2017中考数学相似三角形的7个考点
微专题16 相似三角形之五大模型++++课件+2025年九年级中考数学总复习人教版(山东)
过一个直角顶点向两边作垂线,得到△PGE∽△PHF
29
【针对训练】
14.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,在Rt△MPN中,∠MPN=90°,点P在AC
3
上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=_______.
30
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM,
微专题16
相似三角形
之五大模型
2
模型1
特点
A字型(公共顶角)
两个三角形有一个公共角∠BAC,或者有DE∥BC,或者DE与BC不平行,
有∠ABC=∠AED
示例
思路 △ADE∽△ABC或△AED∽△ABC.如果没有明确说明对应关系,就应分
结论 以上两种情况讨论
3
【针对训练】
1.如图,在Rt△ABC中,∠ABC=90°,E,F分别为AC,BC的中点,连接EF,H为AE的中点,
1
ON分别交CA,CB于点P,Q,∠MON绕点O任意旋转.当 = 时, 的值为______;当
2
1
= 时, 的值为______.(用含n的式子表示)
31
16.(2024·青岛市南区二模)如图,点F在四边形ABCD的边AB上,
(1)如图1,当四边形ABCD是正方形时,过点B作BE⊥CF,垂足为O,交AD于点E.则BE
∴∠PBG=180°-∠ABC=90°,
∴∠PBG=∠POC=90°,
∵∠BPG=∠OPC,
∴△BPG∽△OPC,
∴ = ,
初中数学中考复习考点知识与题型专题讲解33 相似形(解析版)
初中数学中考复习考点知识与题型专题讲解专题33相似形【知识要点】考点知识一相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段。
考点知识二相似三角形相似图形的概念:形状相同的图形叫做相似图形。
相似图形的概念:对应角相等、对应边成比例的两个三角形叫做相似三角形。
相似用符号“∽”,读作“相似于”。
相似比的概念:相似三角形对应边的比叫做相似比相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.判定方法(五):斜边和任意一条直角边成比例的两个直角三角形相似。
相似三角形的性质:1.相似三角形的对应角相等,对应边的比相等;2.相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3.相似三角形的面积比等于相似比的平方.相似三角形与实际应用:关键:巧妙利用相似三角形性质,构建相似三角形求解。
考点知识三位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:1.位似图形是相似图形的一种特殊形式。
2.位似图形的对应顶点的连线所在直线相交与一点,位似图形的对应边互相平行或者共线。
位似中心的位置:形内、形外、形上。
模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义
模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型例题精讲考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.变式训练【变式1-1】.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则=.解:∵,∴,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为.【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=__________.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.解:(1)∵AD=9,BD=7,AC=12,∴AB=AD+BD=16,∵==,==,∴=,∵∠BAC=∠CAD,∴△ACD∽△ABC;(2)由(1)可知,△ACD∽△ABC,∴∠ABE=∠ACF,∵AE平分∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,即=,∴AE==.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值解:∵AG∥BD,∴△AFG∽△BFD,∴=,∵,∴CD=BD,∴,∵AG∥BD,∴△AEG∽△CED,∴.变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14解:如图,∵四边形ABCD是平行四边形,∵EA∥BC,∴△AEF∽△CBF,∵AE=DE=AD,CB=AD,∴====,∴AF=AC,EF=BF,=S△ABC,∴S△ABF=S△ABF=×S△ABC=S△ABC,∴S△AEF=2,∵S△AEF=6S△AEF=6×2=12,故选:C.∴S△ABC【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=1:2.解:如图,∵在△ADC中,∠A=60°,CD⊥AB于点D,∴∠ACD=30°,∴=.又∵在△ABE中,∠A=60°,BE⊥AC于E,∴∠ABE=30°,∴=,∴=.又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:2.故答案是:1:2.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,=2S△DOE=2×1=2,∴S△BOD=3,∴S△BDE∵AD=BD,=2S△BDE=6,∴S△ABE∵AE=CE,=2S△ABE=2×6=12.故选C.∴S△ABC变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,=1,则S△ABC=24.若S△EFG解:方法一:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(AAS),=S△EGF=1,GF=FM,DM=GE,∴S△DMF∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,=2S△DMF=2,∴S△ADM∵DM为△ABG的中位线,∴=,=4S△ADM=4×2=8,∴S△ABG=S△ABG﹣S△ADM=8﹣2=6,∴S梯形DMGB=S梯形DMGB=6,∴S△BDE∵DE是△ABC的中位线,=4S△BDE=4×6=24,∴S△ABC方法二:连接AE,∵DE是△ABC的中位线,∴DE∥AC,DE=AC,∵F是DE的中点,∴=,∴==,=1,∵S△EFG=16,∴S△ACG∵EF∥AC,∴==,∴==,=S△ACG=4,∴S△AEG=S△ACG﹣S△AEG=12,∴S△ACE=2S△ACE=24,故答案为:24.∴S△ABC【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.解:(1)∵EG∥AD,∴△BAD∽△BEF,∴=,即=,∴EB=3.(2)∵EG∥∥BC,∴△AEG∽△ABC,∴=,即=,∴EG=,∴FG=EG﹣EF=.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;:S△EBC:S△ECD.(2)求S△ABE(1)证明:∵AB∥CD,∴==,∵,∴=,∴EF∥CD,∴AB∥EF.(2)解:设△ABE的面积为m.∵AB∥CD,∴△ABE∽△CDE,∴=()2=,=4m,∴S△CDE∵==,=2m,∴S△BEC:S△EBC:S△ECD=m:2m:4m=1:2:4.∴S△ABE模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.解:在△ABP和△ACB中,∠BAP=∠CAB,∴当∠ABP=∠C时,满足两组角对应相等,可判断△ABP∽△ACB,故A正确;当∠APB=∠ABC时,满足两组角对应相等,可判断△ABP∽△ACB,故B正确;当时,满足两边对应成比例且夹角相等,可判断△ABP∽△ACB,故C正确;当时,其夹角不相等,则不能判断△ABP∽△ACB,故D不正确;故选:D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2解:∵∠ABC+∠BDC=180°,∠ADB+∠BDC=180°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABC∽△ADB,∴,∵AD=2,CD=4,∴,∴AB2=12,∴AB=2或﹣2(不合题意,舍去),故选:D.【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为:.变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.证明:(1)∵∠BAC=∠DAE,∠ABC=∠ADE.∴△BAC∽△DAE;(2)∵△BAC∽△DAE,∴,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.解:如图,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴=,∵AC=,∴BM=3,在Rt△ABM中,AM===,∴AD=AM=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)解:如图中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=,故答案为:.实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.解:A、∵EF∥AB,∴=,∵DE∥BC,∴=,∴=,故A正确,B、易知△ADE∽△EFC,∴=,∴=,故B正确.C、∵△CEF∽△CAB,∴=,∴=,故C正确.D、∵DE∥BC,∴=,显然DE≠CF,故D错误.故选:D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC解:∵AH=8,HG=5,GD=4,∴AD=8+5+4=17,∵四边形ABCD为菱形,∴BC=CD=AD=17,∵AE∥HC,AD∥BC,∴四边形AECH为平行四边形,∴CE=AH=8,∴BE=BC﹣CE=17﹣8=9,∵HC∥GF,∴=,即=,解得:DF=,∴FC=17﹣=,∵>9>8>,∴CF长度最长,故选:A.4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.解:过D作DE⊥BC于E,则BE=AD=2,DE=2,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=28+(x﹣2)2,解得:x=4(负值舍去),∴BC=4,AC=,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴∴△A′CA∽△B′CB,∴,即∴AA′=,故选:A.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=6.解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴AC2=AP•AB,即AB=AC2÷AP=16÷2=8,∴BP=AB﹣AP=6.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,=4,=()2=,∵S△AEF=36,故答案为36.∴S△BCE8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.解:∵将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,∴BD=AB,BC=BE,∠ABD=∠CBE,∠DEB=∠ACB,∴∠D=∠BAC=∠BAD=(180°﹣∠ABD),∴∠BEC=(180°﹣∠CBE),∴∠D=∠BEC,∵∠ABC=∠DBE=90°,∴∠DEB+∠BEC=90°,∴∠AEC=90°,∵∠AGB=∠EGC,∴∠ACE=∠ABE,∵在Rt△ABC中,AB=3,BC=4,∴AC=DE=5,过B作BH⊥DE于H,则DH=AH,BD2=DH•DE,∴DH==,∴AD=,∴AE=DE﹣AD=,∴sin∠ABE=sin∠ACE===,故答案为:.