2017中考数学压轴题

合集下载

2017届中考数学专题选择填空压轴题总复习最新版

2017届中考数学专题选择填空压轴题总复习最新版

A.1.5cm C.1.8cm
B.1.2cm D.2cm
首页
末页
6.如图,点G、E、A、B在一条直线上,Rt△EFG 从如图所示的位置出发,沿直线AB向右匀速运动 ,当点G与B重合时停止运动.设△EFG与矩形 ABCD重合部分的面积为S,运动时间为t,则S与t 的图象大致是( D )
首页
末页
二、填空题
专题一 选择填空压轴题
一、选择题
1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,
图象过点(﹣1,0),对称轴为直线x=2,下列结
论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④
当x>﹣1时,y的值随x值的增大而增大.其中正 确的结论有( B )
A.1个
B.2个
C.3个
D.4个
7.如图-1,三个正方形的边长分别为2,6,8; 则图中阴影部分的面积为 21 .
8.如图-2,D是△ABC的边BC上任意一点,E、F分 别是线段AD、CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是 5 cm2.
首页
末页
9.如图-3,在矩形ABCD中,AD=9cm,AB=3cm,
将其折叠,使点D与点B重合,则重叠部分 (△BEF)的面积为 7.5cm2 .
A.
B.
C.
D.
首页
末页
4.如图,一根长5米的竹杆AB斜立于墙AC的右侧 ,底端B与墙角C的距离为3米,当竹杆顶端A下滑x 米时,底端B便随着向右滑行y米,反映y与x变化 关系的大致图象是( A )
首页
末页
5.如图1,在Rt△ABC中,∠ACB=90°,点P以每 秒1cm的速度从点A出发,沿折线AC﹣CB运动,到 点B停止,过点P作PD⊥AB,垂足为D,PD的长y (cm)与点P的运动时间x(秒)的函数图象如图 2所示,当点P运动5秒时,PD的长是( B )

2017中考数学《压轴题》专题训练含答案解析

2017中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。

解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。

2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。

中考数学压轴题60例(选择题)

中考数学压轴题60例(选择题)

. . . .中考数学选择题压轴题一、选择题1.将正方形 ABCD 绕点 A 按逆时针方向旋转 30°,得正方形 AB 1C 1D 1,B 1C 1 交 CD 于点 E ,AB= ,则四边形 AB 1ED 的内切圆半径为( )A B C D考点:三角形的内切圆与内心;正方形的性质;旋转的性 质.专题: 压轴题.分析:作∠DAF 与∠AB 1G 的角平分线交于点 O ,则 O 即为该圆的圆心,过 O 作 OF ⊥AB 1,AB= ,再根据直角三角形的性质便可求出 OF 的长,即该四边形内切圆的圆心.解答:解:作∠DAF 与∠AB 1G 的角平分线交于点 O ,过 O 作 OF ⊥AB 1,】则∠OAF=30°,∠AB 1O=45°,故 OA ,设 B 1F=x ,则 AF= ﹣x ,故( ﹣x)2+x 2=(2x)2,解得 或 (舍去),∴四边形AB1ED 的内切圆半径为.故选:B.2.如图,四边形ABCD 中,∠C=50°,∠B=∠D=90°,E、F 分别是BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( )A 50°B 60°C 70°D 80°解答:解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于E,交CD 于F,则A′A″即为△AEF的周长最小值.作DA 延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.本题考查的是轴对称﹣最短路线问题,涉及到平面3.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F,连接B′D,则B′D 的最小值是( )A 2 ﹣2B 6C 2 ﹣2D 4考点:翻折变换(折叠问题).专题:压轴题.分析:当∠BFE=∠DEF,点B′在DE 上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E 即为所求.解答:解:如图,当∠BFE=∠DEF,点B′在DE 上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥FD,∴EB′=EB,∵E 是AB 边的中点,AB=4,∴AE=EB′=2,∵AB=6,∴DE= =2 ,∴DB′=2﹣2.故选:A.点评:本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D 的值最小,是解决问题的关键.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是( )相同.如果5 是方程M 的一个根,那是方程N 的一个根,,B ;利用一元二次方程的解的定义判断C 与D . 解答: 解:A 、如果方程 M 有两个相等的实数根,那么△=b 2 ﹣4ac=0,所以方程 N 也有两个相等的实数根,结论正确,不符合题意; B 、如果方程 M 的两根符号相同,那么方程 N 的两 根符号也相同,那么 >0,所以 a 与c 符号相同, >0,所以方程 N 的两根符号也相同结论正确,不符合题意;C 、如果 5 是方程 M 的一个根,那么 25a+5b+c=0, 两边同时除以 25,c+b+a=0,所 是方程 N 的一个根,结论正确,不符合题意;D 、如果方程 M 和方程 N 有一个相同的根,那么 ax 2+bx+c=cx 2+bx+a ,(a ﹣c)x 2=a ﹣c ,由 a ≠c ,得 x 2=1 x=±1 ,结论错误,符合题意; 故选:D .本题考查了一元二次方程根的情况与判别式△的关5.如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t),AB∥x 轴,矩形A′B′C′D′与矩形ABCD 是位似图形,点O 为位似中心,点A′,B′分别是点A,B 的对应点,=k.已知关于x,y 的二元一次方(m,n 是实数)无解,在以m,n 为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于( )A B 1 C ...D ., ,: 压轴题. : 首先求出点 A′的坐标为(k ,kt),再根据关于 x ,y 的二 元一次方 (m ,n 是实数)无解,可得 mn=3,且 n≠1;然后根据以 m ,n 为坐标(记为(m ,n)的所有的点中,有且只有一个点落在矩形 A′B′C′D′的边上,可得反比例函数 的图象只经过点 A′或 C′;最后分两种情况 讨论:(1)若反比例函数 的图象经过点 A′时;(2)若反 比例函数 的图象经过点 C′时;求出 k•t 的值等于多少即可. : 解:∵矩形 A′B′C′D′与矩形 ABCD 是位似图形=k 顶点 A 的坐标为(1,t),∴点 A′的坐标为(k ,kt),∵关于 x ,y 的二元一次方(m ,n 是实数)无解∴mn=3,且 n≠1,即 (m≠3), ∵以 m ,n 为坐标(记为(m ,n)的所有的点中,有且只有一个点落在矩形 A′B′C′D′的边上,∴反比例函数 的图象只经过点 A′或 C′,由,可得mnx ﹣3x+4=3n+1,(1)若反比例函数的图象经过点A′,得kt=1.(2)若反比例函数的图象经过点C′,6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )A ①②④B ③④C ①③④D ①②....:压轴题.:①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a、b、c 的符号;②根据对称轴求出b=﹣a;③把x=2 代入函数关系式,结合图象判断函数值与0 的大小关系;④求出点(0,y1)关于直线的对称点的坐标,根据对称轴即可判断y1和y2的大小.:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y 轴的正半轴于一点,∴c>0,∵对称轴是直线,∴﹣,∴b=﹣a>0,∴abc<0.故①正确;,7.如图,在△ABC 中,AB=CB ,以 AB 为直径的⊙O 交 AC 于点 D .过点 C 作 CF ∥AB ,在 CF 上取一点 E ,使 DE=CD ,连接 AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③ = ;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )∴a+b=0, 故②正确;③把 x=2 代入 y=ax 2+bx+c 得:y=4a+2b+c , ∵抛物线经过点(2,0), ∴当 x=2 时,y=0,即 4a+2b+c=0. 故③错误;④∵(0,y 1)关于直线 的对称点的坐标是(1,y 1),∴y 1=y 2. 故④正确;综上所述,正确的结论是①②④. 故选:A 点评:本题考查了二次函数的图象和系数的关系的应用,注意:当 a >0 时,二次函数的图象开口向上,当 a <0 时 二次函数的图象开口向下.A ①②B ①②③C ①④D ①②④....∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC 不能确定为直角三角形,∴∠1 不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E 在以AC 为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE 为⊙O 的切线,所以④正确.故选:D.8.如图,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是( )A 25°B 30° .., 、、C 35° .D 40° .考点: 轴对称-最短路线问题. 专题: 压轴题.分析:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD 分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN MN ,由对称的性质得出 PM=CM ,OP=OC ,∠COA=∠POA ;PN=DN ,OP=OD ,∠DOB=∠POB ,得出∠ AOB=∠COD ,证出△OCD 是等边三角形,得出∠ COD=60°,即可得出结果.解答:解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ∴PM=DM ,OP=OD ,∠DOA=∠POA ; ∵点 P 关于 OB 的对称点为 C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=∠COD , ∵△PMN 周长的最小值是 5cm , ∴PM+PN+MN=5, ∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.如图,在边长为2 的正方形ABCD 中剪去一个边长为1 的小正方形CEFG,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A B C D....动时间t 之间的函数关系图象大致是( ).. . .C D;,A B考点: 动点问题的函数图象. 专题: 压轴题. 分析: 首先根据 Rt △ABC 中∠C=90°,∠BAC=30°,AB=8, 分别求出 AC 、BC ,以及 AB 边上的高各是多少;然后根据图示,分三种情况:(1)当 0≤t ≤2 时;(2)当 2 时 (3)当 6<t≤8 时;分别求出正方形 DEFG 与△ABC 的重合部分的面积 S 的表达式,进而判断出正方形 DEFG 与 △ABC 的重合部分的面积 S 与运动时间 t 之间的函数关 系图象大致是哪个即可. 解答: 解:如图 1,CH 是 AB 边上的高,与 AB 相交于点 H∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8× =4 ,BC=AB×sin30°=8× =4, ∴CH=AC×,AH= ,(1)当 0≤t≤2 时, S= =t 2;(2)当 2 时,S=﹣=t2[t2﹣4 t+12]=2t﹣2(3)当6<t≤8 时,S=[(t﹣2 )•tan30°]×[6 ﹣(t﹣2 ×[ (8﹣t)•tan60°]×(t﹣6)=[]×[ ﹣t+2 ×[ ﹣t ]×(t﹣6)=﹣t2+2t+4 t2 ﹣30=﹣t2 ﹣26综上,可得S=∴正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是A 图象.故选:A., 11.如图所示,MN 是⊙O 的直径,作 AB ⊥MN ,垂足为点 D ,连接 AM ,AN ,点 C 为 上一点,且 = ,连接 CM ,交 AB 于点 E ,交 AN 于点 F ,现给出以下结论:①AD=BD ;②∠MAN=90°;③ = ;④∠ACM+∠ANM=∠ MOB ;⑤AE=MF . 其中正确结论的个数是()C 4D 5 . .考点: 圆周角定理;垂径定理. 专题: 压轴题. 分析: 根据 AB ⊥MN ,垂径定理得出①③正确,利用 MN 是直径得出②正确 = = ,得出④正确,结合②④得出 ⑤正确即可. 解答: 解:∵MN 是⊙O 的直径,AB ⊥MN ,∴AD=BD , = ,∠MAN=90°(①②③正确) ∵ = , ∴ = = ,∴∠ACM+∠ANM=∠MOB(④正确) ∵∠MAE=∠AME ,∴AE=ME ,∠EAF=∠AFM , ∴AE=EF ,A 2 .B 3 .,∴AE=MF(⑤正确). 正确的结论共 5 个. 故选:D .12.在平面直角坐标系中,点 A ,B 的坐标分别为(﹣3,0), (3,0),点 P 在反比例函数 的图象上,若△PAB 为直角三角形,则满足条件的点 P 的个数为( ) A 2 个 B 4 个 C 5 个 D 6 个 . . .., ;:压轴题. : 分类讨论:①当∠PAB=90°时,则 P 点的横坐标为﹣3 根据反比例函数图象上点的坐标特征易得P 点有1 个 ②当∠APB=90°,设 ),根据两点间的距离公式和勾股定理可得(x+3)2+()2+(x ﹣3)2+()2=36,此时 P 点 有 4 个,③当∠PBA=90°时,P 点的横坐标为 3,此时 P 点有 1 个.: 解:①当∠PAB=90°时,P 点的横坐标为﹣3,把 x=﹣3 代入 得 ,所以此时 P 点有 1 个;②当∠APB=90°,设 P(x ),PA 2=(x+3)2+()2,PB 2=(x﹣3)2+()2,AB2=(3+3)2=36,因为PA2+PB2=AB2,所以)2+(x﹣3)2+()2=36,整理得x4﹣9x2+4=0,所以,或,所以此时P 点有4 个,③当∠PBA=90°时,P 点的横坐标为3,把x=3 代入y=得,所以此时P 点有1 个;综上所述,满足条件的P 点有6个.故选:D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数(k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B 两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是( )A 4B 3C 2D 1....:压轴题;数形结合.:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y 轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x 轴的交点个数得到b2﹣4ac >0,加上a<0,则可对②进行判断;利用OA=OC 可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,两边除以c 则可对③进行判断;设A(x1,0) B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x 轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到,于是,则可对④进行判断.:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴b>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x 轴有2 个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B 两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.14.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y 和x,则y 与x 的函数图象大致是( )A BC D....考点:函数的图象.专题:压轴题.分析:立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=4x,再得出图象即可.解答:解:正方形的边长x,y﹣x=2x,∴y 与x 的函数关系式为x,故选:B.点评:本题考查了一次函数的图象和综合运用,解题的关键是从x 等于该立方体的上底面周长,从而得到关系式.15.如图,△ABC,△EFG 均是边长为2 的等边三角形,点D 是边BC、EF 的中点,直线AG、FC 相交于点M.当△EFG 绕点D 旋转时,线段BM 长的最小值是( )A 2﹣B +1CD ﹣1. . . .., 考点:旋转的性质;四点共圆;线段的性质:两点之间线段最短;等边三角形的性质;勾股定理;相似三角形的 判定与性质. 专题: 压轴题. 分析: 取 AC 的中点 O ,连接 AD 、DG 、BO 、OM ,如图,易证△DAG ∽△DCF ,则有∠DAG=∠DCF ,从而可得 A 、D 、C 、M 四点共圆,根据两点之间线段最短可得BO≤BM+OM ,即 BM≥BO ﹣OM ,当 M 在线段 BO 与该圆的交点处时,线段 BM 最小,只需求出 BO 、OM 的值,就可解决问题.解答:解:AC 的中点 O ,连接 AD 、DG 、BO 、OM ,如图 ∵△ABC ,△EFG 均是边长为 2 的等边三角形,点 D 是边 BC 、EF 的中点, ∴AD ⊥BC ,GD ⊥EF ,DA=DG ,DC=DF , ∴∠ADG=90°﹣∠CDG=∠FDC ,=, ∴△DAG ∽△DCF ,∴∠DAG=∠DCF .∴A 、D 、C 、M 四点共圆.根据两点之间线段最短可得:BO≤BM+OM ,即BM≥BO ﹣OM ,当 M 在线段 BO 与该圆的交点处时,线段 BM 最小 此时,BO= = = AC=1,则 BM=BO ﹣OM= ﹣1. 故选:D .点评:本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点 M 的运动轨迹是解决本题的关键.16.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边 AC 沿 CE 翻折,使点 A 落在 AB 上的点 D 处;再将边 BC 沿 CF 翻折,使点 B 落在 CD 的延长线上的点 B′处,两条折痕与斜边 AB 分别交于点 E 、F ,则线段 B′F 的长为( )C D . ., A .B .考点: 翻折变换(折叠问题). 专题: 压轴题.分析:首先根据折叠可得 CD=AC=3,B′C=BC=4,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB然后求得△ECF 是等腰直角三角形,进而求得,ED=AE,从而求得,在Rt△B′DF 中,由勾股定理即可求得B′F的长.解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE= ,∴DF=EF﹣ED=,∴B′F=.故选:B.定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关 键.17.已知二次函数 y=ax 2+bx+c+2 的图象如图所示,顶点为(﹣ 1,0),下列结论:①abc <0;②b 2﹣4ac=0;③a >2;④4a ﹣ 2b+c >0.其中正确结论的个数是( )A 1B 2C 3D 4 .. . .,考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: ①首先根据抛物线开口向上,可得 a >0;然后根据对称轴在 y 轴左边,可得 b >0;最后根据抛物线与 y 轴的交点在 x 轴的上方,可得 c >0,据此判断出 abc >0 即可.②根据二次函数y=ax 2+bx+c+2 的图象与x 轴只有一个交点,可得△=0,即 b 2﹣4a(c+2)=0,b 2﹣4ac=8a >0据此解答即可.③首先根据对称轴 =﹣1,可得 b=2a ,然后根据 b 2﹣4ac=8a ,确定出 a 的取值范围即可.④根据对称轴是 x=﹣1,而且 x=0 时,y >2,可得 x= ﹣2 时,y >2,据此判断即可.:解:∵抛物线开口向上,∴a>0,∵对称轴在y 轴左边,∴b>0,∵抛物线与y 轴的交点在x 轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2 的图象与x 轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;18.如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF⊥CD 交AB 于点F,DE ⊥CD 交AB 于点E,G 为半圆弧上的中点.当点C 在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y 与x 的函数关系的图象大致是( )A B C D....考点:动点问题的函数图象.专题:压轴题.分析:根据弦CD 为定长可以知道无论点C 怎么运动弦CD 的弦心距为定值,据此可以得到函数的图象.解答:解:作OH⊥CD 于点H,∴H 为CD 的中点,∵CF⊥CD 交AB 于F,DE⊥CD 交AB 于E,∴OH 为直角梯形的中位线,∵弦CD 为定长,∴CF+DE=y 为定值,故选:B.点评:本题考查了动点问题的函数图象,解题的关键是化动为静.19.如图,△ABC 中,AB=AC,D 是BC 的中点,AC 的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A 1 对B 2 对C 3 对D 4 对在△ABD 和△ACD 中,,在△AOE 和△COE 中,,在△BOD 和△COD 中,,在△AOC 和△AOB 中,,∴△AOC ≌△AOB ;故选:D .点评:本题考查的是全等三角形的判定方法;这是一道考试常 见题,易错点是漏掉△ABO ≌△ACO ,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.20.二次函数 y=ax 2+bx+c(a≠0)的图象如图所示,下列结论: ①2a+b >0;②abc <0;③b 2﹣4ac >0;④a+b+c <0;⑤4a ﹣ 2b+c <0,其中正确的个数是( )B 3C 4D 5 . . .考点: 二次函数图象与系数的关系.专题: 压轴题.分析: 由抛物线开口向下得到 a <0,由对称轴在 x=1 的右侧得到 >1,于是利用不等式的性质得到 2a+b >0; 由 a <0,对称轴在 y 轴的右侧,a 与 b 异号,得到 b >0,抛物线与 y 轴的交点在 x 轴的下方得到 c <0,于 是 abc >0;抛物线与 x 轴有两个交点,所以△=b 2﹣4ac >0;由 x=1 时,y >0,可得 a+b+c >0;由 x=﹣2 时 y <0,可得 4a ﹣2b+c <0.解答: 解:①∵抛物线开口向下,A 2.∴a<0,∵对称轴>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y 轴的交点在x 轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x 轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1 时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2 时,y<0,∴4a﹣2b+c<0,故⑤正确.故选:B.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,a<0开口向下;对称轴为直线,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c<0,抛物线与y 轴的交点在x 轴的下方;当△=b2﹣4ac>0,抛物线与x 轴有两个交点.21.如图,▱ABCD 的对角线AC、BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB= BC,连接OE.下列结论:①∠CAD=30°;②S ▱ABCD =AB•AC ;③OB=AB ;④ OE=BC ,成立的个数有( )A 1 个B 2 个C 3 个D 4 个. . . .,考点: 平行四边形的性质;等腰三角形的判定与性质;等边三 角形的判定与性质;含 30 度角的直角三角形. 专题:压轴题. 分析: 由四边形 ABCD 是平行四边形,得到∠ABC=∠ ADC=60°,∠BAD=120°,根据 AE 平分∠BAD ,得到 ∠BAE=∠EAD=60°推出△ABE 是等边三角形,由于 AB=BC ,得到 BC ,得到△ABC 是直角三角形, 于是得到∠CAD=30°,故①正确;由于 AC ⊥AB ,得到S ▱ABCD =AB•AC ,故②正确,根据 BC ,OB=BD且 BD >BC ,得到 AB≠OB ,故③错误;根据三角形的中位线定理得到 AB ,于是得到 BC ,故④正确.解答: 解:∵四边形 ABCD 是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE 平分∠BAD ,∴∠BAE=∠EAD=60°∴△ABE 是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.22.如图,正方形ABCD 的边长为6,点E、F 分别在AB,AD 上,若CE=3 ,且∠ECF=45°,则CF 的长为( )A 2B 3C D解:如图,延长FD 到G,使DG=BE;连接CG、EF;∵四边形ABCD 为正方形,在△BCE 与△DCG 中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF 与△ECF 中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3 ,CB=6,∴BE= =3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF= = ,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF= = =2 ,故选:A.点评本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.23.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3 有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4 时,有y2<y1,其中正确的是( )A ①②③B ①③④C ①③⑤D ②④⑤....:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1 时,二次函数有最大值,∴方程ax2+bx+c=3 有两个相等的实数根,所以③正确;∵抛物线与x 轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以④错. . . . 误;∵抛物线 y 1=ax 2+bx+c 与直线 y 2=mx+n(m≠0)交于A(1,3),B 点(4,0)∴当 1<x <4 时,y 2<y 1,所以⑤正确.故选:C .点评: 本题考查了二次项系数与系数的关系:对于二次函数y=ax 2+bx+c(a≠0),二次项系数 a 决定抛物线的开口方向和大小:当 a >0 时,抛物线向上开口;当 a <0 时抛物线向下开口;一次项系数 b 和二次项系数 a 共同决定对称轴的位置:当 a 与 b 同号时(即 ab >0),对称轴在 y 轴左; 当 a 与 b 异号时(即 ab <0),对称轴在 y 轴右.(简称:左同右异);常数项 c 决定抛物线与 y 轴交点:抛物线与 y 轴交于(0,c);抛物线与 x 轴交点个数由△决定:△=b 2﹣4ac >0 时,抛物线与 x 轴有 2 个交点;△=b 2﹣4ac=0 时,抛物线与 x 轴有 1 个交点;△=b 2﹣4ac <0 时,抛物线与 x 轴没有交点.24.在同一平面直角坐标系中,函数 y=ax 2+bx 与 y=bx+a 的图象可能是( )A B C D,考点: 二次函数的图象;一次函数的图象. 专题: 压轴题.分析: 首先根据图形中给出的一次函数图象确定 a 、b 的符号,221111: 解:A 、对于直线 y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线 y=ax 2+bx 来说,对称轴 x= ﹣<0,应在 y 轴的左侧,故不合题意,图形错误.B 、对于直线 y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线 y=ax 2+bx 来说,图象应开口向下故不合题意,图形错误.C 、对于直线 y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线 y=ax 2+bx 来说,图象开口向下,对 称轴 位于 y 轴的右侧,故符合题意,D 、对于直线 y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线 y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选:C . 此主要考查了一次函数、二次函数图象的性质及其应用. . . . , 再作△B 2A 3B 3 与△B 2A 2B 1 关于点 B 2 成中心对称,如此作下去, 则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点 A 2n+1 的坐标是( )A (4n ﹣1,B (2n ﹣1,C (4n+1,D (2n+1,) ) ) )考点: 坐标与图形变化-旋转.专题: 压轴题;规律型.分析: 首先根据△OA 1B 1 是边长为 2 的等边三角形,可得 A 1 的坐标为(1 ),B 1 的坐标为(2,0);然后根据中心对称的性质,分别求出点 A 2、A 3、A 4 的坐标各是多少;最后总结出 A n 的坐标的规律,求出 A 2n+1 的坐标是多少 即可.解答: 解:∵△OA 1B 1 是边长为 2 的等边三角形,∴A 1 的坐标为(1, ),B 1 的坐标为(2,0),∵△B 2A 2B 1 与△OA 1B 1 关于点 B 1 成中心对称,∴点 A 2 与点 A 1 关于点 B 1 成中心对称,∵2×2 ﹣1=3,2×0 ﹣ =﹣ ,∴点 A 2 的坐标是(3,﹣ ),∵△B 2A 3B 3 与△B 2A 2B 1 关于点 B 2 成中心对称,∴点 A 3 与点 A 2 关于点 B 2 成中心对称,∵2×4 ﹣3=5,2×0 ﹣(﹣ )= ,∴点 A 3 的坐标是(5, ),∵△B 3A 4B 4 与△B 3A 3B 2 关于点 B 3 成中心对称,∴点 A 4 与点 A 3 关于点 B 3 成中心对称,∵2×6 ﹣5=7,2×0 ﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1 ﹣1,3=2×2 ﹣1,5=2×3 ﹣1,7=2×3 ﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n 为奇数时,A n的纵坐标是,当n 为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n 是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.点评:此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.26.如图,AD 是△ABC 的角平分线,则AB:AC 等于( )A BD:CDB AD:CDC BC:AD D BC:AC....考点:角平分线的性质.专题:压轴题.分析:先过点B 作BE∥AC 交AD 延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可=,而利用AD 时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.:解:如图过点B 作BE∥AC 交AD 延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD 是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.此题考查了角平分线的定义、相似三角形的判定和性27.如图,在钝角△ABC 中,分别以 AB 和 AC 为斜边向△ABC 的外侧作等腰直角三角形 ABE 和等腰直角三角形 ACF ,EM 平分∠AEB 交 AB 于点 M ,取 BC 中点 D ,AC 中点 N ,连接 DN 、DE 、DF .下列结论 S 四边形 ABDN ;③DE=DF ;④DE ⊥DF .其中正确的结论的个数是( )C 3 个D 4 个 . .,, A 1 个.B 2 个 . 考点: 全等三角形的判定与性质;等腰直角三角形;三角形 中位线定理. 专题: 压轴题. 分析: ①首先根据 D 是 BC 中点,N 是 AC 中点 N ,可得 DN 是△ABC 的中位线,判断出 ;然后判断出 EM=,即可判断出 EM=DN ; ②首先根据 DN ∥AB ,可得△CDN ∽ABC ;然后根据DN=, 可 得 S △ABC , 所 以 S 四 边 形 ABDN 据此判断即可.③首先连接MD 、FN ,判断出DM=FN ,∠EMD=∠DNF 然后根据全等三角形判定的方法,判断出△EMD ≌△ DNF ,即可判断出 DE=DF ., . ④首先判断 ,DM=FA ,∠EMD=∠EAF 根据相似计三角形判定的方法,判断出△EMD ∽△∠ EAF ,即可判断出∠MED=∠AEF ,然后根据∠MED+ ∠AED=45°,判断出∠DEF=45°,再根据 DE=DF ,判 断出∠DFE=45°,∠EDF=90°,即可判断出 DE ⊥DF:解:∵D 是 BC 中点,N 是 AC 中点, ∴DN 是△ABC 的中位线,∴DN ∥AB ,且 ;∵三角形 ABE 是等腰直角三角形,EM 平分∠AEB 交 AB 于点 M ,∴M 是 AB 的中点,∴EM=,又 ,∴EM=DN ,∴结论①正确;∵DN ∥AB ,∴△CDN ∽ABC ,∵DN=,∴S △CDN =S △ABC ,∴S △CDN =S 四边形 ABDN ,∴结论②正确;如图1,连接MD、FN,,∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且;∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN=,又,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN 是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD 和△DNF 中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE 是等腰直角三角形,EM 平分∠AEB,∴M 是AB 的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且;∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN=,∠FNA=90°,∠FAN=∠AFN=45°,又,∴DM=FN=FA,∵∠EMD=∠EMA+∠AMD=90°+ ∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+ ∠AMD∴∠EMD=∠EAF,在△EMD 和△∠EAF 中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,。

