DCA ∠=∠,然后问题可求证; (2)连接OC ,则OC DC ⊥,由勾股定理可得2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,然后再由勾股定理可求DC 的长;(3)连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF ,由题意可得9090DCA OCB HBA ∠=︒-∠=︒-∠,则有DA DC =,进而可得CED DCF ∠=∠,然后有CDF EDC ∽△△,则根据相似三角形的性质及线段的等量关系可求解.【详解】(1)证明:如图,连接OC ,则OC DC ⊥,∵OB=OC ,∴∠B=∠OCB ,∴9090DCA ACO B ∠=︒-∠=︒-∠,又∵90DAC BAH B ∠=∠=︒-∠,∴DAC DCA ∠=∠,∴DA DC =,∴ACD △是等腰三角形;(2)如图,连接OC ,则OC DC ⊥,∵在Rt ABO △中,25AB =,O 的半径为4,∴2AO =,由(1)可得DA DC =,设DC x =,则2OD x =+,∴在Rt OCD △中,()22242x x +=+, ∴3x =,即线段DC 的长为3;(3)线段DA ,DE ,DF 之间的数量关系为2DA DE DF =⋅,理由:如图,连接CF ,CE ,连接CO 并延长交O 于点G ,连接GF , ∵DC 为O 的切线,∴9090DCA OCB HBA ∠=︒-∠=︒-∠,又∵90BAH HBA ∠=︒-∠,CAD BAH ∠=∠,∴∠=∠DCA CAD ,∴DA DC =,∵CG 是O 的直径,∴90CFG ∠=︒,∴90CED CGF GCF ∠=∠=︒-∠,又∵90DCF GCF ∠=︒-∠,∴CED DCF ∠=∠,又∵D D ∠=∠,∴CDF EDC ∽△△, ∴DC DF DE DC=, ∴2DC DE DF =⋅,∴2DA DE DF =⋅.【点睛】本题主要考查相似三角形的性质及切线的性质定理,熟练掌握相似三角形的性质及切线的性质定理是解题的关键.25.(1)60COB ∠=︒,O 的半径长为5cm ;(2)()225cm 6π 【分析】(1)根据切线的性质定理和平行线的性质定理得到OC ⊥BD ,根据垂径定理得到BE 的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE ≌△BOE ,则它们的面积相等,故阴影部分的面积就是扇形OBC 的面积.【详解】解:(1)∵AC 与⊙O 相切于点C ,∴∠ACO=90°,∵BD ∥AC ,∴∠BEO=∠ACO=90°,∴DE=EB=12BD=53(cm ) ∵∠D=30°,∴∠O=2∠D=60°,在Rt △BEO 中,sin60°=BE OB, ∴5332OB=, ∴OB=5,即⊙O 的半径长为5cm .(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°,又∵∠CED=∠BEO ,BE=ED , ∴△CDE ≌△OBE ,∴S 阴=S 扇OBC =60360π•52=256π(cm 2), 答:阴影部分的面积为256πcm 2.【点睛】本题考查扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形,掌握扇形面积的计算,全等三角形的判定与性质,圆周角定理,切线的性质,解直角三角形是解题关键.26.(1)见解析;(2)3π 【分析】(1)连接AD ,由三角形中位线定理可求得//OD AB ,可得OD DE ⊥,可得DE 为O 的切线;(2)连接AD ,AC 是直径,根据AD BC ⊥,AB AC =,可得132BD DC BC ===60OAD ∠=︒,证得AOD △是等边三角形,设半圆的半径为()0r r >,根据勾股定理得2223)(2)r r +=,解得1r =,利用弧长公式即可求出AD的长.【详解】(1)证明:连接OD .如图∵OC OD =,∴ODC OCD ∠=∠. 又AB AC =,∴B OCD ∠=∠. ∴B ODC ∠=∠. ∴OD AB .而DE AB ⊥,∴DE OD ⊥.又OD 是半圆的半径, ∴DE 为半圆的切线.(2)解:如图2,连接AD .∵AC 是直径,∴AD BC ⊥.又AB AC =,∴BD DC =,AD 平分BAC ∠. ∴132BD DC BC ===60OAD ∠=︒. ∵OA OD =,∴AOD △是等边三角形 ∴60AOD ∠=︒.设半圆的半径为()0r r >. ∵222AD DC AC +=,即2223)(2)r r +=. 解得1r =.∴AD 的长6011803ππ⨯=. 【点睛】本题主要考查切线的判定及相似三角形的判定和性质,掌握切线的判定方法是解题的关键.。

