河北省石家庄市一中2015-2016学年高一上学期期末考试数学试卷

合集下载

河北省石家庄市一中2015-2016学年高二上学期期末考试数学(文)试卷

河北省石家庄市一中2015-2016学年高二上学期期末考试数学(文)试卷

则,. . 直线的斜率与直线的斜率的成绩为, 即, 化简得,代入式得,解得 又即,故. 综上,直线在轴上的截距的取值范围是. 22. 解:(1)当,函数得极大值---4 (2)
---12
16.已知函数,其图与轴切于非原点的一点,且,那么切点坐标为
ቤተ መጻሕፍቲ ባይዱ

三、解答题:本大题共 6 小题,共 70 分.请将解答过程书写在答题纸上,并写出文字说明、 证明过程或演算步骤.
性别
是否需要志愿 男 女
需要 40 30
不需要 160 270
计该地区老年人中,需要志愿者提供帮助的老年人的比例;
D.
7.已知点是抛物线上一点,设到此抛物线准线的距离是,到直线的距离是,则的最小值是
B.
C.
D.3
8.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系 对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:
由表中样本数据得回归方程为,则点与直线的位置关系是
石家庄市第一中学
201—2016 学年第学期高年级试题:
审核人:
第卷(选择题,共分)
一、选择题本题共小题,每小题分,共分在每小题给出的四个选项中,只有一项符合题目 要求
A. 命题“若,则”的逆否命题为“若,则”
B.命题:存在,使得,则:任意,都有
C.且为假命题,则,均为假命题
A.
B.
C.
D.
第卷(非选择题,共分)、题 本题共小题,每小题分,共分.
14.已知,则等于
15.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙 滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点 个数 1,5,12,22,…,被称为五角形数,其中第 1 个五角形数记作,第 2 个五角形数记作, 第 3 个五角形数记作,第 4 个五角形数记作,…,若按此规律继续下去,得数列,则;对,.

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。

1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。

$\{1\}$ B。

$\{3,5\}$ C。

$\{1,3,4,5\}$ D。

$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。

$22$ B。

$10$ C。

$8$ D。

$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。

$-\frac{3}{4}$ B。

$-\frac{4}{3}$ C。

$\frac{3}{4}$ D。

$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{4}$ B。

$\frac{\pi}{3}$ C。

河北省石家庄市第一中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

河北省石家庄市第一中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

石家庄市第一中学2015—2016学年第一学期高一年级期中考试数学试题第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}|13A x x =-≤≤,182B yy ⎧⎫=≤≤⎨⎬⎩⎭,则A B = A .{|1x x ≤-或}8x ≥ B .{}1|32x x ≤≤ C .{}|18x x -≤≤ D .∅ 2.已知函数(1)y f x =+的图象过点(3,2),则函数()y f x =的图象关于x 轴的对称图形一定过点A. (2,-2)B. (2,2)C. (-4,2)D. (4,-2)3.若方程ln 40x x +-=在区间(,)(,,a b a b Z ∈且1)b a -=上有一根,则a 的值为A . 1B .2C .3D .4 4.已知α是第三象限角,则2α是A .第一象限角B .第二象限角C .第二或第四象限角D .第一或第四象限角5.设函数()f x =⎩⎨⎧(x +1)2x <14-x -1 x ≥1,则使得()f x ≥1的自变量x 的取值范围为A .(-∞,-2]∪[0,10]B .(-∞,-2]∪[0,1]C .(-∞,-2]∪[1,10]D .[-2,0]∪[1,10] 6.下列根式、分数指数幂的互化中,正确的是A .12()x =- B .331x x-=-C .)0,()()(4343≠=-y x xy y x D 13y =7. 当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)a ba b +>+ C.2)1()1(bba a ->- D.(1)(1)aba b ->- 8.函数()32log 241++-=x x y 的单调增区间是A .(]1,1-B .[)3,1C .()1,∞-D . ()+∞,1 9. 函数22xy x =-的图像大致是A .B .C .D .10. 已知函数2()1,()43,xf x eg x x x =-=-+-若有()(),f a g b =则b 的取值范围为A.[22 B.(22-+ C .[1,3] D .(1,3)11 .已知函数)3log 2(.4),1(,4,)21()(2+⎪⎩⎪⎨⎧<+≥=f x x f x x f x则的值为A .31 B .61C .121 D .24112. 对于函数()f x ,若在其定义域内存在两个实数(),a b a b <,当[],x a b ∈时,()f x 的值域也是[],a b ,则称函数()f x 为“科比函数”.若函数2)(++=x k x f 是“科比函数”,则实数k 的取值范围A .]2,49(--B .]0,49(- C .]0,2[- D .),2[+∞- 第II 卷(非选择题,共90分)二、填空题: 本题共4小题,每小题5分,共20分.13. 圆的一段弧长等于该圆外切正三角形的边长,则这段弧所对圆心角的弧度数是 .14. 若221()21x x a a f x ⋅+-=+为R 上的奇函数,则实数a 的值为 .15. 设集合12log (3)2A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭,若AB ≠∅,则实数a 的取值范围是________. 16.给出下列四个命题:①函数xy a =(0a >且1a ≠)与函数log x a y a =(0a >且1a ≠)的定义域相同;②函数3y x =与3xy =的值域相同;③函数11221x y =+-与2(12)2x x y x +=⋅都是奇函数;④函数2(1)y x =-与12x y -=在区间[0,)+∞上都是增函数,其中正确命题的序号是____________(把你认为正确的命题序号都填上). 三、解答题:本题共6小题,共70分.17.(本小题满分10分) 设集合φ=⋂∈=+++=+R A R x x p x x A 若},,01)2(|{2, 求实数p 的取值范围.(其中R +为区间()0,+∞)18.(本小题满分12分) 已知48a =,2936m n ==,且112b m n+=,试比较1.5a 与0.8b 的大小.19.(本小题满分12分)已知函数()|1|||f x x x a =-+-. (Ⅰ)若2a =,解不等式()2f x ≥;(Ⅱ)若1a >,任意,()+11x R f x x ∈-≥,求实数a 的取值范围.20.(本小题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(I )当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (II )设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (III )当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)21.(本小题满分12分)已知函数xx x f 212)(-=. (Ⅰ)若x x f 222)(+=,求x 的值; (Ⅱ)若2(2)()0tf t mf t +≥对于任意实数]2,1[∈t 恒成立,求实数m 的取值范围.22.(本小题满分12分)已知定义域为[]1,0的函数()x f 同时满足以下三个条件:①对任意的[]1,0∈x ,总有()0f x ≥;②()11=f ;③若0,021≥≥x x 且121≤+x x ,则有()()()2121x f x f x x f +≥+成立,则称()x f 为“友谊函数”.(Ⅰ)若已知()x f 为“友谊函数”,求()0f 的值;(Ⅱ)函数()12-=xx g 在区间[]1,0上是否为“友谊函数”?并给出理由;(Ⅲ)已知()x f 为“友谊函数”,且 1021≤<≤x x ,求证:())(21x f x f ≤.石家庄市第一中学2015-2016学年高一第一学期期中数学试题(答案)一、选择题:1.B 2.D 3. B 4.C 5.A 6.C 7.D 8.B 9.A 10.B 11.D 12.A 二、填空题:13. ____14.3. 15. ______(-1,0)∪(0,3)_.16. _①_③_________ 三、解答题:本题共6小题,共70分。