中考数学压轴题重难点突破一 规律探索 类型二:图形规律

中考数学压轴题重难点突破一 规律探索 类型二:图形规律

10.★(2022·大庆)观察下列“蜂窝图”,按照这样的规律,则第 16 个 图案中的“ ”的个数是 4949 .

11.★(2022·十堰)如图,某链条每节长为 2.8 cm,每两节链条相连接
部分重叠的圆的直径为 1 cm,按这种连接方式,50 节链条总长度为 991 cm. 1
12.★(2022·牡丹江)如图,下列图形是将正三角形按一定规律排列, 则第 5 个图形中所有正三角形的个数是 48485 个.
16.★(2022·遂宁)“勾股树”是以正方形一边为斜边向外作直角三角 形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所 画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分 别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图 原理作图,则第六代勾股树中正方形的个数为 12127.
对于图形个数变化规律探索题,解决的一般步骤: 1.标序号:记每个(组)图形的序数为“1,2,3,…,n”; 2.数图形个数:对应的图形个数用 a1, a2, a3,…,an 表示;
3.观察:a1,a2,a3,…,an 与对应序数之间的关系; ①图形个数与图序数是倍数或平方关系; ②图形个数与图序数关系不明确时,按照以下步骤找寻关系: 步骤一:列表表示 an-an-1 的值; 步骤二:将所列等式左右相加,得到(a2-a1)+(a3-a2)+…+(an-an-1) =an-a1 的值; 步骤三:表示 an; 4.验证:代入序号检验所得式子是否正确.
类型二:图形规律 (省卷 2017T18;天水 2017T16)
(一题多设问)
(1) ★如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需
要 3 根火柴棍;拼第二个图形共需要 5 根火柴棍;…,照这样拼图,则 第 n 个图形需要 ((22n+n+1) 根火柴棍;

2017年中考数学相似三角形压轴题

2017年中考数学相似三角形压轴题

相似三角形中考压轴试题一、选择题1.(2014年江苏宿迁3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=8,AD=3,BC=4,点P 为AB 边上一动点,若△P 与A △DPBC 是相似三角形,则满足条件的点P 的个数是【】A.1个B.2个C.3个D.4个二、填空题1.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α= 3 4.有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD与△DBE 全等;③△BDE 为直角三角形时,BD 为12或 21 4 ;④0<BE ≤ 24 5,其中正确的结论是(填入正确结论的序号).三、解答题1.(2014年福建三明14分)如图,在平面直角坐标系中,抛物线y=ax 2+bx+4与x 轴的一个交点为A (﹣ 2,0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B .(1)求抛物线的函数表达式;(2)经过B ,C 的直线l 平移后与抛物线交于点M ,与x 轴交于点N ,当以B ,C ,M ,N 为顶点的四边形是平行四边形时,求出点M 的坐标;(3)若点D 在x 轴上,在抛物线上是否存在点P ,使得△PBD ≌△PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由.2.(2014年湖北十堰12分)已知抛物线C1:2yax12的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.3.(2014年湖南郴州10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°BC,=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CP是D等腰三角形?4.(2014年湖南衡阳10分)二次函数y=ax 2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△的面积为APCS,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△B相O似C?5.(2014年湖南益阳12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.6.(2014年内蒙古呼伦贝尔13分)以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△CO的B形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长;(3)当点E在线段OA上时,是否存在以点E、O、F为顶点的三角形与△A相B似C?若存在,请求出此时线段OE的长;若不存在,请说明理由.7.(2014年山东日照14分)如图1,在菱形OABC中,已知OA=23,∠AOC=60°,抛物线y=ax 2+bx+c (a≠0)经过O,C,B三点.(1)求出点B、C的坐标并求抛物线的解析式.(2)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.①当OP+PC的最小值时,求出点P的坐标;②在①的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PE相F似?若存在,请求出点M的坐标;若不存在,请说明理由.8.(2014年山东威海12分)如图,已知抛物线y=ax 2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△C相O似B?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BD的A度数.9.(2014年宁夏区10分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.△与PB△QABC相似;有(1)试说明不论点P在BC边上何处时,都(2)若AC=3,BC=4,当BP为何值时,△AQ面P积最大,并求出最大值;R t△AOP(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=AC,是否存在一个的值,使既与Rt△ACP全等,也与Rt△BQP全等.与x轴交于A点,与y轴交于B点,动点P410.(2014年新疆区、兵团12分)如图,直线y x83A O方向向点O匀速运动,同时动点Q从B点出发,以每秒1个从A点出发,以每秒2个单位的速度沿单位的速度沿B A方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3.)(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQ的P面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△A相B似O,并直接写出此时点Q的坐标.11.(2014年新疆乌鲁木齐14分)如图.在平面直角坐标系中,边长为2的正方形ABCD的顶点A、B在x轴上,连接O D、BD、△BOD的外心I在中线BF上,BF与AD交于点E.(1)求证:△OAD≌△EAB;(2)求过点O、E、B的抛物线所表示的二次函数解析式;(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;(4)连接O E,若点M是直线BF上的一动点,且△B与M△DOED相似,求点M的坐标.12.(2014年云南省9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段A C的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM 与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为A C2,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.13.(2014年浙江湖州12分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P 与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.10.(2013年山东日照14分)已知,如图(a),抛物线2yaxbxc经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N。

2017全国中考数学压轴题——解答题部分(三)

2017全国中考数学压轴题——解答题部分(三)