初三切线的判定练习题

初三切线的判定练习题

初三切线的判定练习题切线是几何学中重要的概念,初三学生需要掌握切线的判定方法。

下面是一些初三切线的判定练习题,帮助同学们巩固知识。

题目一:已知圆O的半径为r,点P是圆O外的一点,且OP的长度大于r。

要判断点P到圆O的切线的存在性,请写出判断条件和步骤。

解答:判断条件:点P到圆心O的距离等于圆O的半径r。

步骤:1. 计算点P到圆心O的距离PO。

2. 比较PO和r的大小关系:a) 如果PO > r,则点P到圆O有两条切线。

b) 如果PO = r,则点P到圆O有一条切线。

c) 如果PO < r,则点P到圆O没有切线。

题目二:已知圆C1和C2相交于点A和点B,且A、B不重合。

若点X是圆C1上的一点,并且直线BX与圆C2相切于点Y,请写出判断BX与圆C1的切线的存在性的条件和步骤。

解答:判断条件:直线BX与圆C1相切的条件是点X到圆C1的圆心距离等于圆C1的半径。

步骤:1. 计算点X到圆C1圆心的距离CX。

2. 比较CX和C1的半径的关系:a) 如果CX = C1的半径,则直线BX与圆C1有一条切线。

b) 如果CX ≠ C1的半径,则直线BX与圆C1没有切线。

题目三:已知一个半径为r的圆O以点A为圆心,点P在圆O的外部。

从点P引两条切线分别与圆O相交于点B和点C,请写出判断角BAC是否为直角的条件和步骤。

解答:判断条件:角BAC为直角的条件是角BAC的对边BC的斜率等于-1。

步骤:1. 计算点B和点C的坐标。

2. 计算直线BC的斜率。

3. 比较直线BC的斜率与-1的关系:a) 如果直线BC的斜率为-1,则角BAC为直角。

b) 如果直线BC的斜率不为-1,则角BAC不是直角。

通过以上三组判断题的练习,相信同学们已经掌握了切线的判定方法。

在实际问题中,切线的判断能够帮助我们解决许多几何问题,加深对几何学知识的理解。

本文旨在帮助初三学生巩固切线的判定方法,并提供实际练习题。

希望同学们通过练习,能够熟练掌握切线的判定条件和步骤,进一步提高几何学的解题能力。

圆的切线问题二级结论

圆的切线问题二级结论

圆的切线问题二级结论一、圆的切线相关二级结论1. 切线长定理- 结论:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