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)如图,∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴=,且∠ACB=∠ACB∴△ABC∽△MEC∴∠CAB=∠CME=∠ACB∴ME=CE=212.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=1;②求的值.(1)证明:如图①,∵△ABC∽△ADE,∴∠BAC=∠DAE,=,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,=,∴∠BAD=∠CAE,∴△ABD∽△ACE.(2)解:①如图②,∵∠DAE=90°,∠ADE=30°,∴DE=2AE,∴AD===AE,∵=,∴AD=BD,∴AE=BD,∴=1,故答案为:1.②如图②,连接CE,∵∠BAC=∠DAE=90°,∠ABC=∠ADE,∴△BAC∽△CAE,∴=,∴=,∵∠BAD=∠CAE=90°﹣∠CAD,∴△BAD∽△CAE,∴∠ABC=∠ACE,∴∠ADE=∠ACE,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴=,由①得AD=AE,AD=BD,∴==,∴BD=CE,∴AD=×CE=3CE,∴=3,∴=3,∴的值是3.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.(1)证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=90°,∴∠ABD=∠ADB=45°,∴∠ABN=∠MBE=45°,∠BME=∠ABD+∠BAM=45°+∠BAM,∵∠EAF=45°,∴∠BAN=∠EAF+∠BAM=45°+∠BAM,∴∠BAN=∠BME,∴△ABN∽△MBE.(2)证明:如图1,将△ADN绕点A顺时针旋转90°得到△ABH,连接MH,∴∠BAH=∠DAN,AH=AN,HB=ND,∵∠MAN=∠EAF=45°,∴∠MAH=∠BAH+∠BAM=∠DAN+∠BAM=45°,∴∠MAH=∠MAN,∵AM=AM,∴△MAH≌△MAN(SAS),∴MH=MN,∵∠ABH=∠ADN=45°,∴∠MBH=∠ABD+∠ABH=90°,∴BM2+HB2=MH2,∴BM2+ND2=MN2.(3)解:①如图2,将△ADF绕点A顺时针旋转90°得到△ABK,∴AK=AF,∠BAK=∠DAF,BK=DF,∠ABK=∠ADF=90°,∴∠ABK+∠ABE=180°,∴点K、点B、点E在同一条直线上,∵∠EAK=∠BAE+∠BAK=∠BAE+∠DAF=45°,∴∠EAK=∠EAFM,∵AE=AE,∴△EAK≌△EAF(SAS),∴EK=EF,∴BE+DF=BE+BK=EK=EF,∵CB=CD=AB=4,∴CE+EF+CF=CE+BE+DF+CF=CB+CD=4+4=8,∴△CEF的周长是8.②如图2,∵F是CD的中点,∴CF=DF=CD=2,∵∠C=90°,∴CF2+EF2=CE2,∵EF=BE+DF=BE+2,CE=CB﹣BE=4﹣BE,∴22+(4﹣BE)2=(BE+2)2,解得BE=,∴EF=+2=,∵∠MBE=∠MAN=45°,∠BME=∠AMN,∴△BME∽△AMN,∴=,∴=,∴∠AMB=∠NME,∴△AMB∽△NME,∴∠NEM=∠ABM=45°,∴∠ENF=∠MAN+∠NEM=90°,∵G是EF的中点,∴NG=EF=×=,故答案为:.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴在Rt△ABM中,AM===2,∴AD=.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.解:(1)①猜想:BG ⊥DE ,BG =DE ;故答案为:BG =DE ,BG ⊥DE ;②结论成立.理由:如图2中,∵四边形ABCD 和四边形CEFG 是正方形,∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°,∴∠BCG =∠DCE ,∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG ⊥DE .(2)∵AB =a ,BC =b ,CE =ka ,CG =kb ,∴==,又∵∠BCG =∠DCE ,∴△BCG ∽△DCE ,∴∠CBG =∠CDE ,==,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG⊥DE.故答案为:=,BG⊥DE.(3)连接BE、DG.根据题意,得AB=4,BC=3,CE=2,CG=1.5,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+16+2.25+4=.。
中考数学几何专项——相似模型(相似三角形)
中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。
下面给出几个几何问题。
1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。
2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。
3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。
中考数学复习《图形的相似》
(3)设 EG=KD=x,则 AK=80-x. EF AK EF 80-x 3 ∵△AEF∽△ABC,∴BC=AD,即120= 80 ,∴EF=120-2x, 3 32 3 ∴矩形面积 S=x(120-2x)=-2x +120x=-2(x-40)2+2 400, 故当 x=40 时,此时矩形的面积最大,最大面积为 2 400 mm2
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
【解析】(1)根据正方形的对边平行得到 BC∥EF,利用“平行于三角形的 一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似” EF 判定即可;(2)设 EG=EF=x,用 x 表示 AK,根据△AEF∽△ABC 列比例式BC AK =AD可计算正方形边长; (3)设 EG=KD=x, 根据△AEF∽△ABC 用 x 表示 EF, 根据矩形面积公式可以写出矩形面积关于 x 的二次函数,根据二次函数求出矩 形的最大值.
【解析】根据题意可知一块 10 cm×5 cm 的长方形版面要付广告费 180 元, 18 因此每平方厘米的广告费为:180÷50= 5 元,然后根据相似三角形的性质, 由该版面的边长都扩大为原来的 3 倍, 18 广告费为:3×10×3×5× 5 =1620 元.故选 C.
3.(2017· 杭州)如图,在锐角三角形 ABC 中,点 D,E 分别在边 AC, AB 上,AG⊥BC 于点 G,AF⊥DE 于点 F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; AF (2)若 AD=3,AB=5,求AG的值. 证明:(1)∵AF⊥DE,AG⊥BC,
EA OD 3 (2)两个矩形不可能全等.当EG= DE =2时,两个矩形相似, 3 3 3 EA=2EG,设 EG=x,则 EA=2x,∴OB=2+2x,FB=3-x, 3 3 5 ∴F(2+2x,3-x),∴(2+2x)(3-x)=6,解得 x1=0(舍去),x2=3, 5 5 EG 3 5 ∴EG=3,∴矩形 AEGF 与矩形 DOHE 的相似比为DE=2=6
17中考数学相似三角形的7个考点(2)_考点解析
17中考数学相似三角形的7个考点(2)_考点解析
查字典数学网为您提供17中考数学相似三角形的7个考点:
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算。
知识必备08 相似三角形(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图
知识必备08相似三角形(公式、定理、结论图表)考点一、比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n.在两条线段的比a:b中,a叫做比的前项,b叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项.如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项.2、比例的性质(1)基本性质:①a:b=c:d ad=bc②a:b=b:c.(2)更比性质(交换比例的内项或外项)(交换内项)(交换外项)(同时交换内项和外项)(3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:3、黄金分割把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB.典例1:(2022•镇江)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆.衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 1.2 倍.【分析】根据比例的性质解决此题.【解答】解:由题意得,5m被称物=6m砝码.∴m被称物:m砝码=6:5=1.2.故答案为:1.2.【点评】本题主要考查比例,熟练掌握比例的性质是解决本题的关键.典例2:(2022•衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:≈1.414,≈1.732,≈2.236)( )A.0.73m B.1.24m C.1.37m D.1.42m【分析】设下部高为x m,根据雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比列方程可解得答案.【解答】解:设下部的高度为xm,则上部高度是(2﹣x)m,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,∴=,解得x=﹣1或x=﹣﹣1(舍去),经检验,x=﹣1是原方程的解,∴x=﹣1≈1.24,故选:B.【点评】本题考查黄金分割及分式方程的应用,解题的关键是读懂题意,列出分式方程解决问题.考点二、相似图形1.相似图形:我们把形状相同的图形叫做相似图形. 也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质: 相似多边形的对应角相等,对应边成的比相等. 相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质: (1)相似三角形的对应角相等,对应边的比相等. (2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比. (3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.【要点诠释】结合两个图形相似,得出对应角相等,对应边的比相等,这样可以由题中已知条件求得其它角的度数和线段的长.对于复杂的图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理.6.相似三角形的判定: (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似; (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似; (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. (5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.典例3:(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为 5 .【分析】如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.证明AB =3AD,设AD=CD=a,证明ET=CT,设ET=CT=b,则BE=3b,求出a+b,可得结论.【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD=DC=a,则AB=3a,∵AD=DC,DT∥AE,∴ET=CT,∴==3,设ET=CT=b,则BE=3b,∵AB+BE=3,∴3a+3b=3,∴a+b=,∴△ABC的周长=AB+AC+BC=5a+5b=5,故答案为:5.