河北省石家庄市2014-2015学年高一上学期期末数学试卷

河北省石家庄市2014-2015学年高一上学期期末数学试卷

河北省石家庄市2014-2015 学年高一上学期期末数学试卷一、选择题(共12 小题,每题 5 分,满分60 分)1.( 5 分)已知会合A={ ﹣ 1, 0, 1, 2} , B={x|1 ≤2x<4} ,则 A ∩B=()A .{ ﹣1,0,1}B. {0,1, 2}C.{ 0,1}D.{1, 2} 2.( 5 分)以下各组中的两个函数是同一函数的是()A .f (x) =和 f (x) =x+1B . f (r) =πr 2( r≥0)和 g( x) =πx2( x≥0)x( a>0 且 a≠1)C. f (x) =log a a ( a> 0 且 a≠1)和 g(x) =D .f (x) =x 和 g( t)和 g( t) =3.( 5分)函数 f ( x) =是()A .奇函数B.偶函数C.既是奇函数又是偶函数 D .非奇非偶函数4.( 5分)函数 f ( x)的定义域为B.(﹣, 1]C.(0, ] D.(﹣, 0]5.( 5 分)设 a=log 20.4, b=0.42, c=20.4,则 a, b,c 的大小关系是()A .a> c> b B. a> b>c C. c> b>a D. b> c>a6.( 5 分)若 O 是△ ABC 所在平面内一点,且知足()?(﹣)=0,则△ ABC 必定是()A .等边三角形B .等腰直角三角形C.直角三角形D.斜三角形7.( 5 分)要获得 y=cos2x 的图象,可由函数y=cos(2x﹣)的图象()A .向左平移个单位长度B .向右平移个单位长度C.向左平移个单位长度 D .向右平移个单位长度8.( 5 分)已知f (α) =,则f(﹣)的值为()A.﹣B.﹣C.D.9.( 5 分)已知向量,若A、B、D三点共线,则实数 m、 n 应当知足的条件是()A .m+n=1B. m+n=﹣ 1C. mn=1D. mn=﹣ 110.(5 分)在△ ABC 中, M 是 BC 的中点, AM=1 ,点 P 在 AM 上且知足,则等于()A.B.C.D.11.( 5 分)函数 f(x)=Asin(ωx+ φ)+b 图象的一部分如下图,则f( x)的分析式为()A .y=sin2x ﹣ 2B. y=2cos3x ﹣ 1C. y=sin( 2x﹣)+1D.y=1 ﹣sin( 2x﹣)12.( 5 分)已知函数f( x)=,若对于x的方程f(x)=k有两个不一样的根,则实数 k 的取值范围是()A .(﹣∞,1)B .(﹣∞,2)C.,n∈Z,则 n 的值为.15.( 5 分)已知 f( x)=sin 2(x﹣),则f(lg5)+f(1g)=.16.( 5 分)若,是两个非零向量,且| |=| |, | + |=| |,则与﹣的夹角是.三、解答题(共 6 小题,满分70 分)217.( 10 分)设全集为Z, A={x|x+2x ﹣ 15=0} ,B={x|ax ﹣ 1=0} .(1)若 a=,求A∩(?Z B);(2)若 B? A ,务实数 a 的取值构成的会合C.18.( 12 分)已知向量=( cosα﹣ 5,﹣ sinα),=( sin α﹣ 5, cosα),∥,且α∈(0,π),求 tan2α的值.19.( 12 分)证明函数f( x) =log a(a>1)在时,求f( x)的最小值(用t 表示);(2)能否存在不一样的实数 a,b,使得 f( a)=lga, f( b) =lgb ,而且 a, b∈( 0, 2),若存在,求出实数 t 的取值范围;若不存在,请说明原因.河北省石家庄市2014-2015 学年高一上学期期末数学试卷参照答案与试题分析一、选择题(共 12 小题,每题 5 分,满分 60 分)1.( 5 分)已知会合A={ ﹣ 1, 0, 1, 2} , B={x|1 ≤2x<4} ,则 A ∩B=()A .{ ﹣1,0,1}B. {0,1, 2}C.{ 0,1}D.{1, 2}考点:交集及其运算.专题:会合.剖析:求出 B 中不等式的解集确立出 B ,找出 A 与 B 的交集即可.解答:解:∵会合0x2,A={ ﹣ 1, 0, 1, 2} , B={x|2 =1≤2 < 4=2}={x|0 ≤x< 2}∴A ∩B={0 ,1} ,应选: C.评论:本题考察了交集及其运算,娴熟掌握交集的定义是解本题的重点.2.( 5 分)以下各组中的两个函数是同一函数的是()A .f (x) =和 f (x) =x+1B . f (r) =πr 2( r≥0)和 g( x) =πx2( x≥0)x( a> 0 且 a≠1)C. f (x) =log a a ( a> 0 且 a≠1 )和 g( x)= D .f (x) =x 和 g( t)和 g( t) =考点: 专题:剖析:判断两个函数能否为同一函数.函数的性质及应用.判断两个函数的定义域值域以及对应法例能否同样,即可获得结果解答:解 :对于A ,f ( x ) =和定义域是{x|x ∈R且x ≠1} ,y=x+1的定义域是 R ,两个函数的定义域不同样不是同样函数;对于 B ,f ( r )=πr 2( r ≥0)和 g ( x ) =πx 2( x ≥0)两个函数的定义域同样,对应法例同样,是同样的函数;x( a > 0 且 a ≠1)对于 C ,f ( x ) =log a a ( a > 0 且 a ≠1)义域是 {x|x ∈R} ,和 g ( x ) = 定义域是 {x|x > 0} ,两个函数的定义域不同样不是同样函数;对于 D ,f ( x )=x 和 g ( t )和 g ( t )=;定义域是 R ,两个函数值域不同样,不是同样的函数; 因此 B 正确. 应选: B .评论: 本题考察两个函数能否同样的判断,注意两个函数同样条件:定义域与对应 法例同样.基本知识的考察,属于基础题.3.( 5 分)函数 f ( x ) = 是()A .奇函数B . 偶函数C . 既是奇函数又是偶函数D . 非奇非偶函数考点: 函数奇偶性的判断. 专题: 函数的性质及应用.剖析: 依据函数的奇偶性的定义进行判断即可.解答:解:函数的定义域为 {x|x ≠﹣1} ,定义域对于原点不对称,∴函数 f ( x )为非奇非偶函数, 应选: D .评论: 本题主 要考察函数奇偶性的判断,依据奇偶性的定义是解决本题的重点,但要注意定义域一定对于原点对称,不然为非奇非偶函数.4.( 5 分)函数 f ( x )的定义域为 B . ( ﹣ , 1] C . ( 0, ] D .(﹣,0]考点: 函数的定义域及其求法. 专题: 函数的性 质及应用.剖析:由题目给出的 f ( x )的定义域为.应选: C .评论:本题考察与抽象函数相关的复合函数的定义域的求法,重点是对解题方法的理解与记忆,是中档题.5.( 5 分)设 a=log 20.4, b=0.42, c=20.4,则 a, b,c 的大小关系是()A .a> c> b B. a> b>c C. c> b>a D. b> c>a考点:对数值大小的比较.专题:函数的性质及应用.剖析:利用指数函数与对数函数的单一性即可得出.解答:解:∵ a=log 20.4<0, 0< b=0.42< 1, c=20.4> 1,∴c> b> a.应选: C.评论:本题考察了指数函数与对数函数的单一性,属于基础题.6.( 5 分)若 O 是△ ABC 所在平面内一点,且知足()?(﹣)=0,则△ ABC 必定是()A .等边三角形B .等腰直角三角形C.直角三角形D.斜三角形考点:三角形的形状判断.专题:解三角形;平面向量及应用.剖析:利用向量垂直与数目积的关系即可判断出.解答:解:∵()?(﹣) =0,∴=0,∴C=90 °.∴△ ABC 必定是直角三角形.应选: C.评论:本题考察了向量垂直与数目积的关系、三角形形状的判断,考察了推理能力与计算能力,属于基础题.7.( 5 分)要获得y=cos2x 的图象,可由函数y=cos(2x﹣)的图象()A .向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:专题:剖析:函数 y=Asin (ωx+ φ)的图象变换.三角函数的图像与性质.由条件依据函数y=Asin (ωx+ φ)的图象变换规律,可得结论.解答:解:由函数 y=cos( 2x﹣)的图象向左平移个长度单位,可得函数y=cos=cos2x的图象,应选: C.评论:本题主要考察函数y=Asin (ωx+ φ)的图象变换规律,属于基础题.8.( 5 分)已知f (α) =,则f(﹣)的值为()A.﹣B.﹣C.D.考点:运用引诱公式化简求值;同角三角函数基本关系的运用.专题:三角函数的求值.剖析:f(α)分析式利用引诱公式化简,整理获得结果,把α=﹣π代入计算即可求出f (﹣)的值.解答:解: f (α) =﹣=﹣=﹣ cosα,则 f (﹣π)=﹣cos(﹣π)=﹣cosπ=﹣cos(10π+)=﹣cos=﹣.应选: A.评论:本题考察了运用引诱公式化简求值,娴熟掌握运算法例是解本题的重点.9.( 5 分)已知向量,若 A 、B、D 三点共线,则实数 m、 n 应当知足的条件是()A .m+n=1B. m+n=﹣ 1C. mn=1D. mn=﹣ 1考点:向量的共线定理.专题:平面向量及应用.剖析:由题意可得,再依据两个向量共线的性质可得,由此可得结论.解答:解:由题意可得,∴,故有,∴m n=1 ,应选 C.评论:本题主要考察两个向量共线的性质,两个向量坐标形式的运算,属于中档题.10.( 5 分)在△ ABC 中, M 是 BC 的中点, AM=1 ,点 P 在 AM 上且知足,则等于()A.B.C.D.考点:平面向量数目积的运算.专题:平面向量及应用.剖析:如下图,由 AM=1 ,点 P 在 AM 上且知足,可得.由M 是 BC 的中点,利用向量的平行四边形法例可得.从而即可得出.解答:解:如下图,∵AM=1,点P在AM上且知足,∴.∵M是BC的中点,∴.∴==﹣ 4=﹣ 4×=﹣.应选 D .评论:娴熟掌握向量的平行四边形法例、数目积运算是解题的重点.11.( 5 分)函数 f(x)=Asin(ωx+ φ)+b 图象的一部分如下图,f( x)的分析式为()则A .y=sin2x ﹣ 2B. y=2cos3x ﹣ 1C. y=sin( 2x﹣)+1D.y=1 ﹣sin( 2x ﹣)考点:由 y=Asin (ωx+φ)的部分图象确立其分析式.专题:三角函数的图像与性质.剖析:由已知中函数f( x) =Asin (ωx+ φ) +b 的图象,易求出函数的最大值,最小值,周期及函数图象经过的特别点,易依据函数系数及函数性质相关系,获得各系数的值,从而获得答案.解答:解:由函数图象察看可知函数f( x)的最大值是 2,最小值是0,则: b==1,A=×( 2﹣ 0)=1,=,可解得: T= π=,ω=2,故有: f ( x) =sin( 2x+ φ) +1,由点(, 1)在函数图象上,可得:sin( 2× +φ) +1=1 ,解得:φ=k, k∈Z ,当 k =0 时,有φ=﹣,则 f (x)的分析式为:f(x) =sin( 2x﹣)+1.应选: C.评论:本题考察由 y=Asin (ωx+φ)的部分图象确立其分析式,确立 A ,ω,φ,b 是重点,属于中档题.12.( 5 分)已知函数f( x)=,若对于x的方程f(x)=k有两个不一样的根,则实数 k 的取值范围是()A .(﹣∞,1)B .(﹣∞,2)C.f ( x) =1+是减函数,且1< f ( x)≤2;②当 x< 4 时,f ( x) =log 2x 在( 0, 4)上是增函数,且 f (x)< f ( 4)=2 ;f ( x)与y=k有两个不一样的交点;且对于 x 的方程 f( x) =k 有两个不一样的根可化为函数故实数 k 的取值范围是(1,2);应选: D.评论: 本题考察了方程的根与函数的图象的交点的关系应用及数形联合的图象应用,属于中档题.二、填空题(共 4 小题,每题 5 分,满分 20 分)3. 13.( 5 分)已知幂函数 f ( x )的图象经过点( 2, 8),则 f ( x )=x考点: 幂函数的观点、分析式、定义域、值域.专题:函数的性质及应用.剖析: αα的值,即可获得函设幂函数 f (x ) =x ,把点( 2,8)代入函数的分析式,求得 数的分析式.解答:解:设幂函数 f ( x ) αα=x ,把点( 2, 8)代入函数的分析式可得2 =8,解得 α=3,故函数的分析式为f (x ) =x 3,故答案为 x 3.评论:本题主要考察用待定系数法求函数的分析式,属于基础题.14.( 5 分)函数 f ( x )=﹣ x 3﹣ 3x+5 的零点所在的区间为, n ∈Z ,则 n 的值为 1.考点: 函数零点的判断定理.专题: 函数的性质及应用.剖析:由题意知,函数 f ( x )是单一函数,依据f ( 1)> 0, f ( 2)< 0 知,函数 f (x )的零点必在区间( 1, 2)上.解答: 解:∵函数 f (x ) =﹣ x 3﹣3x+5 是单一递减函数,又 ∵ f ( 1)=﹣ 13﹣ 3×1+5=1 >0, f ( 2) =﹣23﹣ 3×2+5=﹣ 9< 0,∴函数 f ( x )的零点必在区间( 1, 2)上,故答案为: 1.评论: 本题考察函数的零点存在的条件: 单一的连续函数若在一个区间的端点的函数值异号,则函数在此区间上必定存在零点.15.( 5 分)已知 f ( x )=sin 2(x ﹣),则 f ( lg5) +f ( 1g )=1.考点: 二倍角的余弦;对数的运算性质. 专题:函数的性质及应用;三角函数的求值.剖析: 依据余弦函数的二倍角公式将函数 f ( x )进行化简,联合对数的基本运算性质即可获得结论.解答:解: f ( x ) =sin 2( x ﹣ ) =,则 f (lg5 ) +f ( 1g )= ﹣ sin ( 2lg5 ) + ﹣sin2( 1g )=1﹣ sin ( 2lg5 )﹣ sin (﹣ 21g5)=1﹣ sin ( 2lg5 ) + sin ( 21g5) =1,故答案为: 1.评论:本题主要考察函数值的计算,依据余弦函数的二倍角公式以及正弦函数的奇偶性和对数的运算性质是解决本题的重点.16.( 5 分)若,是两个非零向量,且 ||=| |,|+|=||,则与﹣的夹角是.考点:平面向量数目积的运算.专题:平面向量及应用.剖析:依据,对两边平方即可求出,而后依据向量夹角的余弦公式求出cos,这样即可获得所求夹角.解答:解:依据已知条件得:;∴;∴;∴=;∴的夹角为.故答案为:.评论:考察数目积的运算,两向量夹角的余弦公式,以及向量夹角的范围.三、解答题(共 6 小题,满分70 分)217.( 10 分)设全集为Z, A={x|x+2x ﹣ 15=0} ,B={x|ax ﹣ 1=0} .(1)若 a=,求A∩(?Z B);(2)若 B? A ,务实数 a 的取值构成的会合C.考点:子集与真子集;交、并、补集的混淆运算.专题:会合.剖析:(1)若 a= ,求出会合 A , B ,即可求 A ∩( ?Z B);(2)若 B? A ,议论会合 B ,即可获得结论.解答:2解:( 1) A={x|x + 2x﹣ 15=0}={ ﹣5, 3} ,当 a= ,则 B={x|ax ﹣ 1=0}={5} ,则A ∩(?Z B) ={ ﹣5, 3} ;(2)当 B=? 时, a=0,此时知足 B? A ,当 B ≠? 时, B={ } ,此时若知足B? A,则 =﹣ 5 或 =3,解得 a=或,综上 C={,,0}.评论:本题主要考察会合的基本运算以及会合关系的应用,注意要进行分类议论.18.( 12 分)已知向量=( cosα﹣ 5,﹣ sinα),=( sin α﹣ 5, cosα),∥,且α∈( 0,π),求 tan2α的值.考点:平面向量共线(平行)的坐标表示.专题:三角函数的求值;平面向量及应用.剖析:依据向量平行的坐标公式成立方程关系求出sinα,cosα,tanα的值,利用正切函数的倍角公式进行求解即可.解答:解:∵ ∥,∴( cosα﹣ 5) cosα+sin α( sinα﹣5) =0 ,2 2即 cos α+sin α﹣ 5( sinα+cosα)=0 ,即 5( sinα+cosα) =1 ,即 sinα+cosα= ,平方得 2sinαcosα=<0,∴α∈(,π),2 2∵s in α+cos α=1,∴解得 sinα=,cosα=,则 tanα=,tan2α==.评论:本题主要考察向量和三角函数的综合,利用斜率平行以及三角函数的倍角公式是解决本题的重点.19.( 12 分)证明函数 f( x) =log a(a>1)在(1)试用表示;(2)若 ||=3,||=2,且∠ AOB=,求的值.考点:平面向量数目积的运算;平面向量的基本定理及其意义.专题:平面向量及应用.剖析:(1)依据已知条件及图形即可获得,因此,求出即可;(2)带入上边求得的,换上进行数目积的运算即可.解答:解:( 1)如图可知,;∴;∴;(2)==﹣ 1﹣ 3+=.评论:考察共线向量基本定理,数乘的几何意义,向量减法的几何意义,以及数目积的计算公式.21.( 12 分)销售甲,乙两种商品所获得收益与投入资本x(万元)的关系分别为f( x)=m , g(x) =bx(此中 m, a, b∈R),函数 f( x), g( x)对应的曲线C1, C2,如图所示.(1)求函数 f( x)与 g( x)的分析式;(2)若该商场一共投资 4 万元经销甲,乙两种商品,求该商场所获收益的最大值.考点:函数分析式的求解及常用方法.专题:函数的性质及应用.剖析:(1)分别将点(0,0)、( 8,)代入f(x),(8,)代入g(x)计算即可;(2)设销售甲商品投入资本x 万元,则乙投入( 4﹣ x)万元,代入( 1)中各式,再令=t,问题转变为对于t 的二次函数,经过配方法即得最大值.解答:解:( 1)依据题意,得 ,解得, ,因此 f ( x ) =( x ≥0),又由题意知,即 ,因此 g ( x ) =( x ≥0);(2)设销售甲商品投入资本x 万元,则乙投入( 4﹣ x )万元,由( 1)得 y=+ ( 0≤x ≤4),令=t ,则,故=(),当 t=2 即 x=3 时, y 取最大值 1, 答:该商场所获收益的最大值为1 万元.评论: 本题考察数形联合、 复原法、配方法,将图象中的点代入分析式是解题的重点,属于中档题.22.( 12 分)已知函数 f ( x ) =lg ( x 2+tx+1 ),( t 为常数,且 t >﹣ 2)( 1)当 x ∈时,求 f ( x )的最小值(用 t 表示);( 2)能否存在不一样的实数 a ,b ,使得 f ( a )=lga , f ( b ) =lgb ,而且 a , b ∈( 0, 2),若存在,求出实数 t 的取值范围;若不存在,请说明原因.考点: 复合函数的单一性.专题:综合题;函数的性质及应用.剖析:2,利用对称轴 x= ﹣与区间的地点(1)令 g (x )=x +tx+1 ,对称轴方程为 x= ﹣关系进行分类议论能求出f ( x )的最小值.(2)假定存在.由题设条件得,由此能求出实数 t 的取值范围.解答:2x=﹣ ,解:( 1)令 g ( x ) =x +tx+1 ,对称轴方程为 ∵x ∈,∴由对称轴 x= ﹣ 与区间的地点关系进行分类议论:① 当﹣≤0,即 t ≥0 时, g ( x ) min=g ( 0) =1,∴ f ( x )min=0 .② 当 0<﹣ < 2,即﹣ 4< t < 0 时, g ( x ) min=g (﹣ ) =1﹣ ,考虑到g (x )> 0,因此﹣2< t < 0, f ( x ) min=f (﹣) =lg ( 1﹣);③ 当﹣≥2,即 t ≤﹣ 4 时, g ( x ) min=g ( 2)=5+2t ,考虑到 g (x )> 0,∴ f (x )没有最小值. 综上所述:当 t ≤﹣ 2 时 f (x )没有最小值;当 t >﹣ 2 时, f ( x ) min =.(2)假定存在.由题设条件,得,2等价于x+tx+1=x 在区间( 0, 2)上有两个不一样的实根,令 h ( x )=x 2+( t ﹣ 1) x+1 在( 0,2)上有两个不一样的零点∴,即 ,解得﹣< t <﹣ 1.故实数t 的取值范围是(﹣,﹣ 1).评论: 本题主要考察对数函数定义域的求解, 复合函数单一性的应用及二次函数在闭区间上的最值的求解, 要注意考虑对称轴与区间地点关系的议论, 二次方程的实根散布问题的应用.。

2015-2016学年度第一学期期末考试高一数学试题及参考答案

2015-2016学年度第一学期期末考试高一数学试题及参考答案

2015-2016学年度第一学期期末考试高一数学试题一、选择题(该大题共12小题,每小题5分,共计60分) 1.下列图形中,表示⊆M N 的是 ( ▲ )2.120cos ︒= ( ▲ ) A.12-B.12C.32-D.223.下列命题正确的是 ( ▲ )A .向量AB 与BA 是两平行向量;B .若,a b 都是单位向量,则a b =;C .若AB =DC ,则A B CD 、、、四点构成平行四边形; D .两向量相等的充要条件是它们的始点、终点相同. 4.45154515cos cos sin sin ︒︒-︒︒= ( ▲ )A.22 B.32C.12D.12-5.如图,在ABC ∆中,D 是AC 的中点,向量AB a =,AC b =,那么向量BD 可表示为 ( ▲ ) A.b a 1122- B.a b 12-C.b a 12-D.a b 12-6.函数2212()()=+-+f x x a x 在区间(],4-∞上是递减的,则实数a 的取值范 ( ▲ ) A.3≤-a B.3≥-a C.5≤a D.5≥a 7.已知指数函数()xf x a =和函数2()g x ax =+,下列图象正确的是 ( ▲ )A. B. C. D.8.已知平面向量,a b ,8a =||,4||=b ,且,a b 的夹角是150︒,则a 在b 方向上的射影是 ( ▲ )A.4-B.43-C.4D.439.要得到函数2sin 2=y x 的图像,只需将2sin(2)6π=-y x 的图像 ( ▲ )A.向右平移6π个单位 B.向右平移12π个单位 C.向左平移6π个单位D.向左平移12π个单位10.若平面向量(3,4)b =与向量(4,3)a =,则向量,a b 夹角余弦值为 ( ▲ )A.1225 B. 1225- C. 2425- D.2425 11.设()338x f x x =+-,用二分法求方程(),338012xx x +-=∈在内近似解的过程中得()()(),.,.,101501250f f f <><则方程的根落在区间 ( ▲ )A .(,.)1125B .(.,.)12515C .(.,)152D .不能确定12.若函数tan ,0(2)lg(),0x x f x x x ≥⎧+=⎨-<⎩,则(2)(98)4f f π+⋅-= ( ▲ )A.12B.12- C.2 D.2-二、填空题(共4小题,每小题5分,共计20分) 13.函数212()log ()=-f x x 的定义域是 ▲ .14.有一半径为4的扇形,其圆心角是3π弧度,则该扇形的面积是 ▲ . 15.已知平面向量(4,3)a =-和单位向量b ,且b a ⊥,那么向量b 为 ▲ . 16.关于函数sin (()42)3f x x =+π,(R)x ∈有下列命题: ①()y f x =是以2π为最小正周期的周期函数;②()y f x =可改写为cos (6)42y x =-π; ③()y f x =的图象关于(0)6-,π对称; ④()y f x =的图象关于直线6x =-π对称; 其中正确的序号为 ▲ .M N D.N M C. M N B. MN A. o 2 1 y x2 1 oy x2 1 oyx2 1 oy xD C AB 第5小题三、解答题(共6小题,共计70分) 17.化简或求值:(1)log lg lg 223212732548--⨯++ (2)已知3sin ,054x x =<<π,求cos 2cos()4xx +π. 18.已知全集U R =,集合{}A x x =<<17,集合{}B x a x a 125=+<<+,若满足A B B =,求 (1)集合U C A ;(2)实数a 的取值范围.19.若平面向量(1,2)a =,(3,2)b =-, k 为何值时: (1)()(3)ka b a b +⊥-;(2)//()(3)ka b a b +-?20.设函数()2sin(2)(0)f x x =+<<ϕϕπ,()y f x =图象的一个对称中心是(,0)3π.(1)求ϕ;(2)在给定的平面直角坐标系中作出该函数在(0,)2x ∈π的图象;(3)求函数()1()f x x R ≥∈的解集21.已知函数2()3sin 22cos f x x x =+.(1)求函数()f x 的最小正周期和单调递增区间;(2)将()f x 的图象向右平移12π个单位长度,再将周期扩大一倍,得到函数()g x 的图象,求()g x 的解析式.22.已知定义域为R 的函数2()21x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.2015-2016学年度第一学期期末考试高一数学试题参考答案一、选择题(该大题共12小题,每小题5分,共计60分)CAACC ADBDD BC二、填空题(共4小题,每小题5分,共计20分) 13. 2{|>x x ,且3}≠x 或者填(2,3)(3,)+∞ .14.83π. 15.34(,)55和 34(,)55--.16. ② ③ .三、解答题(共6小题,共计70分) 17.(本小题满分8分) 解:(1)原式=()lg lg 2193549-⨯-++=()lg 1931009-⨯-+=()19329-⨯-+=1113(2)3sin ,054x x π=<<2cos 1sin xx ∴=-=45227cos 2cos sin cos sin 72552222cos()cos sin 42222x x x x x x x x π-+∴====+-18.(本小题满分10分)解;(1)(,][,)U C A =-∞+∞17(2)A B B =B A ∴⊆(i )当B φ=时,由a a 251+≤+得a 4≤-(ii )当B φ≠时,由a a a a 11257125+≥⎧⎪+≤⎨⎪+<+⎩解得a 01≤≤a ∴的取值范围是(,][,]401-∞-.19.(本小题满分12分) 解:(1)a b (1,2),(3,2)==- ka b k k (3,22)∴+=-+ a b 3(10,4)-=-()(3)ka b a b +⊥-(k 3)10(2k 2)(4)0∴-⨯++⨯-=解得 k 19=(2)由(1)及//()(3)ka b a b +-得(k 3)(4)(2k 2)100-⨯--+⨯=解得 1k 3=-20.(本小题满分14分) 解: (1)(,)π03是函数()y f x = 的图像的对称中心sin()πϕ∴⨯+=2203()k k Z πϕπ∴+=∈23()k k Z πϕπ∴=-∈23(,)πϕπϕ∈∴=03()sin()f x x π∴=+223(2)列表:(3)()f x ≥1即sin()x π+≥2213sin()x π+≥1232解得,k x k k Z πππππ+≤+≤+∈5222636亦即,k x k k Z ππππ-+≤≤+∈124所以,()f x ≥1的解集是[,],k k k Z ππππ-++∈12421.(本小题满分12分)解:(1)依题意,得f x x x =++()3sin 2cos 21x x =++312(sin 2cos 2)122x π=++2sin(2)16将()y f x =的图像向右平移12π个单位长度,得到函数f x x x ππ=-++=+1()2sin[2()]12sin 21126的图像,该函数的周期为π,若将其周期变为π2,则得g x x =+()2sin 1 (2)函数f x ()的最小正周期为T π=,(3)当,k x k k Z πππππ-≤+≤-∈222262时,函数单调递增,解得,k x k k Zππππ-≤≤+∈36∴函数的单调递增区间为 [,],k k k Z ππππ-+∈36. 22.(本小题满分14分) 解:(1)由题设,需(),,()xxa f a f x +-==∴=∴=+112001212经验证,()f x 为奇函数,a ∴=1xπ12π3 π712 π56πx π+23 π3π2 ππ32π2π73 ()f x32-23(2)减函数.证明:任意,,,x x R x x x x ∈<∴->1212210由(1)得()()()()()x x x x x x x x f x f x --⨯--=-=++++2112212121121222212121212 ,x x x x x x <∴<<∴-<121212022220,()()x x ++>2112120()()f x f x ∴-<210所以,该函数在定义域R 上是减函数(3)由22(2)(2)0f t t f t k -+-<得f t t f t k -<--22(2)(2)()f x 是奇函数∴f t t f k t -<-22(2)(2),由(2),()f x 是减函数. ∴原问题转化为t t k t ->-2222,即t t k -->2320对任意t R ∈恒成立.∴k ∆=+<4120,解得k <-13即为所求.。