- 题目解析- 例如:已知圆O,点P是圆O外一点,PA、PB是圆O的两条切线,切点分别为A、B。

- 求证:PA = PB,∠ APO=∠ BPO。

- 证明:连接OA、OB、OP。

因为PA、PB是圆O的切线,所以OA⊥PA,OB⊥ PB(切线的性质:圆的切线垂直于经过切点的半径)。

- 在Rt△ PAO和Rt△ PBO中,OA = OB(圆的半径相等),OP = OP (公共边),所以Rt△ PAO≅ Rt△ PBO(HL定理)。

- 则PA = PB,∠ APO=∠ BPO。

2. 弦切角定理- 结论:弦切角等于它所夹的弧所对的圆周角。

- 题目解析- 例如:已知圆O,AB是圆O的弦,CD是圆O的切线,切点为A,∠BAC是弦切角,∠ ADC是圆周角,widehat{AC}是它们所夹的弧。

- 求证:∠ BAC=∠ ADC。

- 证明:连接AO并延长交圆O于点E,连接EC。

- 因为CD是圆O的切线,所以∠ EAC +∠ BAC = 90^∘(切线的性质)。

- 又因为AE是直径,所以∠ ACE = 90^∘,在△ ACE中,∠ EAC+∠ E = 90^∘,所以∠ BAC=∠ E。

- 而∠ E和∠ ADC所对的弧都是widehat{AC},根据同弧所对的圆周角相等,所以∠ E=∠ ADC,从而∠ BAC=∠ ADC。

3. 切割线定理- 结论:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

- 题目解析- 例如:已知圆O,点P是圆O外一点,PT是圆O的切线,切点为T,PAB是圆O的割线,A、B是割线与圆的交点。

- 求证:PT^2=PA· PB。

- 证明:连接TA、TB。

因为∠ PTA=∠ B(弦切角定理),∠ P=∠ P(公共角),所以△ PTAsim△ PBT(两角对应相等的两个三角形相似)。

初二圆切线练习题

初二圆切线练习题

初二圆切线练习题在初二数学学习中,圆和切线是一个重要的概念。

理解圆与切线的关系对于解决相关的练习题至关重要。

本文将介绍一些初二圆切线的练习题,希望能够帮助同学们巩固并提高自己的数学能力。

1. 题目一:已知一条圆的半径为5cm,切线与圆的交点到圆心的距离为4cm,求切线的长度。

解答:根据题目描述,我们可以画出一个示意图。

假设圆心为O,切点为A,切线上的一点为B。

连接OB,OA,OB与切线的交点为C。

由于OC与切线垂直,所以OC是切线的高。

我们可以利用勾股定理来求解该题。

根据题目中的信息,可得到以下关系式:OA² = OC² + AC²OA² = OC² + (AO - OC)²OA² = OC² + AO² - 2AO×OC + OC²OA² = 2OC² - 2AO×OC + AO²又因为OC是切线的高,所以OC = 4cm。

将OC替代为4,即可得到:OA² = 2×4² - 2×5×4 + 5²OA² = 32 - 40 + 25OA² = 17因此,OA = √17,切线的长度为√17cm。

2. 题目二:已知A、B两点在圆的外部,并且切线AB与连线OA的夹角为60度,其中O为圆心,OA的长度为8cm,圆的半径为5cm。

求切线AB的长度。

解答:同样地,我们先画出一个示意图,其中圆心为O,切点为C,切线上的一点为D。

连接OC,OD,AD,BD。

根据题目中的信息,我们可以得到以下关系式:OD = OA - CDOD = 8 - OCOD = 8 - 5OD = 3从图中我们可以发现△ACO为等边三角形,所以∠OAC = ∠OCA= ∠AOC = 60度。

同理可得∠OCB = ∠OBC = ∠BOC = 60度。

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。

在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。

七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。

在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。

参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。

圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。

轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。

垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。

三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。

四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。

五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。

推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。

六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

高中数学平面几何中的圆的切线与圆心角解析

高中数学平面几何中的圆的切线与圆心角解析

高中数学平面几何中的圆的切线与圆心角解析在高中数学的平面几何中,圆的切线与圆心角是一个重要的考点。

本文将从解析的角度出发,详细介绍圆的切线和圆心角的相关概念、性质以及解题技巧,并通过具体的题目进行举例,帮助高中学生或他们的父母更好地理解和应用这一知识点。

一、圆的切线圆的切线是指与圆相切且只有一个交点的直线。

在解题时,我们常常需要确定切点、切线的斜率以及切线方程等。

例题一:已知圆C的方程为x^2 + y^2 = 4,点A(1, 1)在圆上,求过点A的切线方程。

解析:首先,我们可以将圆C的方程改写为y = √(4 - x^2)或y = -√(4 - x^2),这样我们可以得到点A的纵坐标为√3或-√3。

由于切线与圆相切,因此切线过点A,切线的斜率等于圆在点A处的切线斜率。

根据导数的定义,我们可以求得圆C的方程关于x的导数为dy/dx = -x/√(4 - x^2)。

将点A的坐标代入导数表达式,可得到切线斜率k = -1/√3。

由于切线过点A,我们可以得到切线方程为y - 1 = (-1/√3)(x - 1),即√3y + x -√3 - 1 = 0或-√3y + x + √3 - 1 = 0。

