六年级数学《圆柱》课堂作业1
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷加精品答案
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.把一个圆柱削成一个最大的圆锥, 削去部分的体积是这个圆柱体积的()。
A. B. C.2倍2.下面图()恰好可以围成圆柱体。
(接头忽略不计, 单位: 厘米)A. B.C. D.3.王大伯挖一个底面直径是3m, 深是1.2m的圆柱体水池,求这个水池占地多少平方米?实际是求这个水池的()。
A.底面积B.容积C.表面积D.体积4.一个圆柱的侧面展开图如图, 那么这个圆柱可能是下列图中的()。
A. B. C.5.用一个高36厘米的圆锥形容器盛满水, 倒入和它等底等高的圆柱形容器中, 水的高度是()厘米。
A.36B.18C.16D.126.下面第()个图形是圆柱的展开图。
A. B.C. D.二.判断题(共6题, 共12分)1.一个正方体木料, 加工成一个最大的圆锥, 圆锥的体积是正方体体积的/。
()2.圆柱的表面积等于底面积乘高。
()3.把一个土豆放在一个盛水的圆柱形容器里, 完全浸没, 土豆的体积等于上升的水的体积, 可以通过求圆柱的体积来计算。
()4.粉笔是最常见的圆柱。
()5.一个圆柱的直径和高相等, 则圆柱体的侧面展开图是正方形。
()6.一个圆锥和一个圆柱的高相等, 它们底面积的比是3:2, 圆锥的体积与圆柱的体积的比是1:2。
()三.填空题(共6题, 共11分)1.一根2米长的圆柱形木材, 锯成3段小圆柱后, 它们的表面积总和比原来增加了12.56dm2, 原来这根木材的体积是()dm3。
2.一个圆柱的体积是15立方厘米, 与它等底等高的圆锥的体积是()立方厘米。
3.圆锥的体积=()用字母表示()。
4.把圆柱的侧面沿高剪开, 得到一个(), 这个()的长等于圆柱底面的(), 宽等于圆柱的(), 所以圆柱的侧面积等于()。
5.一个圆柱的侧面积9.42平方厘米, 高4厘米, 这个圆柱的表面积是()平方厘米。
6.一个圆柱的底面直径是15 cm, 高是8 cm, 这个圆柱的侧面积是()cm2。
人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)
人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业
六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。
如果高变成2倍,半径不变,体积变为原来的_____倍。
(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。
()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。
()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。
(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。
()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。
那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。
求这个蛋糕的体积。
例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。
六年级数学下册试题 一课一练《圆柱和圆锥》-苏教版【含答案】
《圆柱和圆锥》一、填空题1.在一块平地上挖一个底面半径是的圆柱形水池,池深,需要挖出 的土;要在m4m1m3池底和内壁贴上瓷片,贴瓷片的面积是 .2m2.如图,一个内直径是的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是,6cm12cm把瓶盖拧紧后倒置放平,无水部分高.小兰喝了 水;这个瓶子的容积是 8cm ml.ml3.做一个圆柱形的无盖的铁皮水桶,底面周长12.56分米,高5分米,至少需要 平方分米铁皮.4.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的表面积就增加125.6平方厘米,原来这个圆柱的表面积是 平方厘米.5.学校食堂运进一堆煤,堆放成一个近似的圆锥.它的底面直径是6米,高是1.3米.如果每立方米煤重1.8吨,这堆煤重 .6.把圆柱的侧面展开,可以得到一个长方形或 形.它的长与圆柱底面周长 ,它的宽与圆柱的高 .由此可以推导出圆柱侧面积的计算方法是:圆柱的侧面积圆柱底面 乘圆柱的 .7.把1个大圆柱截成相等的3个小圆柱,其中一个小圆柱与圆锥等底等高.那么这个大圆柱的体积是每个圆锥体积的 倍.8.如果分别从两个体积之和为的正方体木块中挖去最大的圆锥做成两个如图所示的工3120cm件模具,那么这两个模具的体积之和为 .取3cm(π 3.14)9.一个高的圆柱,如果把它的高截短,它的表面积就减少,这个圆柱的体积是 94.2cm6cm3cm2.3cm二、选择题1.圆柱、圆锥、正方体和长方体的底面周长和高相等, 的体积最大.()A.圆柱B.圆锥C.正方体D.长方体2.图中的正方体、圆柱体和圆锥体的底面积相等,高也相等,下面说法正确的是? ()A.圆锥的体积与圆柱的体积相等B.圆柱的体积比正方体的体积大一些C.圆锥的体积是正方体体积的13D.以上说法都不对3.有一个圆柱和一个圆锥的体积相等,圆柱的高是圆锥的一半,圆锥的底面积是,圆柱29cm的底面积是 )cm(2A.6B.3C.94.