河北省2015-2016学年高一上学期期末考试数学试题含答案

河北省2015-2016学年高一上学期期末考试数学试题含答案

2015-2016学年第一学期高一年级期末考试数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷 (选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1.已知全集U R =, {|21}xA y y ==+, {|ln 0}B x x =≥,则AB =( )A .{|1}x x ≥B .{|1}x x >C .{|01}x x <<D .∅ 2.定义在R 的奇函数)(x f ,当0<x 时,x x x f +-=2)(,则(2)f 等于( ) A .4 B .6 C .4- D .6- 3.已知向量()()1,2,23,2a a b =+=,则( )A .()1,2b =-B .()1,2b =C .()5,6b =D .()2,0b = 4.已知函数()f x 是定义在[)0,+∞上的增函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是( )A .⎪⎭⎫ ⎝⎛∞-32,B .⎪⎭⎫⎢⎣⎡32,31C .⎪⎭⎫⎝⎛+∞,21 D .⎪⎭⎫⎢⎣⎡32,21 5.下列函数中,既在定义域上是增函数且图象又关于原点对称的是( )A .2y x =-B .2lg 11y x ⎛⎫=-⎪+⎝⎭C .x y 2=D .22x x y -=+ 6.函数5()3f x x x =+-零点所在的区间是( )A .[]1,0B .[]2,1C .[]3,2D .[]4,37.若βα,都是锐角,且552sin =α,1010)sin(=-βα,则=βcos ( )第11题A .22 B .102 C .22或102- D .22或1028.将函数()sin(2)(||)2f x x πϕϕ=+<的图象向左平移6π个单位后的图象关于原点对称,则ϕ的值为( ) A .3π-B .3πC .6πD .6π- 9.函数)82ln(2+--=x x y 的单调递减区间是( )A .)1,(--∞B .)2,1(-C .)1,4(--D .),1(+∞-10.已知))1(2(a m b m ==-,,,,若()2a b b -⊥,则a =( )A .2B .3C .4D .5 11.已知函数()sin()(0,0,)2f x A x A πωϕωϕ=+>><一个周期的图象如图所示,则ϕ的值为( ) A.6π B.4π C.3π D.83π12.已知函数()⎪⎩⎪⎨⎧≥-<-=,2,13,2,12x x x x f x 若函数()()[]2-=x f f x g 的零点个数为( )A .3B .4C .5D .6第Ⅱ卷(非选择题,共90分)二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.已知三个数3.0222,3.0log ,3.0===c b a ,则,,a b c 的大小关系为 .14.化简002sin15sin 75的值为___________.15.若αtan ,βtan 是方程23340x x -+=的两个根,则()=+βαtan .16.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ⋅=_______.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)已知C B A ,,三点的坐标分别是)0,3(A ,)3,0(B ,)sin ,(cos ααC ,其中232παπ<<. (1)若||||BC AC =,求角α的值;(2)若1-=⋅BC AC ,求α2sin 的值.18.(本小题满分12分) (sin ,sin()),(sin ,3sin )2a x xb x x πωωωω=+=已知()0>ω,记()f x a b =⋅.且()f x 的最小正周期为π.(1)求()x f 的最大值及取得最大值时x 的集合; (2)求()x f 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.19.(本小题满分12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y 与听课时间x (单位:分钟)之间的关系满足如图所示的图象,当(]0,12x ∈时,图象是二次函数图象的一部分,其中顶点(10,80)A ,过点(12,78)B ;当[]12,40x ∈时,图象是线段BC ,其中(40,50)C ,根据专家研究,当注意力指数大于62时,学习效果最佳. (1)试求()y f x =的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.20.(本小题满分12分)设)(x f 是定义在R 上的偶函数,其图象关于直线1=x 对称,对任意⎥⎦⎤⎢⎣⎡∈21,0,21x x 都有)()()(2121x f x f x x f ⋅=+,且0)1(>=a f .(1)求⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛41,21f f ;(2)求证:)(x f 是周期函数.21.(本小题满分12分) 已知函数1()log ,(0,1)1ax f x a a x +=>≠-且. (1)判断()f x 的奇偶性并证明;(2)若对于[2,4]x ∈,恒有()log (1)(7)a mf x x x >-⋅-成立,求m 的取值范围.22.(本小题满分12分)函数()⎥⎦⎤⎢⎣⎡∈-+=2,0,2cos sin 2πθθθθm m g . (1)当3=m 时,求()θg 的单调递增区间; (2)若()01<+θg 恒成立,求m 的取值范围.2015-2016高一期末考试数学试卷答案一、选择题1-5.B B A D C 6-10 B A A B B 11-12 C B 二、填空题13. c a b >>14. 1 15. 三、填空题 17.解析:(1)54πα=………………………………………………….4分 (2)cos (cos 3)sin (sin 3)AC BC αααα=-+-13(sin cos )1αα=-+=-2sin cos 9αα∴+=……………………………………………6分 252sin cos (sin cos )19αααα∴=+-=- ……………………8分原式=2sin (sin cos )52sin cos cos sin 9cos αααααααα+==-+ ……………………….10分18.解析:(Ⅰ)2π()sin sin 2f x x x x ωωω⎛⎫=++⎪⎝⎭1cos 2()22x f x x ωω-=112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. 6分 (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 12分 19.解析:(1)当(]0,12x ∈时,设()()21080f x a x =-+ 因为这时图像过点(12,78),代入得12a =- 所以()()2110802f x x =--+ 当[]12,40x ∈时,设y kx b =+,过点(12,78)(40,50)B C 、得190k b =-⎧⎨=⎩,即90y x =-+ 6分故所求函数的关系式为()()(](]211080,0,12290,12,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩………7分(2)由题意得()201211080622x x <≤⎧⎪⎨--+>⎪⎩或12409062x x <≤⎧⎨-+>⎩ ……………9分 得412x <≤或1228x <<,即428x <<则老师就在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳 …… 12分.20.解析:(1)设⎥⎦⎤⎢⎣⎡∈21,0x ,则⎥⎦⎤⎢⎣⎡∈21,02x,于是()02222≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛==⎪⎭⎫⎝⎛+=x f x xf x f , ∵()22121211⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=f f f ,且0)1(>=a f ,∴a f =⎪⎭⎫ ⎝⎛21,同理,因为24121⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛f f ,所以441a f =⎪⎭⎫ ⎝⎛; ……………………6分(2)∵)(x f 是偶函数,∴ ()()x f x f =-,)(x f 图象关于直线1=x 对称, ∴ ()()x f x f -=+11,∴对任意实数x ,都有()()[]()[]()()x f x f x f x f x f =-=+-=++=+11112,∴)(x f 是周期为2的周期函数…………12分 21.解析:(1)因为101x x +>-解得11x x <->或所以函数()f x 的定义域为 (,1)(1,)-∞-+∞函数()f x 为奇函数,证明如下:由(I )知函数()f x 的定义域关于原点对称,又因为11()log log ()11aa x x f x f x x x -+--===---+所以函数()f x 为奇函数…………4分 (2)若对于[2,4]x ∈,()log (1)(7)amf x x x >-⋅-恒成立即1log log 1(1)(7)aa x mx x x +>--⋅-对[2,4]x ∈恒成立 111(1)(7)x ma x x x +>>--⋅-当时即对[2,4]x ∈成立. 1(7)mx x +>-, 即(1)(7)x x m +⋅->成立,所以015m <<同理111(1)(7)x ma x x x +<<--⋅-当0<时,解得16m > 综上所述:1a >当时0<m<15 ,1a <当0<时m>16 ………………………….12分22.解析:(1)令θcos =t []1,0∈,473223132322+-⎪⎪⎭⎫ ⎝⎛--=+-+-=t t t y 记4732)23()(2+---=t t g ,)(t g 在⎥⎦⎤⎢⎣⎡23,0上单调递增,在⎥⎦⎤⎢⎣⎡1,23上单调递减. 又θcos =t 在⎥⎦⎤⎢⎣⎡2,0π上单调递减.令123≤≤t ,解得60πθ≤≤ 故函数)(x f 的单调递增区间为⎥⎦⎤⎢⎣⎡6,0π……………………………………6分 (2)由)(θg <-1得θθ2cos 2)cos 2(->-m即]cos 22)cos 2[(4cos 2cos 22θθθθ-+--=-->m]2,1[cos 2]2,0[∈-∴∈θπθ22cos 22)cos 2(≥-+-∴θθ,等号成立时.22cos -=θ故4-θθcos 22)cos 2[(-+-]的最大值是.224- 从而224->m .…………………12分。

2015-2016学年河北省石家庄市第一中学高二上学期期末考试数学(理)试题 word版

2015-2016学年河北省石家庄市第一中学高二上学期期末考试数学(理)试题 word版

石家庄市第一中学2015—2016学年第一学期高二年级期末考试试题(理 科 数 学)命题人: 审核人:第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知1: 1, :1,p x q x≤< 则p ⌝是q 的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既非充分又非必要条件2.设,a b 是两条不同的直线,α、β是两个不同的平面,则下列说法正确的是 A .若,,a b a α∥∥则b α∥ B .若,,a αβα⊥∥则a β⊥ C .若,a αββ⊥⊥,则a α∥ D .若,,,a b a b αβ⊥⊥⊥则αβ⊥ 3.正态分布密度函数22()2(),x x eμσ--Φ=其中0,μ<的图象可能为4.若ξ是离散型随机变量,1221(),(),33P x P x ξξ====且12x x <,又已知42(),(),39E D ξξ==则12x x +的值为A .53B .73C .3D .1135.中央电视台1套连续播放5个广告,其中3个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方式有A .120种B .48种C . 36种D .18种 6.抛物线22(0)y px p =>的焦点为,F A 为抛物线上一点,则以A 为圆心,AF 为半径的圆与抛物线的准线的位置关系为A .相交B .相切C .相离D .以上都有可能7.函数xx x f 2)1ln()(-+=的零点所在的区间是 A .(0,1) B .(1,2) C . (2,3) D .(3,4)8.非零向量b a ,满足b a ⊥,则函数2()()()f x ax b x =+∈R 是A .既是奇函数又是偶函数B .非奇非偶函数C .偶函数D .奇函数 9.下列说法中,正确的是 A .命题“若22am bm <,则a b <”的逆命题是真命题 B .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题 C .已知∈x R ,则“1x >”是“2x >”的充分不必要条件D .命题“0x ∃∈R ,2000x x ->”的否定是:“∈∀x R ,20x x -≤”10.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的侧面积是A .2 B.C.2 D. 11. 下列几个命题:①函数y =+是偶函数,但不是奇函数;②“⎩⎨⎧≤-=∆>0402ac b a ”是“一元二次不等式02≥++c bx ax 的 解集为R ”的充要条件;③ 设函数()y f x =的定义域为R ,则 函数(1)y f x =-与(1)y f x =-的图象关于y 轴对称;④若函数)0)(cos(≠+=A x A y ϕω为奇函数,则(2k k πϕπ=+∈Z);⑤已知()π,0∈x ,则xx y sin 2sin +=的最小值为. 其中正确命题的个数是A . 5B .4C .3D .212.设点(,)P x y(,)x y均满足A .(]0,2B .[)2,+∞C .[)1,+∞D .[]1,2第II 卷(非选择题,共90分)俯视图侧视图正视图2111316.设集合{}*12,,,()n M a a a n =∈N ,对M 的任意非空子集A ,定义)(A f 为A 中的最大元素,当A 取遍M 的所有非空子集时,对应的)(A f 的和为n T ,若12n n a -=,则:①3T =_______________,②n T =__________________. 三、解答题:本题共6小题,共70分.17.(本小题满分10分) 已知函数错误!未找到引用源。

河北省石家庄市一中2015-2016学年高二上学期期末考试数学(文)试卷

河北省石家庄市一中2015-2016学年高二上学期期末考试数学(文)试卷

石家庄市第一中学2015—2016学年第一学期高二年级期末考试文科数学试题命题人:齐贤 审核人:胡娜、田欣颜第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题错误的是A. 命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .命题p :存在0x ∈R ,使得20010x x ++<,则p ⌝:任意x ∈R ,都有210x x ++≥ C .若p 且q 为假命题,则p ,q 均为假命题 D .“1x <”是“2320x x -+>”的充分不必要条件2.复数11z i=-(i 为虚数单位)的共轭复数z 是 A.1i - B .1i + C .1122i -+ D .1122i -3.某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为A.24 B 4.如图所示的程序框图,若输出的S 是30,则①可以为 A.?2≤n B .?3≤n C .?4≤n D .?5≤n5.以坐标原点为对称中心,两坐标轴为对称轴的双曲线C 的渐近线方程为x y 37±=,则双曲线C 的离心率为 A.34或35 B.34或774 C. 774 D. 346.若在区间[]20,中随机地取两个数,则这两个数中较小的数大于32的概率是 A.31 B. 32 C. 94 D. 917.已知点P 是抛物线x y 82-=上一点,设P 到此抛物线准线的距离是1d ,到直线010=-+y x 的距离是2d ,则21d d +的最小值是A.3B. 32C. 26 D .3 8.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x 与数学成绩y 进行数据收集如下:由表中样本数据求得回归方程为∧∧∧+=a x b y ,则点),(∧∧b a 与直线18100x y +=的位置关系是A.点在直线左侧 B .点在直线右侧 C .点在直线上 D .无法确定 9.已知定点B ,A 且4AB =,动点P 满足3PB PA =-,则PA 的最小值是 A.21 B .23 C .27D .5 10.已知函数)(x f y =对任意的),(22ππ-∈x 满足0>+x x f x x f sin )(cos )('(其中)('x f 是函数)(x f 的导函数),则下列不等式成立的是A .)()(432ππ-<-f f B .)()(432ππf f < C .)()(320πf f > D .)()(420πf f >11.已知P 是双曲线2221(0)4x y b b-=>上一点,1F 、2F 是其左、右焦点,12PF F ∆的三边长成等差数列,且12120F PF ∠=︒,则双曲线的离心率等于 A .753 B .253 C .72D .2712.已知函数()()1114()ln 1x x f x x x ⎧+≤⎪=⎨⎪>⎩,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是(注:e 为自然对数的底数)A.1(0,)e B .)1,41[e C .1(0,)4 D . ),41[e第II 卷(非选择题,共90分)二、填空题: 本题共4小题,每小题5分,共20分. 13.5.2PM 是指大气中直径小于或等于5.2微米的颗粒物,也称 为入肺颗粒物.右图是据北京某日早7点至晚8点甲、乙两个 5.2PM 监测点统计的数据列出的茎叶图(单位:毫克/每立方米), 则甲、乙两地浓度的中位数较低的是 . 14.已知()tan f x x =,则)34('πf 等于.___________15.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,…,若按此规律继续下去,得数列{}n a ,则1_______(2)n n a a n --=≥;对*n N ∈,_____n a =.16.已知函数qx px x y ++=23,其图像与x 轴切于非原点的一点,且该函数的极小值是4-,那么切点坐标为 .三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤. 17.(本题满分10分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:22()K ()()()()n ad bc a b c d a c b d -=++++18.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分, 成绩均为不低于40分的整数)分成六段: [40,50),[50,60),…,[90,100]后得到 如下图的频率分布直方图. (1)求图中实数a 的值;(2)若该校高一年级共有学生640人, 试估计该校高一年级期中考试数学成绩 不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100] 两个分数段内的学生中随机选取两名学生, 求这两名学生的数学成绩之差的绝对值 不大于10的概率.19.(本题满分12分)设函数()ln ,R mf x x m x=+∈. (1)当m e =(e 为自然对数的底数)时,求()f x 的最小值;(2)讨论函数3x x f x g -=)()('零点的个数.(其中)('x f 是函数)(x f 的导函数) 20.(本题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值. 21.(本题满分12分)已知椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->.(1)设E 是直线2y x =+与椭圆的一个公共点,求12EF EF +取得最小值时椭圆的方程; (2)已知点(0,1)N -,斜率为(0)k k ≠的直线l 与条件(1)下的椭圆交于不 同的两点,A B ,点Q 满足AQ QB =,且0NQ AB ⋅=,求直线l 在y 轴上的截距的取值范围.22.(本题满分12分)已知函数112++-=x x a x f ln )()( (1)当41-=a 时,求函数)(x f 的极值; (2)当),[+∞∈1x 时,函数)(x f y =图像上的点都在⎩⎨⎧≤-≥01x y x 所表示的平面区域内,求实数a 的取值范围.2015—2016学年第一学期高二年级期末考试文科数学试题(答案)一、选择题:1. C2. D3. C4. C5. B6. C7. C8. B9.C 10. A 11. D 12. B二、填空题:13. 乙 14. 4 15. 23-n ;232nn - 16. (-3,0)三、解答题: 17. 解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014%500= (2)22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. 18. 解:(1)由于图中所有小矩形的面积之和等于1, 所以10(0.0050.010.020.0250.01)1a ⨯+++++=,解得0.03a =.…………………3分(2)根据频率分布直方图,成绩不低于60分的频率为110(0.0050.01)0.85-⨯+=.由于该校高一年级共有学生640人,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人.………7分(3)成绩在[40,50)分数段内的人数为400.052⨯=人,成绩在[90,100]分数段内的人数为400.14⨯=人,若从这6名学生中随机抽取2人,则总的取法有15.如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.则所取两名学生的数学成绩之差的绝对值不大于10分的取法数为7. 所以所求概率为7()15P M =.………………12分 19. 解:(1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2, ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增.∴x =e 时,f (x )取得极小值f (e)=ln e +ee=2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知②当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.20. 解:(1)设直线AB的方程是)2py x =-,则与()022>=p px y 联立,22450x px p -+=,所以 4521px x =+,由抛物线定义得:921=++=p x x AB ,所以4p =,抛物线方程为:x y 82=.(2)由4p =,22450x px p -+=,化简得0452=+-x x ,从而,4,121==x x 24,2221=-=y y,从而(1,(4,A B -.设)24,4()22,1()(3,3λ+-==→y x OC =)2422,41(λλ+-+,又3238x y =,即()[]=-21222λ8(41+λ),即14)12(2+=-λλ,解得2,0==λλ或.21. 解:由题意,知11m +>,即0m >.由22211y x x y m =+⎧⎪⎨+=⎪+⎩,得2(2)4(1)3(1)0m x m x m +++++= 又216(1)12(2)(1)4(1)(2)0m m m m m ∆=+-++=+-≥ 解得2m ≥或1m ≤-(舍去),2m ∴≥此时12EF EF +=≥当且仅当2m =时,12EF EF +取得最小值此时椭圆的方程为2213x y +=.(2)设直线l 的方程为y kx t =+.由方程组2233x y y kx t ⎧+=⎨=+⎩消去y 得222(13)6330k x ktx t +++-=. 直线l 与椭圆交于不同的两点,A B ,222(6)4(13)(33)0kt k t ∆=-+-> ,即2213.t k <+()*设1122(,),(,),(,)Q Q A x y B x y Q x y ,则122613ktx x k +=-+由AQ QB =,Q 的为线段AB 的中点, 则1223213Q x x kt x k +==-+,213Q Qty kx t k =+=+. 0NQ AB ⋅=.∴直线AB 的斜率AB k 与直线QN 的斜率QN k 的成绩为1-,即AB k 1QNk ⋅=-,221131313tk t kt k ++⋅=--+ 化简得2132k t +=,代入()*式得22t t <,解得02t << 又0k ≠即21321k t +=>,故12t >. 综上,直线l 在y 轴上的截距t 的取值范围是1(,2)2.22. 解:(1)当2=x 时,函数)(x f 取得极大值2432ln )(+=f ---4分 (2)0≤a ---12分。