通过以上步骤,我们成功求得过点A的切线方程。

二、圆心角圆心角是指圆心所对的弧所对应的角。

在解题时,我们常常需要利用圆心角的性质来求解未知角度或弧长。

例题二:已知圆C的半径为r,圆心角为α,求弧AB的长度。

解析:根据圆心角的定义,我们知道圆心角α所对的弧AB的长度等于圆周长的α/360倍。

而圆周长为2πr,因此弧AB的长度为2πr * α/360。

通过以上步骤,我们成功求得弧AB的长度。

综上所述,圆的切线与圆心角是高中数学平面几何中的重要内容。

解析的角度可以帮助我们更深入地理解这一知识点,并通过具体的题目进行举例,帮助高中学生或他们的父母掌握解题技巧。

在解题过程中,我们需要注意确定切点、切线的斜率以及切线方程等,同时利用圆心角的性质来求解未知角度或弧长。

初三数学圆专项练习题大全

初三数学圆专项练习题大全

初三数学圆专项练习题大全圆是数学中一个重要的几何概念,它在几何题中经常出现。

为了帮助初三学生更好地掌握圆的知识,以下是一份初三数学圆专项练习题的大全,包括了常见的圆的性质、弧与弦的关系、切线与割线等内容。

希望同学们通过这些练习题的训练,能够熟练掌握圆的相关知识,并能灵活运用于解题中。

1. 圆的面积计算题(1) 已知圆的半径为r,求圆的面积。

(2) 已知圆的直径为d,求圆的面积。

2. 圆的周长计算题(1) 已知圆的半径为r,求圆的周长。

(2) 已知圆的直径为d,求圆的周长。

3. 相关性质题(1) 在一个圆内,连接圆心和圆上一点A,再连接另一点B在圆上,证明线段AB是圆的半径。

(2) 若两圆相交于点A和点B,那么点A、点B与两圆心连线的关系是什么?(3) 圆的切线与半径的关系是什么?(4) 圆的割线与半径的关系是什么?4. 圆的切线与弦的关系题(1) 若AB是圆的切线,C是弦上一点,证明AB与直径AC的夹角等于角ACB。

(2) 若AD是圆的直径,B是圆上一点,证明ACB是直角。

5. 多边形与圆的关系题(1) 若一个正多边形的每个顶点均位于同一个圆上,那么这个正多边形的内角和是多少度?(2) 若一个正多边形的内角和等于360度,那么这个正多边形的每个顶点都位于同一个圆上吗?6. 圆的切线长度计算题(1) 已知切点A到圆心的距离为r,切线段AB的长度为x,求x的值。

7. 圆的弦长计算题(1) 已知弦CD的长度为x,求弦AB的长度。

8. 圆的切线长与切点到圆心距离关系题(1) 切线段AB长为12,切点到圆心的距离为5,求切点到圆的切线的长度。

以上是一部分初三数学圆专项练习题的大全,希望同学们能够认真训练,掌握圆的相关性质和计算方法。

通过不断的练习和巩固,相信你们一定能够在数学中取得更大的进步!。

算弧长的例题

算弧长的例题

算弧长的例题引言弧长是高中数学中的一个重要概念,是指圆弧的长度。

在几何学和物理学等领域中,经常需要计算圆弧的长度。

本文将通过具体例题,介绍如何计算圆弧的长度,并探讨与此相关的几个重要知识点。

例题1: 已知半径和圆心角,求弧长问题描述假设有一个半径为r的圆,圆心角为θ度,求圆弧的长度。

求解思路我们可以利用圆的性质进行计算。

首先,我们知道整个圆的圆心角为360度或2π弧度。

因此,如果我们知道了圆心角θ,我们可以通过以下公式计算弧度的长度:弧长=θ360×2πr解答过程给定半径r=5和圆心角θ=60度,代入上述公式可得:弧长=60360×2π×5=16×2π×5=53π因此,圆弧的长度为53π。