一棵大树,量得底部直径为40厘米,树干高10米,这棵树干的体积是多少?下列说法最符合实际的是 选择的理由:π=()(3)A.树干的体积正好是1.2立方米B.树干的体积比1.2立方米略多些C.树干的体积比1.2立方米略少些D.树干的体积比12立方米略少些5.一个底面半径为,高为的圆柱形铁块,可以熔铸成 个底面半径是,20cm15cm()10cm高是的圆锥形铁块.(损耗不计)15cmA.3B.6C.12D.246.用24个铁圆锥,可以熔铸成 个等底等高的铁圆柱.()A .12B .8C .6D .47.长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是 ()A .长方体、正方体和圆柱的体积相等B .正方体体积是圆锥体积的3倍C .圆锥体积是圆柱体积的13D .长方体、正方体和圆柱的表面积相等8.一个圆锥形碎石堆,底面半径1.5米,高1.8米,每立方米碎石约重2吨,这堆碎石约重(得数保留整吨数) ()A .4吨B .13吨C .8吨D .6吨9.打谷场上,有一个近似于圆锥体的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约重(得数保留整千克数) ()A .11078千克B .3693千克C .15千克D .2654千克三、判断题1.圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小.( )2.把一个圆柱体的橡皮泥捏成圆锥体后,它的体积减少了.( )233.分别以一个长方形的长、宽为轴,旋转一周得到的立体图形的体积相等.( )4.圆柱体的侧面展开图可能是平行四边形.( )5.圆柱体的表面积底面积底面积高.( )=2⨯+⨯6.长方体和圆柱的体积都可以用底面积乘以高的方法计算.( )7.圆柱的高是6厘米,和它体积相等,底面半径相等的圆锥的高是18厘米.( )8.一个圆柱的底面直径和高与正方体的棱长相等,那么它们的体积也相等.( )四.计算题1.在一个底面积是16平方厘米的正方体铸铁中,以相对的两个面为底,挖出一个最大的圆柱体.求剩下的铸铁的表面积是多少平方厘米.取(π 3.14)2.求图的体积和中间一圈花布的面积.五、应用题1.横截面直径为的一段圆柱体木材,被截成三段后,三段的表面积的和是,求原11304cm4cm2来圆柱木材的体积是多少?2.下图是两个茶叶盒,一个是长方体形(底面为正方形),一个是圆柱形.计算一下它们的表面积和容积(纸板厚度不计)?哪一个表面积大?哪一个容积大?通过计算你有什么发现?3.在圆柱体的体积推导过程中,把一个圆柱体平均分成若干等份,然后拼成一个近似的长方体(材料无损耗),拼成的长方体的长是6.28厘米,高是5厘米,这个圆柱体的体积是多少立方厘米?4.一个圆锥形沙堆,底面周长是25.12米,高1.8米.如果每立方米沙重1.7吨,这堆沙子重多少吨?5.一个圆柱的体积是,要把它锻造成一个高为的圆锥,圆锥底面积应是多少?362.8cm12cm6.如图,壮壮测量一个瓶子的容积,测得该瓶子的底面直径是,瓶子深,然后他给9cm30cm瓶子内盛入一些水,正放时水高,拧紧瓶盖倒放时水高.这个瓶子的容积是多少毫20cm25cm升?六.解答题1.赵师傅向下面所示的空容器(由上、下两个圆柱体组成)中匀速注油,正好注满.注油过程中,容器中油的高度与所用时间的关系如图所示.①把下面的大圆柱体注满需 分钟.②上面小圆柱体高 厘米.③如果下面的大圆柱体底面积是48平方厘米,则大圆柱体积是多少立方厘米?上面小圆柱的底面积是多少平方厘米?(写出计算过程)2.如图,圆柱形钢柱有多高?(单位:,结果保留整数)cm3.把一个横截面为正方形的长方体,削成一个最大的圆锥体,已知圆锥体的底面周长6.28厘米,高5厘米,长方体的体积是多少?4.一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的半圆柱体,表面积增加了多少?答案一、填空题1.50.24、75.36.2.226.08、565.2.3.75.36.4.1256.5.22.0428吨.6.正方、相等、相等、周长、高.7.9.8.88.6.9.471.二、选择题1..2..3..4..5..6..7..8..9..A C A C CB DC B 三.判断题1..2..3..4..5..6..7..8..⨯⨯⨯√⨯√√⨯四、计算题1.解:因为4的平方是16,所以正方体的棱长是4厘米,2⨯⨯-⨯÷⨯+⨯⨯446 3.14(42)2 3.1444=-⨯⨯+96 3.144250.24=-+9625.1250.24=+70.8850.24(平方厘米)=121.12答:剩下的铸铁的表面积是121.12平方厘米.2.解:2⨯÷⨯3.14(62)152=⨯⨯3.14315=⨯3.14135(立方厘米)=423.93.1465⨯⨯=⨯3.1430(平方厘米)=94.2答:这个圆柱的体积是423.9立方厘米,中间一圈花布的面积是94.2平方厘米.五、应用题1.解:圆柱的表面积:2-⨯÷⨯11304 3.14(42)4=-⨯⨯11304 3.1444=-1130450.24(平方厘米),11253.76=圆柱的侧面积:211253.76 3.14(42)2-⨯÷⨯=-⨯⨯11253.76 3.1442=-11253.7625.12(平方厘米);=11228.64圆柱的高:11228.64(3.144)÷⨯=÷11228.6412.56(厘米),=894圆柱的体积:2⨯÷⨯3.14(42)894=⨯⨯3.144894=⨯12.56894(立方厘米);=11228.64答:原来圆柱木材的体积是1128.64立方厘米.2.