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。

河北省石家庄市第一中学2015-2016学年高一下学期期末考试理数试题Word版含解析

河北省石家庄市第一中学2015-2016学年高一下学期期末考试理数试题Word版含解析

河北省石家庄市第一中学2015-2016学年高一期末考试理数试题第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为 A .M N B .()U M N ð C .()U MN ð D .()()U U M N 痧【答案】B 【解析】 试题分析:{5}MN =,(){1,2}U C M N =,故选B .考点:集合的运算. 2.若2sin 3α=-,且α为第四象限角,则tan α的值等于A .5 B .2- C .2.5- 【答案】D考点:同角间的三角函数关系.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.3.设0a b <<,则下列不等式中正确的是 A.2a b a b +<<<B.2a ba b +<< C.2a b a b +<< D2a ba b +<<【答案】B 【解析】试题分析:取4,16a b ==8==,4161022a b ++==,只有B 符合.故选B .考点:基本不等式.4.已知n m ,表示两条不同直线,α表示平面.下列说法正确的是A .若,//,//ααn m 则n m //B .若,,αα⊂⊥n m ,则n m ⊥C .若,,n m m ⊥⊥α则α//nD .若,,//n m m ⊥α,则α⊥n 【答案】B考点:空间直线与平面的位置关系,平行与垂直的判断.5.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 A .6 B .5 C .4 D .3【答案】C 【解析】试题分析:由等比数列的性质知44123845()10a a a a a a ==, 所以128lg lg lg a a a +++4128lg()lg104a a a ===.故选C考点:等比数列的性质,对数的运算.6.已知函数()()()()cos 0260x x f x f x x ππ⎧⎛⎫+≥⎪ ⎪=⎝⎭⎨⎪-<⎩,则()2013f -等于 A .12 B .12- C.2 D.2-【答案】B【解析】 试题分析:(2013)(2013)cos(2013)26f f ππ-==⨯+cos(1006)26πππ=++cos()26ππ=+sin 6π=-12=-.考点:分段函数,诱导公式.7.几何体的三视图(单位:cm)如右上图所示,则此几何体的表面积是A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2【答案】A考点:三视图,体积.8.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为A .22(1)18x y ++= B .18)1(22=+-y x C .18)1(22=++y x D .18)1(22=-+y x 【答案】A 【解析】试题分析:易知(2,1)P -关于直线1y x =+的对称点为(0,1)-,即(0,1)C -,圆心到直线34110x y +-=的距离为3d ==,所以r ==22(1)18x y ++=.故选A .考点:圆的标准方程.9.设2212()cos (1)sin cos 3sin f x a x a x x x =+-+(22120a a +≠),若无论x 为何值,函数()f x 的图象总是一条直线,则12a a +的值是A . 0B .1-C .4D .256 【答案】C 【解析】试题分析:由题意12310a a =⎧⎨-=⎩,所以124a a +=.故选C .考点:恒等式,同角间的三角函数关系..10.设1m >,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A.(1,1+ B.(1)+∞ C .(1,3) D .(3,)+∞ 【答案】A考点:简单线性规划的参数问题.11.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r =A ..5 C .3 D 【答案】D考点:直线与圆的位置关系.【名师点睛】直线与圆、直线与圆锥曲线相交时一般设交点为1122(,),(,)A x y B x y ,由直线方程与圆(圆锥曲线)方程组消元后,可得1212,x x x x +,然后再对条件进行计算并把1212,x x x x +代入运算求解,本题中圆的圆心在原点,直线2y x =-+与直线y x =垂直,其交点关于直线y x =对称,实际上这两个点的横纵坐标互换,因此我们直接解方程组得出两交点坐标,并求出C 点坐标,代入圆方程可解得r .因此解题时要灵活运用所学知识,选用恰当的方法,适合的就是最好的.12.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)4【答案】A【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF 是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以0c <≤02c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.第II 卷(非选择题,共90分)二、选择题: 本题共4小题,每小题5分,共20分.13.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于 . 【答案】32-考点:向量垂直的坐标表示,向量的坐标运算.14.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =_____.【答案】8 【解析】试题分析:由椭圆定义知221212440AB AF BF AF AF BF BF a ++=+++==,所以8AB =.考点:椭圆的定义.15.等差数列}{n a 中12016a =,前n 项和为n S ,10121210S S -2-=,则2016S 的值为__________. 【答案】2016 【解析】试题分析:由{}n a 是等差数列,则112n S n a d n -=+,101211119()()2121022S S a d a d d -=+-+==-,20162016201520162016(2)20162S ⨯=⨯+⨯-=.考点:等差数列的前n 项和.【名师点睛】等差数列的前n 项和公式是1(1)2n n n S na d -=+,由此知1(1)2n S da n n =+-⋅,这说明数列{}n S n 是等差数列,因此此题可以这样解:设数列{}n Sn的公差为d ,则1012221210S S d -==-,1d =-,又120161S =,所以20161201520162015(1)120161S S d =+=+⨯-=,所以20162016S =. 16.定义在R 上的函数()f x 满足()(),(2)(2),f x f x f x f x -=--=+且(1,0)x ∈-时,1()2,5x f x =+则2(log 20)f =__________.【答案】-1考点:函数的周期性.【名师点睛】当函数具有性质:对一切实数x ,()()f x T f x +=恒成立,则函数()f x 是周期函数,T 是它的一个周期,同样若函数满足下列条件之一时,它也是周期函数: (1)()()f x a f x +=-,2T a =; (2)1()()f x a f x +=±,2T a =;(3)()()f x a f x a +=-,2T a =; (4)1()()1()f x f x a f x -+=+,4T a =.三、非选择题:本题共6小题,共70分.17.(本小题满分10分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.(Ⅰ)求A ; (Ⅱ)若2a b ==求ABC ∆的面积.【答案】(Ⅰ)3A π=;(Ⅱ)2. 【解析】试题分析:(Ⅰ)由两向量平行的坐标运算列出三角形边角关系的等式,再由正弦定理化边为角,可求得角A ;(Ⅱ)由余弦定理(选用角A 的等式),求出边c ,再选用公式1sin 2S bc A =可得三角形面积.试题解析:(I)因为//m n ,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=,又sin 0B ≠,从而tan A =,由于0A π<<所以3A π=.考点:向量平行的坐标运算,正弦定理,余弦定理,三角形面积.18.(本小题满分12分)数列}{n a 的前n 项和记为n S ,t a =1,121()n n a S n *+=+∈N .(Ⅰ)当t 为何值时,数列}{n a 是等比数列;(Ⅱ)在(I )的条件下,若等差数列}{n b 的前n 项和n T 有最大值,且153=T ,又11b a +,22b a +,33b a +成等比数列,求n T .【答案】(Ⅰ)1t =;(Ⅱ)2205n T n n =-【解析】试题分析:(Ⅰ)要说明数列{}n a 是等比数列,一般根据等比数列的定义,证明数列的后项与前项之比为同一常数,为此由已知121n n a S +=+,再写一个2n ≥时,1121n n a S ++=+,两式相减后得13(2)n n a a n +=≥,这样有13(2)n n a n a +=≥,因此要使数列为等比数列,只要213aa =即可,从而得1t =;(Ⅱ)由(Ⅰ)得123,,a a a ,利用等差数列的前3项和315T =可得25b =,可设135,5b d b d =-=+,利用11b a +,22b a +,33b a +成等比数列,可求得公差d ,最后由等差数列的前n 项和公式可得n T .试题解析:(I )由121+=+n n S a ,可得121(2)n n a S n -=+≥, 两式相减得)2(3,211≥==-++n a a a a a n n n n n 即,∴当2≥n 时,}{n a 是等比数列, ……… 3分 要使1≥n 时,}{n a 是等比数列,则只需31212=+=tt a a ,从而1=t .5分考点:等比数列的判断,等比数列的性质,等差数列的前n 项和. 【名师点睛】判定数列为等比数列的常见方法(1)定义法:=q (q 是不等于0的常数,n ∈N *)⇔{a n }是等比数列;也可用=q (q 是不等于0的常数,n ∈N *,n ≥2) ⇔{a n }是等比数列.二者的本质是相同的,其区别只是n 的初始值不同.(2)中项公式法:=a n ·a n+2(a n ·a n+1·a n+2≠0,n ∈N *)⇔{a n }是等比数列.19.(本小题满分12分)如图,在斜三棱柱111C C AB -A B 中,侧面11CC A A 与侧面11C C BB 都是菱形,111CC CC 60∠A =∠B =,C 2A =.()I 求证:11CC AB ⊥; ()II 若1AB =11C -AB -A 的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)-105.试题解析:(Ⅰ)证明:连AC 1,CB 1,则 △ACC 1和△B 1CC 1皆为正三角形. 取CC 1中点O ,连OA ,OB 1,则CC 1⊥OA ,CC 1⊥OB 1,则CC 1⊥平面OAB 1,则CC 1⊥AB 1. …4分(Ⅱ)解:由(Ⅰ)知,OA =OB 1=3,又AB 1=6,所以OA ⊥OB 1.如图所示,分别以OB 1,OC 1,OA 为正方向建立空间直角坐标系,则C (0,-1,0),B 1(3,0,0),A (0,0,3), …6分 设平面CAB 1的法向量为m =(x 1,y 1,z 1), 因为AB 1→=(3,0,-3),AC →=(0,-1,-3),所以⎩⎪⎨⎪⎧3×x 1+0×y 1-3×z 1=0,0×x 1-1×y 1-3×z 1=0,取m =(1,-3,1). …8分设平面A 1AB 1的法向量为n =(x 2,y 2,z 2), 因为AB 1→=(3,0,-3),AA 1→= (0,2,0),所以⎩⎨⎧3×x 2+0×y 2-3×z 2=0,0×x 1+2×y 1+0×z 1=0,取n =(1,0,1). …10分则cos m ,n =m ·n |m ||n |=25×2=105,因为二面角C -AB 1-A 1为钝角, 所以二面角C -AB 1-A 1的余弦值为-105. 考点:线面垂直的判断与性质,二面角.【名师点睛】求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.同样求异面直线所成的角可从两个不同角度求异面直线所成的角.一是把角的求解转化为向量运算,二是体现传统方法(三步:作,证,算),应注意体会两种方法的特点.“转化”是求异面直线所成角的关键,可平移线段或化为向量的夹角.一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=.20.(本小题满分12分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为1,圆心在l 上.(Ⅰ)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(Ⅱ)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.【答案】(Ⅰ)3=y 或者01243=-+y x ;(Ⅱ)⎥⎦⎤⎢⎣⎡512,0试题解析:(Ⅰ)由⎩⎨⎧-=-=142x y x y 得圆心C 为(3,2),∵圆C 的半径为1 ∴圆C 的方程为:1)2()3(22=-+-y x显然切线的斜率一定存在,设所求圆C 的切线方程为3+=kx y ,即03=+-y kx ∴113232=++-k k ∴1132+=+k k ∴0)34(2=+k k ∴0=k 或者43-=k ∴所求圆C 的切线方程为:3=y 或者343+-=x y 即3=y 或者01243=-+y x (Ⅱ)解:∵圆C 的圆心在在直线42:-=x y l 上,所以,设圆心C 为(a,2a-4)则圆C 的方程为:[]1)42()(22=--+-a y a x 又∵MO MA 2=∴设M 为(x,y)则22222)3(y x y x +=-+整理得:4)1(22=++y x 设为圆D∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点 ∴[]12)1()42(1222+≤---+≤-a a 由08852≥+-a a 得R x ∈由01252≤-a a 得5120≤≤x 终上所述,a 的取值范围为:⎥⎦⎤⎢⎣⎡512,0 考点:圆的标准方程,两圆的位置关系.21.(本题满分12分)已知3a ≥,函数()2m i n (21,242),F x x x a x a =--+-其中(),m i n ,,p p q p q q p q≤⎧=⎨>⎩. (Ⅰ)求使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(i )求()F x 的最小值()m a ;(ii )求()F x 在区间[]0,6上的最大值()M a .【答案】(Ⅰ)[2,2]a ;(Ⅱ)(i )()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩;(ii )()348,342,4a a a a -≤<⎧M =⎨≥⎩. 试题解析:(Ⅰ)由于3a ≥,故 当1x ≤时,22(242)212(1)(2)0x ax a x x a x -+---=+-->, 当1>时,2(242)21(2)(2)x ax a x x x a -+---=--.所以使得等式()2242F x x ax a =-+-成立的x 的取值范围为[2,2]a .(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则 ()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即 ()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩ (ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时, ()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩. 考点:新定义,函数的最值.22.(本小题满分12分)定圆M:(2216x y ++= ,动圆N 过点F )且与圆M 相切,记圆心N 的轨迹为E .(I )求轨迹E 的方程;(Ⅱ)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|CB |,当△ABC 的面积最小时,求直线AB 的方程. 【答案】(Ⅰ)2214x y +=;(Ⅱ)y=x 或y=﹣x .试题解析:(Ⅰ)因为点F在圆22:(16M x y ++=内,所以圆N 内切于圆M ,因为|NM|+|NF|=4>|FM|,所以点N 的轨迹E 为椭圆,且24,a c ==b=1,所以轨迹E 的方程为2214x y +=. (Ⅱ)(i )当AB 为长轴(或短轴)时,依题意知,点C 就是椭圆的上下顶点(或左右顶点),此时12ABC S OC AB ∆==2. (ii )当直线AB 的斜率存在且不为0时,设其斜率为k ,直线AB 的方程为y=kx , 联立方程2214x y y kx ⎧+=⎪⎨⎪=⎩得22414A x k =+,222414A k y k =+, 所以222224(1)14A Ak OA x y k +=+=+. 由|AC|=|CB|知,△ABC 为等腰三角形,O 为AB 的中点,OC ⊥AB ,所以直线OC 的方程为1y x k =-,同理得2222214(1())4(1)1414()k k OC k k+-+==++-,22ABC OAC S S OA OC ∆∆====,222(14)(4)5(1)22k k k ++++≤=, 所以85ABC S ∆≥,当且仅当1+4k 2=k 2+4,即k=±1时等号成立,此时△ABC 面积的最小值是85, 因为825>,所以△ABC 面积的最小值为85,此时直线AB 的方程为y=x 或y=﹣x . 考点:椭圆的标准方程,直线与椭圆相交问题.。

教学检测:石家庄市2015~2016学年度第一学期高一期末考试

教学检测:石家庄市2015~2016学年度第一学期高一期末考试

教学检测:石家庄市2015~2016学年度第一学期高一期末考试石家庄市2015~2016学年度第一学期期末考试试卷高一语文本试卷分第I卷(阅读题)和第卷(表达题)两部分。