【点评】本题考查平行线分线段成比例定理,角平分线的性质定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.典例4:(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )A.B.C.D.【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=5,∴S△ADE:S△ABC的值为,故选:B.【点评】本题主要考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.典例5:(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE 的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB=∠AED,∴∠C=∠AED,∵AD⊥BE,∴∠D=∠ABC=90°,∴△ADE∽△ABC.【点评】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解决问题的关键.典例6:(2022•湘潭)如图,在⊙O中,直径AB与弦CD相交于点E,连接AC、BD.(1)求证:△AEC∽△DEB;(2)连接AD,若AD=3,∠C=30°,求⊙O的半径.【分析】(1)根据圆周角定理和相似三角形的判定可以证明结论成立;(2)根据直角三角形的性质和圆周角定理,可以得到AB的长,从而可以得到⊙O的半径.【解答】(1)证明:∵∠C=∠B,∠AEC=∠DEB,∴△AEC∽△DEB;(2)解:∵∠C=∠B,∠C=30°,∴∠B=30°,∵AB是⊙O的直径,AD=3,∴∠ADB=90°,∴AB=6,∴⊙O的半径为3.【点评】本题考查相似三角形的判定、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.典例7:(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.【分析】解法一:先证明△AOD∽△EFG,列比例式可得AO的长,再证明△BOC∽△AOD,可得OB 的长,最后由线段的差可得结论.解法二:过点C作CM⊥OD于C,证明△EGF∽△MDC可得结论.【解答】解:解法一:∵AD∥EG,∴∠ADO=∠EGF,∵∠AOD=∠EFG=90°,∴△AOD∽△EFG,∴=,即=,∴AO=15,同理得△BOC∽△AOD,∴=,即=,∴BO=12,∴AB=AO﹣BO=15﹣12=3(米);解法二:如图,过点C作CM⊥OD于C,交AD于M,∵△EGF∽△MDC,∴=,即=,∴CM=3,即AB=CM=3(米),答:旗杆的高AB是3米.【点评】本题考查相似三角形的判定与性质等知识,解题的关键掌握相似三角形的判定,属于中考常考题型.典例8:(2022•资阳)如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.【点评】本题主要考查了平行四边形的性质,相似三角形的判定和性质,二次函数的性质,矩形的性质,解直角三角形,熟练掌握平行四边形的性质,相似三角形的判定和性质,二次函数的性质,矩形的性质是解题的关键.考点三、位似图形1.位似图形的定义: 两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类: (1)外位似:位似中心在连接两个对应点的线段之外. (2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质 位似图形的对应点和位似中心在同一条直线上; 位似图形的对应点到位似中心的距离之比等于相似比; 位似图形中不经过位似中心的对应线段平行.【要点诠释】位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.4.作位似图形的步骤 第一步:在原图上找若干个关键点,并任取一点作为位似中心; 第二步:作位似中心与各关键点连线; 第三步:在连线上取关键点的对应点,使之满足放缩比例; 第四步:顺次连接截取点.【要点诠释】 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.典例9:(2022•河池)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.【分析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.也考查了轴对称变换.。
初中数学中考[图形的认识]第4讲相似三角形(教师版)
【知识梳理】【方法技巧】1、判定三角形相似的基本思路:一是条件中若有一组等角,可再找一组等角(找相等的角时注意挖掘公共角、对顶角、同角的余角或者同角的补角)或找夹这组等角的两组对应边成比例;二是条件中若有两组对应边成比例,可找夹角相等或计算第三组对应边的比,考虑三组对应边成比例(具体方法如下:首先把三角形的边分别按照从小到大的顺序排列,找出两个三角形的对应边;再分别计算小、中、大边的比,最后看三个比是否相等)。
2、解决圆中的相似问题时,要充分运用圆周角定理,圆心角、弧、弦的关系定理,切线的性质等找出角之间的关系,进而利用相似三角形的判定定理及性质求解。
3、相似三角形的基本模型:(1)“A ”字型(2)“X ”字型(3)“K ”字型(4)旋转型:符合旋转型的两个三角形,常用“两边成比例及夹角相等”来证明相似BBB CB C CQ DBA(5)母子型:在“母子三角形”中,应用公共边可得到关于三条线段的乘方式,由此可证明相似问题中的等积式。
4、位似图形必须同时满足两个条件:(1)两个图形是相似图形(2)两个图形的每组对应顶点的连线都经过同一点5、关于位似的警示点:(1)位似图形一定是相似图形,但是相似图形不一定是位似图形(2)位似图形可能在位似中心的同侧,也可能在位似中心的两侧,因此作一个图形关于某点的位似图形往往有两个。
如图: O A B C D OA B CD D CB AC D B A6、在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).【考点突破】考点1、基本概念与定理例1、如果2x=3y(x、y均不为0),那么下列各式中正确的是()A.=B.=3 C.=D.=变式1、已知=,那么的值为()A.B.C.D.变式2、下列各组中的四条线段成比例的是()A.1cm、2cm、20cm、30cm B.1cm、2cm、3cm、4cmC.5cm、10cm、10cm、20cm D.4cm、2cm、1cm、3cm例2、△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16变式1、已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为()A.B.C.D.变式2、如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6例3、如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.变式1、如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c 于点D,E,F,若=,则=()A.B.C.D.1例4、如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.变式1、如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.∠C=∠E B.∠B=∠ADE C.D.例5、在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A.B.C.D.变式2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.考点2:位似例1、在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC 的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A.B.C.D.变式1、如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.变式2、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.4例2、已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,△A′B′C′的周长是△ABC的周长一半.则△ABC的面积等于()A.24cm2B.12cm2C.6cm2D.3cm2变式1、如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1B.2C.4D.8考点3:相似的应用例1、小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米变式1、如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=4米,CA=2米,则树的高度为()A.6米B.4.5米C.4米D.3米例2、如图,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D 在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24m,BD=12m,DE=40m,则河的宽度AB约为()A.20m B.18m C.28m D.30m变式1、如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2cm,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.15变式2、如图,在河两岸分别有A、B两村,现测得A、B、D在一条直线上,A、C、E在一条直线上,BC∥DE,DE=90米,BC=70米,BD=20米,则A、B两村间的距离为()A.50米B.60米C.70米D.80米变式3、为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是()A.75米B.25米C.100米D.120米考点3、常见相似模型例1、如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④ D.①②③⑤变式1、如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C.=D.=例2、如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC等于()A.2 B.3 C.4 D.5变式1、如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为.例3、如图,在△ABC中,∠C=60°,以分别交AC,BC于点D,E,已知圆O的半径为.则DE的长为.变式1、如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.9例4、如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE变式1、如图,边长为4的正方形ABCD中有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上,若BF=1,则小正方形的边长为()A.B.C.D.变式2、如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD(填:“≌”或“~”)(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.例5、如图,在△ABC中,AB=AC,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=α,DE 交AC于点E.写出相似三角形________________.变式1、等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别交边AB、AC于点E、F.(1)如图1,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x 的函数关系式,并写出自变量x的取值范围;(2)如图2,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.例6、如图,在Rt△ABC中,CD是边AB上的高,若AC=4,AB=10,则AD的长为()A.B.2 C.D.3变式1、如图,△ABC中,∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则CD= .