解:(101010201020)2⨯+⨯+⨯⨯(100200200)2=++⨯=⨯5002(平方厘米);1000=立方厘米);1010202000⨯⨯=23.141220 3.14(122)2⨯⨯+⨯÷⨯37.6820 3.14362=⨯+⨯⨯753.6226.08=+(平方厘米);979.68=23.14(122)20⨯÷⨯3.143620=⨯⨯113.0420=⨯(立方厘米);2260.8=1000平方厘米平方厘米,979.68>2260.8立方厘米立方厘米,2000>答:表面积长方体的大,容积圆柱的大.通过计算发现:虽然长方体的表面积比圆柱的表面积,但是长方体的容积比圆柱的容积小.也就是当长方体和圆柱体的高相等时,底面积大的容积就大.3.解:6.282 3.142⨯÷÷12.56 3.142=÷÷42=÷(厘米),2=23.1425⨯⨯3.1445=⨯⨯(立方厘米),62.8=答:这个圆柱的体积是62.8立方厘米.4.解:底面半径:25.12(2 3.14)÷⨯25.12 6.28=÷(米4=)沙的总重量:21 3.144 1.8 1.73⨯⨯⨯⨯50.240.6 1.7=⨯⨯(吨;51.2448=)答:这堆沙子重51.2448吨.5.解:162.8123÷÷62.8312=⨯÷(平方厘米);15.7=答:圆锥的底面积应该是15.7平方厘米.6.解:23.14(92)(302520)⨯÷⨯-+3.1420.2525=⨯⨯63.58525=⨯(立方厘米)1589.625=1589.625立方厘米毫升1589.625=答:这个瓶子的容积是1589.625毫升.六、解答题1.解:①把下面的大圆柱体注满需分钟.113②(厘米)502030-=答:上面小圆柱体高 30厘米.③(立方厘米)4820960⨯=119601(2133÷⨯-12960133=÷⨯(立方厘米)480=(平方厘米)4803016÷=答:大圆柱体积是960立方厘米,上面小圆柱的底面积是16平方厘米.2.解:2502010[3.14(202)]⨯⨯÷⨯÷10000[3.14100]=÷⨯10000314=÷(厘米)32≈答:圆柱形钢柱的高约是32厘米.3.解:(厘米),÷=6.28 3.142,所以这个长方体的底面正方形的边长是2厘米.<25长方体的体积是:⨯⨯225=⨯45(立方厘米)=20答:这个长方体的体积是20立方厘米.4.解:底面直径:(厘米),÷=43.96 3.1414(平方厘米),1482224⨯⨯=答:表面积增加了224平方厘米.。
六年级数学下册试题 第二单元《圆柱和圆锥》一课一练-苏教版-无答案
苏教版六年级数学下册第二单元《圆柱和圆锥》一课一练第一课时《圆柱和圆锥的认识》一、下面的图形中,哪些是圆柱,哪些是圆锥?是圆柱的在括号里打“√”,是圆锥的在括号里打“×”。
二、把第一行的图形沿虚线旋转一周后会得到哪一个图形?连-连。
三、填空1.圆柱的上、下两个面叫作(),它们是完全相同的两个()。
围成圆柱的曲面叫做()。
2.圆柱的两个底面之间的距离叫作圆柱的(),圆柱有()条高。
3.从圆锥的顶点到()的距离叫作圆锥的高。
圆锥有()条高。
4.当圆柱的底面周长和高相等时,把它的侧面展开后会得到()形。
5.将一个圆柱沿着它底面直径平均切成两半,所得截面是一个( )形或()。
将一个圆锥沿着它的高平均切成两半,截面是一个( )形。
6.用一张长20厘米,宽15厘米的长方形纸,可以卷()种纸筒。
当它们的底面周长是20厘米时,高是()厘米。
四、判断1.圆柱的侧面展开后不一定是长方形。
( )2.一个物体上、下两个面是相等的圆面,那么它一定是圆柱形物体。
( )3.把两张形状、大小完全一样的长方形纸分别卷成两个形状不同的圆筒(接头处不重叠),并装上两个底面,制成圆柱。
那么这两个圆柱的底面积、高一定相等。
()五、解决问题1.小圆给妈妈买了一盒生日蛋糕(如图),捆扎这个蛋糕盒所用的彩带至少有多长?(打结处大约用25厘米)第二课时《圆柱的侧面积》一、填空1.圆柱的侧面展开后得到的是长方形,长是圆柱的(),宽是圆柱的( )。
2.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是( )。
3.一个圆柱的底面半径是5cm,高是10cm,它的侧面积是( )cm²4.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米。
5.把一根直径是20 厘米,长是2 米的圆柱形木材据成同样的3段,表面积增加了( )平方厘米。
6.一个圆柱体的侧面积是125.6平方厘米,底面半径是2分米,它的高是( )厘米.7.一个圆柱,它的高增加1厘米,它的侧面积就增加50.24平方厘米,这个圆柱的底面半径是( )厘米。
北师大版六年级第二学期《圆柱与圆锥》单元作业设计
小学数学单元作业设计一、单元信息二、单元分析(-)课标要求通过观察、操作,认识圆柱和圆锥,认识圆柱的展开图。
结合具体情境,探索并掌握圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
《义务教育数学课程标准》中对第二学段有明确要求:“初步形成数感和空间观念,感受符号和几何直观的作用。
”“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。
”“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决。
”(二)教材分析1 .知识网络2 .内容分析本单元的主要内容有:面的旋转、圆柱的表面积和体积、圆锥的体积。
圆柱和圆锥是人们在生产和生活中经常遇到的几何体,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。