满分150分,考试时间150分钟。

第I卷阅读题(68分)一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1—3题。

2015年10月26日,世界卫生组织旗下的国际癌症研究机构(IARC)发布报告,把火腿和香肠等加工肉制品列为一级致癌物质,和香烟、砒霜等同级,同时又把新鲜的红肉(比如牛羊猪肉等)列为2A级致癌物质,致癌可能性较高。

这个消息立刻引来广大民众的,多数人的第一反应就是:以后我们还能不能愉快地吃肉了?要想准确地回答这个问题,必须先认真解读一下IARC的这份报告。

科学界早就知道加工肉制品会致癌,而且其致癌机理也早已明确,甚至相关法律法规也早已出台。

简单来说,人类为了保鲜或者增强口感而对肉类进行的腌渍、烟熏、发酵和其他防腐处理过程会产生亚硝胺和苯并芘等化学物质,它们会和DNA发生化学反应,导致基因突变,诱发癌症。

为了减少这类情况的发生,很多国家的政府都制定了相应的法律法规,比如禁止熟食店为了让肉制品带有好看的粉红色而用亚硝酸盐进行处理。

事实上,国内很多大城市的正规副食店出售的酱牛肉已经恢复了本来的褐色。

加工肉制品致癌的原因是人工的外来物质。

红肉的致癌性虽然有很多统计上的疑似证据,却并没有被科学界完全确认,尤其是关于红肉致癌的机理尚存很多争议。

有人认为红肉里所含的血红素会在肠道内被分解,形成一系列N-亚硝基化合物,诱发癌症;还有人认为并不是所有红肉都致癌,能致癌的只是牛肉,因为牛肉含有某种能致癌的病毒。

同样两种致癌物质,其危害可以有很大的差别。

IARC的这份榜单并不是按照致癌能力的大小来划分的,而是基于科学证据的强弱。

比如肉制品之所以和烟草同级,是因为两者都已确信能致癌,但两者的危险性天差地别。

已知人类肺癌当中的86%和烟草有关,吸烟导致的癌症占所有癌症比例的19%,而肉制品和红肉(如果确定的话)所导致的消化系统癌症只占所有消化道癌的21%,在总的癌症病例当中所占比例只有3%。

河北省石家庄市2016-2017学年高一上学期期末数学试卷 Word版含答案

河北省石家庄市2016-2017学年高一上学期期末数学试卷 Word版含答案

2016-2017学年河北省石家庄市高一(上)期末数学试卷一、选择题(共13小题,每小题5分,满分60分)1.已知集合A={x|2≤2x≤4},B={x|0<log2x<2},则A∪B=()A.[1,4]B.[1,4) C.(1,2)D.[1,2]2.下列说法中正确的是()A.奇函数f(x)的图象经过(0,0)点B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函数C.幂函数y=x过(1,1)点D.y=sin2x(x∈[0,5π])是以π为周期的函数3.若函数y=(a2﹣1)x在R上是减函数,则有()A.|a|<1 B.1<|a|<2 C.1<|a|< D.|a|>4.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a5.已知α∈(0,π)且,则cosα的值为()A.B.C.D.6.△ABC的外接圆的圆心为O,半径为1,2=+,且||=||,则•=()A.1 B.2 C.D.7.为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度8.已知向量,不共线,且向量=λ+,=+(2λ﹣1),若与反向,则实数λ的值为()A.1 B.﹣ C.1或﹣ D.﹣1或﹣9.设f(x)=﹣,若规定<x>表示不小于x的最小整数,则函数y=<f(x)>的值域是()A.{0,1}B.{0,﹣1}C.{﹣1,1}D.{﹣1,0,1}10.如图所示,平面内有三个向量,,,其中与的夹角为30°,与的夹角为90°,且||=2,||=2,||=2,若=λ+μ,(λ,μ∈R)则()A.λ=4,μ=2B.λ=4,μ=1C.λ=2,μ=1D.λ=2,μ=211.已知函数f(x)=sinωx+cosωx(ω>0),在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B. C.πD.2π12.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x1+x2+的值为()A.0 B.﹣1 C.1 D.213.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围为()A.(﹣1,+∞)B.(﹣1,1)C.(﹣∞,1)D.[﹣1,1]二、填空题(共5小题,每小题5分,满分20分)14.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x+2)=f(x),当x∈(0,1)时,f(x)=x,则f(2011.5)=.15.已知函数f(x)=2x+x﹣5在区间(n,n+1)(n∈N+)内有零点,则n=.16.已知向量=(6,2)与=(﹣3,k)的夹角是钝角,则k的取值范围是.17.计算:=.18.的值等于.三、解答题(共6小题,满分70分)19.(10分)已知集合A={x|x2﹣3x﹣10<0},B={x|m+1≤x≤2m﹣1}.(1)当m=3时,求集合(∁U A)∩B;(2)若A∩B=B,求实数m的取值范围.20.(12分)已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.(1)求f()的值;(2)求函数f(x)的单调递增区间.21.(12分)已知函数f(x)=log a(a x﹣1)(a>0,且a≠1).(1)求函数f(x)的定义域;(2若函数f(x)的函数值大于1,求x的取值范围.22.(12分)如图△ABC,点D是BC中点,=2,CF和AD交于点E,设=a,=b.(1)以a,b为基底表示向量,.(2)若=λ,求实数λ的值.23.(12分)如图,点A,B是单位圆O上的两点,A,B点分别在第一,而象限,点C是圆O与x轴正半轴的交点,若∠COA=60°,∠AOB=α,点B的坐标为(﹣,).(1)求sinα的值;(2)已知动点P沿圆弧从C点到A点匀速运动需要2秒钟,求动点P从A点开始逆时针方向作圆周运动时,点P的纵坐标y关于时间t(秒)的函数关系式.24.(12分)定义在区间D上的函数f(x),如果满足:对任意x∈D,都存在常数M≥0,有|f(x)|≤M,则称f(x)是区间D上有界函数,其中M称为f(x)上的一个上界,已知函数g(x)=log为奇函数.(1)求函数g(x)在区间[,]上的所有上界构成的集合;(2)若g(1﹣m)+g(1﹣m2)<0,求m的取值范围.2016-2017学年河北省石家庄市高一(上)期末数学试卷参考答案与试题解析一、选择题(共13小题,每小题5分,满分60分)1.已知集合A={x|2≤2x≤4},B={x|0<log2x<2},则A∪B=()A.[1,4]B.[1,4) C.(1,2)D.[1,2]【考点】交集及其运算;并集及其运算.【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的并集即可.【解答】解:由A中不等式变形得:21≤2x≤22,解得:1≤x≤2,即A=[1,2],由B中不等式变形得:log21=0<log2x<2=log24,解得:1<x<4,即B=(1,4),则A∪B=[1,4),故选:B.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.下列说法中正确的是()A.奇函数f(x)的图象经过(0,0)点B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函数C.幂函数y=x过(1,1)点D.y=sin2x(x∈[0,5π])是以π为周期的函数【考点】函数奇偶性的判断.【分析】A,奇函数f(x)=的图象不经过(0,0)点,;B,y=|x+1|+|x﹣1|(x∈(﹣4,4])的定义域不关于原点对称,不是偶函数;C,幂函数y=x过(1,1)点,正确;D,y=sin2x(x∈[0,5π])不满足f(x+π)=f(x),不是以π为周期的函;【解答】解:对于A,奇函数f(x)=的图象不经过(0,0)点,故错;对于B,y=|x+1|+|x﹣1|(x∈(﹣4,4])的定义域不关于原点对称,不是偶函数,故错;对于C,幂函数y=x过(1,1)点,正确;对于D,y=sin2x(x∈[0,5π])不满足f(x+π)=f(x),不是以π为周期的函,故错;故选:C【点评】本题考查了命题真假的判断,涉及到了函数的性质,属于基础题.3.若函数y=(a2﹣1)x在R上是减函数,则有()A.|a|<1 B.1<|a|<2 C.1<|a|< D.|a|>【考点】函数单调性的性质.【分析】令0<a2﹣1<1,解出a的范围.【解答】解:∵函数y=(a2﹣1)x在R上是减函数,∴0<a2﹣1<1,∴1<a2<2.∴1<|a|<.故选C.【点评】本题考查了指数函数的性质,一元二次不等式的解法,属于基础题.4.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a【考点】指数函数单调性的应用.【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C【点评】本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.5.已知α∈(0,π)且,则cosα的值为()A.B.C.D.【考点】两角和与差的余弦函数.【分析】根据同角的三角形关系求出sin(α+)=,再根据cosα=cos(α+﹣),利用两角差的余弦公式计算即可.【解答】解:∵α∈(0,π),∴α+∈(,),∵,∴sin(α+)=,∴cosα=cos(α+﹣)=cos(α+)cos+sin(α+)sin=×+×=,故选:C.【点评】本题考查了同角的三角函数的关系以及两角差的余弦公式,培养了学生的转化能力和计算能力,属于基础题.6.△ABC的外接圆的圆心为O,半径为1,2=+,且||=||,则•=()A.1 B.2 C.D.【考点】平面向量数量积的运算.【分析】根据向量加法的平行四边形法则,知O是BC的中点,由△ABC的外接圆的圆心为O,知BC是圆O的直径,从而求得AB⊥AC,另由||=||,可得∠ABC=60°,故利用向量数量积的定义可以求得【解答】解:∵△ABC的外接圆的圆心为O,半径为1,2=+,∴O是BC的中点,且BC是圆O的直径,∴AB⊥AC,AO=1,BC=2,∵||=||,∴AB=1,∴∠ABC=60°,∴•=1×2×cos60°=1,故选A.【点评】此题是个基础题.考查向量在几何中的应用,以及直角三角形有关的性质,同时考查学生灵活应用知识分析解决问题的能力和计算能力.7.为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.已知向量,不共线,且向量=λ+,=+(2λ﹣1),若与反向,则实数λ的值为()A.1 B.﹣ C.1或﹣ D.﹣1或﹣【考点】平行向量与共线向量.【分析】由题意存在实数k使λ+=k[+(2λ﹣1)],k<0,由向量,不共线,得2λ2﹣λ﹣1=0,由此能求出结果.【解答】解:∵向量,不共线,且向量=λ+,=+(2λ﹣1),与反向,∴存在实数k使=k(k<0),于是λ+=k[+(2λ﹣1)].整理得λ+=k+(2λk﹣k).由于向量,不共线,所以有,整理得2λ2﹣λ﹣1=0,解得λ=1或λ=﹣.又因为k<0,所以λ<0,故λ=﹣.故选:B.【点评】本题考查实数值的求法,是中档题,解题时要认真审题,注意向量共线的性质的合理运用.9.设f(x)=﹣,若规定<x>表示不小于x的最小整数,则函数y=<f(x)>的值域是()A.{0,1}B.{0,﹣1}C.{﹣1,1}D.{﹣1,0,1}【考点】函数的值域.【分析】先求出y的值域,再根据新的定义“<x>表示大于或等于x的最小整数”的意义,再利用x≤<x><x+1即可解出本题.【解答】解:f(x)=﹣=﹣=﹣,∵3x+1>1,∴0<<1,∴﹣1<<0,∴﹣<﹣<,∵规定<x>表示不小于x的最小整数,∴x≤<x><x+1,∴﹣1≤<f(x)><1∴函数y=<f(x)>的值域为{0,﹣1},故选:B【点评】本题是新定义问题,解题的关键在于准确理解新的定义“<x>表示大于或等于x的最小整数”的意义,得到x≤<x><x+1,属于难题.10.如图所示,平面内有三个向量,,,其中与的夹角为30°,与的夹角为90°,且||=2,||=2,||=2,若=λ+μ,(λ,μ∈R)则()A.λ=4,μ=2B.λ=4,μ=1C.λ=2,μ=1D.λ=2,μ=2【考点】平面向量的基本定理及其意义.【分析】以OC为对角线,以OA,OB方向为邻边作平行四边形,求出平行四边形OA方向上的边长即可得出答案.以OC为对角线,以OA,OB方向为邻边作平行四边形,求出平行四边形OA方向上的边长即可得出答案.【解答】解:过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,则=+.∴∠OCE=∠COF=90°,∵∠COE=30°,∴CE=OE,∵CE2+OC2=OE2,∴CE=2,OE=4.∵OA=2,=λ+μ,(λ,μ∈R).∴λ==2,μ===1,故选:C【点评】本题考查了平面向量的基本定理,向量运算的几何意义,属于基础题.11.已知函数f(x)=sinωx+cosωx(ω>0),在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B. C.πD.2π【考点】三角函数的周期性及其求法.【分析】化f(x)为正弦型函数,令f(x)=1求出x的值,利用曲线y=f(x)与直线y=1的交点中相邻交点距离的最小值为,得出ω|x2﹣x1|=﹣,从而求出ω和f(x)的最小正周期T.【解答】解:函数f(x)=sinωx+cosωx=sin(ωx+),令f(x)=1,得sin(ωx+)=,∴ωx+=+2kπ,k∈Z,或ωx+=+2kπ,k∈Z;又在曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值为,∴ω|x2﹣x1|=﹣,即ω=,解得ω=2,∴f(x)的最小正周期为T==π.故选:C.【点评】本题考查了正弦型函数的图象与性质的应用问题,是基础题目.12.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x1+x2+的值为()A.0 B.﹣1 C.1 D.2【考点】根的存在性及根的个数判断.【分析】作出函数f(x),得到x1,x2关于x=﹣1对称,x3x4=1;化简条件,利用数形结合进行求解即可.【解答】解:作函数f(x)的图象如右,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0即log2x3x4=0则x3x4=1;x1+x2+=﹣1.故选:B.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.13.(2016秋•石家庄期末)已知函数f(x)=,若方程f (x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围为()A.(﹣1,+∞)B.(﹣1,1)C.(﹣∞,1)D.[﹣1,1]【考点】根的存在性及根的个数判断;函数的图象.【分析】作出函数f(x),得到x1,x2关于x=﹣1对称,x3x4=1;化简条件,利用数形结合进行求解即可.【解答】解:作函数f(x)的图象如右,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0即log2x3x4=0则x3x4=1;当|log2x|=1得x=2或,则1<x4<2;<x3<1;故x3(x1+x2)+=﹣2x3+,<x3<1;则函数y=﹣2x3+,在<x3<1上为减函数,则故x3=取得最大值,为y=1,当x3=1时,函数值为﹣1.即函数取值范围是(﹣1,1).故选:B.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.二、填空题(共5小题,每小题5分,满分20分)14.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x+2)=f(x),当x∈(0,1)时,f(x)=x,则f(2011.5)=﹣0.5.【考点】函数奇偶性的性质.【分析】求出函数为奇函数,再求出函数的周期为2,问题得以解决.【解答】解:∵f(﹣x)=﹣f(x),∴函数f(x)是定义在R上的奇函数,∵f(x+2)=f(x),∴函数f(x)的周期为2,∴f(2011.5)=f(2×1006﹣0.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5,故答案为:﹣0.5.【点评】本题考查函数周期、对称、奇偶性等性质问题,属中等题.15.已知函数f(x)=2x+x﹣5在区间(n,n+1)(n∈N+)内有零点,则n=2.【考点】二分法的定义.【分析】函数零点左右两边函数值的符号相反,根据函数在一个区间上两个端点的函数值的符号确定是否存在零点.【解答】解:由f(2)=4+﹣5=﹣<0,f(3)=8+﹣5>0及零点定理知,f(x)的零点在区间(2,3)上,两端点为连续整数,∴零点所在的一个区间(n,n+1)(k∈Z)是(2,3)∴n=2,故答案为:2.【点评】本题主要考查函数零点的概念、函数零点的判定定理与零点定理的应用,本题的解题的关键是检验函数值的符号,属于容易题.16.已知向量=(6,2)与=(﹣3,k)的夹角是钝角,则k的取值范围是{k|k <9且k≠﹣1} .【考点】平面向量数量积的坐标表示、模、夹角.【分析】由题意得•<0,求出k的取值范围,并排除反向情况.【解答】解:∵向量=(6,2)与=(﹣3,k)的夹角是钝角,∴•<0,即6×(﹣3)+2k<0,解得k<9;又6k﹣2×(﹣3)=0,得k=﹣1,此时与反向,应去掉,∴k的取值范围是{k|k<9且k≠﹣1};故答案为:{k|k<9且k≠﹣1}.【点评】本题考查了向量夹角的求解问题,解题时转化为数量积小于0,注意排除反向的情形,是基础题.17.计算:=.【考点】三角函数的化简求值.【分析】利用倍角公式、诱导公式即可得出.【解答】解:原式====.故答案为:.【点评】本题考查了倍角公式、诱导公式,属于基础题.18.(2016秋•石家庄期末)的值等于.【考点】三角函数中的恒等变换应用.【分析】切化弦,利用差角的正弦公式,即可得出结论.【解答】解:=﹣====.故答案为:.【点评】本题考查差角的正弦公式,考查学生的技术能力,属于中档题.三、解答题(共6小题,满分70分)19.(10分)(2016秋•石家庄期末)已知集合A={x|x2﹣3x﹣10<0},B={x|m+1≤x≤2m﹣1}.(1)当m=3时,求集合(∁U A)∩B;(2)若A∩B=B,求实数m的取值范围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)求出A中不等式的解集确定出A,把m的值代入B确定出B,求出A补集与B的交集即可;(2)由题意得到B为A的子集,分B为空集与不为空集两种情况求出m的范围即可.【解答】解:(1)集合A={x|x2﹣3x﹣10<0}={x|(x+2)(x﹣5)<0}={x|﹣2<x<5},…(2分)当m=3时,B={x|4≤x≤5};…(3分)所以∁R A={x|x≤﹣2或x≥5};…(4分)所以(∁R A)∩B={x|x=5}={5};…(2)因为A∩B=B,所以B⊆A;…①当B=∅时,m+1>2m﹣1,解得m<2,此时B⊆A;…(7分)②当B≠∅时,应满足,解得2≤m<3,此时B⊆A;…(9分)综上所述,m的取值范围是{m|m<3}.…(10分)【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.20.(12分)(2016秋•石家庄期末)已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.(1)求f()的值;(2)求函数f(x)的单调递增区间.【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得ω的值,可得函数的解析式.(2)利用正弦函数的单调性求得函数f(x)的单调递增区间.【解答】解:(1)函数f(x)=2cos2ωx+2sinωxcosωx=cos2ωx+sin2ωx+1=sin(2ωx+)+1,因为f(x)最小正周期为π,所以=π,解得ω=1,所以f(x)=sin(2x+)+1,f()=sin(+)+1=(sin cos+cos sin)+1=.(2)由2kπ﹣≤2x+≤2kπ+,可得kπ﹣≤x≤kπ+,所以,函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.【点评】本题主要考查三角恒等变换,正弦函数的周期性、单调性,属于基础题.21.(12分)(2016秋•石家庄期末)已知函数f(x)=log a(a x﹣1)(a>0,且a≠1).(1)求函数f(x)的定义域;(2若函数f(x)的函数值大于1,求x的取值范围.【考点】对数函数的图象与性质.【分析】(1)利用真数大于0,求函数f(x)的定义域;(2)若函数f(x)的函数值大于1,分类讨论求x的取值范围.【解答】解:(1)由题意可知a x﹣1>0,a x>1…(2分)当a>1时,x>0,所以f(x)的定义域为(0,+∞)…(4分)当0<a<1时,x<0,所以f(x)的定义域为(﹣∞,0)…(2)log a(a x﹣1)>1,当a>1时,a x﹣1>a,x>log a(a+1),…(8分)当0<a<1时,a x﹣1<a,x>log a(a+1),…(10分)因为f(x)的定义域为(﹣∞,0),所以0>x>log a(a+1)…(12分)【点评】本题考查函数的定义域,考查不等式的解法,考查对数函数的性质,正确转化是关键.22.(12分)(2016秋•石家庄期末)如图△ABC,点D是BC中点,=2,CF和AD交于点E,设=a,=b.(1)以a,b为基底表示向量,.(2)若=λ,求实数λ的值.【考点】平面向量数量积的运算.【分析】(1)根据向量的加减的几何意义即可求出,(2)根据向量共线定理即可求出.【解答】解:(1)因为点D是BC中点,所以2=+,即=2﹣,所以=﹣=2﹣﹣=2﹣,(2)=λ=(+)=+,因为点C,E,F共线,所以+λ=1,所以λ=.【点评】本题考查平面向量的基本定理及其意义,考查学生的计算能力,比较基础.23.(12分)(2016秋•石家庄期末)如图,点A,B是单位圆O上的两点,A,B点分别在第一,而象限,点C是圆O与x轴正半轴的交点,若∠COA=60°,∠AOB=α,点B的坐标为(﹣,).(1)求sinα的值;(2)已知动点P沿圆弧从C点到A点匀速运动需要2秒钟,求动点P从A点开始逆时针方向作圆周运动时,点P的纵坐标y关于时间t(秒)的函数关系式.【考点】在实际问题中建立三角函数模型.【分析】(1)利用点B的坐标,根据三角函数的定义可知sin∠COB=,cos∠COB=﹣,进而可求sinα=sin(∠COB﹣60°)=;(2)根据动点P沿圆弧从C点到A点匀速运动至少需要2秒钟,∠COA=60°,可求ω=,进而可求点P到x轴的距离d关于时间t的函数关系式.【解答】解:(1)∵点B的坐标为(﹣,),∴sin∠COB=,cos∠COB=﹣,…(2分)∴sinα=sin(∠COB﹣60°)=…(Ⅱ)∵动点P沿圆弧从C点到A点匀速运动需要2秒钟,∠COA=60°∴ω=…(8分)∴点P的纵坐标y关于时间t(秒)的函数关系式为y=sin(t+)(t≥0)…(12分)【点评】本题是基础题,考查三角函数的定义,解答变换的技巧,考查函数模型的构建,属于中档题.24.(12分)(2016秋•石家庄期末)定义在区间D上的函数f(x),如果满足:对任意x∈D,都存在常数M≥0,有|f(x)|≤M,则称f(x)是区间D上有界函数,其中M称为f(x)上的一个上界,已知函数g(x)=log为奇函数.(1)求函数g(x)在区间[,]上的所有上界构成的集合;(2)若g(1﹣m)+g(1﹣m2)<0,求m的取值范围.【考点】函数奇偶性的性质;对数函数的图象与性质.【分析】(1)利用奇函数的性质,求出函数的解析式,利用单调性求函数g(x)在区间[,]上的所有上界构成的集合;(2)若g(1﹣m)+g(1﹣m2)<0,有﹣1<m2﹣1<1﹣m<1,即可求m的取值范围.【解答】解:(1)∵函数g(x)=log为奇函数.∴g(﹣x)=﹣g(x),即log=﹣log…(1分)∴=,1﹣x2=1﹣a2x2得出;a=±1,而a=1时不符合题意,故a=﹣1,…(3分)函数g(x)=log(﹣1)是减函数,在区间[,]上是单调递减,…(4分)g()=﹣1,g()=﹣2,|g(x)|≤2所以g(x)在区间[,]上的所有上界构成的集合[2,+∞)…(Ⅱ)g(1﹣m)+g(1﹣m2)<0,g(1﹣m)<g(m2﹣1),…(7分)g(x)为减函数,…(8分)所以有﹣1<m2﹣1<1﹣m<1,解得0<m<1,故不等式的解集{m|0<m<1}.…(12分)【点评】本题考查函数的奇偶性与单调性,考查学生解不等式的能力,正确转化是关键.。