变式2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=1,则AD的长是,AC 的长是.例7、如图,矩形EFHG的边GH在△ABC边BC上,其他两个顶点分别在边AB、AC上,已知△ABC 的边BC=120cm,BC边上的高AD为80cm;求:(1)当矩形EFHG是正方形时,求这个正方形的边长;(2)设EG的长为x cm,x为何值时,矩形EFHG的面积最大?并求面积的最大值.变式1、如图,锐角△ABC中,BC=6,S△ABC=12,两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y,则y与x 的函数图象大致是()A.B.C.D.【分层训练】<A组>1.△ABC∽△DEF,且相似比为2:1,△ABC的面积为8,则△DEF的面积为()A.2 B.4 C.8 D.162.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.75cm,115cm B.60cm,100cm C.85cm,125cm D.45cm,85cm3.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值为()A.B.5 C.或5 D.无数个4.如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C、D、E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(4,2) B.(6,0) C.(6,3) D.(6,5)5.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米6.我们在制作视力表时发现,每个“E”形图的长和宽相等(即每个“E”形图近似于正方形),如图,小明在制作视力表时,测得l1=14cm,l2=7cm,他选择了一张面积为4cm2的正方形卡纸,刚好可以剪得第②个小“E”形图.那么下面四张正方形卡纸中,能够刚好剪得第①个大“E”形图的是()A.面积为8cm2的卡纸B.面积为16cm2的卡纸C.面积为32cm2的卡纸D.面积为64cm2的卡纸7.如图,四边形ABCD各顶点的坐标分别为A(2,6),B(4,2),C(6,2),D(6,4),在第一象限内,画出以原点为位似中心,相似比为的位似图形A1B1C1D1,并写出各点坐标.8.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).<B组>1.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA 水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个2.九年级某班开展数学活动,活动内容为测量如图所示的电杆AB的高度.在太阳光的照射下,电杆影子的一部分(BE)落在地面上,另一部分(EF)落在斜坡上,站在水平面上的小明的影子为DG,已知斜坡的倾角∠FEH=30°,CD=1.6m,DG=0.8m,BE=2.1m,EF=1.7m,则电杆的高约为m.(精确到0.1,参考数据:,)3.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm 的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.4.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)5.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.参考答案【考点突破】考点1、基本概念与定理例1、解:∵2x=3y,∴=,∴选项A不正确;∵2x=3y,∴=,∴==3,∴选项B正确;∵2x=3y,∴=,∴==,∴选项C不正确;∵2x=3y,∴=,∴==,∴∴选项D不正确.故选:B.变式1、解:∵=,∴设a=2k,则b=3k,则原式==.故选B.变式2、解:A.1×30≠2×20,故本选项错误;B.3×2≠1×4,故本选项错误;C.5×20=10×10,故本选项正确;D.4×1≠3×2,故本选项错误;故选C.例2、解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.变式1、解:∵△ABC∽△DEF,△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:A.变式2、解:∵在梯形ABCD中,AD∥BC,而且S△ACD:S△ABC=1:2,∴AD:BC=1:2;∵AD∥BC,∴△AOD~△BOC,∵AD:BC=1:2,∴S△AOD:S△BOC=1:4.故选:B.例3、解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.变式1、解:∵a∥b∥c,∴==.故选B.例4、解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.变式1、解:∵∠1=∠2,∴∠DAE=∠BAC,A、添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项错误;B、添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项错误;C、添加=,可用两边及其夹角法判定△ABC∽△ADE,故本选项错误;D、添加=,不能判定△ABC∽△ADE,故本选项正确;故选D.例5、解:三角形纸片ABC中,AB=8,BC=4,AC=6.A、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B、=,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D、==,对应边===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选:D.变式2、解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为。
中考数学几何专项——相似模型(相似三角形)
相似模型【相似模型一:A 字型】 特征 模型结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB CBDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD特征 模型结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D 顺着比,交叉乘 ③ △BOC∽△DOA特征 模型 结论成比例线段共端点① △ABC ∽△ADE② △ABD∽△ACE特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=特征模型结论ECD BAA BDC EEDCBA90度,45度; 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六:三角形内接矩形模型】 特征模型结论矩形EFGH 或正方形EFGH 内接与三角形H G FED C BA【相似模型七:十字模型】 特征 模型 结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中,CE ⊥BD ,则△CDE ∽△BCD ,CE CDBD BC平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中,AB =AC ,AB ⊥AC ,①D 为中点,②AE ⊥BD ,③BE :EC=2:1,④∠ADB =∠CDE ,⑤∠AEB =∠CED ,⑥∠BMC =135°,⑦2BMMC =,这七个结论中,“知二得五”【A 型,X 型,三平行模型】1.如图,在△ABC 中,EF ∥DC ,∠AFE =∠B ,AE =6,ED =3,AF =8,则AC =_________,CDBC=_________.F E DCBABCDE FA2.如图,AB ∥CD ,线段BC ,AD 相交于点F ,点E 是线段AF 上一点且满足∠BEF =∠C ,其中AF =6,DF =3,CF =2,则AE =_________.3.如图,在Rt △ABD 中,过点D 作CD ⊥BD ,垂足为D ,连接BC 交AD 于点E ,过点E 作EF ⊥BD 于点F ,若AB =15,CD =10,则BF :FD =_____________.FEBCAN MEDCBA4.如图,在□ABCD 中,E 为BC 的中点,连接AE ,AC ,分别交BD 于M ,N ,则BM :DN =_____________.5.如图所示,AB ∥CD ,AD ,BC 相交于点E ,过E 作EF ∥AB 交BD 于点F .则下列结论:①△EFD ∽△ABD ;②EF BF CD BD =;③1EF EF FD BF AB CD BD BD +=+=;④111AB CD EF+=.其中正确的有___________. F EDCBA图26.在△ABC 中,AB=9,AC=6,点M 在边AB 上,且AM=3,点N 在AC 边上.当AN= 时,△AMN 与原三角形相似.7.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .8.如图,已知O 是坐标原点,点A.B 分别在y x 、轴上,OA=1,OB=2,若点D 在x 轴下方,且使得△AOB 与△OAD 相似,则这样的点D 有 个.9.如图,在Rt △ACB 中,∠C=90°,AC=16cm ,BC=8cm ,动点P 从点C 出发,沿CA 方向运动;动点Q 同时从点B 出发,沿BC 方向运动,如果点P 的运动速度均为4cm/s ,Q 点的运动速度均为2cm/s ,那么运动几秒时,△ABC 与△PCQ 相似.10.将△ABC的纸片按如图所示的方式折叠,使点B落地边AC上,记为点B',折叠痕为EF,已知AB=AC=8,BC=10,若以点B'.F.C为顶点的三角形与△ABC相似,那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图,四边形中,平分,,,为的中点.(1)求证:;(2)与有怎样的位置关系?试说明理由;(3)若,,求的值.13.如图,在中,为上一点,,,,于,连接.(1)求证:;(2)找出图中一对相似三角形,并证明.14.如图,在中,,分别是,上的点,,的平分线交于点,交于点.(1)试写出图中所有的相似三角形,并说明理由(2)若,求的值.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB= _________.19.如图所示,AD=DF=FB, DE∥FG∥BC,则S1:S2:S3=__________.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,OE⊥BC于点E,连接DE交OC于点F,作FG⊥BC于点G,则线段BG与GC的数量关系是___.21. 如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 .22.如图1,在△ABC 中,点D 、E 、Q 分别在边AB 、AC 、BC 上,且DE ∥BC ,AQ 交DE 于点P . (1)求证: ;(2)如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG 、AF ,分别交DE 于M 、N 两点.如图2,若AB =AC =1,直接写出MN 的长;如图3,求证MN 2=DM【母子型】1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。
上海市各市县2017届中考数学试题分类汇编-初三一模相似三角形的性质
【答案】 1 2
【 2017 年杨浦一模 13】如果两个相似三角形的面积之比是
9 : 25 ,其中小三角形一边上的中线长是
12cm ,
那么大三角形中与之相对应的中线长是
cm
【答案】 20
【 2017 年虹口一模 6】如图,在 ABCD 中,点 E 是边 AD 的中点, EC 交对角线 BD 于点 F 若
上海市各市县 2017 届中考数学试题分类汇编 初三一模相似三角形的判定
【 2017 年宝山一模 8】如果两个相似三角形的相似比是 1:4,那么它们的面积比是
;
【答案】 1:16
【 2017 年奉贤一模 13】如果两个相似三角形对应角平分线的比是
是
;
【答案】 4: 9
4: 9,那么这两个三角形的周长比
过点 M ,且 ADE C ,那么 ADE 和 ABC 的面积比是
.