本单元加强了与现实生活的联系,加强了对图形特征、计算方法的探索,加强了在操作中对空间与图形问题的思考,使学生在经历观察、操作、推理、想象的过程中认识并掌握圆柱、圆锥的特征及体积的计算方法,进一步发展空间观念。
(H)学情分析本单元的教学对象是六年级毕业班的学生,在知识系统上已经认识了长方形、正方形、平行四边形、三角形、梯形、圆等平面图形和长方体、正方体等立体图形,对于圆柱和圆锥,学生已经能够直观辨认,但在学习过程中还存在以下困难:1、平面图形经过旋转成几何体,是从“静态”到“动态”的转化;对圆柱、圆锥侧面的认识,是学生从“整体辨识”到“局部刻画特征”的又一个提升。
2、对于圆柱和圆锥体积的学习,由于空间想象能力有限,学生往往不能讲圆锥(或圆锥)的底面半径(或直径)及圆柱(或圆锥)的高分辨清楚,特别是圆柱的体积等于和它等底等高的圆锥的3倍,在计算时学生可能经常出现错误。
三、单元学习与作业目标1、在现实情境中,通过观察、操作、比较等活动,认识圆柱和圆锥,掌握它们的特征。
2、结合具体情境,通过探索与发现,理解并掌握圆柱的侧面积、表面积和圆柱和圆锥体积的计算方法,并能解决简单的实际问题。
苏教版六年级数学圆柱的表面积和体积练习
苏教版六年级数学——圆柱的表面积和体积练习教学内容:圆柱表面积和体积计算综合练习教学目标:提高学生应用公式解决实际问题的能力,帮助学生在具体的情境中进一步感受所学知识的应用价值。
教学重难点:进一步培养学生的空间想像能力和综合应用数学知识解决实际问题的能力。
教学对策:补充一些有关圆柱表面积和体积计算的基本练习及解决问题的练习,指导学生灵活运用所学知识解决问题。
教学准备:多媒体教学设备教学过程:一、揭示课题前几节课,我们学习了圆柱表面积和圆柱体积计算,运用这些知识能解决很多实际问题。
这节课,我们将这部分知识进行综合练习。
(板书课题)二、知识梳理,练习巩固。
1、知识整理。
(1)已知圆的半径和高,怎样求圆柱的表面积和体积?(2)已知圆的直径和高,怎样求圆柱的表面积和体积?(3)已知圆的周长和高,怎样求圆柱的表面积和体积?同桌之间可以互相说说,可以说说运用哪些计算公式进行计算。
2、求下面各圆柱的体积⑴底面积0.6平方米,高0.5米⑵半径4厘米,高12厘米⑶直径5分米,高6分米学生独立计算,然后指名交流,教师及时了解学生计算情况。
3、一个圆柱形水池,直径10米,深1米。
(1)这个水池占地面积是多少?(2)在池底及池壁抹一层水泥,抹水泥部分的面积是多少?(3)挖成这个水池,共需挖土多少立方米?学生读题后,独立思考并解答,交流时指名学生说说每一个问题要求的是什么?三、综合练习1、求下面圆柱的体积和表面积。
底面半径:3米,高:10米2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、压路机的滚筒是个圆柱,它的长是2米,滚筒横截面半径是1米,如果滚筒每分钟滚动5周,那么10分钟可压路多少平方米?4、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?四、补充练习:课前思考:通过本课练习,让学生在解决实际问题的过程中,进一步理解和掌握圆柱的体积公式,感受所学的数学知识的应用价值。
北师大版小学数学六年级下册第一单元《圆柱的表面积》教学建议及课后习题解析
圆柱的表面积学习目标1.经历圆柱展开与卷成圆柱等活动,理解圆柱的表面积的意义,知道圆柱的侧面展开后可以是一个长方形,探索圆柱侧面积的计算方法,并掌握圆柱的表面积的计算方法,能正确计算圆柱的表面积。
2.能根据具体情境的不同情况,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,体会数学与生活的联系,丰富对现实空间的认识。
编写说明在学习长方体和正方体的表面积时,学生已经初步理解了表面积的含义,这是圆柱的表面积的学习基础。
圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面面积就是计算圆面积,对学生来说并不是新知识,所以教学的重点是探索圆柱侧面积的计算方法。
教科书突出了圆柱侧面展开图的探索过程,以及侧面展开图的长、宽与圆柱有关量之间的关系。
·如果接口不计,至少需要用多大面积的纸板?先说说你是怎么想的。
教科书创设了“做一个圆柱形纸盒,至少需要用多大面积的纸板”的简单情境,引导学生结合具体物体理解圆柱表面积的意义。
结合实际问题,让学生理解所面临的问题实际上就是求圆柱的表面积的问题,而圆柱的表面是由圆柱的两个底面与一个侧面组成的,因此可知,圆柱的表面积就是两个底面的面积与侧面面积的和。
其中,怎样求圆柱的侧面积,对学生而言,是个新问题。
·圆柱的侧面展开后是一个怎样的图形呢?你能想办法说明吗?在初步理解圆柱表面积的意义后,教科书安排了探索圆柱侧面是一个怎样的图形的内容。
这是解决求圆柱侧面积的关键问题,而且要由学生自己想办法把圆柱的侧面展开成平面,再判断是什么图形。
事实上,学生已经具有把圆周变成线段,即“化曲为直”的活动经验,所以也就有了把圆柱的曲面化为平面的可能性。
教科书呈现了两种说明的方法:一种是把圆柱形纸盒沿圆柱的高剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱。
除了这两种办法外,还有其他的一些方法,如“把圆柱沿着直尺边缘滚动一周,圆柱的侧面印下的区域是一个长方形”等。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
3 / 10
【巩固练习】 1.圆柱体的底面半径和高都扩大 2 倍.它的体积扩大(
)倍.