2015-2016学年河北省石家庄市高一上学期期末数学试卷(带解析)

2015-2016学年河北省石家庄市高一上学期期末数学试卷(带解析)

绝密★启用前2015-2016学年河北省石家庄市高一上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:151分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•石家庄期末)已知函数f (x )=若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则a+b+c 的取值范围是( )A .(1,2015)B .(1,2016)C .(2,2016)D .[2,2016]2、(2015秋•石家庄期末)f (x )=,则f (2014)+f(2015)+f (2016)=( ) A .1+B .C .1﹣D .﹣3、(2015秋•石家庄期末)设f (sinα+cosα)=sin2α(α∈R ),则f (sin )的值是( )A .B .C .﹣D .以上都不正确4、(2015秋•石家庄期末)已知f (x )=Asin (ωx+φ),(A >0,ω>0,0<φ<π)的图象的一部分如图所示,则f (x )解析式是( )A .f (x )=2sin (x ﹣)B .f (x )=2sin (x+)C .f (x )=2sin (2x ﹣)D .f (x )=2sin (2x+)5、(2015秋•石家庄期末)为得到函数y=sin2x 的图象,只需将函数y=cos (2x+)的图象( ) A .向左平移个单位长度 B .向左平移个单位长度 C .向右平移个单位长度 D .向右平移个单位长度6、(2015秋•石家庄期末)函数f (x )=lnx+2x ﹣7的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)7、(2015秋•石家庄期末)若sin (α+)=,且α∈(,),则cosα=( )A .﹣B .C .D .﹣8、(2015秋•石家庄期末)三个数0.90.3,log 3π,log 20.9的大小关系为( ) A .log 20.9<0.90.3<log 3π B .log 20.9<log 3π<0.90.3C.0.90.3<log20.9<log3πD.log3π<log20.9<0.90.39、(2015秋•石家庄期末)下列函数在区间(0,+∞)上,随着x的增大,函数值的增长速度越来越慢的是()A.y=2x B.y=x2 C.y=x D.y=log2x10、(2015秋•石家庄期末)已知向量=(1,﹣),=(﹣2,0),则与的夹角为()A. B. C. D.11、(2015•信阳模拟)下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A. B. C.y=x3 D.y=tanx12、(2015秋•石家庄期末)函数f(x)=lg(4﹣x2)的定义域为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣2,2)C.[﹣2,2]D.(﹣∞,﹣2)∪[2,+∞)13、(2015秋•石家庄期末)已知集合A={x|x≥3},B={1,2,3,4,5}则A∩B=()A.{1,2,3} B.{2,3,4} C.{3,4,5} D.{1,2,3,4,5}第II卷(非选择题)二、填空题(题型注释)14、(2015秋•石家庄期末)已知f(x)=x3+ln,且f(3a﹣2)+f(a﹣1)<0,则实数a的取值范围是.15、(2015秋•石家庄期末)已知函数f(x)=x3+x,且f(3a﹣2)+f(a﹣1)<0,则实数a的取值范围是.16、(2015秋•石家庄期末)已知Rt△ABC三个顶点的坐标分别为A(t,0),B(1,2),C(0,3),则实数t的值为.17、(2015秋•石家庄期末)若角α的终边经过点P(﹣1,2),则sin2α=.18、(2015秋•玉林期末)已知幂函数y=xα的图象过点,则f(4)= .三、解答题(题型注释)19、(2015秋•石家庄期末)对于函数f(x)=log x﹣a•log2x2,x∈[1,4],a∈R.(1)求函数f(x)的最小值g(a);(2)是否存在实数m、n,同时满足以下条件:①m>n≥0;②当函数g(a)的定义域为[n,m]时,值域为[﹣m,﹣n],若存在,求出所有满足条件的m、n的值;若不存在,说明理由.20、(2015秋•石家庄期末)已知函数f(x)=2sin2(+x)﹣cos2x﹣1.(1)求函数f(x)的单调递增区间;(2)若不等式f(x)﹣m+1<0在[,]上恒成立,求实数m的取值范围.21、(2015秋•石家庄期末)已知函数f (x )=1﹣,判断f (x )的单调性并运用函数的单调性定义证明.22、(2015秋•石家庄期末)如图,在△ABC 中,已知AB=3,BC=4,∠ABC=60°,BD 为AC 边上的中线.(1)设=,=,用,表示向量;(2)求中线BD 的长.23、(2015秋•石家庄期末)已知向量=(1,sinα),=(2,cosα),且∥,计算:.24、(2015秋•石家庄期末)全集U=R ,若集合A={x|2≤x <9},B={x|1<x≤6}. (1)求(C R A )∪B ;(2)若集合C={x|a <x≤2a+7},且A ⊆C ,求实数a 的取值范围.参考答案1、C2、D3、C4、B5、C6、C7、D8、A9、D10、C11、B12、B13、C14、(,)15、(﹣∞,)16、﹣1或﹣3.17、﹣.18、219、(1)当t=a,即x=2a时,f(x)min=g(a)=﹣a2.(2)m=n=1,这与m>n≥0矛盾.故满足条件的m,n不存在.20、(1)函数f(x)的单调递增区间是[,+kπ],k∈Z.(2)实数m的取值范围是(2,+∞).21、f(x)在(0,+∞)递增.22、(1)=(+)=(+),(2).23、﹣5.24、(1)(C R A)∪B={x|x≤6或x≥9};(2)1≤a<2.【解析】1、试题分析:0≤x≤1,可得sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增;x∈时,函数f(x)=sinπx单调递减.x>1,log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,利用f(a)=f(b)=f(c),可得a+b=1,2015>c>1,即可得出.解:∵0≤x≤1,∴sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增,函数值由0增加到1;x∈时,函数f(x)=sinπx单调递减,函数值由1减少到0;x>1,∴log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,∵f(a)=f(b)=f(c),∴a+b=1,2015>c>1,∴a+b+c的取值范围是(2,2016).故选:C.考点:分段函数的应用.2、试题分析:根据分段函数的表达式进行转化求解即可.解:由分段函数得f(2014)=sin(1007π+)=sin(π+)=﹣sin=﹣,f(2015)=sin(1007π++)=sin(π++)=﹣sin(+)=﹣cos=﹣,f(2016)=f(2016﹣4)=f(2012)=sin(1006π+)=sin=,则f(2014)+f(2015)+f(2016)=﹣+=﹣,故选:D考点:函数的值.3、试题分析:令t=sinα+cosα,则t2=1+sin2α,求得f(t)的解析式,可得f(sin)的值.解:令t=sinα+cosα,则t2=1+sin2α,∴sin2α=t2﹣1.由f(sinα+cosα)=sin2α,可得f(t)=,∴f(sin)=f()==﹣,故选:C.考点:三角函数的化简求值;函数的值.4、试题分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解:根据f(x)=Asin(ωx+φ)的部分图象,可得A=2,•=﹣,∴ω=,再根据五点法作图,可得+φ=π,φ=,∴f(x)=2sin(x+),故选:B.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.5、试题分析:由条件利用诱导公式,y=Asin(ωx+φ)的图象变换规律,得出结论.解:将函数y=cos(2x+)的图象向右平移个单位,即可得到函数y=cos[2(x﹣)+]=cos(2x﹣)="sin2x" 的图象,故选:C.考点:函数y=Asin(ωx+φ)的图象变换.6、试题分析:根据函数的单调性,零点的存在性定理求解特殊函数值即可判断.解:∵函数f(x)=lnx﹣7+2x,x∈(0,+∞)单调递增,f(1)=0﹣7+2=﹣5,f(2)=ln2﹣3<0,f(3)=ln3﹣1>0,∴根据函数零点的存在性定理得出:零点所在区间是(2,3).故选:C.考点:二分法的定义.7、试题分析:由条件利用同角三角函数的基本关系求得cos(α+),再利用两角差的余弦公式求得cosα的值.解:∵sin(α+)=,且α∈(,),∴α+∈(,π),则cos(α+)=﹣=﹣,∴c osα=cos[(α+)﹣]=cos(α+)cos+sin(α+)sin=﹣•+•=﹣,故选:D.考点:两角和与差的余弦函数.8、试题分析:由于0<0.90.3<1,log3π>1,log20.9<0,即可得出.解:∵0<0.90.3<1,log3π>1,log20.9<0,∴log20.9<0.90.3<log3π,故选:A.考点:对数值大小的比较.9、试题分析:根据基本指数函数,幂函数,对数函数的图象和特点即可判断.解:y=2x,y=x2,随着x的增大,函数值的增长速度越来越快,y=x随着x的增大,函数值的增长速度保持不变,y=log2x随着x的增大,函数值的增长速度越来越慢,故选:D.考点:函数的图象.10、试题分析:由题意和向量的夹角公式可得夹角余弦值,则两向量夹角可求.解:∵向量=(1,﹣),=(﹣2,0),设与的夹角为θ,∴由夹角公式可得cosθ===,又θ∈[0,π],可得夹角θ=.故选:C.考点:平面向量数量积的运算.11、试题分析:根据函数的奇函数的性质及函数的单调性的判断方法对四个选项逐一判断,得出正确选项.解:A选项的定义域不关于原点对称,故不正确;B选项正确,是奇函数且在区间(0,1)内单调递减;C选项不正确,因为其在区间(0,1)内单调递增;D选项不正确,因为其在区间(0,1)内单调递增.故选B考点:奇偶性与单调性的综合.12、试题分析:由对数式的真数大于0,然后求解一元二次不等式得答案.解:由4﹣x2>0,得x2<4,即﹣2<x<2.∴函数f(x)=lg(4﹣x2)的定义域为(﹣2,2).故选:B.考点:对数函数的定义域;函数的定义域及其求法.13、试题分析:进而根据集合交集及其运算,求出A∩B即可.解:∵集合A={x|x≥3},B={1,2,3,4,5},则A∩B={3,4,5},故选:C.考点:交集及其运算.14、试题分析:根据条件先求出函数的定义域,判断函数的奇偶性和单调性,将不等式进行转化求解即可.解:由>0,得﹣1<x<1,即函数的定义域为(﹣1,1),f(x)=x3+ln=x3+ln(x+1)﹣ln(1﹣x),则函数f(x)为增函数,∵f(﹣x)=﹣x3+ln(﹣x+1)﹣ln(1+x)=﹣[x3+ln(x+1)﹣ln(1﹣x)]=﹣f(x),∴函数f(x)为奇函数,则不等式f(3a﹣2)+f(a﹣1)<0等价为f(3a﹣2)<﹣f(a﹣1)=f(1﹣a),则不等式等价为,即,得<a<,故答案为:(,)考点:奇偶性与单调性的综合.15、试题分析:求函数的导数,判断函数的单调性和奇偶性,将不等式进行转化进行求解即可.解:函数的导数为f′(x)=3x2+1>0,则函数f(x)为增函数,∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴函数f(x)是奇函数,则f(3a﹣2)+f(a﹣1)<0等价为f(3a﹣2)<﹣f(a﹣1)=f(1﹣a),则3a﹣2<1﹣a,即a<,故答案为:(﹣∞,)考点:奇偶性与单调性的综合.16、试题分析:由题意画出图形,分类利用向量数量积为0求得实数t的值.解:如图,由图可知,角B或角C为直角.当B为直角时,,,由得,﹣(t﹣1)﹣2=0,即t=﹣1;当C为直角时,,由得,t+3=0,即t=﹣3.故答案为:﹣1或﹣3.考点:两条直线垂直与倾斜角、斜率的关系;直线的斜率.17、试题分析:利用三角函数的定义,计算α的正弦与余弦值,再利用二倍角公式,即可求得结论.解:由题意,|OP|=,∴sinα=,cosα=﹣,∴sin2α=2sinαcosα=2××(﹣)=﹣,故答案为:﹣.考点:任意角的三角函数的定义;二倍角的正弦.18、试题分析:把幂函数y=xα的图象经过的点代入函数的解析式,求得α的值,即可得到函数解析式,从而求得f(4)的值.解:∵已知幂函数y=xα的图象过点,则2α=,∴α=,故函数的解析式为y f(x)=,∴f(4)==2,故答案为2.考点:幂函数的概念、解析式、定义域、值域.19、试题分析:(1)利用换元法求函数的最值.(2)根据二次函数图象和性质,结合定义域和值域之间的关系进行讨论即可.解:(1)设t=log2x,∵x∈[1,4],∴t∈[0,2],f(x)=t2﹣2at=(t﹣a)2﹣a2,当t=a,即x=2a时,f(x)min=g(a)=﹣a2.(2)∵m>n≥0,∴g(a)=﹣a2在[0,∞)上为减函数,…(8分)又∵g(a)的定义域为[n,m],值域为[﹣m,﹣n],∴﹣n2=﹣n,﹣m2=﹣m,∴m=n=1,这与m>n≥0矛盾.故满足条件的m,n不存在.考点:对数函数的图象与性质.20、试题分析:(1)利用倍角公式、和差公式可得:f(x)=2.再利用正弦函数的单调性即可得出单调区间.(2)由x∈[,],可得∈.可得取值范围.根据不等式f(x)﹣m+1<0在[,]上恒成立,可得m>[f(x)+1]max.解:(1)f(x)=﹣﹣cos2x=sin2x﹣cos2x=2.由≤≤2kπ+,k∈Z,解得:≤x≤+kπ,∴函数f(x)的单调递增区间是[,+kπ],k∈Z.(2)由x∈[,],则∈.∴∈[0,1].∴f(x)∈[0,1].∵不等式f(x)﹣m+1<0在[,]上恒成立,∴m>[f(x)+1]max=2.∴实数m的取值范围是(2,+∞).考点:三角函数中的恒等变换应用;函数恒成立问题.21、试题分析:根据函数的单调性的定义证明即可.证明:函数f(x)的定义域是:{x|x>0},设x1>x2,则f(x1)﹣f(x2)=1﹣﹣(1﹣)=﹣=>0,∴f(x)在(0,+∞)递增.考点:函数单调性的判断与证明.22、试题分析:(1)根据向量的平行四边形的法则即可求出,(2)根据向量的模的计算和向量的数量积即可求出.解:(1)∵设=,=,BD为AC边上的中线.∴=(+)=(+),(2)∵=(+),AB=3,BC=4,∠ABC=60°,∴||2=(||2+||2+2•)=(||2+||2+2||•||cos60°)=(9+16+2×3×4×)=,∴||=,故中线BD的长为.考点:平面向量数量积的运算.23、试题分析:根据向量平行建立方程关系,代入进行化简即可.解:∵∥,∴2sinα﹣cosα=0,即cosα=2sinα,则===﹣5.考点:平面向量共线(平行)的坐标表示;同角三角函数基本关系的运用.24、试题分析:(1)根据全集与补集、并集的定义,进行化简、计算即可;(2)根据子集的概念,列出不等式组,求出a的取值范围.解:(1)∵全集U=R,集合A={x|2≤x<9},∴∁R A={x|x<2或x≥9},又B={x|1<x≤6},∴(C R A)∪B={x|x≤6或x≥9};(2)∵集合A={x|2≤x<9},集合C={x|a<x≤2a+7},且A⊆C,∴,解得1≤a<2,∴实数a的取值范围是1≤a<2.考点:交、并、补集的混合运算;集合的包含关系判断及应用.。