【答案】 1 4
【 2017 年普陀一模 13】利用复印机的缩放功能,将原图中边长为
5 厘米的一个等边三角形放大成边长为
20 厘米的等边三角形,那么放大前后的两个三角形的周长比是
;
【答案】 1:4
【 2017 年松江一模 3】小明身高 1.5 米,在某一时刻的影长为 2 米,同时测得教学大楼的影长为 60 米,则
【答案】 73 4
【 2017 年徐汇一模 16】在梯形 ABCD 中, AD∥ BC,AC、 BD 相交于 O,如果 △BOC 、△ACD 的面积分别 是 9 和 4,那么梯形 ABCD 的面积是 ___________ 【答案】 16
【 2017 年徐汇一模 17】在 Rt△ABC 中,∠ ABC= 90°, AC= 5, BC= 3, CD 是∠ ACB 的平分线,将△ ABC 沿直线 CD 翻折,点 A 落在点 E 处,那么 AE 的长是 ______________
相似三角形中考考点归纳与典型例题
相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。
掌握相似三角形的性质和应用是解决几何问题的基础。
相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
记作ΔABC ~ ΔDEF。
其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。
2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。
(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。
3. 边比例关系:相似三角形的对应边成比例。
即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。
4. 高比例关系:相似三角形的高线成比例。
即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。
5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。
(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。
(4) 相似三角形的高线间成比例。
相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。
解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。
所以∠ABC ~ ∠CBM。
根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。
例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。
解:由AE = CD可得∠A = ∠C。
又由BF = FE可得∠B = ∠AFE。
所以∠AFB ~ ∠ACD。
根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。
中考数学一轮复习专题解析—相似三角形
中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。
2.掌握三角形相似的判定方法和性质并学会运用。
考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
相似三角形的判定和性质-备战2023年中考数学考点微专题
考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。
说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。
2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。
3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。
4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。
(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。
(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。
第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。
5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
初三知识点数学(汇总10篇)
初三知识点数学(汇总10篇)初三知识点数学第1篇第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。
2、性质:等腰三角形的两个底角相等(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)等腰三角形的两底角的平分线相等。
(两条腰上的中线相等,两条腰上的高相等)等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
等腰三角形的一腰上的高与底边的夹角等于顶角的一半等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
初三知识点数学第2篇圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆有无数条对称轴。
(2)圆的相关特点1)径连接圆心和圆上的任意一点的线段叫做半径,字母表示为r通过圆心并且两端都在圆上的线段叫做直径,字母表示为d直径所在的直线是圆的对称轴。
在同一个圆中,圆的直径d=2r2)弦连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。
直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
2017年中考数学真题分类解析 直角三角形、勾股定理
一、选择题 1. 9.(2017浙江温州,9,4分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为A .12SB .10SC .9SD .8S答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =, 4个白色的矩形全等,且矩形的长均为,宽为(),则直角三角形的短直角边长为:.由勾股定理得AB ==3所以正方形ABCD 的面积为9S .2. (2017·辽宁大连,8,3分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为A . 2aB .22aC .3aD .334a答案:B 解析:由于CD ⊥AB ,CD =DE =a ,所以CE =22DE CD +=22a a +=2a ,又△ABC 中,∠ACB =90°,点E 是AB 的中点,所以AE =BE =CE ,所以AB =2CE =22a ,故选B .3. (2017山东淄博,12,4分)如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC ,∠ACB 的平分第8题CABDEM第9题HGFEDCBA线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为 ( )AM A设故4.’C=A .5. (2017黑龙江大庆,8,3分)如图,ABD ∆是以BD 为斜边的等腰直角三角形,BCD ∆中,090=∠DBC ,060=∠BCD ,DC 中点为E ,AD 与BE 的延长线交于点F ,则AFB ∠的度数为( )FE CBA(第12题图)A .030B .015C .045D .025答案:B ,解析:AFB ∠=∠ADE -∠DEB =75°- 60°=15°.6. (2017湖北黄石,7,3分)如图,△ABC 中,E 为BC 边的中点,CD ⊥AB ,AB =2,AC =1,则∠CDE +∠ACD =( )BEDCAA .60︒B .75︒C .90︒D .105︒答案:C ,解析:因为E 为BC 边的中点,CD ⊥AB ,,DE =32,所以BE =CE =DE =23,即∠CDE =∠DCE ,BC =3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,故∠CDE +∠ACD =90°,选C .7.(2017内蒙古包头)如图,在Rt ABC ∆中,090,ACB CD AB ∠=⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,若3,5AC AB ==,则CE 的长为( )(第12题)FE DCB AM ABCEF(第12题)A .32 B . 43 C . 53 D .85答案:A ,解析:考点直角三角形的性质与三角形相似的性质的应用.。
专题14相似三角形判定定理的证明(2个知识点6种题型1种中考考法)解析版-初中数学北师大版9年级上册
【答案】△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM,证明见解析. 【分析】根据相似三角形的判定定理可以直接写出图中有 3 对相似三角形;可以利用相似三角形的判定定 理两组角对应相等的两个三角形相似来证明△AMF∽△BGM. 【详解】图中的相似三角形有:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM. 以下证明△AMF∽△BGM. ∵∠AFM=∠DME+∠E(外角定理),∠DME=∠A=∠B(已知),∴∠AFM=∠DME+∠E=∠A+∠E=∠ BMG,∠A=∠B,∴△AMF∽△BGM. 【点睛】本题考查了相似三角形的判定.解答此题,要找出对应角相等来证明三角形相似. 【变式】(2022 秋·九年级课时练习)如图,在 △ABC 和 △ADE 中,∠BAD=∠CAE, ∠ABC=∠ADE. (1)写出图中两对相似三角形(不得添加字母和线); (2)请证明你写出的两对相似三角形.
∴△ABC∽△A′B′C′.
【点睛】本题主要考查了相似三角形的证明,作出辅助线,证明△ADE≌△A′B′C′,是解题的关键.