①2
②4
③6
④8
2.等底等高的圆柱体.正方体.长方体的体积相比较.( ).
少平方米? (取)
1 0.5
1 1
1 1.5
【解析】从上面看到图形是右上图.所以上下底面积和为(立方米).侧面积为(立方米).所以该物体的表 面积是(立方米). 23.141.52 14.13 23.14 (0.5 11.5)118.84 14.1318.84 32.97 【例题 2】有一个圆柱体的零件.高厘米.底面直径是厘米.零件的一端有一个圆柱形的圆孔.圆孔的直径 是厘米.孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆.那么一共要涂多少平方厘米? 10 6 4 5
22
瓶中剩余空间的体积
酒瓶容积:
(30
25)π
10 2
10 2
125π
375π
125π
500π
1500(ml)
【变式 3】一个盖着瓶盖的瓶子里面装着一些水.瓶底面积为平方厘米.(如下图所示).请你根据图中标
明的数据.计算瓶子的容积是______.10
7cm
5cm
4cm
【解析】由已知条件知.第二个图上部空白部分的高为.从而水与空着的部分的比为.由图 1 知水的体积
157.7536 25.12 182.8736
6 / 10
【例题 5】一个圆柱体形状的木棒.沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆 柱体的表面积大.则这个圆柱体木棒的侧面积是________.(取) 2008cm2 cm2 π 3.14
【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第2课时圆柱的表面积(一)-附答案
第2课时圆柱的表面积(一)◆基础知识达标1.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是()。
A.1:2πB.1:πC.2:πD.π:1 2.一个圆柱,底面周长是25.12厘米,高是8厘米,如果沿底面直径垂直切开,它的截面是()。
A.长方形B.正方形C.三角形D.圆3.将圆柱的侧面展开,将得不到()A.平行四边形B.长方形C.梯形D.正方形4.一个边长是31.4厘米的正方形纸片,围成一个圆柱体的侧面(接头处不重叠),这个圆柱体的底面半径是()A.10厘米B.5厘米C.20厘米D.15厘米5.一个底面圆周长为12.56cm,高为5cm的圆柱,它的表面积为()。
A.87.92B.75.36C.62.8D.37.68 6.下面各图是圆柱的展开图的是()。
A.B.C.D.7.把一个圆柱的侧面展开,不可以得到一个()。
A.正方形B.长方形C.平行四边形D.梯形8.一段圆柱形钢材的底面半径为1cm,高为5cm,把3段这样的圆柱形钢材焊接成一个圆柱,表面积减少了()cm2。
A.25.12B.12.56C.6.289.做一个油桶,求至少需要多少平方米的铁皮是求它的()。
A.体积B.侧面积C.表面积10.一个底面直径和高相等的圆柱,在侧面沿高展开后得到一个()。
A.梯形B.平行四边形C.长方形D.正方形◆课后能力提升11.一个圆柱的侧面积是1256cm2,底面半径是10cm,它的高是()cm.A.5B.10C.20D.40 12.圆柱的侧面展开图是一个正方形,那么这个圆柱的高是它底面半径的()倍。
A.3.14B.πC.6.28D.2π13.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体()。
A.底面积一定相等B.侧面积一定相等C.表面积一定相等D.体积一定相等14.圆柱的高不变,底面半径扩大到原来的2倍,圆柱的侧面积就扩大到原来的()。
A.4倍B.2倍C.6倍15.把圆柱体的侧面展开.不可能得到()。
苏版小学六年级数学下册——圆柱专项练习
苏版小学六年级数学下册——圆柱专项练习一.选择题(共10小题,满分20分,每小题2分)2.(2分)(2013•台州)一个长方形的长是6厘米,宽是2厘米.以它的长为轴旋转一周所得到的圆柱3.(2分)(2013•绍兴县)甲、乙两人各有一张长20厘米、宽15厘米的纸,他们分别用不同的方法把4.(2分)(2013•鞍山)把一个底面直径是2分米、高是3分米的圆柱形容器中注满水,现垂直轻轻插5.(2分)(2013•阳谷县)把一个棱长为20厘米的正方体木块削成一个最大的圆柱体,这个圆柱体的体6.(2分)(2013•游仙区模拟)做一个底面直径2分米,高10分米的圆柱形铁皮通风管(接头处不计),7.(2分)(2013•仪征市)一块长25.12厘米,宽18.84厘米的长方形铁皮,配上半径是()厘米的圆形B C9.(2分)(2013•宝安区)一根圆柱形木料,把它截成三段,如果底面积是25平方厘米,这时木料的表二.填空题(共10小题,满分30分,每小题3分)11.(3分)(2013•吴中区)有一个盖着瓶盖的瓶子里装着一些水(如图所示),请你根据图中标明的数据,计算瓶子的容积是_________cm3.12.(3分)(2013•蜀山区)一个圆柱的底面半径是4dm,高是10dm,它的侧面积是_________dm2.13.(3分)(2013•平坝县)一个正方体木块的棱长是2dm ,现在把它削成一个最大的圆柱.削成的圆柱侧面积是_________dm 2,削成的圆柱的体积占原来正方体体积的_________%. 14.(3分)(2013•麟游县)一个圆柱形水桶,桶的内直径是4分米,桶深5分米,现将47.1升水倒进桶里,水占水桶容积的_________%. 15.