精品:【全国百强校】河北省石家庄市第一中学2015-2016学年高一下学期期末考试理数试题(解析版)

精品:【全国百强校】河北省石家庄市第一中学2015-2016学年高一下学期期末考试理数试题(解析版)

河北省石家庄市第一中学2015-2016学年高一期末考试理数试题第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为 A .M N B .()U M N ð C .()U M N ð D .()()U UM N 痧【答案】B 【解析】试题分析:{5}M N = ,(){1,2}U C M N = ,故选B . 考点:集合的运算. 2.若2sin 3α=-,且α为第四象限角,则tan α的值等于A B . C D . 【答案】D考点:同角间的三角函数关系.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.3.设0a b <<,则下列不等式中正确的是A.2a b a b +<<<B.2a ba b +<<< C.2a b a b +<<< D2a ba b +<<<【答案】B 【解析】试题分析:取4,16a b ==8==,4161022a b ++==,只有B 符合.故选B . 考点:基本不等式.4.错误!未指定书签。

已知n m ,表示两条不同直线,α表示平面.下列说法正确的是A .若,//,//ααn m 则n m //B .若,,αα⊂⊥n m ,则n m ⊥C .若,,n m m ⊥⊥α则α//nD .若,,//n m m ⊥α,则α⊥n 【答案】B考点:空间直线与平面的位置关系,平行与垂直的判断.5.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 A .6 B .5 C .4 D .3 【答案】C 【解析】试题分析:由等比数列的性质知44123845()10a a a a a a == , 所以128lg lg lg a a a +++ 4128lg()lg104a a a === .故选C 考点:等比数列的性质,对数的运算.6.已知函数()()()()cos 0260x x f x f x x ππ⎧⎛⎫+≥⎪ ⎪=⎝⎭⎨⎪-<⎩,则()2013f -等于 A .12 B .12- CD.【答案】B【解析】试题分析:(2013)(2013)cos(2013)26f f ππ-==⨯+cos(1006)26πππ=++cos()26ππ=+sin 6π=- 12=-.考点:分段函数,诱导公式.7.几何体的三视图(单位:cm)如右上图所示,则此几何体的表面积是A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2 【答案】A考点:三视图,体积.8.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为A .22(1)18x y ++= B .18)1(22=+-y x C .18)1(22=++y x D .18)1(22=-+y x 【答案】A 【解析】试题分析:易知(2,1)P -关于直线1y x =+的对称点为(0,1)-,即(0,1)C -,圆心到直线34110x y +-=的距离为3d ,所以r ==22(1)18x y ++=.故选A .考点:圆的标准方程.9.设2212()cos (1)sin cos 3sin f x a x a x x x =+-+(22120a a +≠),若无论x 为何值,函数()f x 的图象总是一条直线,则12a a +的值是A . 0B .1-C .4D .256 【答案】C 【解析】试题分析:由题意12310a a =⎧⎨-=⎩,所以124a a +=.故选C .考点:恒等式,同角间的三角函数关系..10.设1m >,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A.(1,1+ B.(1)++∞ C .(1,3) D .(3,)+∞ 【答案】A考点:简单线性规划的参数问题.11.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r=A .B .5C .3D 【答案】D考点:直线与圆的位置关系.【名师点睛】直线与圆、直线与圆锥曲线相交时一般设交点为1122(,),(,)A x y B x y ,由直线方程与圆(圆锥曲线)方程组消元后,可得1212,x x x x +,然后再对条件进行计算并把1212,x x x x +代入运算求解,本题中圆的圆心在原点,直线2y x =-+与直线y x =垂直,其交点关于直线y x =对称,实际上这两个点的横纵坐标互换,因此我们直接解方程组得出两交点坐标,并求出C 点坐标,代入圆方程可解得r .因此解题时要灵活运用所学知识,选用恰当的方法,适合的就是最好的.12.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)4【答案】A 【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以0c <≤,0c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.第II 卷(非选择题,共90分)二、选择题: 本题共4小题,每小题5分,共20分.13.设(1,2)a = ,(1,1)b =,c a kb =+ .若b c ⊥ ,则实数k 的值等于 .【答案】32-考点:向量垂直的坐标表示,向量的坐标运算.14.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =_____. 【答案】8 【解析】试题分析:由椭圆定义知221212440AB AF BF AF AF BF BF a ++=+++==,所以8AB =. 考点:椭圆的定义.15.等差数列}{n a 中12016a =,前n 项和为n S ,10121210S S -2-=,则2016S 的值为__________. 【答案】2016 【解析】试题分析:由{}n a 是等差数列,则112n S n a d n -=+,101211119()()2121022S S a d a d d -=+-+==-,20162016201520162016(2)20162S ⨯=⨯+⨯-=.考点:等差数列的前n 项和.【名师点睛】等差数列的前n 项和公式是1(1)2n n n S na d -=+,由此知1(1)2n S da n n =+-⋅,这说明数列{}n S n 是等差数列,因此此题可以这样解:设数列{}n S n 的公差为d ,则1012221210S Sd -==-,1d =-,又120161S =,所以20161201520162015(1)120161S Sd =+=+⨯-=,所以20162016S =. 16.定义在R 上的函数()f x 满足()(),(2)(2),f x f x f x f x -=--=+且(1,0)x ∈-时,1()2,5x f x =+则2(log 20)f =__________.【答案】-1考点:函数的周期性.【名师点睛】当函数具有性质:对一切实数x ,()()f x T f x +=恒成立,则函数()f x 是周期函数,T 是它的一个周期,同样若函数满足下列条件之一时,它也是周期函数: (1)()()f x a f x +=-,2T a =;(2)1()()f x a f x +=±,2T a =; (3)()()f x a f x a +=-,2T a =;(4)1()()1()f x f x a f x -+=+,4T a =.三、非选择题:本题共6小题,共70分.17.(本小题满分10分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.(Ⅰ)求A ; (Ⅱ)若2a b ==求ABC ∆的面积.【答案】(Ⅰ)3A π=;【解析】试题分析:(Ⅰ)由两向量平行的坐标运算列出三角形边角关系的等式,再由正弦定理化边为角,可求得角A ;(Ⅱ)由余弦定理(选用角A 的等式),求出边c ,再选用公式1sin 2S bc A =可得三角形面积. 试题解析:(I)因为//m n,所以sin cos 0a B A =由正弦定理,得sin sin cos 0A B B A -=, 又sin 0B ≠,从而tan A =,由于0A π<<所以3A π=.考点:向量平行的坐标运算,正弦定理,余弦定理,三角形面积.18.(本小题满分12分)数列}{n a 的前n 项和记为n S ,t a =1,121()n n a S n *+=+∈N . (Ⅰ)当t 为何值时,数列}{n a 是等比数列;(Ⅱ)在(I )的条件下,若等差数列}{n b 的前n 项和n T 有最大值,且153=T ,又11b a +,22b a +,33b a +成等比数列,求n T .【答案】(Ⅰ)1t =;(Ⅱ)2205n T n n =- 【解析】试题分析:(Ⅰ)要说明数列{}n a 是等比数列,一般根据等比数列的定义,证明数列的后项与前项之比为同一常数,为此由已知121n n a S +=+,再写一个2n ≥时,1121n n a S ++=+,两式相减后得13(2)n n a a n +=≥,这样有13(2)n n a n a +=≥,因此要使数列为等比数列,只要213aa =即可,从而得1t =;(Ⅱ)由(Ⅰ)得123,,a a a ,利用等差数列的前3项和315T =可得25b =,可设135,5b d b d =-=+,利用11b a +,22b a +,33b a +成等比数列,可求得公差d ,最后由等差数列的前n 项和公式可得n T .试题解析:(I )由121+=+n n S a ,可得121(2)n n a S n -=+≥, 两式相减得)2(3,211≥==-++n a a a a a n n n n n 即,∴当2≥n 时,}{n a 是等比数列, ……… 3分 要使1≥n 时,}{n a 是等比数列,则只需31212=+=tt a a ,从而1=t .5分考点:等比数列的判断,等比数列的性质,等差数列的前n 项和. 【名师点睛】判定数列为等比数列的常见方法(1)定义法:错误!未找到引用源。

【百强校】2015-2016学年河北省石家庄一中高一上学期期中数学试卷(带解析)

【百强校】2015-2016学年河北省石家庄一中高一上学期期中数学试卷(带解析)

绝密★启用前【百强校】2015-2016学年河北省石家庄一中高一上学期期中数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:167分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、对于函数,若在其定义域内存在两个实数,当时,的值域也是,则称函数为“科比函数”.若函数是“科比函数”,则实数的取值范围A .B .C .D .2、已知函数的值为A .B .C .D .3、已知函数若有则的取值范围为A .B .C .D .4、函数的图像大致是5、函数的单调增区间是A .B .C .D .6、当时,下列不等式中正确的是A .B .C .D .7、下列根式、分数指数幂的互化中,正确的是 A .B .C .D .8、设函数=,则使得≥1的自变量x 的取值范围为A .(-∞,-2]∪[0,10]B .(-∞,-2]∪[0,1]C .(-∞,-2]∪[1,10]D .[-2,0]∪[1,10]9、已知是第三象限角,则是A.第一象限角 B.第二象限角C.第二或第四象限角 D.第一或第四象限角10、若方程在区间且上有一根,则的值为A.1 B.2 C.3 D.411、已知函数的图象过点(3,2),则函数的图象关于轴的对称图形一定过点A.(2,-2) B.(2,2) C.(-4,2) D.(4,-2)12、已知集合,,则A.或B.C.D.第II卷(非选择题)二、填空题(题型注释)13、给出下列四个命题:①函数(且)与函数(且)的定义域相同;②函数与的值域相同;③函数与都是奇函数;④函数与在区间上都是增函数,其中正确命题的序号是____________(把你认为正确的命题序号都填上).14、设集合,,若,则实数的取值范围是________.15、若为上的奇函数,则实数的值为.16、圆的一段弧长等于该圆外切正三角形的边长,则这段弧所对圆心角的弧度数是.三、解答题(题型注释)17、(本小题满分12分)已知定义域为的函数同时满足以下三个条件:①对任意的,总有;②;③若且,则有成立,则称为“友谊函数”.(Ⅰ)若已知为“友谊函数”,求的值;(Ⅱ)函数在区间上是否为“友谊函数”?并给出理由;(Ⅲ)已知为“友谊函数”,且,求证:.18、(本小题满分12分)已知函数.(Ⅰ)若,求的值;(Ⅱ)若对于任意实数恒成立,求实数的取值范围.19、(本小题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (Ⅰ)当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (Ⅱ)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;(Ⅲ)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)20、(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.21、(本小题满分12分)已知,,且,试比较与的大小.22、(本小题满分10分) 设集合,求实数的取值范围.(其中为区间)参考答案1、A2、D3、B4、A5、B6、D7、C8、A9、C10、B11、D12、B13、①③14、15、16、17、(Ⅰ);(Ⅱ)是“友谊函数”;(Ⅲ)见解析.18、(Ⅰ);(Ⅱ).19、(Ⅰ)550个;(Ⅱ);(Ⅲ)一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.20、(Ⅰ);(Ⅱ).21、22、【解析】1、试题分析:因为函数是增函数且为“科比函数”,所以有,,所以是方程的两个根,即是方程的两个根,所以函数与函数有两个公共点,在同一坐标系内作出两函数的图象,当经过点时,,又两边平方整理得,由得,数形结合可知实数的取值范围,故选A.考点:1.新定义问题;2.函数与方程.【方法点睛】本题主要考查学生接受新知识的能力以及函数与方程、数形结合思想等问题,属中档题.解决问题的主要方法通常是通过等价转化,先将新定义的问题通过“翻译”转化为函数、方程或不等式的解的问题,进一步转化为两个函数的图象有两个公共点,通过数形结合或分类讨论求解.2、试题分析:,所以,因为,所以,故选D.考点:1.函数的表示;2.对数的运算性质.3、试题分析:因为,所以,即,,解之得,故选B.考点:1.指数函数的值域;2.一元二次不等式的解法.4、试题分析:当,时,,排除B、C,当时,,排除D,故选A.考点:函数的图象.5、试题分析:函数的定义域为,令,由二次函数性质可知在区间上单调递增,在区间上单调递减,而在定义域内是减函数,由复合的性质可知的递增区间为,故选B.考点:复合函数的单调性.【易错点睛】本题主要考查复合函数的单调性,属中档题.本题在解题过得中,容易忽略定义域的限制条件,直接由复合函数的单调性,得到单调递增区间为.6、试题分析:因为,所以,所以指数函数是减函数,又,所以A、C均错;函数是增函数,,所以B错;又,幂函数是在区间上是增函数,,所以,所以,故选D.考点:1.指数函数的性质;2.幂函数的性质;3.不等式的性质.7、试题分析:,故A错;,故B错;当时,,故C正确;,所以D错,故选C.考点:分数指数幂与根式的互化.8、试题分析:当时,由得:或;当时,由得:,所以不等式的为.考点:函数与不等式.9、试题分析:因数是第三象限角,所以,所以有,当为偶数时,是第二象限角,当为奇数时,是第四象限角,故选C.考点:解的有关概念.10、试题分析:令,则,,且函数在定义域内为增函数,所以由零点存在定理可知函数的零点在区间上,所以,故选B.考点:1.函数与方程;2.零点存在定理.11、试题分析:因为函数的图象过点,所以函数的图象一定过,所以函数的图象关于轴的对称图形一定过点,故选D.考点:1.函数的表示方法;2.轴对称图形的性质.12、试题分析:由交集的定义可知,,故选B.考点:集合的运算及表示.【易错点睛】本题主要考查集合的运算与集合的表示方法,属容易题.集合A中的代表元素用的字母为,集合B中的代表元素用的字母为,学生会误认为是两个不同类型的集合,选D,即对两个集合均为数集的含义不清楚导致错误.13、试题分析:函数(且)的定义域为,函数(且)的定义域为,故①正确;函数的值域为,函数的值域为,故②错误;因为的定义域为,且,,所以是奇函数,的定义域为,,所以是奇函数,故③正确;函数在区间单调递减,在区间上单调递增,在区间上单调递增,故④错误.所以正确的序号为①③.考点:1.指数函数、对数函数的定义域与值域;2.指数函数与幂函数的单调性;3.函数的奇偶性与单调性.14、试题分析:, ,由得,当时,,由得;当时,,不符合题意;当时,,由得;综上所述,实数的取值范围是.考点:1.不等式的解法;2.集合的运算.【易错点睛】本题主要考查集合的运算、不等式的解法、对数的性质等知识,属中档题.易错1:求集合时,容易忽略对数的真数大于的限制,将集合求错;易错2:求集合时,不对进行分类讨论,直接得到导致错误.15、试题分析:因为为上的奇函数,所以,所以.考点:奇函数的定义与性质.16、试题分析:设圆的半径为,其外切正三角形的边长为,则,又弧长为,所以圆心角为.考点:1.弧度制的定义及应用;2.三角形内切圆性质.17、试题分析:(Ⅰ)在条件中令即可求得,又由已知即可求得;(Ⅱ)容易验证前两个条件成立,对于第三个条件,用作差比较法比较与的大小可得函数是“友谊函数”;(Ⅲ)由,且及友谊函数的定义可得成立.试题解析:(Ⅰ)取得,所以,又由,得(Ⅱ)显然在上满足①②,若,且,则有故满足条件①﹑②﹑③所以为友谊函数.(Ⅲ)因为,则0<<1,所以.考点:1.新定义问题;2.指数的运算性质;3.函数与不等.18、试题分析:(Ⅰ)将函数解析式直接代入可得,解方程即可;(Ⅱ)因为,且当时,,所以不等式对于任意实数恒成立等价于即对于任意实数恒成立,又在区间上的最大值为,可得.试题解析:(Ⅰ)由条件可知所以(Ⅱ)当时,,.., (12)考点:1.函数与方程;2.函数与不等式.【方法点睛】本题主要考查函数与方程、函数不等式等知识,同时考查数学的化归与转化思想,属中档题.求解不等式恒成立问题,主要是通过等价转化、分离参数等方法转化为函数的最值问题进行讨论求解.本题主通过分离参数的方法,再转化从求函数最值问题求解的.19、试题分析:(Ⅰ)因为每多订购一个,订购的全部零件的出厂单价就降低0.02元,所以当出厂单价恰为51元时订购量为;(II)分,,分别写出零件的实际出厂单价与的关系式,再用分段函数表示即可;(III)先列出利润关于订购量的关系式,将与分别代入解析式即可.试题解析:(Ⅰ)设每个零件的实际出厂价恰好降为51元时,一次订购量为个,则因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(Ⅱ)当时,当时,当时,所以(Ⅲ)设销售商的一次订购量为x个时,工厂获得的利润为L元,则当时,;当时,因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.考点:1.函数建模;2.分段函数的表示及应用.【方法点睛】本题主要考查函数的基本知识,考查应用数学知识分析问题和解决问题的能力,属中档题.把实际问题数学化、建立数学模型一定要过好三关:(1)整理关:通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口;(2)文理关:将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系;(3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建受益人数学模型.20、试题分析:(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.考点:1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.21、试题分析:将变形得可求,由写成对数式,得,,代入求得,由函数与函数的单调性,通过中间桥梁比较大小即可.试题解析:∵∴,又∵为单调递增的函数∵,∵,∴,又∵,∴∵在上单调递增,在上单调递减,∴,即考点:1.指数函数的性质;2.指数式与对数式的互化;3.对数的运算性质.22、试题分析:等价于方程无解或有两个非负解,当方程无解时,由可求的范围;当方程有两个非负解时,因为方程无零根,所以只要即可,最后求并集.试题解析:①当当,满足条件;②当△≥0时,∵方程无零根,故方程两根必均为负根,∵两根之积为1(大于0) ∴综上有.考点:1.二次方程根的分布;2.集合的运算.。