2017全国中考数学压轴题一一解答题部分(三)241. (河南省23)如图,直线y=—3X+ c与x轴交于点A(3, 0),与y轴交于点B,抛物(1) 求点B的坐标和抛物线的解析式;⑵M(m, 0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点M在线段OA上运动,若以B, P, N为顶点的三角形与?APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M, P, N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M , P, N三点为“共谐点” •请直接写出使得M , P, N三点成为“共谐点”的m的值.42. (黑龙江大庆28)如图,直角?ABC中,/ A为直角,AB = 6, AC= 8 •点P, Q, R 分别在AB , BC, CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R 由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1) 求证:?APR, ?BPQ, ?CQR的面积相等;⑵求?PQR面积的最小值;(3)用t(秒)(0 w t w 2)表示运动时间,是否存在t,使/ PQR= 90。

,若存在,请直接写出t的值;若不存在,请说明理由.43. (黑龙江哈尔滨26)已知:AB是O O的弦,点C是AB的中点,连接OB、OC, OC交AB于点D .⑴如图1,求证:AD = BD;(2) 如图2,过点B作O O的切线交0C的延长线于点M,点P是AC上一点,连接AP、BP,求证:/ APB-Z OMB = 90°⑶如图3,在⑵的条件下,连接DP、MP,延长MP交O O于点Q,若MQ = 6DP , sinZ ABO = 5,求MQ 的值•44. (黑龙江哈尔滨27)如图,在平面直角坐标系中,点O为坐标原点,抛物线y= x2+ bx+ c 交x轴于A、B两点,交y轴于点C,直线y = x- 3经过B、C两点.(1) 求抛物线的解析式;(2) 过点C作直线CD丄y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE丄x轴于点E, PE交CD于点F,交BC于点M,连接AC,过点M作MN丄AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);⑶在⑵的条件下,连接PC,过点B作BQ丄PC于点Q(点Q在线段PC上),BQ交CD 于点T,连接OQ交CD于点S,当ST= TD时,求线段MN的长.45. (黑龙江龙东28)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x—15| + y- 13 = O(OA>OC),直线y = kx+ b分别与x 轴、y轴交于M、N两点,将△ BCN沿直线BN折叠,点C恰好落在直线MN上的点D3处,且tan Z CBD = 74(1) 求点B的坐标;(2) 求直线BN的解析式;(3) 将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0 v t < 13)的函数关系式.46. (黑龙江齐齐哈尔26)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC, OA的长是关于x的一元二次方程x2—12x+ 32= 0的两个根,且0A>OC. 3 43 直接写出点D的坐标;4 若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E, C, P, F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.47. (黑龙江绥化28)如图,在矩形ABCD中,E为AB边上一点,EC平分/ DEB, F为CE 的中点,连接AF, BF,过点E作EH II BC分别交AF, CD于G, H两点.(1) 求证:DE = DC ;(2) 求证:AF丄BF;⑶当AF?GF = 28时,请直接写出CE的长.348. (黑龙江绥化29)在平面直角坐标系中,直线 y = — 4X + 1交y 轴于点B ,交x 轴于点1 ~ , 3A ,抛物线y = — 2x 5 6 + bx + c 经过点B ,与直线y = — 4+1交于点C(4, — 2).(1) 求抛物线的解析式;(2) 如图,横坐标为 m 的点M 在直线BC 上方的抛物线上,过点 M 作ME II y 轴交直线 BC 于点E ,以ME 为直径的圆交直线 BC 于另一点D ,当点E 在x 轴上时,求△ DEM 的周长. ⑶将△ AOB 绕坐标平面内的某一点按顺时针方向旋转 90°得到△ A 1O 1B 1,点A , O , B 的对应点分别是点 A 1, 01, B 1,若厶A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出 方,且CE = £5 求抛物线的解析式及顶点 D 的坐标;6 求证:直线DE 是厶ACD 外接圆的切线;1⑶在直线AC 上方的抛物线上找一点 P ,使S ?ACP = ?S ?ACD ,求点P 的坐标;⑷在坐标轴上找一点 M ,使以点B 、C 、M 为顶点的三角形与△ ACD 相似,直接写出点 M 的坐标.c350. (湖北恩施24)如图12,已知抛物线y= ax2+ c过点(-2, 2) , (4, 5),过定点F(0, 2)的直线I: y= kx+ 2与抛物线交于A, B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1) 求抛物线的解析式;(2) 当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3) P为y轴上一点,以B, C, F, P为顶点的四边形是菱形,设点P(0, m),求自然数m的值;(4) 若k= 1,在直线I下方的抛物线上是否存在点Q,使得?QBF的面积最大,若存在,求出点Q的坐标及?QBF的最大面积,若不存在,请说明理由.51. (湖北黄冈24)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形, OA= 4,0C = 3.动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动•设点P、点Q的运动时间为t(s).y j1C P£r7------ --- fc-Q J X⑴当t = 1s时,求经过点O, P, A三点的抛物线的解析式;⑵当t = 2s时,求tan Z QPA的值;⑶当线段PQ与线段AB相交于点M,且BM = 2AM时,求t(s)的值;⑷连接CQ,当点P,Q在运动过程中,记?CQP与矩形OABC重叠部分的面积为S, 求S与t 的函数关系式.52. (湖北黄石24)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为.2:1,我们不妨就把这样的矩形成为“标准矩形” •在“标准矩形” ABCD中,P为DC边上一定点,且CP = BC,如下图所示.(1)如图①,求证:BA = BP;⑵如图②,点Q在DC上,且DQ= CP,若G为BC边上一动点,当△ AGQ的周长最小时,求C—的值;⑶如图③,已知AD = 1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF , T 为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM = BN,请证明:△ MNT的面积S为定值,并求出这个定值.453. (湖北黄石25)如图,直线I: y= kx+ b(k v 0)与函数y = ;(x>0)的图象相交于A、C z\.两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y 轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE•设A、C4 4两点的坐标分别为(a, a), (c, C),其中a>c>0.⑵如图②,若A、D、E、C四点在同一圆上,求k的值;⑶如图③,已知c= 1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM丄AM ?若存在,请求出点M的坐标;若不存在,请说明理由.54. (湖北荆门24)已知:如图所示,在平面直角坐标系xOy中,/ C= 90° , OB = 25, OC= 20.若点M是边OC上的一个动点(与点O, C不重合),过点M作MN // OB交BC 于点N.(1)求点C的坐标;⑵当?MCN的周长与四边形OMNB的周长相等时,求CM的长;(3) 在OB上是否存在点Q,使得?MNQ为等腰直角三角形?若存在,请求出此时MN的长;若不存在,请说明理由.355. (湖北荆州25)如图在平面直角坐标系中,直线y = —4X+ 3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒•其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作O Q.(1)求证:直线AB是O Q的切线;⑵过点A左侧x轴上的任意一点C(m, 0),作直线AB的垂线CM,垂足为M •若CM 与O Q 相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);⑶在⑵的条件下,是否存在点C,直线AB、CM、y轴与O Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.xL O AF — G=90o, AC II OP 交OM 于C , D 为OB 的中点,DE 丄DC 交MN 于E .(1)如图1,若点B 在OP 上,则①AC_OE(填”或“〉”);②线段CA 、 CO 、CD 满足的等量关系式是 ___________________________ ;⑵将图1中的等腰Rt △ ABO 绕O 点顺时针旋转 (0o< V 45。

2017年中考数学填空压轴题

2017年中考数学填空压轴题

2017年中考数学填空压轴题填空题1(2017浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________【答案】22. 【解析】试题解析:连接AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y=﹣34x+3时,PQ 最小, ∵A 的坐标为(﹣1,0),y=﹣34x+3可化为3x+4y ﹣12=0, ∴22|3(1)4012|34+=3, ∴223-1=22.考点:1.切线的性质;2.一次函数的性质.2.(2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.学科网【答案】【解析】试题解析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ ⊥FB ,∴FQ=BQ=12BF, ∵AB=4,F 是AB 的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=2,Rt △DAF 中,DF=2242=25+,∵DE=EF,DE ⊥EF, ∴△DEF 是等腰直角三角形,∴DE=EF=25=102,∴PD=22DE PE -=3,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴422CG DC DG AG AF FG ====, ∴CG=2AG ,DG=2FG,∴FG=1252533⨯=, ∵22442+=∴CG=233⨯=,∴-=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴3 =,∴EH=EF﹣-=∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GH DE EH=,123EN==,∴EN=2,∴NH=EH﹣EN=326-=,Rt△GNH中,6==,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=2632+++=考点:1。

2017中考数学压轴题 福建历年中考压轴精选(2020年7月整理).pdf

2017中考数学压轴题 福建历年中考压轴精选(2020年7月整理).pdf
式为______________;
(2)判断 △ABC 的形状,并说明理由; (3)若 △ABC 内部能否截出面积最大的矩形 DEFC(顶点 D、E、F、G 在△ABC 各边 上)?若能,求出在 AB 边上的矩形顶点的坐标;若不能,请说明理由.
[抛物线
y
=
ax2
+
bx
+
c
的顶点坐标是

b 2a
,
证明:如图 2 过点 P 作 MN⊥AD 于点 M,交 BC 于点 N, 因为 AD∥BC,MN⊥AD,所以 Hale Waihona Puke N⊥BC5学海无涯
在 Rt△AMP 中,PA2=PM2+MA2
在 Rt△BNP 中,PB2=PN2+BN2
在 Rt△DMP 中,PD2=DM2+PM2
在 Rt△CNP 中,PC2=PN2+NC2
单位长度的速度移动;同时另一个动点 Q 以某一速度从点 B 沿线段 BC 移动,经过 t 秒 的移动,线段 PQ 被 BD 垂直平分,求 t 的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点 M,使 MQ+MC 的值最小? 若存在,请求出点 M 的坐标;若不存在,请说明理由.
(注:抛物线 y = ax2 + bx + c 的对称轴为 x = − b ) 2a
过点 F 的双曲线为 C1 ,过点 M 且以 B 为顶点的抛物线为 C2 , 过点 P 且以 M 为顶点的抛物线为 C3 .
(1) 如图 10,当 m=6 时,①直接写出点 M、F 的坐标,
图 10
②求 C1 、 C2 的函数解析式;
(2)当 m 发生变化时, ①在 C1 的每一支上,y 随 x 的增大如何变化?请说明理由。

专题14 三角形问题-中考数学压轴题精品专题练(第二期)

专题14 三角形问题-中考数学压轴题精品专题练(第二期)

一、选择题1.(2017天津,第11题,3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC2.(2017滨州,第11题,3分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.13.(2017广西河池市,第12题,3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC 于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3B.4C.8D.94.(2017江苏省宿迁市,第8题,3分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1c m/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.25cm D.32cm5.(2017江苏省无锡市,第10题,3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2B.54C.53D.756.(2017浙江省宁波市,第11题,4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.23C.13D.47.(2017浙江省杭州市,第10题,3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=218.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A .4B .5C .6D .79.(2017湖北省鄂州市,第10题,3分)如图四边形ABCD 中,AD ∥BC ,∠BCD =90°,AB =BC +AD ,∠DAC =45°,E 为CD 上一点,且∠BAE =45°.若CD =4,则△ABE 的面积为( )A .712B .724C . 748D .750 10.(2017贵州省毕节市,第15题,3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为( )A .340B .415C .524 D .6 11.(2017辽宁省营口市,第7题,3分)如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠CAB =45°,则下列结论不正确的是( )A .∠ECD =112.5°B .DE 平分∠FDC C .∠DEC =30°D .AB 2CD12.(2016浙江省湖州市)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.2513.(2016湖北省武汉市)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.814.(2016贵州省六盘水市)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.702nB.1702n+C.1702n-D.2702n+15.(2016山东省威海市)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.512BDBC=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG16.(2016山东省德州市)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM =CN ;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos . 上述结论中正确的个数是( )A .1B .2C .3D .417.(2016山东省淄博市)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则AB BD的值为( )A .425B .34C .528D .20223 18.(2016贵州省铜仁市)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .519.(2016内蒙古包头市)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,E 是AB 上一点,且DE ⊥CE .若AD =1,BC =2,CD =3,则CE 与DE 的数量关系正确的是( )A.CE=3DE B.CE=2DE C.CE=3DE D.CE=2DE20.(2016四川省达州市)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.521.(2016山东省东营市)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或1022.(2016山东省淄博市)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH 的长为()A.835B.22C.145D.105223.(2016山东省淄博市)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.12B.1C.3D.224.(2016江苏省无锡市)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.7B.22C.3D.2325.(2016浙江省舟山市)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.5B.136C.1D.5626.(2016湖北省武汉市)如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A2πB.πC.22D.227.(2016贵州省黔东南州)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D 、E ,则CD +CE =( )A .2B .3C .2D .628.(2016福建省泉州市)如图,已知点A (﹣8,0),B (2,0),点C 在直线344y x =-+上,则使△ABC 是直角三角形的点C 的个数为( )A .1B .2C .3D .429.(2016青海省)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .61()2 B .71()2 C .62(2 D .72()230.(2015绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°31.(2015广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或1032.(2015百色)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A .4B .4或5C .5或6D .633.(2015淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD ,CD =12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A .17B .16C .15D .1434.(2015泰州)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对35.(2015荆门)如图,点A ,B ,C 在一条直线上,△ABD ,△BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD ,BD 于点M ,P ,CD 交BE 于点Q ,连接PQ ,BM ,下面结论:①△ABE ≌△DBC ;②∠DMA =60°;③△BPQ 为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )A.1个B.2个C.3个D.4个36.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个37.(2015资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.261cm C.61cm D.234cm38.(2015荆门)如图,在△ABC中,∠BAC=Rt∠,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A .13B .21-C .23-D .1439.(2015天水)如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为32,则点P 的个数为( )A .2B .3C .4D .540.(2015龙东)△ABC 中,AB =AC =5,BC =8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,则PD +PE 的长是( ) A .4.8 B .4.8或3.8 C .3.8 D .541.(2015安顺)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( )A .32B .323C .3D .6 42.(2015烟台)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2015的值为( )A .20122()2 B .20132()2 C .20121()2 D .20131()243.(2015烟台)等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或10 44.(2015眉山)如图,A 、B 是双曲线xky =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( ) A .34 B .38C .3D .445.(2015绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD :D B =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :C F =( )A .34 B .45 C .56 D .6746.(2015常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A 1O 1B 1是相似扇形,且半径OA :O 1A 1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB =∠A 1O 1B 1;②△AOB ∽△A 1O 1B 1;③11ABkA B =;④扇形AOB 与扇形A 1O 1B 1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个47.(2015黔西南州)在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N (n ,0),如图3,当m =3时,n 的值为( ) A .423- B .432- C .332-D .33248.(2015宁波)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为( )A .201521 B .201421 C .2015211- D .2014212-二、填空题49.(2017四川省达州市,第14题,3分)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 .50.(2017湖北省咸宁市,第16题,3分)如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论: ①若C 、O 两点关于AB 对称,则OA =23; ②C 、O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为2; 其中正确的是 (把你认为正确结论的序号都填上).51.(2017山东省威海市,第18题,3分)如图,△ABC 为等边三角形,AB =2.若P 为△ABC 内一动点,且满足∠P AB =∠ACP ,则线段PB 长度的最小值为 .52.(2017山东省淄博市,第17题,4分)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13. 如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16; 如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD3F3E3,其面积S3=1 10;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .53.(2017山西省,第15题,3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.54.(2017广西贵港市,第16题,3分)如图,点P在等边△ABC的内部,且PC=6,P A=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠P AP'的值为.55.(2017江苏省扬州市,第16题,3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC= cm.56.(2017河南省,第15题,3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C 为直角三角形,则BM的长为.57.(2017浙江省嘉兴市,第15题,4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C= ,…按此规律,写出tan∠BA n C= (用含n的代数式表示).58.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.59.(2017浙江省绍兴市,第16题,5分)如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是.60.(2017海南省,第18题,4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.61.(2017湖北省孝感市,第16题,3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数kyx(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.62.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.[来源:学63.(2016内蒙古包头市)如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)64.(2016广西贺州市)如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.65.(2016江苏省常州市)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是.66.(2016四川省达州市)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若P A=6,PB=8,PC=10,则四边形APBQ的面积为.67.(2016辽宁省抚顺市)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为.68.(2016黑龙江省龙东地区)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.69.(2016福建省南平市)如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=13AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.70.(2016贵州省遵义市)如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=67,S△BDE=314,则AC= .71.(2016辽宁省丹东市)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为.72.(2016内蒙古赤峰市)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE 的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.73.(2016天津市)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于________;(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.74.(2016山东省泰安市)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为.75.(2016山东省烟台市)如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.76.(2016山西省)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为______.77.(2016广东省)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O 的直径,AB=BC=CD.连接P A、P A、PC,若P A=a,则点A到PB和PC的距离之和AE+AF= .78.(2016广西桂林市)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .79.(2016广西梧州市)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.80.(2016广西贵港市)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.81.(2016江西省)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.82.(2016湖北省孝感市)如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE 的值为.83.(2016福建省莆田市)魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF=1,CF=2,则AE的长为__________.84.(2016湖北省鄂州市)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP= .85.(2016辽宁省葫芦岛市)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线12y x=于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x=于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)86.(2015广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若ABC 12S=△,则图中阴影部分的面积是.87.(2015昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=3BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.88.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.89.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=12∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.90.(2015贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=34.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤245,其中正确的结论是(填入正确结论的序号).91.(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为.92.(2015淄博)如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,∠BDC =90°,连接AD ,过点D 作一条直线将△ABD 分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是 度.93.(2015庆阳)在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 cm .(结果保留π)94.(2015南通)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,12AD AB ,△CEF 的面积为1S ,△AEB 的面积为2S ,则12S S 的值等于 .95.(2015扬州)如图,已知△ABC 的三边长为a 、b 、c ,且a <b <c ,若平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分.设图中的小三角形①、②、③的面积分别为1S 、2S 、3S ,则1S 、2S 、3S 的大小关系是 .(用“<”号连接)96.(2015连云港)如图,在△ABC 中,∠BAC =60°,∠ABC =90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2,且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC 的长为 .97.(2015盐城)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)98.(2015成都)已知菱形1111A B C D 的边长为2,111A B C =60°,对角线11A C ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D ,…,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,......,n A ,则点n A 的坐标为________.三、解答题99.(2017内蒙古赤峰市,第24题,12分)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=ADAC,则S△ABC=12BC×AD=12×BC×AC sin∠C=12ab sin∠C,即S△ABC=12ab sin∠C同理S△ABC=12bc sin∠AS△ABC=12ac sin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bc cos∠Ab2=a2+c2﹣2ac cos∠Bc2=a2+b2﹣2ab cos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.解:S△DEF=12EF×DF sin∠F= ;DE2=EF2+DF2﹣2EF×DF cos∠F= .(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC 为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.100.(2017四川省成都市,第27题,10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,做AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是23BC BDAB AB==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.101.(2017江苏省扬州市,第26题,10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC =90°,AB =8,AC =6,AO 是BC 边上的中线,则AB △AC = ,OC △OA = ; (2)如图2,在△ABC 中,AB =AC =4,∠BAC =120°,求AB △AC 、BA △BC 的值; (3)如图3,在△ABC 中,AB =AC ,AO 是BC 边上的中线,点N 在AO 上,且ON =13AO .已知AB △AC =14,BN △BA =10,求△ABC 的面积.102.(2017丽水,第23题,10分)如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2c m /s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (c m /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.103.(2017浙江省台州市,第24题,14分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?104.(2017湖北省荆门市,第24题,12分)已知:如图所示,在平面直角坐标系xOy 中,∠C =90°,OB =25,OC =20,若点M 是边OC 上的一个动点(与点O 、C 不重合),过点M 作MN ∥OB 交BC 于点N . (1)求点C 的坐标;(2)当△MCN 的周长与四边形OMNB 的周长相等时,求CM 的长;(3)在OB 上是否存在点Q ,使得△MNQ 为等腰直角三角形?若存在,请求出此时MN 的长;若不存在,请说明理由.105.(2017黑龙江省大庆市,第28题,9分)如图,直角△ABC 中,∠A 为直角,AB =6,AC =8.点P ,Q ,R 分别在AB ,BC ,CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.106.(2016广东省)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.107.(2016上海市)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.108.(2016山东省威海市)如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:A D=AF;(2)求证:B D=EF;(3)试判断四边形ABNE的形状,并说明理由.109.(2016山东省济南市)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD 上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF= 度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD 之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.110.(2016山东省日照市)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.111.(2016山东省泰安市)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则EBAD的值是多少?(直接写出结论,不要求写解答过程)112.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F 分别是AC、AB边上点,连接EF.(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=47,求AFBF的值.113.(2016北京市)在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;。