(3分)(2013•富源县)如图中圆柱的底面半径是_________,把这个圆柱的侧面展开可以得到一个长方形,这个长方形的面积是_________,这个圆柱体的体积是_________.(圆周率为π)16.(3分)(2013•清原县)把一个圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱的_________,宽等于圆柱的_________,圆柱的侧面积等于_________. 17.(3分)(2013•游仙区)陈明的学校叫振能小学,一进校门,就能看到大厅的8根一样大小的圆柱形大理石柱,每根柱子的半径是5分米,高6米,如果要清洗这些柱子,清洗的面积是_________平方米. 18.(3分)(2013•仪征市)自来水管的内直径是2厘米,水管内水的流速是每秒8厘米.一位同学去洗手,走时忘记关掉水龙头,5分钟浪费_________升水. 19.(3分)(2013•溧阳市)如图,卷纸的宽度10cm ,中间硬纸抽的直径4出门,制作中间轴至少需硬纸板_________cm 2.20.(3分)(2013•华亭县)如图所示,把底面周长18.84厘米、高10厘米的圆柱切成若干等分,拼成一个近似的长方体.这个长方体的底面积是_________平方厘米,表面积是_________平方厘米,体积是_________立方厘米.三.解答题(共10小题,满分50分,每小题5分) 21.(5分)(2013•福田区)一个圆柱形木料高9分米,沿底面直径切成两个半圆柱,表面积增加36平方分米,这根木料的体积是多少立方分米? 22.(5分)(2013•安图县)在下面的长方形纸中,剪出两个圆和一个长方形恰好可以围成一个圆柱,求这个圆柱的体积.23.(5分)(2013•威宁县)有关牙膏的数学问题.(1)小红去买牙膏.同一品牌两种规格牙膏的售价情况如下:120克的,每支9元;160克的,每支11.2元.她买哪种规格的牙膏比较合算呢?为什么?(2)牙膏出口处直径为5mm ,小红每次刷牙都挤出1cm 长的牙膏.这样,一支牙膏可用36次.该品牌牙膏推出的新包装只是将出口处直径改为6mm ,小红还是按习惯每次挤出1cm 长的牙膏.这样,这一支牙膏只能用多少次?计算之后你有什么想法. 24.(5分)(2013•台州)如图,这顶帽子,帽顶部分是圆柱形,用花布做的,帽沿部分是一个圆环,也是用同样花布做,已知帽顶的半径,高和帽沿宽都是1分米,那么做这顶帽子至少要用多少平方分米的花布?25.(5分)(2013•海淀区)一个棱长6分米的正方体容器装了一半水,把这些水的40%倒入一个底面积为24平方分米的圆柱形容器里,水的高度是多少分米? 26.(5分)(2013•拱墅区)一根圆管(如图),外圆半径6分米,内圆半径5分米,管长20分米,求这根圆管的体积.27.(5分)(2013•宝应县)一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择.你选择的材料是_________号和_________号;制成的水桶的容积是多少升?(铁皮厚度不计) 28.(5分)(2013•许昌)如图是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆. (1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米? (3)大棚内的空间大约有多大?29.(5分)(2013•高阳县)同学们在探究圆锥形铁块的体积时,做了以下实验:(单位:厘米)你能计算出铁块的体积吗?30.(5分)(2013•绍兴县)丽丽过生日,买来生日蛋糕.店员用塑料绳捆扎(如图),打结处正好是底面圆心.如果这个蛋糕打结用去绳长25厘米.你能算算下面的问题吗?(1)扎这个盒子至少用去塑料绳多少厘米?(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)至少要()平方分米铁皮.B C )1=(立方厘米)据,计算瓶子的容积是60cm3.24厘米,把这个圆柱的侧面展开可以得到一个长方形,这个长方形的面积是80π平方厘米,这个圆柱体的体积是160π立方厘米.(圆周率为π)清原县)把一个圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱的底面周纸板125.6cm2.一个近似的长方体.这个长方体的底面积是28.26平方厘米,表面积是304.92平方厘米,体积是282.6立方厘米.21.(5分)(2013•福田区)一个圆柱形木料高9分米,沿底面直径切成两个半圆柱,表面积增加36平这个圆柱的体积.(1)小红去买牙膏.同一品牌两种规格牙膏的售价情况如下:120克的,每支9元;160克的,每支11.2元.她买哪种规格的牙膏比较合算呢?为什么?牌牙膏推出的新包装只是将出口处直径改为6mm,小红还是按习惯每次挤出1cm长的牙膏.这样,这是用同样花布做,已知帽顶的半径,高和帽沿宽都是1分米,那么做这顶帽子至少要用多少平方分米的花布?根圆管的体积.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?(3)大棚内的空间大约有多大?算出铁块的体积吗?面圆心.如果这个蛋糕打结用去绳长25厘米.你能算算下面的问题吗?(1)扎这个盒子至少用去塑料绳多少厘米?(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?。
人教版六年级数学下册圆柱练习题
人教版六年级数学下册圆柱练习题1、填空。
一个圆柱体,底面周长是125.6厘米,高是12厘米,它的侧面积是平方厘米。