【例 3】(2022 秋·九年级课时练习)已知:在△ABC 和△A′B′C′中,
AB AB
BC BC
AC AC
《图形的相似》中考常考考点专题(基础篇)(专项练习)-2022-2023学年九年级数学
专题4.52 《图形的相似》中考常考考点专题(基础篇)(专项练习)一、单选题【知识点一】相似图形相关概念及性质【考点一】比例的性质✮✮线段的比(2018·甘肃陇南·中考真题)1. 已知23a b =(a ≠0,b ≠0),下列变形错误的是( )A. 23a b = B. 2a =3b C. 32b a = D. 3a =2b (2020·安徽阜阳·二模)2. 某零件长40厘米,若该零件在设计图上的长是2毫米,则这幅设计图的比例尺是( )A. 1:2000B. 1:200C. 200:1D. 2000:1【考点二】成比例线段✮✮黄金分割(2018·河北·模拟预测)3. 如图,画线段AB 的垂直平分线交AB 于点O ,在这条垂直平分线上截取OC OA =,以A 为圆心,AC 为半径画弧交AB 于点P ,则线段AP 与AB 的比是( )A. 2B.C.D. 2(2022·福建莆田·一模)4. P 是线段AB 上一点(AP BP >),则满足=AP BP AB AP,则称点P 是线段AB 的黄金分割点.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割点”.如图,一片树叶的叶脉AB 长度为10cm ,P 为AB 的黄金分割点(AP BP >),求叶柄BP 的长度.设cm BP x =,则符合题意的方程是( )A. ()21010x x -=B. ()21010x x =-C. ()21010x x -=D.()210110x x -=-【考点三】相似图形✮✮相似多边形(2021·四川成都·一模)5. 下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )A. B. C. D.(2020·河北衡水·一模)6. 在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为4的菱形按图1的方式向外扩张,得到新菱形,它们的对应边间距为1,则新菱形与原菱形相似.乙:将边长为4的菱形按图2方式向外扩张,得到新菱形,每条对角线向其延长线两个方向各延伸1,则新菱形与原菱形相似;对于两人的观点,下列说法正确的是( ).A. 两人都对B. 两人都不对C. 甲对,乙不对D. 甲不对,乙对【考点四】相似多边形的性质(2022·山东淄博·二模)7. 如图,将一张矩形纸片沿两长边中点所在的直线对折,如果得到两个矩形都与原矩形相似,则原矩形长与宽的比是( )A. 2:1B. 3:1C. 3:2D. (2022·湖北省直辖县级单位·一模)8. 如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A. 2:3B. 4:9C.D. 16:81【考点五】平行线分线段成比例(2022·四川·巴中市教育科学研究所中考真题)9. 如图,在平面直角坐标系中,C 为AOB 的OA 边上一点,:1:2AC OC ,过C 作CD OB ∥交AB 于点D ,C 、D 两点纵坐标分别为1、3,则B 点的纵坐标为( )A. 4B. 5C. 6D. 7(2020·新疆·中考真题)10. 如图,在△ABC 中,∠A =90°,D 是AB 的中点,过点D 作BC 的平行线交AC 于点E ,作BC 的垂线交BC 于点F ,若AB =CE ,且△DFE 的面积为1,则BC 的长为( )A. 10B. 5C.D. 【知识点二】相似三角形【考点一】相似三角形的判定(2022·浙江绍兴·二模)11. 如图,如果∠BAD =∠CAE ,那么添加下列一个条件后,仍不能确定△ADE 与△ABC 相似的是( )A. B =∠DB. ∠C =∠AEDC. AB AD =DE BCD. AB AD =AC AE (2022·山东东营·中考真题)12. 如图,点D 为ABC 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立的是( )A. AD AE DB EC =B. DE DF BC FC =C. DE AE BC EC =D. EF AE BF AC=【考点二】相似三角形的性质和判定➽➸求解✮✮证明(2021·山东济宁·中考真题)13. 如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D .(4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点.(5)作直线GH ,交AC ,AB 分别于点E ,F .依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是( )A. 510 B. 1 C. 94 D. 4(2022·黑龙江·哈尔滨市风华中学校三模)14. 如图,点F 是矩形ABCD 的边CD 上一点,射线BF 交AD 的延长线于点E ,则下列结论错误的是( )A. ED DF EA AB =B. DE EF BC FB =C. BC BF DE BE =D. BF BC BE AE=【考点三】相似三角形的性质和判定➽➸坐标✮✮网格(2016·江苏南京·一模)15. 如图,在平面直角坐标系中,点B 、C 在y 轴上,△ABC 是等边三角形,AB=4,AC 与x 轴的交点D0),则点A 的坐标为( )A. (1,B. (2,C. (1)D. (,2)(2012·湖北荆门·中考真题)16. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A. B. C. D.【考点四】相似三角形的性质和判定➽➸动点问题(2020·山东菏泽·一模)17. 如图,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 同侧,且∠ACD =∠ABC ,CD =2,点E 是线段BC 延长线上的动点.若△DCE 和△ABC 相似,则线段CE 的长为( )A. 43 B. 23 C. 43或3 D. 23或4(2021·河北石家庄·九年级期中)18. 如图,在锐角三角形ABC 中,6cm AB =,12cm AC =,动点D 从点A 出发到点B停止,动点E从点C出发到点A停止,点D运动的速度为1cm/s,点E运动的速度为2cm/s,如果两点同时开始运动,那么以点A,D,E为顶点的三角形与 相似时的运动时间为()ABCA. 3s或4.8sB. 3sC. 4.5sD. 4.5s或4.8s【考点五】相似三角形的性质和判定➽➸应用举例(2022·湖北十堰·中考真题)19. 如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A. 0.3cmB. 0.5cmC. 0.7cmD. 1cm(2020·山西·中考真题)20. 泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
中考数学复习之相似三角形的性质与判定,考点过关与基础练习题
AD是Rt△ABC 斜边上的高 29. 相似三角形➢ 知识过关1. 相似三角形的概念:如果两个三角形的对应角_________,对应边_______,那么这两个三角形叫做相似三角形. 2. 相似三角形的性质:对应角________,对应边________;周长之比等于_______;面积之比等于_______.3. 相似三角形的判定(1)两_______对应相等的两个三角形相似;(2)两边对应成比例,且______相等的两个三角形相似; (3)_______边对应成比例的两个三角形相似;(4)若一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角边对应______,那这两个直角三角形相似. 4.相似三角形的几种基本图形DE △BC △B =△AED △B △ACDA 型➢ 考点分类考点1相似三角形的判定例1如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 为AD 的中点,连接BE 交AC 于点F ,连接FD .若∠BF A =90°,给出以下三对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABO .其中相似的有_____________(填写序号).CB BCD E ADAEDAAD B CODBACCAO D BX 型母子型∠B ∠CAC ∥BD CB D AOFE DCBA考点2相似三角形的性质例2如图1所示,AB △BD ,CD △BD ,垂足分别为B ,D .AD ,BC 交于点E ,过E 作EF △BD于点F ,则可以得到111AB CD EF+=.若将图1中的垂直改为斜交,如图2所示,AB △CD ,AD ,BC 交于点E ,过E 作EF △AB 交BD 于点F ,试问:111AB CD EF+=还成立吗?请说明理由.考点3相似三角形的判定和性质综合例3如图,在Rt △ABC 中,∠ACB =90°,点D 在AC 上 (1)已知:AC =4,BC =2,∠CBD =∠A ,求BD 的长;(2)取AB ,BD 的中点E ,F ,连接CE ,EF ,FC ,求证:△CEF ∽△BAD .➢ 真题演练1.如图,点D 、E 分别在△ABC 边AB 、AC 上,AB AD=AE CE=3,且∠AED =∠B ,那么AD AC的值为( )A .12B .13C .14D .23F EDCBA图1F EDCBA图22.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,下列结论中,错误的是( )A .AD AC=AC ABB .AD AC=CD BCC .AD AC=BD BCD .AD CD=CD BD3.如图,边长为a 的正方形ABCD 中,对角线AC ,BD 交于点O ,E 在BD 上,作EF ⊥CE 交AB 于点F ,连结CF 交BD 于H ,则下列结论:①EF =EC ;②△FCG ∽△ACF ;③BE •DH =a 2;④若BF :AF =1:3,则tan ∠ECG =14,正确的是( )A .①②④B .②③④C .①②③D .①②③④4.