专题18 折叠问题-中考数学压轴题精品专题练(第二期)

专题18 折叠问题-中考数学压轴题精品专题练(第二期)

一、选择题1.(2017四川省乐山市,第10题,3分)如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数x y 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B 'DE 处,点B '恰好落在正比例函数y =kx 图象上,则k 的值是( )A .52-B .211-C .51-D .241- 2.(2017四川省内江市,第11题,3分)如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332)B .(2,332)C .(332,32)D .(32,3﹣332) 3.(2017江苏省无锡市,第10题,3分)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .754.(2017浙江省台州市,第10题,4分)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB为( )A . 53B .2C . 52D .4 5.(2017衢州,第9题,3分)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A . 53B . 35C . 37D . 45 6.(2017湖南省长沙市,第12题,3分)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .设正方形ABCD 的周长为m ,△CHG 的周长为n ,则mn 的值为( )A .22B .21 C .215 D .随H 点位置的变化而变化7.(2016内蒙古包头市)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)8.(2016内蒙古呼伦贝尔市,第6题,3分)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)9.(2016内蒙古呼伦贝尔市,第12题,3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.53B.52C.4D.510.(2016天津市)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE 11.(2016四川省南充市)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°12.(2016四川省资阳市)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕M N恰好过点G若AB=6,EF=2,∠H=120°,则DN的长为()A.32B.632+C.63-D.236-13.(2016四川省雅安市)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.22B.2C.23D.3314.(2016山东省威海市)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.125C.165D.18515.(2016山东省枣庄市)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3B.4C.5.5D.1016.(2016山东省济宁市)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.31317.(2016山东省聊城市)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°18.(2016广西百色市)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.32C.23D.2319.(2016广西钦州市)如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB3,∠EF A=60°,则四边形A′B′EF的周长是()A .133+B .33+C .43+D .53+20.(2016江苏省南通市)平面直角坐标系xOy 中,已知A (﹣1,0)、B (3,0)、C (0,﹣1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为( )A .13B .23C .43D .8321.(2016江苏省宿迁市)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为M N ,再过点B 折叠纸片,使点A 落在M N 上的点F 处,折痕为BE .若AB 的长为2,则F M 的长为( )A .2B .3C .2D .122.(2016江苏省苏州市)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A .(3,1)B .(3,43)C .(3,53) D .(3,2) 23.(2016江苏省镇江市)如图,在平面直角坐标系中,坐标原点O 是正方形OABC 的一个顶点,已知点B 坐标为(1,7),过点P (a ,0)(a >0)作PE ⊥x 轴,与边OA 交于点E (异于点O 、A ),将四边形ABCE 沿CE 翻折,点A ′、B ′分别是点A 、B 的对应点,若点A ′恰好落在直线PE 上,则a 的值等于( )A.54B.43C.2D.324.(2016海南省)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6B.62C.23D.3225.(2016浙江省台州市)小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次26.(2016浙江省温州市)如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a27.(2016浙江省湖州市)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.2528.(2016浙江省舟山市)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则BC 的度数是()A.120°B.135°C.150°D.165°29.(2016湖北省咸宁市)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=45,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,12)C.(65,35)D.(107,57)30.(2016福建省莆田市)如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A.13B.223C.24D.3531.(2016贵州省遵义市)如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是( )A .334-B .425-C .423-D .523-32.(2016湖北省鄂州市)如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为( )A .5B .7C .8D .13233.(2016福建省龙岩市)如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .434.(2016贵州省毕节市)如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC =2:1,则线段CH 的长是( )A .3B .4C .5D .635.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A (﹣8,﹣1),B (﹣6,﹣9),C (﹣2.﹣9),D (﹣4,﹣1).先将四边形ABCD 沿x 轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A 1B 1C 1D 1,最后将四边形A 1B 1C 1D 1,绕着点A 1旋转,使旋转后的四边形对角线的交点落在x 轴上,则旋转后的四边形对角线的交点坐标为( )A .(4,0)B .(5,0)C .(4,0)或(﹣4,0)D .(5,0)或(﹣5,0)36.(2015常州)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A .338cm 2B .8cm 2C .3316cm 2 D .16cm 2 37.(2015贵港)在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限38.(2015庆阳)在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n +1B 2n +1(n 是正整数)的顶点A 2n +1的坐标是( )A .(4n ﹣13)B .(2n ﹣13)C .(4n +13D .(2n +13)39.(2015桂林)如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是()A.14B.15C.16D.1740.(2015南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MA B=20°,N是弧M B的中点,P 是直径AB上的一动点.若M N=1,则△P M N周长的最小值为()A.4B.5C.6D.741.(2015北海)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是()A.(4,8)B.(5,8)C.(245,325)D.(225,365)42.(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为.二、填空题43.(2017四川省成都市,第25题,4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC 的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.44.(2017四川省达州市,第16题,3分)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE 翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.45.(2017山东省潍坊市,第18题,3分)如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=13BC.则矩形纸片ABCD的面积为.46.(2017广东省,第16题,4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.47.(2017南宁,第16题,3分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=23,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为.48.(2017江苏省连云港市,第16题,3分)如图,已知等边三角形OAB与反比例函数kyx(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则BDDC的值为.(已知sin15°=62)49.(2017江西省,第12题,3分)已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A'.若点A'到矩形较长两对边的距离之比为1:3,则点A'的坐标为.50.(2017河南省,第15题,3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C 为直角三角形,则BM的长为.51.(2017浙江省宁波市,第18题,4分)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为.52.(2017湖北省武汉市,第15题,3分)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.53.(2017湖北省襄阳市,第16题,3分)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.54.(2017贵州省贵阳市,第15题,4分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.55.(2017辽宁省营口市,第17题,3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.56.(2017辽宁省锦州市,第15题,3分)如图,正方形ABCD中,AB=2,E是CD中点,将正方形ABCD 沿AM折叠,使点B的对应点F落在AE上,延长MF交CD于点N,则DN的长为.57.(2017重庆,第18题,4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.58.(2017重庆B,第18题,4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.59.(2017青海省西宁市,第20题,2分)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为.60.(2016云南省曲靖市)如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接B M,则sin∠AB M= .61.(2016吉林省)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).62.(2016宁夏)如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(3,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为63.(2016四川省内江市)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是.64.(2016山东省东营市)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=55cm,且tan∠EFC=34,那么矩形ABCD的周长为cm.65.(2016山东省临沂市)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.66.(2016山东省德州市)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.67.(2016山东省日照市)如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE= .68.(2016山东省济南市)如图1,在矩形纸片ABCD中,AB=83AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为M N,连接M E/NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG= .69.(2016山东省青岛市)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.70.(2016广东省)如图,矩形ABCD中,对角线AC=23,E为BC边上一点,BC=3BE,将矩形ABCD 沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .71.(2016广西南宁市)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.72.(2016广西河池市)如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B 落在AC的中点D处,折痕为EF,那么BF的长为cm.73.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.74.(2016江苏省盐城市)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF= .75.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.76.(2016江苏省苏州市)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.77.(2016江苏省连云港市)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,E M交AB于N.若AD=2,则M N= .78.(2016河南省)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE 沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段M N 的三等分点时,BE的长为.79.(2016浙江省绍兴市)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.80.(2016浙江省金华市)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.81.(2016湖北省黄冈市)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= .82.(2016贵州省黔东南州)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y 轴上,OC=3,OA=26,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为.83.(2016湖北省随州市)如图,直线y=x+4与双曲线kyx(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为.84.(2016湖南省张家界市)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.85.(2016甘肃省天水市)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=5,tan∠BOC=12,则点A′的坐标为.86.(2016重庆市)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=2.则四边形ABFE′的面积是.87.(2016重庆市)如图,在正方形ABCD中,AB=6,点E在边CD上,DE=13DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是.88.(2016黑龙江省齐齐哈尔市)如图,在边长为2的菱形ABCD 中,∠A =60°,点M 是AD 边的中点,连接M C ,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N ,则线段EC 的长为 .89.(2016黑龙江省龙东地区)如图,M N 是⊙O 的直径,M N =4,∠A M N =40°,点B 为弧AN 的中点,点P 是直径M N 上的一个动点,则PA +PB 的最小值为 .90.(2015宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次函数的解析式为 .91.(2015达州)如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,点D 落在D ′处,C ′D ′交AE 于点M .若AB =6,BC =9,则A M 的长为 .三、解答题92.(2017吉林省,第26题,10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线24(2)3y a x =--经过原点O ,与x 轴的另一个交点为A ,则a = .【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式.【探究】在图②中,过点B (0,1)作直线l 平行于x 轴,与图象G 的交点从左至右依次为点C ,D ,E ,F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象G 上一点,其横坐标为m ,连接PD ,PE .直接写出△PDE 的面积不小于1时m 的取值范围.93.(2017四川省达州市,第25题,12分)如图1,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,点C 为x 轴上一动点,且在点A 右侧,连接BC ,以BC 为边在第一象限内作等边△BCD ,连接AD 交BC 于E .(1)①直接回答:△OBC 与△ABD 全等吗?②试说明:无论点C 如何移动,AD 始终与OB 平行;(2)当点C 运动到使AC 2=AE •AD 时,如图2,经过O 、B 、C 三点的抛物线为y 1.试问:y 1上是否存在动点P ,使△BEP 为直角三角形且BE 为直角边?若存在,求出点P 坐标;若不存在,说明理由;(3)在(2)的条件下,将y 1沿x 轴翻折得y 2,设y 1与y 2组成的图形为M ,函数33y x m =+的图象l与M 有公共点.试写出:l 与M 的公共点为3个时,m 的取值.94.(2017德州,第23题,10分)如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.95.(2017山东省淄博市,第23题,9分)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD 边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.96.(2017山西省,第22题,12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,523,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND ′的数量关系,并加以证明.(3)请在图4中证明△AEN 是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.97.(2017广西桂林市,第26题,12分)已知抛物线214y ax bx =+-(a ≠0)与x 轴交于点A (﹣1,0)和点B (4,0).(1)求抛物线1y 的函数解析式;(2)如图①,将抛物线1y 沿x 轴翻折得到抛物线2y ,抛物线2y 与y 轴交于点C ,点D 是线段BC 上的一个动点,过点D 作DE ∥y 轴交抛物线1y 于点E ,求线段DE 的长度的最大值;(2)在(2)的条件下,当线段DE 处于长度最大值位置时,作线段BC 的垂直平分线交DE 于点F ,垂足为H ,点P 是抛物线2y 上一动点,⊙P 与直线BC 相切,且S ⊙P :S △DFH =2π,求满足条件的所有点P 的坐标.98.(2017广西贵港市,第26题,10分)已知,在Rt △ABC 中,∠ACB =90°,AC =4,BC =2,D 是AC 边上的一个动点,将△ABD 沿BD 所在直线折叠,使点A 落在点P 处.(1)如图1,若点D 是AC 中点,连接PC .①写出BP ,BD 的长;②求证:四边形BCPD 是平行四边形.(2)如图2,若BD =AD ,过点P 作PH ⊥BC 交BC 的延长线于点H ,求PH 的长.99.(2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC 、BC .(1)求曲线N 所在抛物线相应的函数表达式;(2)求△ABC 外接圆的半径;(3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.100.(2017江苏省宿迁市,第26题,10分)如图,在矩形纸片ABCD 中,已知AB =1,BC =3,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿直线AE 翻折,得到多边形AB ′C ′E ,点B 、C 的对应点分别为点B ′、C ′.(1)当B ′C ′恰好经过点D 时(如图1),求线段CE 的长;(2)若B ′C ′分别交边AD ,CD 于点F ,G ,且∠DAE =22.5°(如图2),求△DFG 的面积;(3)在点E 从点C 移动到点D 的过程中,求点C ′运动的路径长.101.(2017浙江省绍兴市,第24题,14分)如图1,已知□ABCD ,AB ∥x 轴,AB =6,点A 的坐标为(1,-4),点D 的坐标为(-3,4),点B 在第四象限,点P 是□ABCD 边上一个动点.(1) 若点P 在边BC 上,PD =CD ,求点P 的坐标.(2)若点P 在边AB 、AD 上,点P 关于坐标轴对称的点Q ,落在直线1y x =-上,求点P 的坐标.(3) 若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).102.(2017金华,第23题,10分)如图1,将△ABC 纸片沿中位线EH 折叠,使点A 对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段 , ;S 矩形AE S ▱ABCD = .(2)如图4,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长.103.(2017辽宁省盘锦市,第26题,14分)如图,直线y =﹣2x +4交y 轴于点A ,交抛物线212y x bx c =++ 于点B (3,﹣2),抛物线经过点C (﹣1,0),交y 轴于点D ,点P 是抛物线上的动点,作PE ⊥DB 交DB 所在直线于点E .(1)求抛物线的解析式;(2)当△PDE 为等腰直角三角形时,求出PE 的长及P 点坐标;(3)在(2)的条件下,连接PB ,将△PBE 沿直线AB 翻折,直接写出翻折点后E 的对称点坐标.104.(2017辽宁省葫芦岛市,第26题,14分)如图,抛物线22y ax x c =-+(a ≠0)与x 轴、y 轴分别交于点A ,B ,C 三点,已知点A (﹣2,0),点C (0,﹣8),点D 是抛物线的顶点.(1)求抛物线的解析式及顶点D 的坐标;(2)如图1,抛物线的对称轴与x 轴交于点E ,第四象限的抛物线上有一点P ,将△EBP 沿直线EP 折叠,使点B 的对应点B '落在抛物线的对称轴上,求点P 的坐标;(3)如图2,设BC 交抛物线的对称轴于点F ,作直线CD ,点M 是直线CD 上的动点,点N 是平面内一点,当以点B ,F ,M ,N 为顶点的四边形是菱形时,请直接写出点M 的坐标.105.(2017辽宁省辽阳市,第26题,14分)如图1,抛物线213y x bx c =++经过A (3-0)、B (0,﹣2)两点,点C 在y 轴上,△ABC 为等边三角形,点D 从点A 出发,沿AB 方向以每秒2个单位长度的速度向终点B 运动,设运动时间为t 秒(t >0),过点D 作DE ⊥AC 于点E ,以DE 为边作矩形DEGF ,使点F 在x 轴上,点G 在AC 或AC 的延长线上.(1)求抛物线的解析式;(2)将矩形DEGF 沿GF 所在直线翻折,得矩形D 'E 'GF ,当点D 的对称点D '落在抛物线上时,求此时点D '的坐标;(3)如图2,在x 轴上有一点M (23,0),连接BM 、CM ,在点D 的运动过程中,设矩形DEGF 与四边形ABMC 重叠部分的面积为S ,直接写出S 与t 之间的函数关系式,并写出自变量t 的取值范围. 106.(2017黑龙江省龙东地区,第28题,10分)如图,矩形AOCB 的顶点A 、C 分别位于x 轴和y 轴的正半轴上,线段OA 、OC 的长度满足方程15130x y -+-=(OA >OC ),直线y =kx +b 分别与x 轴、y 轴交于M 、N 两点,将△BCN 沿直线BN 折叠,点C 恰好落在直线MN 上的点D 处,且tan ∠CBD =34. (1)求点B 的坐标; (2)求直线BN 的解析式;(3)将直线BN 以每秒1个单位长度的速度沿y 轴向下平移,求直线BN 扫过矩形AOCB 的面积S 关于运动的时间t (0<t ≤13)的函数关系式.107.(2017黑龙江省龙东地区,第28题,10分)如图,矩形AOCB 的顶点A 、C 分别位于x 轴和y 轴的正半轴上,线段OA 、OC 的长度满足方程15130x y --=(OA >OC ),直线y =kx +b 分别与x 轴、y 轴交于M 、N 两点,将△BCN 沿直线BN 折叠,点C 恰好落在直线MN 上的点D 处,且tan ∠CBD =34. (1)求点B 的坐标; (2)求直线BN 的解析式;(3)将直线BN 以每秒1个单位长度的速度沿y 轴向下平移,求直线BN 扫过矩形AOCB 的面积S 关于运动的时间t (0<t ≤13)的函数关系式.108.(2017湖南省娄底市,第26题,10分)如图,抛物线2y ax bx c =++与x 轴交于两点A (﹣4,0)和B (1,0),与y 轴交于点C (0,2),动点D 沿△ABC 的边AB 以每秒2个单位长度的速度由起点A 向终点B 运动,过点D 作x 轴的垂线,交△ABC 的另一边于点E ,将△ADE 沿DE 折叠,使点A 落在点F 处,设点D 的运动时间为t 秒. (1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t ,使得△EFC 为直角三角形?若存在,求出t 的值;若不存在,请说明理由; (3)设四边形DECO 的面积为s ,求s 关于t 的函数表达式.109.(2016新疆)如图,▱ABCD 中,AB =2,AD =1,∠ADC =60°,将▱ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D ′处,折痕交CD 边于点E . (1)求证:四边形BCED ′是菱形;(2)若点P 时直线l 上的一个动点,请计算PD ′+PB 的最小值.。