一个圆柱体,底面半径是3厘米,高是5厘米,它的侧面积是平方厘米,表面积是平方厘米。
把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是平方分米。
一个圆柱体,底面半径是3厘米,高是15厘米,它的表面积是平方厘米。
2、判断。
圆柱体的表面积=底面积×2+底面积×高。
圆柱体的表面积一定比它的侧面积大。
圆柱体的底面积越大,它的表面积就越大。
3、选择。
做一个无盖的圆柱体的水桶,需要的铁皮的面积是A.侧面积+一个底面积 B.侧面积+两个底面积C.×2一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是平方厘米。
A.1256B.314C.3140D.282.6圆柱的体积1、填空。
一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积。
一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是立方厘米。
2、判断题。
圆柱体体积与长方体体积相等。
长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。
圆柱体的底面积越大,它的体积越大。
圆柱体的高越长,它的体积越大。
圆锥的体积1、填空。
把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是立方厘米。
一个圆柱和一个圆锥的体积和底面积相等,圆锥的高是9厘米,圆柱的高是厘米。
圆锥的底面半径是2厘米,体积是6.28厘米,这个圆锥的高是厘米。
一个棱长是4分米的正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是分米。
2、判断题。
一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的1。
把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的13。
圆柱体积比与它等底等高的圆锥体的体积大2倍。
圆锥的底面周长是12.56分米,高是4分米,它的体积是立方分米。
3、解决问题。
北师大版小学数学六年级下册第一单元《圆柱的体积》教学建议及课后习题解析
圆柱的体积学习目标1.通过具体情境观察、实物感知等活动,感受物体体积的大小,发展空间观念。
2.通过圆柱与长方体的“类比”,经历“猜想与验证”探索圆柱体积计算方法的过程,体会“类比”的数学思想方法。
3.掌握圆柱体积的计算方法,能正确计算圆柱的体积,能运用圆柱体积计算方法解决简单的实际问题。
编写说明这部分内容是在学生已经初步理解了体积和容积的含义、掌握了长方体和正方体的体积计算方法的基础上学习的,长方体和正方体的体积计算方法“底面积×高”对探索圆柱的体积计算方法有正迁移作用。
本节课的重点在于引导学生经历“猜想与验证”的探索过程,在探索中理解、掌握圆柱体积的计算方法,体会“类比”“把未知问题转化为已知”等思想方法,并积累研究图形的经验。
教科书采用了“提出问题—类比猜想—验证归纳—实际应用”的呈现方式。
教科书先创设了两个简单的情境,第一幅图指向圆柱形柱子的体积,第二幅图指向圆柱形杯子的容积,结合情境体会圆柱的体积或容积的实际含义,感受学习求圆柱体积计算方法的必要性,并提出“怎样计算圆柱的体积”的问题。
·想一想,怎样计算圆柱的体积呢?这是学生经历怎样求圆柱的体积的计算方法的猜想过程,体会类比、转化等数学思想方法。
因为长方体与正方体的体积都是“底面积×高”,长方体、正方体是直柱体,而圆柱也是直柱体,因此通过类比可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。
·尝试验证你的猜想,并与同伴交流。
这是学生“验证”自己的猜想,并与同学交流的探究过程。
教科书中呈现了两种学生可能的方法启发学生从多个角度进行探索,两种方法分别是利用“直观感知”和“等积变形”去体会这样计算的合理性。
第一种方法是用同样大小的硬币叠成圆柱形,直观说明“底面积×高”计算圆柱体积的道理;另一种方法是借助“把圆转化成长方形”的思路,利用“等积变形”,把圆柱转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。
六年级下册数学课堂实录《1.3圆柱的体积》北师大版_(11)
课堂实录《1.3圆柱的体积》教学内容:北师大版小学六年级下册数学《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:理解圆柱体积计算公式的推导过程。
教具准备:圆柱体积演示教具。
教学过程:一、旧知铺垫(5分钟)1、谈话引入最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。
现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)这节课我们就来学习圆柱的体积。
二、自主探究,解决问题(15分钟)(一)认识圆柱体积的意义。
圆柱的体积师:如果圆柱的底面积是12平方米,高是4米,那么圆柱的体积是多少呢?生:圆柱的体积等于底面积乘以高,所以圆柱的体积是12平方米乘以4米,等于48立方米。
(二)探索圆柱体积的计算方法。
1、教师演示圆柱体积的计算方法。
师:我们怎么计算圆柱的体积呢?首先,我们需要知道圆柱的底面积和高。
底面积可以通过圆的半径和π来计算,公式是πr²,其中r是圆的半径。
高等于圆柱的高。
所以,圆柱的体积等于底面积乘以高,公式是V=πr²h。