例题2: 已知切线长度和半径,求圆心角问题描述假设有一个半径为r 的圆,切线的长度为l ,求圆心角的大小。

求解思路我们可以利用三角函数和勾股定理进行计算。

首先,连接圆心、切点和圆上某一点,可以得到一个直角三角形。

设该三角形的一条直角边为r ,另一条直角边为l ,斜边为c 。

根据勾股定理,我们有:r 2+(l 2)2=c 2 然后,根据三角函数的定义,我们可以计算圆心角的正弦值:sin (θ2)=l/2r最后,通过反函数,我们可以得到圆心角的大小。

解答过程给定半径r =6和切线长度l =8,代入上述公式可得:r 2+(l 2)2=c 2 62+(82)2=c 2 36+16=c 252=c 2c ≈7.211sin (θ2)=l/2r =8/26=23通过反正弦函数,我们可以求得θ2≈0.7297 弧度。

最后,乘以2,可以得到圆心角的大小为θ≈2×0.7297≈1.459 弧度。

因此,圆心角的大小约为1.459弧度。

知识点总结在上述例题中,我们介绍了两种常见的计算圆弧长度的方法。

通过这些例题,我们可以总结以下几个重要的知识点:知识点1: 圆心角与弧度圆心角可以用度数或弧度来表示。

圆的切线与弧长

圆的切线与弧长

圆的切线与弧长圆是一种具有独特性质的几何形状,它在数学和几何学中起着重要的作用。

本文将探讨圆的切线与弧长这两个关键概念。

一、圆的切线圆的切线是与圆相切并且只与圆交于切点的直线。

切线与圆的切点构成一个直角。

我们可以通过以下步骤来确定圆的切线:1、选择圆上的一点作为切点。

2、从切点开始,作一条与圆的半径垂直的直线。

这条直线称为半径线。

3、通过半径线的延长线,与圆相交的交点即为切线的切点。

4、连接切点与圆心,这条连线即为圆的切线。

切线是圆上一点的切线,它与半径线组成的角叫做切线所在弧对应的圆心角。

具有相同切线的弧,它们的切线所在的弧度相等。

二、圆的弧长圆的弧是指圆上的一段弧线,而弧长指的是这段弧线所对应的圆周的长度。

弧长是圆的重要性质之一,可以用来计算圆上两点之间的距离。

计算圆的弧长时,我们可以利用圆的半径和圆心角的度数来进行计算。

公式如下:弧长 = (圆心角 / 360°)× 2πr其中,弧长表示所求的弧的长度,圆心角表示所对应的圆心角的度数,r表示圆的半径,π是一个常数,约等于3.14159。

圆的弧长也可以用弧度来计算。

弧度是一种用于测量角度的单位,根据定义,一条半径等于圆的半径的弧所对应的圆心角的度数为1弧度。

通过将圆心角的度数除以360°并将结果乘以2π,可以将度数转换为弧度。

然后,通过将所求的弧度乘以圆的半径,可以计算出弧的长度。

三、实际应用圆的切线与弧长在实际应用中有着广泛的应用。

例如,切线的概念在数学、物理、工程等领域都被广泛应用。

在物理中,切线被用于描述物体运动的方向和速度。

在工程中,切线则用于设计和建造圆形结构,确保结构的稳定和可靠性。

弧长也有着实际的应用。

在地理学中,地球的经线和纬线可以看作是圆的弧线,通过计算这些弧线的长度,可以确定两个地理位置之间的距离。

此外,弧长的概念还被用于计算圆形物体的周长和圆周速度等。

总结:圆的切线与弧长是圆的重要概念。

切线是与圆相切且只与圆交于切点的直线,弧长是指圆上一段弧线所对应的圆周的长度。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为()cm2.
2.如图,菱形ABCD的对角线BD、AC分别为2、23,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()
3.如图,在△ABO中,OA=OB,C是边AB 的中点,以O为圆心的圆过点C,且与OA交于点E,与OB交于点F,连接CE,CF.(1)求证:AB与⊙O相切.
(2)若∠AOB=∠ECF,试判断四边形OECF 的形状,并说明理由.
4.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)
21.如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是弧AC 的中点,⊙O的半径为1,求图中阴影部分的面积.。

相关文档
最新文档