山东省诸城市桃林镇2017届中考数学压轴题专项汇编 专题17 一线三等角模型

山东省诸城市桃林镇2017届中考数学压轴题专项汇编 专题17 一线三等角模型

专题17 一线三等角模型破解策略在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BP D .321DBPAC(2)如图,若∠1为锐角,则有△ACP ∽△BP D .3CDBPA证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,∵∠1=∠2,∴△ACP ∽△BPD(3)如图,若∠1为钝角,则有△ACP ∽△BP D .231DBPAC2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BP D .321CPDBA证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB ,∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BP D .321CDBAP证明:∵∠C =∠1-∠CPB ,∠BPD =∠3-∠CPB ,而∠1=∠3 ∴∠C =∠BP D .∵∠1=∠2,∴∠PAC =∠DBP .∴△ACP ∽△BP D . 例题讲解例1:已知:∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与点A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为S 1,△BND 的面积为S 2.(1)如图1,当△ABC 是等边三角形,∠EDF =∠A 时,若AB =6,AD =4,求S 1S 2的值; (2)当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α.①如图2,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1S 2的表达式(结果用a ,b 和a 的三角函数表示).②如图3,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1S 2的表达式.NFC ME BDAF NM E BDACFN DABEM C图1 图2 图3 解:(1)如图4,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .H G ADBE MC FN则S 1S 2=12MG AD12NH BD =14AD AM A BD BN.由题意可知∠A =∠B =60º,所以sin A =sin B由“一线三等角模型”可知△AMD ∽△BDN . ∴AM ADBD BN,从而AM BN =AD BD =8,∴S 1S 2=12.(2)①如图5,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .HG CADBE M N F则S 1S 2=12MG AD 12NH BD =14AD AMA BD BN .由“一线三等角模型”可得△AMD ∽△BDN , 所以AM ADBD BN=,从而AM BN =AD BD =ab , 所以S 1S 2=14a ²b ²sin²a ; ②如图6,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .HGCM EBA DN F则S 1S 2=12MG AD12NH BD =14AD AM A BD BN .由“一线三等角模型”可得△AMD ∽△BDN , 所以AM ADBD BN=,从而AM BN =AD BD =ab , 所以S 1S 2=14a ²b ²sin²a ; 例2:如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC =2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE =30°.(1)设BD =x ,AE =y ,求y 关于x 的函数关系式并写出自变量x 的取值范围; (2)当△ADE 是等腰三角形时,求AE 的长.ECD B A解(1)∵△ABC 是等腰三角形,且∠BAC =120°, ∴∠ABD =∠ACB =30°, ∴∠ABD =∠ADE =30°,∵∠ADC =∠ADE +∠EDC =∠ABD +∠DAB ,∴∠EDC =∠DAB , ∴△ABD ∽△DCE ;∵AB =AC =2,∠BAC =120°, 过A 作AF ⊥BC 于F , ∴∠AFB =90°,∵AB =2,∠ABF =30°, ∴AF =12AB =1, ∴BF∴BC =2BF=, 则DC=x ,EC =2-y ∵△ABD ∽△DCE , ∴AB DCBD CE =,∴2x =,化简得:2122y x =+(0x <<. ECDBA(2)①当AD =DE 时,如图2, △ABD ≌△DCE ,则AB =CD ,即2=x ,x=2,代入2122y x =+解得:y=4-AE=4- ②当AE =ED 时,如图,∠EAD =∠EDA =30°,∠AED =120°, 所以∠DEC =60°,∠EDC =90°则ED =12 EC ,即y =12 (2-y ) 解得y =23,即AE =23;③当AD =AE 时,有∠AED -∠EDA =30°,∠EAD =120°此时点D和点B重合,与题目不符,此情况不存在.所以当△是ADE等腰三角形时,AE=4-AE=23AB C进阶训练1.如图,在△ABC中,AB=AC,点E在BC边上移动(不与点B,C重台).满足∠DEF=∠B,且点D,F.分别在边AB,AC上.当点E移动到BC的中点时,求证:FE平分∠DF C.1.略【提示】由题意可得∠B=∠DEF=∠C.由“一线三等角模型”可得△BDE∽△CEF,可得BECF=DEEF.而BE=CE·所以CECF=DEEF,从而△DEF∽ECF.所以∠DEF=∠EFC,即FE平分∠DF C.2.如图,在等边△ABC中,点D,E分别在AB,BC边上,AD=2BE=6.将DE绕点E顺时针旋转60°,得到EF.取EF的中点G,连结AG.延长CF交AG于点H.若2AH=5HG,求BD的长.B2.BD=9.【提示】如图,过点F作FI∥AC交BC于点I.则∠FIE=∠ACB=∠AB C.易证△DBE≌△E IF,则IF=BE,IE=BD,所以BC+BE=AD,即IC=BE=IF,则∠ACH=∠BCH=30°.延长CH变AB于点J,则CJ⊥AB,.A=BJ分别过点G,E作AB的垂线段,垂足为K,L,·则KL=KJ·AJJK=AHHG=52,所以AJ:JK:KL:BL=5:2:2:l.因为BE=3,∠LEB= 30°,所以BL=1.5.AB=15.所以BD =9.IB E。

2017年挑战中考数学压轴题(全套含答案)

2017年挑战中考数学压轴题(全套含答案)

第一部分函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题例1 2014年衡阳市中考第28题例2 2014年益阳市中考第21题例3 2015年湘西州中考第26题例4 2015年张家界市中考第25题例5 2016年常德市中考第26题例6 2016年岳阳市中考第24题例7 2016年上海市崇明县中考模拟第25题例8 2016年上海市黄浦区中考模拟第26题§1.2 因动点产生的等腰三角形问题例9 2014年长沙市中考第26题例10 2014年张家界市第25题例11 2014年邵阳市中考第26题例12 2014年娄底市中考第27题例13 2015年怀化市中考第22题例14 2015年长沙市中考第26题例15 2016年娄底市中考第26题例16 2016年上海市长宁区金山区中考模拟第25题例17 2016年河南省中考第23题例18 2016年重庆市中考第25题§1.3 因动点产生的直角三角形问题例19 2015年益阳市中考第21题例20 2015年湘潭市中考第26题例21 2016年郴州市中考第26题例22 2016年上海市松江区中考模拟第25题例23 2016年义乌市绍兴市中考第24题§1.4 因动点产生的平行四边形问题例24 2014年岳阳市中考第24题例25 2014年益阳市中考第20题例26 2014年邵阳市中考第25题例27 2015年郴州市中考第25题例28 2015年黄冈市中考第24题例29 2016年衡阳市中考第26题例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题§1.5 因动点产生的面积问题例32 2014年常德市中考第25题例33 2014年永州市中考第25题例34 2014年怀化市中考第24题例35 2015年邵阳市中考第26题例36 2015年株洲市中考第23题例37 2015年衡阳市中考第28题例38 2016年益阳市中考第22题例39 2016年永州市中考第26题例40 2016年邵阳市中考第26题例41 2016年陕西省中考第25题§1.6 因动点产生的相切问题例42 2014年衡阳市中考第27题例43 2014年株洲市中考第23题例44 2015年湘潭市中考第25题例45 2015年湘西州中考第25题例46 2016年娄底市中考第25题例47 2016年湘潭市中考第26题例48 2016年上海市闵行区中考模拟第24题例49 2016年上海市普陀区中考模拟中考第25题§1.7 因动点产生的线段和差问题例50 2014年郴州市中考第26题例51 2014年湘西州中考第25题例52 2015年岳阳市中考第24题例53 2015年济南市中考第28题例54 2015年沈阳市中考第25题例55 2016年福州市中考第26题例56 2016年张家界市中考第24题例57 2016年益阳市中考第21题第二部分图形运动中的函数关系问题§2.1 由比例线段产生的函数关系问题例1 2014年常德市中考第26题例2 2014年湘潭市中考第25题例3 2014年郴州市中考第25题例4 2015年常德市中考第25题例5 2015年郴州市中考第26题例6 2015年邵阳市中考第25题例7 2015年娄底市中考第26题例8 2016年郴州市中考第25题例9 2016年湘西州中考第26题例10 2016年上海市静安区青浦区中考模拟第25题例11 2016年哈尔滨市中考第27题第三部分图形运动中的计算说理问题§3.1 代数计算及通过代数计算进行说理问题例1 2014年长沙市中考第25题例2 2014年怀化市中考第23题例3 2014年湘潭市中考第26题例4 2014年株洲市中考第24题例5 2015年衡阳市中考第27题例6 2015年娄底市中考第25题例7 2015年永州市中考第26题例8 2015年长沙市中考第25题例9 2015年株洲市中考第24题例10 2016年怀化市中考第22题例11 2016年邵阳市中考第25题例12 2016年株洲市中考第26题例13 2016年长沙市中考第25题例14 2016年长沙市中考第26题§3.2 几何证明及通过几何计算进行说理问题例15 2014年衡阳市中考第26题例16 2014年娄底市中考第26题例17 2014年岳阳市中考第23题例18 2015年常德市中考第26题例19 2015年益阳市中考第20题例20 2015年永州市中考第27题例21 2015年岳阳市中考第23题例22 2016年常德市中考第25题例23 2016年衡阳市中考第25题例24 2016年永州市中考第27题例25 2016年岳阳市中考第23题例26 2016年株洲市中考第25题例27 2016年湘潭市中考第25题第四部分图形的平移、翻折与旋转§4.1 图形的平移例1 2015年泰安市中考第15题例2 2015年咸宁市中考第14题例3 2015年株洲市中考第14题例4 2016年上海市虹口区中考模拟第18题§4.2 图形的翻折例5 2016年上海市奉贤区中考模拟第18题例6 2016年上海市静安区青浦区中考模拟第18题例7 2016年上海市闵行区中考模拟第18题例8 2016年上海市浦东新区中考模拟第18题例8 2016年上海市普陀区中考模拟第18题例10 2016年常德市中考第15题例11 2016年张家界市中考第14题例12 2016年淮安市中考第18题例13 2016年金华市中考第15题例14 2016年雅安市中考第12题§4.3 图形的旋转例15 2016年上海昂立教育中学生三模联考第18题例16 2016年上海市崇明县中考模拟第18题例17 2016年上海市黄浦区中考模拟第18题例18 2016年上海市嘉定区宝山区中考模拟第18题例19 2016年上海市闸北区中考模拟第18题例20 2016年邵阳市中考第13题例21 2016年株洲市中考第4题§4.4 三角形例22 2016年安徽省中考第10题例23 2016年武汉市中考第10题例24 2016年河北省中考第16题例25 2016年娄底市中考第10题例26 2016年苏州市中考第9题例27 2016年台州市中考第10题例28 2016年陕西省中考第14题例29 2016年内江市中考第11题例30 2016年上海市中考第18题§4.5 四边形例31 2016年湘西州中考第11题例32 2016年益阳市中考第4题例33 2016年益阳市中考第6题例34 2016年常德市中考第16题例35 2016年成都市中考第14题例36 2016年广州市中考第13题例37 2016年福州市中考第18题例38 2016年无锡市中考第17题例39 2016年台州市中考第15题§4.6 圆例40 2016年滨州市中考第16题例41 2016年宁波市中考第17题例42 2016年连云港市中考第16题例43 2016年烟台市中考第17题例44 2016年烟台市中考第18题例45 2016年无锡市中考第18题例46 2016年武汉市中考第9题例47 2016年宿迁市中考第16题例48 2016年衡阳市中考第17题例49 2016年邵阳市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7 函数的图象及性质例52 2015年荆州市中考第9题例53 2015年德州市中考第12题例54 2015年烟台市中考第12题例55 2015年中山市中考第10题例56 2015年武威市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年湘潭市中考第18题例59 2016年衡阳市中考第19题例60 2016年岳阳市中考第15题例61 2016年株洲市中考第9题例62 2016年永州市中考第19题例63 2016年岳阳市中考第8题例64 2016年岳阳市中考第16题例65 2016年益阳市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年成都市中考第13题例70 2016年泰州市中考第16题例71 2016年宿迁市中考第15题例72 2016年临沂市中考第14题例73 2016年义乌市绍兴市中考第9题例74 2016年淄博市中考第12题例75 2016年嘉兴市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m >0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD存在两种情况.图文解析(1)因为抛物线与x轴交于A(-3, 0)、B(1, 0)两点,设y=a(x+3)(x-1).代入点C(0,-3m),得-3m=-3a.解得a=m.所以该二次函数的解析式为y=m(x+3)(x-1)=mx2+2mx-3m.(2)如图3,连结OP.当m=2时,C(0,-6),y=2x2+4x-6,那么P(x, 2x2+4x-6).由于S△AOP==(2x2+4x-6)=-3x2-6x+9,S△COP==-3x,S△AOC=9,所以S=S△APC=S△AOP+S△COP-S△AOC=-3x2-9x=.所以当时,S取得最大值,最大值为.图3 图4 图5(3)如图4,过点D作y轴的垂线,垂足为E.过点A作x轴的垂线交DE于F.由y=m(x+3)(x-1)=m(x+1)2-4m,得D(-1,-4m).在Rt△OBC中,OB∶OC=1∶3m.如果△ADC与△OBC相似,那么△ADC是直角三角形,而且两条直角边的比为1∶3m.①如图4,当∠ACD=90°时,.所以.解得m=1.此时,.所以.所以△CDA∽△OBC.②如图5,当∠ADC=90°时,.所以.解得.此时,而.因此△DCA与△OBC不相似.综上所述,当m=1时,△CDA∽△OBC.考点伸展第(2)题还可以这样割补:如图6,过点P作x轴的垂线与AC交于点H.由直线AC:y=-2x-6,可得H(x,-2x-6).又因为P(x, 2x2+4x-6),所以HP=-2x2-6x.因为△P AH与△PCH有公共底边HP,高的和为A、C两点间的水平距离3,所以S=S△APC=S△APH+S△CPH=(-2x2-6x)=.图6例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A 向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.动感体验图1请打开几何画板文件名“14益阳21”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段.观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上.而BP与AP是相关的,这样就可以以AP为自变量,求S的函数关系式.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=.所以AD=.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以==,而=.此时△APD与△PCB不相似.图2 图3 图4②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以==.所以∠APD=60°.此时△APD∽△CBP.综上所述,当x=2时,△APD∽△CBP.(3)如图5,设△ADP的外接圆的圆心为G,那么点G是斜边DP的中点.设△PCB的外接圆的圆心为O,那么点O在BC边的垂直平分线上,设这条直线与BC交于点E,与AB 交于点F.设AP=2m.作OM⊥BP于M,那么BM=PM=5-m.在Rt△BEF中,BE=2,∠B=60°,所以BF=4.在Rt△OFM中,FM=BF-BM=4-(5-m)=m-1,∠OFM=30°,所以OM=.所以OB2=BM2+OM2=.在Rt△ADP中,DP2=AD2+AP2=12+4m2.所以GP2=3+m2.于是S=S1+S2=π(GP2+OB2)==.所以当时,S取得最小值,最小值为.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP=2m呢?这是因为线段AB=AP+PM+BM=AP+2BM=10.这样BM=5-m,后续可以减少一些分数运算.这不影响求S的最小值.问题2,如果圆心O在线段EF的延长线上,S关于m的解析式是什么?如图6,圆心O在线段EF的延长线上时,不同的是FM=BM-BF=(5-m)-4=1-m.此时OB2=BM2+OM2=.这并不影响S关于m的解析式.例3 2015年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得解得所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠P AQ=45°,AP=3-t,AQ=t.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP=AQ.解方程3-t=2t,得t=1(如图2).②当∠QP A=90°时,AQ=AP.解方程t=(3-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A、B两点间的水平距离、竖直距离相等,AB=3.由B(0, 3)、M(1, 4),可知B、M两点间的水平距离、竖直距离相等,BM=.所以∠MBQ=∠BOP=90°.因此△MBQ与△BOP相似存在两种可能:①当时,.解得(如图5).②当时,.整理,得t2-3t+3=0.此方程无实根.考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2).(1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0. 将代入y =ax 2,得.解得(舍去了负值).(2)抛物线的解析式为,设点P 的坐标为. 已知A (0, 2),所以>.而圆心P 到x 轴的距离为,所以半径P A >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN ..4=2MH ,所以,中,PMH △Rt 在 所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3.2=OM ,所以4=AM ,2=OA 中,AOM △Rt 时,在MN =MA ,当4②如图 .的纵坐标为P .所以点2=OH =x 此时 .的纵坐标为也为P 时,根据对称性,点NM =NA ,当5如图图4 图5③如图6,当NA=NM=4时,在Rt△AON中,OA=2,AN=4,所以ON=2.此时x=OH=2.所以点P的纵坐标为.如图7,当MN=MA=4时,根据对称性,点P的纵坐标也为.图6 图7考点伸展如果点P在抛物线上运动,以点P为圆心的⊙P总经过定点B(0, 1),那么在点P运动的过程中,⊙P始终与直线y=-1相切.这是因为:设点P的坐标为.已知B(0, 1),所以.而圆心P到直线y=-1的距离也为,所以半径PB=圆心P到直线y=-1的距离.所以在点P 运动的过程中,⊙P始终与直线y=-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C 坐标分别为(10, 0)和,以OB为直径的⊙A经过C点,直线l垂直x轴于B点.(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是⊙A上一动点(不同于O、B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.图图1动感体验请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,△EAF保持直角三角形的形状,AM是斜边上的高.拖动点Q在BC上运动,可以体验到,△BPQ有三个时刻可以成为等腰三角形.思路点拨1.从直线BC的解析式可以得到∠OBC的三角比,为讨论等腰三角形BPQ作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE、AF容易看到AM是直角三角形EAF斜边上的高.4.第(4)题的△PBQ中,∠B是确定的,夹∠B的两条边可以用含t的式子表示.分三种情况讨论等腰三角形.图文解析(1)直线BC的解析式为.(2)因为抛物线与x轴交于O、B(10, 0)两点,设y=ax(x-10).代入点C,得.解得.所以.抛物线的顶点为.(3)如图2,因为EF切⊙A于M,所以AM⊥EF.由AE=AE,AO=AM,可得Rt△AOE≌Rt△AME.所以∠1=∠2.同理∠3=∠4.于是可得∠EAF=90°.所以∠5=∠1.由tan∠5=tan∠1,得.所以ME·MF=MA2,即mn=25.图2(4)在△BPQ中,cos∠B=,BP=10-t,BQ=t.分三种情况讨论等腰三角形BPQ:①如图3,当BP=BQ时,10-t=t.解得t=5.②如图4,当PB=PQ时,.解方程,得.③如图5,当QB=QP时,.解方程,得.图3 图4 图5考点伸展在第(3)题条件下,以EF为直径的⊙G与x轴相切于点A.如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G 到x轴的距离等于圆的半径,所以⊙G与x轴相切于点A.图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC 的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以.所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.图1 图2 图3(3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n).讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2.①当AB=AC时,解方程(n-2)2=4+4n2,得(如图2).。