如图,在▱ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .下列结论:①EG GC=AG GD;②EF FC=BF DF;③FC GF=BF DF;④EAEB=AG AD;⑤CF 2=GF •EF ,其中正确的个数是( )A .5B .4C .3D .25.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针90°旋转后,得到△AFB ,连接EF .下列结论中正确的个数有( ) ①∠EAF =45°; ②△ABE ∽△ACD ; ③EA 平分∠CEF ; ④BE 2+DC 2=DE 2.A .1个B .2个C .3个D .4个6.如图,在矩形ABCD中,过点A作对角线BD的垂线并延长,与DC的延长线交于点E,与BC交于点F,垂足为点G,连接CG,且CD=CF,则下列结论正确的有()个①CE=AD②∠DGC=∠BFG③CF2=BF•BC④BG=GE−√2CGA.1B.2C.3D.47.如图,在△ABC中,AC=BC=5,AB=6,以BC为边向外作正方形BCDE,连接AD,则AD=.8.如图,已知正方形ABCD的对角线AC与BD相交于点O,若AC=2√2cm,点E在DC 边的延长线上,若∠CAE=15°,则AE=cm.9.如图,点E在正方形ABCD边CD上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=7,CE=5,则PQ=.10.如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,若PQ =12,当AQ = 时,△AQD 与△BCP 相似.11.如图,AB =16cm ,AC =12cm ,动点P ,Q 分别以每秒2cm 和1cm 的速度同时开始运动,其中点P 从点A 出发,沿AC 边一直移到点C 为止,点Q 从点B 出发沿BA 边一直移到点A 为止(点P 到达点C 后,点Q 继续运动),当t = 时,△APQ 与△ABC 相似.12.某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在等腰△ABC 中,其中AB =AC ,如图Ⅰ,进行了如下操作:第一步,以点A 为圆心,任意长为半径画弧,分别交BA 的延长线和AC 于点E ,F ,如图Ⅱ;第二步,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点D ,作射线AD ;第三步,以D 为圆心,DA 的长为半径画弧,交射线AE 于点G ; (1)填空;写出∠CAD 与∠GAD 的大小关系为 ; (2)△请判断AD 与BC 的位置关系,并说明理由. △当AB =AC =6,BC =2时,连接DG ,请直接写出AD AG= ;(3)如图△,根据以上条件,点P 为AB 的中点,点M 为射线AD 上的一个动点,连接PM ,PC ,当△CPM =△B 时,求AM 的长.13.如图:在矩形ABCD中,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向C点移动,同时动点Q以1m/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动的时间为t秒(0<t<5).(1)t为多少时,以P、Q、C为顶点的三角形与△ABC相似?(2)在P、Q两点移动过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.课后练习1.如图,将矩形ABCD沿着GE,EC,GF翻折,使得点A,B,D恰好都落在点O处,且点G,O,C在同一条直线上,点E,O,F在另一条直线上.以下结论正确的是()A.△COF∽△CEG B.OC=3OF C.AB:AD=4:3D.GE=√6DF 2.如图,在△ABC中,P为AB上一点,下列四个条件中:①AC2=AP•AB;②AB•CP=AP •CB;③∠APC=∠ACB;④∠ACP=∠B能满足△APC与△ACB相似的条件是()A.①②③B.①②④C.①③④D.②③④3.如图,△ABC∽△DBE,延长AD,交CE于点P,若∠DEB=45°,AC=2√2,DE=√2,BE=1.5,则tan∠DPC=()A .√2B .2C .3+√22D .124.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,则下列结论:(1)sin ∠BAE =12;(2)BE 2=AB •CF ;(3)CD =3CF ;(4)△ABE ∽△AEF ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个5.如图,在四边形ABCD 中,∠BAC =90°,AB =6,AC =8,E 是BC 的中点,AD ∥BC ,AE ∥DC ,EF ⊥CD 于点F .下列结论错误的是( )A .四边形AECD 的周长是20B .△ABC ∽△FEC C .∠B +∠ACD =90°D .EF 的长为2456.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①S△ABM=4S △FDM ;②PN =2√6515;③tan ∠EAF =34;④△PMN ∽△DPE ,正确的是( )A .①②③B .①②④C .①③④D .②③④7.如图,正方形ABCD 中,AB =2√5,点N 为AD 边上一点,连接BN ,作AP ⊥BN 于点P ,点M 为AB 边上一点,且∠PMA =∠PCB ,连接CM .下列结论正确的个数有( ) (1)△P AM ∽△PBC (2)PM ⊥PC ;(3)∠MPB =∠MCB ; (4)若点N 为AD 中点,则S △PCN =6 (5)AN =AMA.5个B.4个C.3个D.2个8.如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,动点D,E分别在AB,CB边上,且BE=√2AD.连接CD,AE相交于点P,连接BP,则△CAD∽△,BP的最小值为.10.在△ABC中,AB=8,BC=16,AP=BP,点Q是BC边上一个动点,当BQ=时,△BPQ与△BAC相似.11.如图,四边形ABCD,CDEF,EFHG是三个正方形,∠2+∠3=.12.如图,在矩形ABCD中,点E,F分别在边AD,DC上,BE⊥EF,AB=6,AE=9,DE=2,则EF的长是.13.如图,小明想测量一棵大树AB的高度,他发现树的影子落在地面和墙上,测得地面上的影子BC的长为5m,墙上的影子CD的长为2m.同一时刻,一根长为1m垂直与地面标杆的影长为0.5m,则大树的高度AB为m.14.小明和小杰去公园游玩,小明给站在观景台边缘的小杰拍照时,发现他的眼睛、凉亭顶端、小杰的头顶三点恰好在一条直线上(如图所示).已知小明的眼睛离地面的距离AB 为1.6米,凉亭的高度CD为6.6米,小明到凉亭的距离BD为12米,凉亭与观景台底部的距离DF为42米,小杰身高为1.8米.那么观景台的高度为米.15如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.16.如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)如图①,在AB 上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求D 、E 两点的坐标;(2)如图②,若OE 上有一动点P (不与O ,E 重合),从点O 出发,以每秒1个单位的速度沿OE 方向向点E 匀速运动,设运动时间为t 秒(0<t <5),过点P 作PM ⊥OE 交OD 于点M ,连接ME ,求当t 为何值时,以点P 、M 、E 为顶点的三角形与△ODA 相似?➢ 冲击A+在正方形ABCD 中,点G 是边AB 上的一个动点,点F 、E 在边BC 上,BF =FE =AG ,且AG ≤12AB ,GF 、DE 的延长线相交于点P .(1)如图1,当点E 与点C 重合时,求∠P 的度数;(2)如图2,当点E 与点C 不重合时,问:(1)中∠P 的度数是否发生变化,若有改变,请求出∠P 的度数,若不变,请说明理由;(3)在(2)的条件下,作DN ⊥GP 于点N ,连接CN 、BP ,取BP 的中点M ,连接MN ,在点G 的运动过程中,求证:MN NC为定值.。
中考数学考点23相似三角形总复习(原卷版)
相似三角形【命题趋势】在中考中.相似三角形在中考主要以选择题、填空题和解答题的简单类型为主;常考的3种相似模型经常以解答题形式考查.常结合二次函数、圆综合考查。
【中考考查重点】 一、比例线段及性质二、相似三角形性质与判定考点1:比例线段及性质1、比例线段的有关概念:在比例式a cb d=(::a b c d =)中.a 、d 叫外项.b 、c 叫内项.a 、c 叫前项.b 、d 叫后项.d 叫第四比例项.如果b c =.那么b 叫做a 、d 的比例中项.2、把线段AB 分成两条线段AC 和BC.使2·AC AB BC =.叫做把线段AB 黄金分割.C 叫做线段AB 的黄金分割点. 3比例性质:①基本性质:a b cdad bc =⇔=; ②合比性质:±±a b c d a b b c dd=⇒=; ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0; 4、平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线.所得的对应线段成比例.如图.已知1l ∥2l ∥3l .可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DF AC DF DE EF=====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:AD AE BD EC AD AEDB EC AD EA AB AC===或或.此推论较原定理应用更加广泛.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法.即:利用比例式证平行线.(4)定理:平行于三角形的一边.并且和其它两边相交的直线.所截的三角形的三边与原三角形三边对应成比例.1.(2021秋•金安区校级期末)如图.已知直线l1∥l2∥l3.