2、学生分组讨论,探索圆柱体积的计算方法。
师:现在你们小组合作,用圆柱体积的公式计算一下这个圆柱的体积。
底面半径是3厘米,高是5厘米。
生:首先,我们需要计算底面积。
底面积等于π乘以半径的平方,所以底面积等于3.14乘以3的平方,等于3.14乘以9,等于28.26平方厘米。
然后,我们将底面积乘以高,所以圆柱的体积等于28.26平方厘米乘以5厘米,等于141.3立方厘米。
(三)应用圆柱体积的计算方法解决实际问题。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。
A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。
A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。
(单位:cm )4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。
A 、能B 、不能C 、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
()2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。
六年级数学下册:第3单元-圆柱与圆锥-课堂作业设计第1课时 圆柱的认识(人教版,含答案)
第1课时圆柱的认识一、填空。
1.圆柱的上、下两个面叫做();圆柱周围的面(上、下底面除外)叫做()。
2.圆柱的两个底面之间的距离叫做()。
3.如果把一个圆柱的侧面展开得到一个正方形,那么这个圆柱的高等于()。
二、判断。
1.圆柱只有一条高。
()2.圆柱的侧面展开可以得到一个长方形、正方形或平行四边形。
()3.圆柱是立体图形。
()4.圆柱有3个面。
()三、下面的图形哪些是圆柱,是圆柱的在()里画“√”。
四、下面()号图形是圆柱的展开图。
①②五、一个圆柱侧面展开图是一个正方形,这个圆柱的高是12.56cm,那么这个圆柱的底面直径是多少厘米?六、用一张长20cm、宽10cm的长方形纸,卷成尽可能大的圆筒。
1.当高是10cm时,底面周长是多少?2.当高是20cm时,侧面的面积是多少?参考答案一、填空。
1.圆柱的上、下两个面叫做(底面);圆柱周围的面(上、下底面除外)叫做(侧面)。
2.圆柱的两个底面之间的距离叫做(高)。
3.如果把一个圆柱的侧面展开得到一个正方形,那么这个圆柱的高等于(底面周长)。
二、判断。
1.圆柱只有一条高。
(×)2.圆柱的侧面展开可以得到一个长方形、正方形或平行四边形。
(×)3.圆柱是立体图形。
(√)4.圆柱有3个面。
(√)三、下面的图形哪些是圆柱,是圆柱的在()里画“√”。
第一个是圆柱四、下面()号图形是圆柱的展开图。
①②①是圆柱的展开图五、一个圆柱侧面展开图是一个正方形,这个圆柱的高是12.56cm,那么这个圆柱的底面直径是多少厘米?12.56÷3.14=4(厘米)六、用一张长20cm、宽10cm的长方形纸,卷成尽可能大的圆筒。
1.当高是10cm时,底面周长是多少?20厘米2.当高是20cm时,侧面的面积是多少?20×10=200平方厘米。
人教版六年级数学下册:第3单元第一节圆柱 第5课时《解决问题》课堂作业附参考答案
第5课时解决问题
一、仔细观察下图,求出石块的体积。
(单位:cm)
二、一个输液瓶中装有100mL药液,每分钟输2.5mL,下面是12分钟后输液瓶内剩余的药液,请你求出整个输液瓶的容积。
三、有一饮料瓶的容积是 1.5升,现在它里面装有一些饮料,正放时饮料高度是15厘米,倒放时空余部分高度为5厘米,问瓶内现有饮料多少升?
四、一个圆柱形汽油桶,从里面量底面半径5分米,深1.5米,这个汽油桶最多能装多少升汽油?
五、小明将4710毫升的牛奶倒入一个圆柱形的玻璃容器中,这个容器的底面
半径是10厘米,高20厘米。
可以装多深?
参考答案
一、仔细观察下图,求出石块的体积。
(单位:cm)
(20-10)2×π×(15-10)=1570(cm3)
二、一个输液瓶中装有100mL药液,每分钟输2.5mL,下面是12分钟后输液瓶内剩余的药液,请你求出整个输液瓶的容积。
100+(80-12×2.5)=150(ml)
三、有一饮料瓶的容积是 1.5升,现在它里面装有一些饮料,正放时饮料高度是15厘米,倒放时空余部分高度为5厘米,问瓶内现有饮料多少升?
1.5×(15-5)÷15=1(L)
四、一个圆柱形汽油桶,从里面量底面半径5分米,深1.5米,这个汽油桶最多能装多少升汽油?
52×π×15=1177.5(升)
五、小明将4710毫升的牛奶倒入一个圆柱形的玻璃容器中,这个容器的底面
半径是10厘米,高20厘米。
可以装多深?
4710÷(π×102)=15(厘米)。
六年级下册数学一课一练圆柱的表面积_人教新课标(2022秋)(含解析)
六年级下册数学一课一练圆柱的表面积_人教新课标(2022秋)(含解析)“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
一、单选题“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
事实上《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意差不多一致。
1.一个圆柱,底面直径和高差不多上2分米,那个圆柱的表面积是()平方分米.“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。