江苏省十三市2017年中考数学解答题压轴题(汇编)

江苏省十三市2017年中考数学解答题压轴题(汇编)

江苏省十三市2017年中考数学解答题压轴题汇编1.(2017·南京)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值.该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时.求该函数的图象的顶点纵坐标的取值范围.2.(2017·南京)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步.对折矩形纸片ABCD(AB>BC)(图①).使AB与DC重合.得到折痕EF.把纸片展平(图②).第二步.如图③.再一次折叠纸片.使点C落在EF上的P处.并使折痕经过点B.得到折痕BG.折出PB、PC.得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD和等边三角形PBC.他发现.在矩形ABCD中把△PBC经过图形变化.可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm.另一边长为a cm.对于每一个确定的a的值.在矩形中都能画出最大的等边三角形.请画出不同情形的示意图.并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片.所需正方形铁片的边长的最小值为cm.3.(2017·无锡)如图.以原点O为圆心.3为半径的圆与x轴分别交于A.B两点(点B在点A的右边).P 是半径OB上一点.过P且垂直于AB的直线与⊙O分别交于C.D两点(点C在点D的上方).直线AC.DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E.且顶点在直线CD上的抛物线的函数表达式.4.(2017·无锡)如图.已知矩形ABCD中.AB=4.AD=m.动点P从点D出发.在边DA上以每秒1个单位的速度向点A运动.连接CP.作点D关于直线PC的对称点E.设点P的运动时间为t(s).(1)若m=6.求当P.E.B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中.有且只有一个时刻t.使点E到直线BC的距离等于3.求所有这样的m的取值范围.5.(2017·徐州)如图.将边长为6的正三角形纸片ABC按如下顺序进行两次折叠.展平后.得折痕AD、BE (如图①).点O为其交点.(1)探求AO与OD的数量关系.并说明理由;(2)如图②.若P.N分别为BE.BC上的动点.①当PN+PD的长度取得最小值时.求BP的长度;②如图③.若点Q在线段BO上.BQ=1.则QN+NP+PD的最小值= .6.(2017·徐州)如图.已知二次函数y=x2﹣4的图象与x轴交于A.B两点.与y轴交于点C.⊙C的半径为.P为⊙C上一动点.(1)点B.C的坐标分别为B().C();(2)是否存在点P.使得△PBC为直角三角形?若存在.求出点P的坐标;若不存在.请说明理由;(3)连接PB.若E为PB的中点.连接OE.则OE的最大值= .7.(2017·常州)如图.在平面直角坐标系xOy.已知二次函数y=﹣x2+bx的图象过点A(4.0).顶点为B.连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点.点Q在线段AB上.设点B关于直线CQ的对称点为B'.当△OCB'为等边三角形时.求BQ的长度;(3)若点D在线段BO上.OD=2DB.点E、F在△OAB的边上.且满足△DOF与△DEF全等.求点E的坐标.8.(2017·常州)如图.已知一次函数y=﹣x+4的图象是直线l.设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M在射线AB上.将点M绕点A按逆时针方向旋转90°到点N.以点N为圆心.NA的长为半径作⊙N.①当⊙N与x轴相切时.求点M的坐标;②在①的条件下.设直线AN与x轴交于点C.与⊙N的另一个交点为D.连接MD交x轴于点E.直线m过点N 分别与y轴、直线l交于点P、Q.当△APQ与△CDE相似时.求点P的坐标.9.(2017·苏州)如图.已知△ABC内接于⊙O.AB是直径.点D在⊙O上.OD∥BC.过点D作DE⊥AB.垂足为E.连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC.设△DOE的面积为S1.四边形BCOD的面积为S2.若=.求sinA的值.10.(2017·苏州)如图.二次函数y=x2+bx+c的图象与x轴交于 A、B两点.与y轴交于点C.OB=OC.点D 在函数图象上.CD∥x轴.且CD=2.直线l是抛物线的对称轴.E是抛物线的顶点.(1)求b、c的值;(2)如图①.连接BE.线段OC上的点F关于直线l的对称点F'恰好在线段BE上.求点F的坐标;(3)如图②.动点P在线段OB上.过点P作x轴的垂线分别与BC交于点M.与抛物线交于点N.试问:抛物线上是否存在点Q.使得△PQN与△APM的面积相等.且线段NQ的长度最小?如果存在.求出点Q的坐标;如果不存在.说明理由.11.(2017·南通)我们知道.三角形的内心是三条角平分线的交点.过三角形内心的一条直线与两边相交.两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似.则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图.△ABC中.AB=AC.点D在AC上.且BD=BC=AD.求证:BD是△ABC的“內似线”;(3)在Rt△ABC中.∠C=90°.AC=4.BC=3.E、F分别在边AC、BC上.且EF是△ABC的“內似线”.求EF的长.12.(2017·南通)已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧).与y轴正半轴相交于点C.过点A作AD⊥x轴.垂足为D.(1)若∠AOB=60°.AB∥x轴.AB=2.求a的值;(2)若∠AOB=90°.点A的横坐标为﹣4.AC=4BC.求点B的坐标;(3)延长AD、BO相交于点E.求证:DE=CO.13.(2017·连云港)如图.已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3.0).B(4.1).且与y轴交于点C.连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M.请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移.平移后点A、B、C的对应点分别记为点A1、B1、C1.△A1B1C1的外接圆记为⊙M1.是否存在某个位置.使⊙M1经过原点?若存在.求出此时抛物线的关系式;若不存在.请说明理由.14.(2017·连云港)问题呈现:如图1.点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上.AE=DG.求证:2S四边形EFGH=S矩形ABCD.(S表示面积)实验探究:某数学实验小组发现:若图1中AH≠BF.点G在CD上移动时.上述结论会发生变化.分别过点E、G作BC边的平行线.再分别过点F、H作AB边的平行线.四条平行线分别相交于点A1、B1、C1、D1.得到矩形A1B1C1D1.如图2.当AH>BF时.若将点G向点C靠近(DG>AE).经过探索.发现:2S 四边形EFGH=S矩形ABCD+S.如图3.当AH>BF时.若将点G向点D靠近(DG<AE).请探索S 四边形EFGH、S矩形ABCD与S之间的数量关系.并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图 4.点E、F、G、H分别是面积为25的正方形ABCD各边上的点.已知AH>BF.AE>DG.S四边形EFGH=11.HF=.求EG的长.(2)如图5.在矩形ABCD中.AB=3.AD=5.点E、H分别在边AB、AD上.BE=1.DH=2.点F、G分别是边BC、CD 上的动点.且FG=.连接EF、HG.请直接写出四边形EFGH面积的最大值.15.(2017·淮安)【操作发现】如图①.在边长为1个单位长度的小正方形组成的网格中.△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°.点B的对应点为B′.点C的对应点为C′.连接BB′;(2)在(1)所画图形中.∠AB′B=.【问题解决】如图②.在等边三角形ABC中.AC=7.点P在△ABC内.且∠APC=90°.∠BPC=120°.求△APC的面积.小明同学通过观察、分析、思考.对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°.得到△AP′B.连接PP′.寻找PA.PB.PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°.得到△AP′C′.连接PP′.寻找PA.PB.PC三条线段之间的数量关系.…请参考小明同学的想法.完成该问题的解答过程.(一种方法即可)【灵活运用】如图③.在四边形ABCD中.AE⊥BC.垂足为E.∠BAE=∠ADC.BE=CE=2.CD=5.AD=kAB(k为常数).求BD的长(用含k的式子表示).16.(2017·淮安)如图①.在平面直角坐标系中.二次函数y=﹣x2+bx+c的图象与坐标轴交于A.B.C三点.其中点A的坐标为(﹣3.0).点B的坐标为(4.0).连接AC.BC.动点P从点A出发.在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时.动点Q从点O出发.在线段OB上以每秒1个单位长度的速度向点B作匀速运动.当其中一点到达终点时.另一点随之停止运动.设运动时间为t秒.连接PQ.(1)填空:b= .c= ;(2)在点P.Q运动过程中.△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方.该二次函数的图象上是否存在点M.使△PQM是以点P为直角顶点的等腰直角三角形?若存在.请求出运动时间t;若不存在.请说明理由;(4)如图②.点N的坐标为(﹣.0).线段PQ的中点为H.连接NH.当点Q关于直线NH的对称点Q′恰好落在线段BC上时.请直接写出点Q′的坐标.17.(2017·盐城)【探索发现】如图①.是一张直角三角形纸片.∠B=90°.小明想从中剪出一个以∠B为内角且面积最大的矩形.经过多次操作发现.当沿着中位线DE、EF剪下时.所得的矩形的面积最大.随后.他通过证明验证了其正确性.并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②.在△ABC中.BC=a.BC边上的高AD=h.矩形PQMN的顶点P、N分别在边AB、AC上.顶点Q、M在边BC 上.则矩形PQMN面积的最大值为.(用含a.h的代数式表示)【灵活应用】如图③.有一块“缺角矩形”ABCDE.AB=32.BC=40.AE=20.CD=16.小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角).求该矩形的面积.【实际应用】如图④.现有一块四边形的木板余料ABCD.经测量AB=50cm.BC=108cm.CD=60cm.且tanB=tanC=.木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN.求该矩形的面积.18.(2017·盐城)如图.在平面直角坐标系中.直线y=x+2与x轴交于点A.与y轴交于点C.抛物线y=﹣x2+bx+c经过A、C两点.与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD.设直线BD交线段AC于点E.△CDE的面积为S1.△BCE的面积为S2.求的最大值;②过点D作DF⊥AC.垂足为点F.连接CD.是否存在点D.使得△CDF中的某个角恰好等于∠BAC的2倍?若存在.求点D的横坐标;若不存在.请说明理由.19.(2017·扬州)农经公司以30元/千克的价格收购一批农产品进行销售.为了得到日销售量p(千克)(1)请你根据表中的数据.用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格.才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用.当40≤x≤45时.农经公司的日获利的最大值为2430元.求a的值.(日获利=日销售利润﹣日支出费用)20.(2017·扬州)如图.已知正方形ABCD的边长为4.点P是AB边上的一个动点.连接CP.过点P作PC的垂线交AD于点E.以 PE为边作正方形PEFG.顶点G在线段PC上.对角线EG、PF相交于点O.(1)若AP=1.则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时.点O也随之运动.求点O经过的路径长;(3)在点P从点A到点B的运动过程中.△APE的外接圆的圆心也随之运动.求该圆心到AB边的距离的最大值.21.(2017·镇江)如图.在平面直角坐标系中.矩形OABC的边OA、OC分别在x轴、y轴上.点B坐标为(4.t)(t>0).二次函数y=x2+bx(b<0)的图象经过点B.顶点为点D.(1)当t=12时.顶点D到x轴的距离等于;(2)点E是二次函数y=x2+bx(b<0)的图象与x轴的一个公共点(点E与点O不重合).求OE•EA的最大值及取得最大值时的二次函数表达式;(3)矩形OABC的对角线OB、AC交于点F.直线l平行于x轴.交二次函数y=x2+bx(b<0)的图象于点M、N.连接DM、DN.当△DMN≌△FOC时.求t的值.22.(2017·镇江)【回顾】如图1.△ABC中.∠B=30°.AB=3.BC=4.则△ABC的面积等于.【探究】图2是同学们熟悉的一副三角尺.一个含有30°的角.较短的直角边长为a;另一个含有45°的角.直角边长为b.小明用两副这样的三角尺拼成一个平行四边形ABCD(如图3).用了两种不同的方法计算它的面积.从而推出sin75°=.小丽用两副这样的三角尺拼成了一个矩形EFGH(如图4).也推出sin75°=.请你写出小明或小丽推出sin75°=的具体说理过程.【应用】在四边形ABCD中.AD∥BC.∠D=75°.BC=6.CD=5.AD=10(如图5)(1)点E在AD上.设t=BE+CE.求t2的最小值;(2)点F在AB上.将△BCF沿CF翻折.点B落在AD上的点G处.点G是AD的中点吗?说明理由.23.(2017·泰州)阅读理解:如图①.图形l外一点P与图形l上各点连接的所有线段中.若线段PA1最短.则线段PA1的长度称为点P到图形l的距离.例如:图②中.线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③.平面直角坐标系xOy中.点A、B的坐标分别为(8.4).(12.7).点P从原点O出发.以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时.求点P到线段AB的距离;(2)t为何值时.点P到线段AB的距离为5?(3)t满足什么条件时.点P到线段AB的距离不超过6?(直接写出此小题的结果)24.(2017·泰州)平面直角坐标系xOy中.点A、B的横坐标分别为a、a+2.二次函数y=﹣x2+(m﹣2)x+2m 的图象经过点A、B.且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时.求k的值;②若y1随x的增大而减小.求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时.判断直线AB与x轴的位置关系.并说明理由;(3)点A、B的位置随着a的变化而变化.设点A、B运动的路线与y轴分别相交于点C、D.线段CD的长度会发生变化吗?如果不变.求出CD的长;如果变化.请说明理由.25.(2017·宿迁)如图.在平面直角坐标系xOy中.抛物线y=x2﹣2x﹣3交x轴于A.B两点(点A在点B的左侧).将该抛物线位于x轴上方曲线记作M.将该抛物线位于x轴下方部分沿x轴翻折.翻折后所得曲线记作N.曲线N交y轴于点C.连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点.点Q为x轴上的一个动点.若以点B.C.P.Q为顶点的四边形是平行四边形.求点Q的坐标.26.(2017·宿迁)如图.在矩形纸片ABCD中.已知AB=1.BC=.点E在边CD上移动.连接AE.将多边形ABCE 沿直线AE翻折.得到多边形AB′C′E.点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1).求线段CE的长;(2)若B′C′分别交边AD.CD于点F.G.且∠DAE=22.5°(如图2).求△DFG的面积;(3)在点E从点C移动到点D的过程中.求点C′运动的路径长.。