直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F.若DE=3.DF=8.则的值为()A.B.C.D.2.(2021•兰州)如图.小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时.标准视力表中最大的“”字高度为72.7mm.当测试距离为3m 时.最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm考点2 相似三角形的性质与判定性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形周长的比等于相似比;(5)相似三角形面积的比等于相似比的平方;判定(1)两角对应相等.两个三角形相似;(2)两边对应成比例且夹角相等.两三角形相似;(3)三边对应成比例.两三角形相似;三大常考相似模型模型一A字型模型二8字型模型三K型3.(2021•河北)图1是装了液体的高脚杯示意图(数据如图).用去一部分液体后如图2所示.此时液面AB=()A.1cm B.2cm C.3cm D.4cm4.(2021秋•南岸区期末)如图.在△ABC中.D.E分别是AB和BC上的点.且DE∥AC...则△ABC与△DBE的面积之比为()A.B.C.D.5.(2021秋•椒江区期末)如图.点D.E分别在△ABC的边AB.AC上.且满足△ADE∽△ACB.∠AED=∠B.若AB=10.AC=8.AD=4.则CE的长是()A.2B.3C.4D.56.(2021秋•贞丰县期末)如图AC与BD相交于点E.AD∥BC.若AE:AC=1:3.S△AED:S△CEB为()A.1:9B.1:4C.D.7.(2021•临沂)如图.点A.B都在格点上.若BC=.则AC的长为()A.B.C.2D.38.(2021•韩城市模拟)如图.矩形ABCD中.E.F分别为CD.BC的中点.且AE⊥EF.BC=2.则AC的长为()A.B.2C.3D.2 9.(2021•安徽模拟)如图.在△ABC中.∠B=60°.∠C=45°.AB=4.E为AC中点.D 为AB上一点.连接DE.当∠AED=60°时.AD的长为()A.2B.C.3D.10.(2020秋•长安区期末)如图.△ABC中.CD⊥AB于D.AD=9.CD=6.如果△ADC与△CDB相似.则BD的长度为.11.(2021•连云港)如图.BE是△ABC的中线.点F在BE上.延长AF交BC于点D.若BF=3FE.则=.12.(2021•安徽模拟)(1)如图.Rt△ABC中.∠A=90°.AB=AC.D为BC中点.E、F 分别为AB、AC上的动点.且∠EDF=90°.求证:DE=DF;(2)如图2.Rt△ABC中.∠BAC=90°.AC=4.AB=3.AD⊥BC.∠EDF=90°.①求证:DF•DA=DB•DE;②求EF的最小值.13.(2021•靖西市模拟)如图.在△ABC中.点D.F.E分别在AB.BC.AC边上.DF∥AC.EF ∥AB.(1)求证:△BDF∽△FEC.(2)设.①若BC=15.求线段BF的长;②若△FEC的面积是16.求△ABC的面积.1.(2021春•永嘉县校级期中)如图.已知点C是线段AB的黄金分割点(其中AC>BC).则下列结论正确的是()A.B.C.AB2=AC2+BC2D.BC2=AC•BA2.(2021秋•南京期末)如图.在△ABC中.DE∥BC.=.则下列结论中正确的是()A.=B.=C.=D.=3.(2021•平南县三模)如图.在△ABC中.点D在AC上.点F是BD的中点.连接AF并延长交BC点E.BE:BC=2:7.则AD:CD=()A.2:3B.2:5C.3:5D.3:74.(2021•吉安模拟)如图平行四边形ABCD.F为BC中点.延长AD至E.使DE:AD=1:3.连结EF交DC于点G.若△DEG的面积是1.则五边形DABFG的面积是()A.11B.12C.D.5.(2021•蚌埠二模)如图.在△ABC中.点D是AB上一点.且∠A=∠BCD.S△ADC:S△BDC=5:4.CD=4.则AC长为()A.5B.6C.9D.6.(2021•东港区校级二模)如图.AB为⊙O的直径.BC为⊙O的切线.弦AD∥OC.直线CD交BA的延长线于点E.连接BD.求证:(1)△EDA∽△EBD;(2)ED•BC=AO•BE.1.(2021•阿坝州)如图.直线l1∥l2∥l3.直线a.b与l1.l2.l3分别交于点A.B.C和点D.E.F.若AB:BC=2:3.EF=9.则DE的长是()A.4B.6C.7D.12 2.(2021•巴中)两千多年前.古希腊数学家欧多克索斯发现了黄金分割.即:如图.点P是线段AB上一点(AP>BP).若满足.则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见.例如:主持人在舞台上主持节目时.站在黄金分割点上.观众看上去感觉最好.若舞台长20米.主持人从舞台一侧进入.设他至少走x米时恰好站在舞台的黄金分割点上.则x满足的方程是()A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对3.(2021•巴中)如图.△ABC中.点D、E分别在AB、AC上.且==.下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC4.(2021•湘西州)如图.在△ECD中.∠C=90°.AB⊥EC于点B.AB=1.2.EB=1.6.BC =12.4.则CD的长是()A.14B.12.4C.10.5D.9.3 5.(2021•温州)如图.图形甲与图形乙是位似图形.O是位似中心.位似比为2:3.点A.B 的对应点分别为点A′.B′.若AB=6.则A′B′的长为()A.8B.9C.10D.15 6.(2021•遂宁)如图.在△ABC中.点D、E分别是AB、AC的中点.若△ADE的面积是3cm2.则四边形BDEC的面积为()A.12cm2B.9cm2C.6cm2D.3cm2 7.(2021•南充)如图.在△ABC中.D为BC上一点.BC=AB=3BD.则AD:AC的值为.8.(2021•百色)如图.△ABC中.AB=AC.∠B=72°.∠ACB的平分线CD交AB于点D.则点D是线段AB的黄金分割点.若AC=2.则BD=.9.(2021•包头)如图.在Rt△ABC中.∠ACB=90°.过点B作BD⊥CB.垂足为B.且BD =3.连接CD.与AB相交于点M.过点M作MN⊥CB.垂足为N.若AC=2.则MN的长为.10.(2021•菏泽)如图.在△ABC中.AD⊥BC.垂足为D.AD=5.BC=10.四边形EFGH和四边形HGNM均为正方形.且点E、F、G、N、M都在△ABC的边上.那么△AEM与四边形BCME的面积比为.11.(2021•玉林)如图.在△ABC中.D在AC上.DE∥BC.DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC.求的值.12.(2021•南通)如图.利用标杆DE测量楼高.点A.D.B在同一直线上.DE⊥AC.BC⊥AC.垂足分别为E.C.若测得AE=1m.DE=1.5m.CE=5m.楼高BC是多少?13.(2021•滨州)如图.在⊙O中.AB为⊙O的直径.直线DE与⊙O相切于点D.割线AC ⊥DE于点E且交⊙O于点F.连接DF.(1)求证:AD平分∠BAC;(2)求证:DF2=EF•AB.14.(2021•盐城)如图.O为线段PB上一点.以O为圆心.OB长为半径的⊙O交PB于点A.点C在⊙O上.连接PC.满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A.求的值.1.(2021•武都区二模)如图所示.若点C是AB的黄金分割点.AB=2.则AC的值为()A.B.C.D.22.(2021•香洲区二模)如图.AB∥CD∥EF.AF与BE相交于点G.若BG=2.GC=1.CE =5.则的值是()A.B.C.D.2.(2021•武进区校级模拟)如图.在△ABC中.DE∥BC..则下列结论中正确的是()A.B.C.D.3.(2021•镇江)如图.点D.E分别在△ABC的边AC.AB上.△ADE∽△ABC.M.N分别是DE.BC的中点.若=.则=.4.(2021秋•阳山县期末)如图.已知△ABC∽△AMN.点M是AC的中点.AB=6.AC=8.则AN=.5.(2021•兰州模拟)如图.已知△ABE∽△CDE.AD、BC相交于点E.△ABE与△CDE 的周长之比是.若AE=2、BE=1.则BC的长为()A.3B.4C.5D.6 6.(2021•云南模拟)如图.在Rt△ABC中.∠ABC=90°.BD⊥AC于点D.AD=4.AB=5.则AC长为()A.B.C.D.7.(2021•元阳县模拟)如图.点E是正方形ABCD的边CD上的一点.且=.延长AE交BC的延长线于点F.则△CEF和四边形ABCE的面积比为()A.B.C.D.8.(2021•滦南县二模)如图.某数学活动小组为测量校园内移动信号转播塔AB的高度.他们先在水平地面上一点E放置了一个平面镜.镜子与铁塔底端B的距离BE=16m.当镜子与观测者小芳的距离ED=2m时.小芳刚好从镜子中看到铁塔顶端A.已知小芳的眼睛距地面的高度CD=1.5m.铁塔AB的高度为()(根据光的反射原理.∠1=∠2)A.9m B.12m C.15m D.18m 9.(2021•城关区校级模拟)如图.AB、CD都是BD的垂线.AB=4.CD=6.BD=14.P是BD上一点.联结AP、CP.所得两个三角形相似.则BP的长是.10.(2021•二道区校级一模)如图.在△ABC中.∠ACB=90°.CD是斜边AB的中线.过点C、D分别作CE∥AB.DE∥AC交于点E.连结BE.(1)求证:四边形CDBE是菱形.(2)若AB=10.tan A=.则菱形CDBE的面积为.11.(2020•曹县二模)如图.AB是⊙O的直径.C为⊙O上一点.PC切⊙O于C.AE⊥PC 交PC的延长线于E.AE交⊙O于D.PC与AB的延长线相交于点P.连接AC、BC.(1)求证:AC平分∠BAD;(2)若PB:PC=1:2.PB=4.求AB的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017中考数学相似三角形的7个考点
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算。