林初中17届中考数学压轴题专项汇编:专题15角含半角模型(附答

林初中17届中考数学压轴题专项汇编:专题15角含半角模型(附答

林初中2017届中考数学压轴题专项汇编:专题15角含半角模型(附答专题15 角含半角模型破题策略1.等腰直角三角形角含半角如图,在△ABC中,AB=AC,∠BAC =90°,点D,E在BC上且∠DAE=45°△BAE∽△ADE∽△CDA BD2+CE2=DE2.A45°BDEC 证明易得∠ADC=∠B+∠BAD=∠EAB,所以△BAE∽△ADE∽△CDA.方法一:如图1,将△ABD绕点A逆时针旋转90°得到△ACF,连结EF.A45°FBDEC 则∠EAF =∠EAD=45°,AF=AD,所以△ADE ∽△FAE .所以DE=EF.而CF=BD,∠FCE=∠FCA+∠ACE=90°,所以BD2+CE2=CF2+CE2=EF2=DE2.方法二:如图2,作点B 关于AD 的对称点F,连结AF,DF,EF.A45°BDFEC 因为∠BAD+∠EAC=∠DAF+∠EAF,又因为∠BAD=∠DAF,则∠FAE=∠CAE,AF=AB=AC,所以△FAE∽△CAE.所以EF=EC.而DF=BD,∠DFE=∠AFD+∠AFE=90°,所以BD2+EC2=FD2+EF2=DE2.【拓展】①如图,在△ABC 中,AB=AC,∠BAC=90°,点D 在BC 上,点E 在BC 的延长线上,且∠DAE=45°,则BD2+CE2=DE2.ABDCE 可以通过旋转、翻折的方法来证明,如图:FAAFBDCEB DCE ②将等腰直角三角形变成任意的等腰三角形:如图,在△ABC中,AB=AC,点D,E 在BC上,且∠DAE=数为180°-∠BAC.A1∠BAC,则以BD,DE,EC为三边长的三角形有一个内角度2BDEC 可以通过旋转、翻折的方法将BD,DE,EC转移到一个三角形中,如图:AAFBBDFECDEC 2.正方形角含半角如图1,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连结EF,则:B45°EABEGABHE45°ACF图1DCF图2DCF图3D EF=BE+DF; 如图2,过点A作AG⊥EF于点G,则AG=AD; 如图3,连结BD交AE于点H,连结FH.则FH⊥AE.如图4,将△ABE绕点A逆时针旋转90°得到△ADI证明.BEACF 图4DI 则∠IAF=∠EAF=45°,AI =AE,所以△AEF∽△AIF,所以EF =IF=DI+DF=BE+DF.因为△AEF∽△AIF,AG⊥EF,AD⊥IF,所以AG=AD.∠HAF=∠HDF=45°可得A,D,F,H 四点共圆,从而∠AHF=180°-∠ADF=90°,即FH⊥AE.【拓展】①如图,在正方形ABCD中,点E,F分别在边CB,DC 的延长线上,∠EAF=45°,连结EF,则EF=DF-BE.EBAFCD 可以通过旋转的方法来证明.如图: EAB FCGD ②如图,在一组邻边相等、对角互补的四边形ABCD 中,AB=AD,∠BAD+∠C=180 °,点E,F分别在BC、CD上,∠EAF=1∠BAD,连结EF,则EF=BE+DF. 2BAECFD 可以通过旋转的方法来证明.如图: BAEC FDG 例题讲解例1 如图1,点E、F分别在正方形ABCD 的边BC、CD上,∠EAF=45°. 试判断BE、EF、FD之间的数量关系. 如图2,在四边形ABCD中,∠BAD≠90°,AB=AD.∠B+∠D=180°,点E、F 分别在BC、CD上,则当∠EAF 与∠BAD 满足关系时,仍有EF=BE +FD. 如图3.在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80m,∠B=60°,∠ADC =120°,∠BAD=150°,道路BC,CD 上分别有景点E,F,且AE⊥AD.DF =40m.现要在E、F之间修一条笔直的道路,求这条道路EF的长.ADFADDFBEC图2FABC BEC图1E图3解:“正方形内含半角模型”可得EF=BE+FD.∠BAD=2∠EAF,理如下:如图4,延长CD 至点G,使得DG=BE.连结AG. 易证△ABE≌△ADG. 所以AE=AG,即EF=BE+DF=DG+DF=GF.从而证得△AEF≌△AGF.所以∠EAF=∠GAF=11∠EAG=∠BAD. 22AGDFBE图4GHDFAB CE图5C 如图5,将△ABE绕点A逆时针旋转1 50°至△ADG.连结AF.题意可得∠BAE =60°所以△ABE 和△ADG均为等腰直角三角形. 过点A作AH⊥DG于点H.则DH=13AD=40m,AH=AD =403 m. 22而DF=40m. 所以∠EAF=∠GAF=45°. 可得△EAF≌△GAF.所以EF =GF=80m+40m≈109. 2m. 例2如图,正方形ABCD的边长为a,BM、DN分别平分正方形的两个外角,且满足∠MA N=45°.连结MC、NC、MN.与△ABM 相似的三角形是,BMDN=;求∠MCN的度数;请你猜想线段BM、DN和MN之间的等量关系,并证明你的结论. ADBNCM 2解:△NDA,a. AGDFBE图4GHDFAB CE图5C 如图5,将△ABE绕点A 逆时针旋转1 50°至△ADG.连结AF.题意可得∠BAE=60°所以△ABE 和△ADG均为等腰直角三角形. 过点A作AH⊥DG于点H.则DH=13AD=40m,AH=AD=403 m. 22而DF=40m. 所以∠EAF=∠GAF=45°. 可得△EAF ≌△GAF.所以EF =GF=80m+40m≈109. 2m. 例2如图,正方形ABCD的边长为a,BM、DN分别平分正方形的两个外角,且满足∠MA N=45°.连结MC、NC、MN.与△ABM 相似的三角形是,BMDN=;求∠MCN的度数;请你猜想线段BM、DN和MN之间的等量关系,并证明你的结论. ADBNCM 2解:△NDA,a.。

2017年中考数学分类汇编二次函数压轴题14道

2017年中考数学分类汇编二次函数压轴题14道

中考数学分类汇编二次函数压轴题1.(2016•成都第28题)如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,﹣),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2.(2016•扬州第28题)如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y轴交OC 于点N 。

若在点T 运动的过程中,2ON OM为常数,试确定k 的值。

xy图3NM OC Tx y图2(备用图)BAOxy13-1图1B AO二、与轴对称和等腰三角形性质有关的综合题3.(2016•益阳第21题)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.4.(2016•哈尔滨第27题)如图,二次函数y =ax 2+bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =-32,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式;(2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF 与△DPF 重叠部分的面积是△BDP 的面积的 14 ,若点B ′在OD 上方,求线段PD 的长度;(3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段AM 上,使∠HPN +∠DAQ =135°,延长PG 交AD 于N .若AN + B ′M =52,求点Q 的坐标.xyA D CBOxyA DCBO xyA DCBOKOyxC BA图2三、与图形的平移与旋转变换性质有关的综合题5.(2016•重庆第26题)如图1,二次函数1x 2-x 21y 2+=的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO ︰S 四边形AONB =1︰48。

2017年中考数学填空压轴题汇编

2017年中考数学填空压轴题汇编

2017全国各地中考数学压轴题汇编之填空题41.(2017贵州六盘水)计算1+4+9+16+25+……的前29项的和是. 【答案】8555,【解析】由题意可知1+4+9+16+25+……的前29项的和即为:12+22+32+42+52+…+292.∵有规律:21(11)(211)116+⨯+==,222(21)(221)1256+⨯++==,2223(31)(231)123146+⨯+++==,……,2222(1)(21)123146n n n n ++++++==….∴222229(291)(2291)123296+⨯+++++= (8555)2.(2017贵州毕节)观察下列运算过程:计算:1+2+22+…+210.. 解:设S =1+2+22+…+210,①①×2得 2S =2+22+23+…+211,② ②-①,得 S =211-1.所以,1+2+22+…+210=211-1.运用上面的计算方法计算:1+3+32+…+32017=______________.【答案】2018312-,【解析】设S =1+3+32+…+32017,①①×3得 3S =3+32+33+ (32018)②-①,得 2S =32018-1. 所以,1+3+32+…+32017=2018312-.3.(2017内蒙古赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(-y +1,x +2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为. 【答案】(2,0),【解析】根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0), P 5(2,0)的终结点为P 4(1,4),……观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0). 4.(2017广西百色)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=⨯;(2)常数项3131(3)-=-⨯=⨯-,验算:“交叉相乘之和”;(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______.【答案】(x +3)(3x -4). 【解析】如图.5.(2017湖北黄石)观察下列各式:11111222=-=⨯111112112232233+=-+-=⨯⨯ 1111111131122334223344++=-+-+-=⨯⨯⨯ ……按以上规律,写出第n 个式子的计算结果n 为正整数).(写出最简计算结果即可) 【答案】1nn +, 【解析】先看分子,左边是一个数,分子为1;左边两个数(相加),则为2;左边三个数(相加),则为3,…, 左边n 个数(相加),则分子为n .而分母,就是分子加1,故答案:1n n +. 6.(2017年湖南省郴州市)已知a 1=﹣32,a 2=55,a 3=﹣710,a 4=917,a 5=-1126,…… ,则a 8=. 【答案】1765, 【解析】由前5项可得a n =(-1)n ·2211n n ++,当n =8时,a 8=(-1)8·228181⨯++=1765.7.(2017江苏淮安)将从1开始的连续自然数按以下规律排列:第1行 1 第二行 2 3 4 第三行98765第四行10 11 12 13 14 15 16第五行 25 24 23 22 21 20 19 18 17 ……则2017在第________行. 【答案】45,【解析】观察发现,前5行中最大的数分别为1、4,9、16、25,即为12、22、32、42、52,于是可知第n 行中最大的数是2n .当n =44时,2n =1936;当n =45时,2n =2025;因为1936<2017<2025,所以2017在第45行. 8.(2017山东滨州)观察下列各式:2111313=-⨯, 2112424=-⨯2113535=-⨯……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n+(n≥3且为整数),其结果为__________.【答案】2352(1)(2)n nn x+++,【解析】由这些式子可得规律:2(2)n n+=112n n-+.因此,原式=1111111111 132435112n n n n-+-+-++-+--++=1111111111 123134512n n n n+++++-------++=11111212n n+--++=2352(1)(2)n nn x+++.9.(2017甘肃武威)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.【答案】8,6053,【解析】根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是梯形;当图形的个数时偶数个时,正好构成平行四边形,这个平行四边形的水平边是3,两斜边长是1,则周长是8.第2017个图形构成的图形是梯形,这个梯形的上底是3025,下底是3026,两腰长是1,故周长是6053.10.(2017年贵州省黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3第三块三角板的斜边B1B2垂直且交y轴于点B3;……按此规律继续下去,则点B2017的坐标为.【答案】(0,-31009),【解析】由“含30°角的直角三角形三边关系”可得B 的坐标为(0),则依次可得出B 1(0,-3),B 2(0),B 3(0,9),B 4(-,0),B 5(0,-27),…观察这组数据,不难发现坐标以4个为一周期,B 2017位于周期中的第一个位置,这个位置的坐标规律为B n (0,1n +-),所以B 2017(0,-31009).11.(2017贵州安顺)如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线l 上,点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为___________.【答案】2n +1-2,【解析】由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)…,2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n+1-2.12.(2017黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 的正半轴上,且112=1OA A A =,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形34OA A ,……,依此规律,得到等腰直角三角形20172018OA A ,则点2017A 的坐标为.【答案】(0,10082)或(00,2016) 【解析】∵112=1OA A A =,∴2OA ,同理3OA ==, ……2017OA 13.(2017黑龙江绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为。

决胜2017中考数学压轴题全揭秘精品(解析版)

决胜2017中考数学压轴题全揭秘精品(解析版)

《中考压轴题全揭秘》第二辑原创模拟预测题专题38:动态几何之线动形成的等腰三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写线动形成的等腰三角形存在性问题模拟题.在中考压轴题中,线动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C 时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=12cm B.sin∠EBC 7C.当0<t≤8时,2516y tD.当t=9s时,△PBQ是等腰三角形【答案】D.【解析】试题分析:A.分析函数图象可知,BC=16cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=16﹣4=12cm,故①正确;D.当t=9s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=14,ND=2,由勾股定理求得:NB=8092,NC=414,∵BC=16,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.故④错误;故选D.考点:动点问题的函数图象;综合题.原创模拟预测题2.已知抛物线C1:23 2y ax bx(0a )经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.【答案】(1)21322y x x =-++,顶点C (1,2);(2)F (﹣3,﹣6);(3)①tan ∠ENM =2,是定值,不发生变化;②10. 【解析】试题解析:(1)∵抛物线C 1:232yax bx(0a ≠)经过点A (﹣1,0)和B (3,0),∴30239302a b a b ⎧-+=⎪⎪⎨⎪++=⎪⎩解得:121a b ⎧=-⎪⎨⎪=⎩,∴抛物线C 1的解析式为21322y x x =-++,∵21322y x x =-++=21(1)22x --+,∴顶点C 的坐标为(1,2);(2)如图1,作CH ⊥x 轴于H ,∵A (﹣1,0),C (1,2),∴AH =CH =2,∴∠CAB =∠ACH =45°,∴直线AC 的解析式为1y x =+,∵△DEF 是以EF 为底的等腰直角三角形,∴∠DEF =45°,∴∠DEF =∠ACH ,∴EF ∥y 轴,∵DE =AC =22,∴EF =4,设F (m ,21322m m -++),则E (m ,m +1),∴213(1)()422m m m +--++=,解得m =±3,∴F (﹣3,﹣6);②点P 经过的路径是线段P 1P 2,如图3,∵四边形BCEG 是矩形,GP 2=CP 2,∴EP 2=BP 2,∵△EGN ∽△ECB ,∴EN EG EB EC =,∵EC =42,EG =BC =22,∴EB =210,∴2221042=,∴EN =10,∵P 1P 2是△BEN 的中位线,∴P 1P 2=12EN =10;∴点M 到达点C 时,点P 经过的路线长为10.考点:二次函数综合题;动点型;定值问题;综合题;压轴题.原创模拟预测题3.如图,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P ,Q 运动的时间为t 秒.(1)在运动过程中,求P ,Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形?若存在,求出此时的t 值;若不存在,请说明理由(5≈2.24,结果保留一位小数).【答案】(1)35;(2)S =223 (05)51640 (58)t t t t t ⎧<≤⎪⎨⎪-+-<≤⎩;(3)t =165或t =4011或t =3.4.【解析】试题分析:(1)如图1,过Q 作QE ⊥AC 于E ,连接PQ ,由△ABC ∽△AQE ,得到比例式AQ AE QEAB AC BC==,求得PE =35t ,QE =65t ,由勾股定理求出PQ =35t ,当Q 与B 重合时,PQ 的值最大,于是得到当t =5时,得到PQ 的最大值;(2)由三角形的面积公式即可求得;(3)存在,如图2,连接CQ ,PQ ,分三种情况①当CQ =CP 时,②当PQ =CQ 时,③当PQ =PC 时,列方程求解即可.学科网试题解析:(1)如图1,过Q 作QE ⊥AC 于E ,连接PQ ,∵∠C =90°,∴QE ∥BC ,∴△ABC ∽△AQE ,∴AQ AE QE AB AC BC ==,∵AQ =2t ,AP =t ,∵∠C =90°,AC =8,BC =6,∴AB =10,∴21086t t PE QE+==,∴PE =35t ,QE =65t ,∴222PQ QE PE =+,∴PQ =35t ,当Q 与B 重合时,PQ 的值最大,∴当t =5时,PQ 的最大值=35;(2)如图1,△ABC 被直线PQ 扫过的面积=ΔAQP S , 当Q 在AB 边上时,S =12AP •QE =1625t t ⋅=235t ,(0<t ≤5) 当Q 在BC 边上时,△ABC 被直线PQ 扫过的面积=S 四边形ABQP ,∴S四边形ABQP=S△ABC﹣S△PQC=12×8×6﹣12(8﹣t)•(16﹣2t)=21640t t-+-,(5<t≤8);∴经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式:S=223(05)51640 (58)t tt t t⎧<≤⎪⎨⎪-+-<≤⎩;③当PQ=PC时,即35t=8t-,解得:t=6510-≈3.4;综上所述:当t=165,t=4011,t=3.4时,△PQC为等腰三角形.考点:相似形综合题;分段函数;分类讨论;存在型;动点型;最值问题;压轴题.原创模拟预测题4.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB 为等腰三角形时,求t 的值.【答案】(1)5;(2)当t =4时,S 的最大值是325;(3)t =4011秒或t =4811秒或t =4秒.【解析】试题分析:(1)计算BC 的长,找出AB 、BC 中较短的线段,根据速度公式可以直接求得;(2)由已知条件,把△PQB 的边QB 用含t 的代数式表示出来,三角形的高可由相似三角形的性质也用含t 的代数式表示出来,代入三角形的面积公式可得到一个二次函数,即可求出S 的最值; (3)分三种情况讨论:①当PQ =PB 时,②当PQ =BQ 时,③当QB =BP .(3)∵cos ∠B =35BE FB BC BP ==,∴BF =35t ,∴QF =AB ﹣AQ ﹣BF =885t -,∴QP 22QF PF +2284(8)()55t t -+=218455t t -+①当PQ =PB 时,∵PF ⊥QB ,∴BF =QF ,∴BQ =2BF ,即:3825t t -=⨯,解得t =4011; ②当PQ =BQ 时,即2184455t t -+8﹣t ,即:211480t t -=,解得:10t =(舍去),24811t =; ③当QB =BP ,即8﹣t =t ,解得:t =4. 综上所述:当t =4011秒或t =4811秒或t =4秒时,△PQB 为等腰三角形.考点:四边形综合题;动点型;二次函数的最值;最值问题;分类讨论;压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,∴QH QBAC AB,∴QH=错误!未找到引用源。

x,y=错误!未找到引用源。

BP•QH=12(10﹣x)•错误!未找到引用源。

x=﹣45x2+8x(0<x≤3),②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,∴'AQ QHAB BC=,即:'14106x QH-=错误!未找到引用源。

,解得:QH′=错误!未找到引用源。

(14﹣x),∴y=12PB•QH′=12(10﹣x)•35(14﹣x)=310x2﹣365x+42(3<x<7);∴y与x的函数关系式为:y=2248(03)533642(37)105x x xx x x⎧-+<≤⎪⎪⎨⎪-+<<⎪⎩错误!未找到引用源。

;(3)∵AP=x,AQ=14﹣x,∵PQ⊥AB,∴△APQ∽△ACB,∴AP AQ PQAC AB BC==,即:148106x x PQ-==错误!未找到引用源。

,解得:x=569,PQ=143,∴PB=10﹣x=349,∴1421334179PQ BCPB AC==≠错误!未找到引用源。

,∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM的周长最小值为16.2、(12分)如图,矩形ABCD中,点P在边CD上,且与点C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,PQ的中点为M.(1)求证:△ADP∽△ABQ;(2)若AD=10,AB=20,点P在边CD上运动,设DP=x, BM 2=y,求y与x的函数关系式,并求线段BM长的最小值;(3)若AD=10, AB=a,DP=8,随着a的大小的变化,点M的位置也在变化,当点M落在矩形ABCD外部时,求a的取值范围。

解:(1)证明:∵四边形ABCD是矩形∴∠ADP=∠ABC=∠BAD=90°∵∠ABC+∠ABQ=180°∴∠ABQ=∠ADP =90°∵AQ⊥AP ∴∠PAQ=90°∴∠QAB+ ∠BAP=90°又∵∠PAD+∠BAP=90°∴∠PAD=∠QAB在△ADP与△ABQ中∵ADP ABQPAD QAB ∠=∠⎧⎨∠=∠⎩∴△ADP∽△ABQ(2)如图,作MN⊥QC,则∠QNM=∠QCD=90°又∵∠MQN=∠PQC∴△MQN∽△PQC ∴MN QM PC QP=∵点M是PQ的中点∴12QMQP=xQP20-xNQP∴12MN QM QN PC QP QC === 又∵20PC DC DP x =-=- ∴11(20)22MN PC x ==- 11(10)22QN QC QB ==+ ∵△ADP ∽△ABQ ∴AD DP AB BQ = 1020x BQ= ∴2BQ x = ∵111(10)(210)222QN QC QB x ==+=+ ∴12(210)52BN QB QN x x x =-=-+=-在Rt △MBN 中,由勾股定理得:222221(20)(5)2BM MN BN x x ⎛⎫=+=-+- ⎪⎝⎭即:25201254y x x =-+ (020)x ≤≤ 当4x =即4DP =时,线段BM长的最小值==(3)如图,当点PQ 中点M 落在AB 上时,此时QB=BC=10由△ADP ∽△ABQ 得10810a=解得:12.5a =∴随着a 的大小的变化,点M 的位置也在变化,当点M 落在矩形ABCD 外部时,求a 的取值范围为:12.5a >3、如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.CP Q10 a答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y .24.(14分)(2013•温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.解答:解:(1)∵A(6,0),B(0,8).∴OA=6,OB=8.∴AB=10,∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO,∴=,即=,∴CE=﹣m;(2)∵m=3,∴BC=8﹣m=5,CE=﹣m=3.∴BE=4,∴AE=AB﹣BE=6.∵点F落在y轴上(如图2).∴DE∥BO,∴△EDA∽△BOA,∴=即=.∴OD=,∴点D的坐标为(,0).(3)取CE的中点P,过P作PG⊥y轴于点G.则CP=CE=﹣m.(Ⅰ)当m>0时,①当0<m<8时,如图3.易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=,∴CG=CP•cos∠GCP=(﹣m)=﹣m.∴OG=OC+OG=m+﹣m=m+.根据题意得,得:OG=CP,∴m+=﹣m,解得:m=;②当m≥8时,OG>CP,显然不存在满足条件的m的值.(Ⅱ)当m=0时,即点C与原点O重合(如图4).(Ⅲ)当m<0时,①当点E与点A重合时,(如图5),易证△COA∽△AOB,∴=,即=,解得:m=﹣.②当点E与点A不重合时,(如图6).OG=OC﹣OG=﹣m﹣(﹣m)=﹣m﹣.由题意得:OG=CP,∴﹣m﹣=﹣m.解得m=﹣.综上所述,m的值是或0或﹣或﹣.28、如图,过原点的直线l1:y=3x,l2:y=错误!未找到引用源。

x.点P从原点O出发沿x轴正方向以每秒1个单位长度的速度运动.直线PQ交y轴正半轴于点Q,且分别交l1、l2于点A、B.设点P的运动时间为t秒时,直线PQ的解析式为y=﹣x+t.△AOB 的面积为S l(如图①).以AB为对角线作正方形ACBD,其面积为S2(如图②).连接PD并延长,交l1于点E,交l2于点F.设△PEA的面积为S3;(如图③)(1)S l关于t的函数解析式为_________;(2)直线OC的函数解析式为_________;(3)S2关于t的函数解析式为_________;(4)S3关于t的函数解析式为_________.解:(1)由错误!未找到引用源。

,得错误!未找到引用源。

,∴A点坐标为(错误!未找到引用源。

,错误!未找到引用源。

)由错误!未找到引用源。

得错误!未找到引用源。

∴B点坐标为(错误!未找到引用源。

,错误!未找到引用源。

).∴S1=S△AOP﹣S△BOP=错误!未找到引用源。

t2(2)由(1)得,点C的坐标为(错误!未找到引用源。

,错误!未找到引用源。

).设直线OC的解析式为y=kx,根据题意得错误!未找到引用源。

=错误!未找到引用源。

,∴k=错误!未找到引用源。

,∴直线OC的解析式为y=错误!未找到引用源。

x.(3)由(1)、(2)知,正方形ABCD的边长CB=错误!未找到引用源。

t﹣错误!未找到引用源。

=错误!未找到引用源。

,∴S2=CB2=(错误!未找到引用源。

)2=错误!未找到引用源。

.(4)设直线PD的解析式为y=k1x+b,由(1)知,点D的坐标为(错误!未找到引用源。

t,错误!未找到引用源。

),将P(t,0)、D(错误!未找到引用源。

)代入得错误!未找到引用源。

,解得错误!未找到引用源。

∴直线PD的解析式为y=错误!未找到引用源。

由错误!未找到引用源。

,得错误!未找到引用源。

∴E点坐标为(错误!未找到引用源。

,错误!未找到引用源。

)∴S3=S△EOP﹣S△AOP=错误!未找到引用源。

t•错误!未找到引用源。

t﹣错误!未找到引用源。

t•错误!未找到引用源。

t=错误!未找到引用源。

t2.25.(10分)(2013•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E 在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).考点:相似形综合题.分析:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到=,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2﹣m)2+42=m2﹣4m+20,在Rt△BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).点评:本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.17、(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C (0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).16、(12分)(2013•南昌)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x ﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系式是;(3)探究下列结论:①若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.解:(1)∵当n=1时,第1条抛物线y1=﹣(x﹣a1)2+a1与x轴的交点为A0(0,0),∴0=﹣(0﹣a1)2+a1,解得a1=1或a1=0.由已知a1>0,∴a1=1,∴y1=﹣(x﹣1)2+1.令y1=0,即﹣(x﹣1)2+1=0,解得x=0或x=2,∴A1(2,0),b1=2.由题意,当n=2时,第2条抛物线y2=﹣(x﹣a2)2+a2经过点A1(2,0),∴0=﹣(2﹣a2)2+a2,解得a2=1或a2=4,∵a1=1,且已知a2>a1,∴a2=4,∴y2=﹣(x﹣4)2+4.∴a1=1,b1=2,y2=﹣(x﹣4)2+4.(2)抛物线y2=﹣(x﹣4)2+4,令y2=0,即﹣(x﹣4)2+4=0,解得x=2或x=6.∵A1(2,0),∴A2(6,0).由题意,当n=3时,第3条抛物线y3=﹣(x﹣a3)2+a3经过点A2(6,0),∴0=﹣(6﹣a3)2+a3,解得a3=4或a3=9.∵a2=4,且已知a3>a2,∴a3=9,∴y3=﹣(x﹣9)2+9.∴y3的顶点坐标为(9,9).由y1的顶点坐标(1,1),y2的顶点坐标(4,4),y3的顶点坐标(9,9),依此类推,y n的顶点坐标为(n2,n2).∵所有抛物线顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y=x.(3)①∵A0(0,0),A1(2,0),∴A0A1=2.y n=﹣(x﹣n2)2+n2,令y n=0,即﹣(x﹣n2)2+n2=0,解得x=n2+n或x=n2﹣n,∴A n﹣1(n2﹣n,0),A n(n2+n,0),即A n﹣1A n=(n2+n)﹣(n2﹣n)=2n.②存在.设过点(2,0)的直线解析式为y=kx+b,则有:0=2k+b,得b=﹣2k,∴y=kx﹣2k.设直线y=kx﹣2k与抛物线y n=﹣(x﹣n2)2+n2交于E(x1,y1),F(x2,y2)两点,联立两式得:kx﹣2k=﹣(x﹣n2)2+n2,整理得:x2+(k﹣2n2)x+n4﹣n2﹣2k=0,∴x1+x2=2n2﹣k,x1•x2=n4﹣n2﹣2k.过点F作FG⊥x轴,过点E作EG⊥FG于点G,则EG=x2﹣x1,FG=y2﹣y1=[﹣(x2﹣n2)2+n2]﹣[﹣(x1﹣n2)2+n2]=(x1+x2﹣2n2)(x1﹣x2)=k(x2﹣x1).在Rt△EFG中,由勾股定理得:EF2=EG2+FG2,即:EF2=(x2﹣x1)2+[k(x2﹣x1)]2=(k2+1)(x2﹣x1)2=(k2+1)[(x1+x2)2﹣4x1•x2],将x1+x2=2n2﹣k,x1•x2=n4﹣n2﹣2k代入,整理得:EF2=(k2+1)[4n2•(1﹣k)+k2+8k],当k=1时,EF2=(1+1)(1+8)=9,∴EF=3为定值,∴k=1满足条件,此时直线解析式为y=x﹣2.∴存在满足条件的直线,该直线的解析式为y=x﹣2.15.(2012义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM 与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?解答:解:(1)把点A(3,6)代入y=kx 得;∵6=3k,∴k=2,∴y=2x.(2012义乌市)OA=.…(3分)(2)是一个定值,理由如下:如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.①当QH与QM重合时,显然QG与QN重合,此时;②当QH与QM不重合时,∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,当点P、Q在抛物线和直线上不同位置时,同理可得.…(7分)①①(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴点F(,0),设点B(x,),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴点B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5 …(8分);(求AB也可采用下面的方法)设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5…(8分)(其它方法求出AB的长酌情给分)在△ABE与△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.…(9分)设OE=x,则AE=﹣x (),由△ABE∽△OED得,∴∴()…(10分)∴顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个.∴当时,E点只有1个…(11分)当时,E点有2个…(12分).已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4,如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D。

相关文档
最新文档