2015-2016学年河北省石家庄市高一(上)期末数学试卷(解析版)

2015-2016学年河北省石家庄市高一(上)期末数学试卷(解析版)

2015-2016学年河北省石家庄市高一(上)期末数学试卷参考答案与试题解析一、选择题(共13小题,每小题5分,满分60分)1.已知集合A={x|x≥3},B={1,2,3,4,5}则A∩B=()A.{1,2,3} B.{2,3,4} C.{3,4,5} D.{1,2,3,4,5}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】进而根据集合交集及其运算,求出A∩B即可.【解答】解:∵集合A={x|x≥3},B={1,2,3,4,5},则A∩B={3,4,5},故选:C.【点评】本题主要考查集合的基本运算,比较基础.2.函数f(x)=lg(4﹣x2)的定义域为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣2,2)C.[﹣2,2]D.(﹣∞,﹣2)∪[2,+∞)【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题;函数思想;数学模型法;函数的性质及应用.【分析】由对数式的真数大于0,然后求解一元二次不等式得答案.【解答】解:由4﹣x2>0,得x2<4,即﹣2<x<2.∴函数f(x)=lg(4﹣x2)的定义域为(﹣2,2).故选:B.【点评】本题考查函数的定义域及其求法,考查了一元二次不等式的解法,是基础题.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.B. C.y=x3D.y=tanx【考点】奇偶性与单调性的综合.【专题】阅读型.【分析】根据函数的奇函数的性质及函数的单调性的判断方法对四个选项逐一判断,得出正确选项.【解答】解:A选项的定义域不关于原点对称,故不正确;B选项正确,是奇函数且在区间(0,1)内单调递减;C选项不正确,因为其在区间(0,1)内单调递增;D选项不正确,因为其在区间(0,1)内单调递增.故选B【点评】本题考查函数奇偶性与单调性的综合,求解本题的关键是掌握住判断函数的奇偶性的方法与判断函数的单调性的方法,本题中几个函数都是基本函数,对基本函数的性质的了解有助于快速判断出正确选项.4.已知向量=(1,﹣),=(﹣2,0),则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【专题】计算题;方程思想;向量法;平面向量及应用.【分析】由题意和向量的夹角公式可得夹角余弦值,则两向量夹角可求.【解答】解:∵向量=(1,﹣),=(﹣2,0),设与的夹角为θ,∴由夹角公式可得cosθ===,又θ∈[0,π],可得夹角θ=.故选:C.【点评】本题考查利用数量积求向量的夹角,属基础题.5.下列函数在区间(0,+∞)上,随着x的增大,函数值的增长速度越来越慢的是()A.y=2x B.y=x2C.y=x D.y=log2x【考点】函数的图象.【专题】计算题;函数思想;数形结合法;函数的性质及应用.【分析】根据基本指数函数,幂函数,对数函数的图象和特点即可判断.【解答】解:y=2x,y=x2,随着x的增大,函数值的增长速度越来越快,y=x随着x的增大,函数值的增长速度保持不变,y=log2x随着x的增大,函数值的增长速度越来越慢,故选:D.【点评】本题考查了基本初等函数的增加程度,关键是掌握基本函数的图象和性质,属于基础题.6.三个数0.90.3,log3π,log20.9的大小关系为()A.log20.9<0.90.3<log3πB.log20.9<log3π<0.90.3C.0.90.3<log20.9<log3πD.log3π<log20.9<0.90.3【考点】对数值大小的比较.【专题】计算题;数形结合;转化思想;函数的性质及应用.【分析】由于0<0.90.3<1,log3π>1,log20.9<0,即可得出.【解答】解:∵0<0.90.3<1,log3π>1,log20.9<0,∴log20.9<0.90.3<log3π,故选:A.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.7.若sin(α+)=,且α∈(,),则cosα=()A.﹣B.C. D.﹣【考点】两角和与差的余弦函数.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系求得cos(α+),再利用两角差的余弦公式求得cosα的值.【解答】解:∵sin(α+)=,且α∈(,),∴α+∈(,π),则cos(α+)=﹣=﹣,∴cosα=cos[(α+)﹣]=cos(α+)cos+sin(α+)sin=﹣•+•=﹣,故选:D.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.8.函数f(x)=lnx+2x﹣7的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】二分法的定义.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的单调性,零点的存在性定理求解特殊函数值即可判断.【解答】解:∵函数f(x)=lnx﹣7+2x,x∈(0,+∞)单调递增,f(1)=0﹣7+2=﹣5,f(2)=ln2﹣3<0,f(3)=ln3﹣1>0,∴根据函数零点的存在性定理得出:零点所在区间是(2,3).故选:C.【点评】本题考查了函数的单调性,零点的存在性定理,难度不大,属于中档题.9.为得到函数y=sin2x的图象,只需将函数y=cos(2x+)的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由条件利用诱导公式,y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:将函数y=cos(2x+)的图象向右平移个单位,即可得到函数y=cos[2(x﹣)+]=cos(2x﹣)=sin2x 的图象,故选:C.【点评】本题主要考查诱导公式,y=Asin(ωx+φ)的图象变换规律,属于基础题.10.已知f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的图象的一部分如图所示,则f (x)解析式是()A.f(x)=2sin(x﹣)B.f(x)=2sin(x+)C.f(x)=2sin(2x﹣)D.f(x)=2sin(2x+)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】转化思想;综合法;函数的性质及应用.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.【解答】解:根据f(x)=Asin(ωx+φ)的部分图象,可得A=2,•=﹣,∴ω=,再根据五点法作图,可得+φ=π,φ=,∴f(x)=2sin(x+),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.11.设f(sinα+cosα)=sin2α(α∈R),则f(sin)的值是()A.B. C.﹣D.以上都不正确【考点】三角函数的化简求值;函数的值.【专题】转化思想;综合法;函数的性质及应用.【分析】令t=sinα+cosα,则t2=1+sin2α,求得f(t)的解析式,可得f(sin)的值.【解答】解:令t=sinα+cosα,则t2=1+sin2α,∴sin2α=t2﹣1.由f(sinα+cosα)=sin2α,可得f(t)=,∴f(sin)=f()==﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系,三角函数的求值问题,属于基础题.12.f(x)=,则f+fA.1+B.C.1﹣D.﹣【考点】函数的值.【专题】函数思想;转化思想;转化法;函数的性质及应用.【分析】根据分段函数的表达式进行转化求解即可.【解答】解:由分段函数得f=sin(π+)=﹣sin=﹣,f=sin(π++)=﹣sin(+)=﹣cos=﹣,f=f=sin=,则f+f已知函数f(x)=若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2015)B.(1,2016)C.(2,2016)D.[2,2016]【考点】分段函数的应用.【专题】函数的性质及应用.【分析】0≤x≤1,可得sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增;x∈时,函数f(x)=sinπx单调递减.x>1,log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,利用f(a)=f(b)=f(c),可得a+b=1,2015>c>1,即可得出.【解答】解:∵0≤x≤1,∴sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增,函数值由0增加到1;x∈时,函数f(x)=sinπx单调递减,函数值由1减少到0;x>1,∴log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,∵f(a)=f(b)=f(c),∴a+b=1,2015>c>1,∴a+b+c的取值范围是(2,2016).故选:C.【点评】本题考查了函数的单调性与值域,考查了数形结合的思想方法、推理能力与计算能力,属于难题.二、填空题(共5小题,每小题5分,满分20分)14.已知幂函数y=xα的图象过点,则f(4)=2.【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】把幂函数y=xα的图象经过的点代入函数的解析式,求得α的值,即可得到函数解析式,从而求得f(4)的值.【解答】解:∵已知幂函数y=xα的图象过点,则2α=,∴α=,故函数的解析式为y f(x)=,∴f(4)==2,故答案为2.【点评】本题主要考查用待定系数法求函数的解析式,根据函数的解析式求函数的值,属于基础题.15.若角α的终边经过点P(﹣1,2),则sin2α=﹣.【考点】任意角的三角函数的定义;二倍角的正弦.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】利用三角函数的定义,计算α的正弦与余弦值,再利用二倍角公式,即可求得结论.【解答】解:由题意,|OP|=,∴sinα=,cosα=﹣,∴sin2α=2sinαcosα=2××(﹣)=﹣,故答案为:﹣.【点评】本题考查三角函数的定义,考查二倍角公式,属于基础题.16.已知Rt△ABC三个顶点的坐标分别为A(t,0),B(1,2),C(0,3),则实数t的值为﹣1或﹣3.【考点】两条直线垂直与倾斜角、斜率的关系;直线的斜率.【专题】计算题;转化思想;向量法;直线与圆.【分析】由题意画出图形,分类利用向量数量积为0求得实数t的值.【解答】解:如图,由图可知,角B或角C为直角.当B为直角时,,,由得,﹣(t﹣1)﹣2=0,即t=﹣1;当C为直角时,,由得,t+3=0,即t=﹣3.故答案为:﹣1或﹣3.【点评】本题考查两直线垂直的关系,考查了向量数量积判断两直线的垂直,体现了分类讨论的数学思想方法,是基础题.17.已知函数f(x)=x3+x,且f(3a﹣2)+f(a﹣1)<0,则实数a的取值范围是(﹣∞,).【考点】奇偶性与单调性的综合.【专题】计算题;转化思想;定义法;函数的性质及应用.【分析】求函数的导数,判断函数的单调性和奇偶性,将不等式进行转化进行求解即可.【解答】解:函数的导数为f′(x)=3x2+1>0,则函数f(x)为增函数,∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴函数f(x)是奇函数,则f(3a﹣2)+f(a﹣1)<0等价为f(3a﹣2)<﹣f(a﹣1)=f(1﹣a),则3a﹣2<1﹣a,即a<,故答案为:(﹣∞,)【点评】本题主要考查不等式的求解,利用函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.18.已知f(x)=x3+ln,且f(3a﹣2)+f(a﹣1)<0,则实数a的取值范围是(,).【考点】奇偶性与单调性的综合.【专题】计算题;函数思想;转化法;函数的性质及应用.【分析】根据条件先求出函数的定义域,判断函数的奇偶性和单调性,将不等式进行转化求解即可.【解答】解:由>0,得﹣1<x<1,即函数的定义域为(﹣1,1),f(x)=x3+ln=x3+ln(x+1)﹣ln(1﹣x),则函数f(x)为增函数,∵f(﹣x)=﹣x3+ln(﹣x+1)﹣ln(1+x)=﹣[x3+ln(x+1)﹣ln(1﹣x)]=﹣f(x),∴函数f(x)为奇函数,则不等式f(3a﹣2)+f(a﹣1)<0等价为f(3a﹣2)<﹣f(a﹣1)=f(1﹣a),则不等式等价为,即,得<a<,故答案为:(,)【点评】本题主要考查不等式的求解,根据条件求出函数的定义域,判断函数的奇偶性和单调性是解决本题的关键.三、解答题(共6小题,满分70分)19.全集U=R,若集合A={x|2≤x<9},B={x|1<x≤6}.(1)求(C R A)∪B;(2)若集合C={x|a<x≤2a+7},且A⊆C,求实数a的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.【专题】计算题;转化思想;定义法;集合.【分析】(1)根据全集与补集、并集的定义,进行化简、计算即可;(2)根据子集的概念,列出不等式组,求出a的取值范围.【解答】解:(1)∵全集U=R,集合A={x|2≤x<9},∴∁R A={x|x<2或x≥9},又B={x|1<x≤6},∴(C R A)∪B={x|x≤6或x≥9};(2)∵集合A={x|2≤x<9},集合C={x|a<x≤2a+7},且A⊆C,∴,解得1≤a<2,∴实数a的取值范围是1≤a<2.【点评】本题考查了集合的定义与应用问题,也考查了不等式组的解法与应用问题,是基础题目.20.已知向量=(1,sinα),=(2,cosα),且∥,计算:.【考点】平面向量共线(平行)的坐标表示;同角三角函数基本关系的运用.【专题】定义法;三角函数的求值;平面向量及应用.【分析】根据向量平行建立方程关系,代入进行化简即可.【解答】解:∵∥,∴2sinα﹣cosα=0,即cosα=2sinα,则===﹣5.【点评】本题主要考查三角函数式的化简和求值,根据向量共线的等价条件进行等量代换是解决本题的关键.比较基础.21.如图,在△ABC中,已知AB=3,BC=4,∠ABC=60°,BD为AC边上的中线.(1)设=,=,用,表示向量;(2)求中线BD的长.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)根据向量的平行四边形的法则即可求出,(2)根据向量的模的计算和向量的数量积即可求出.【解答】解:(1)∵设=,=,BD为AC边上的中线.∴=(+)=(+),(2)∵=(+),AB=3,BC=4,∠ABC=60°,∴||2=(||2+||2+2•)=(||2+||2+2||•||cos60°)=(9+16+2×3×4×)=,∴||=,故中线BD的长为.【点评】本题考查了向量的加减几何意义以及向量的模的计算和向量的数量积公式,属于基础题.22.已知函数f(x)=1﹣,判断f(x)的单调性并运用函数的单调性定义证明.【考点】函数单调性的判断与证明.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的单调性的定义证明即可.【解答】证明:函数f(x)的定义域是:{x|x>0},设x1>x2,则f(x1)﹣f(x2)=1﹣﹣(1﹣)=﹣=>0,∴f(x)在(0,+∞)递增.【点评】本题考查了通过定义证明函数的单调性问题,是一道基础题.23.已知函数f(x)=2sin2(+x)﹣cos2x﹣1.(1)求函数f(x)的单调递增区间;(2)若不等式f(x)﹣m+1<0在[,]上恒成立,求实数m的取值范围.【考点】三角函数中的恒等变换应用;函数恒成立问题.【专题】综合题;数形结合;三角函数的求值;三角函数的图像与性质.【分析】(1)利用倍角公式、和差公式可得:f(x)=2.再利用正弦函数的单调性即可得出单调区间.(2)由x∈[,],可得∈.可得取值范围.根据不等式f(x)﹣m+1<0在[,]上恒成立,可得m>[f(x)+1]max.【解答】解:(1)f(x)=﹣﹣cos2x=sin2x﹣cos2x=2.由≤≤2kπ+,k∈Z,解得:≤x≤+kπ,∴函数f(x)的单调递增区间是[,+kπ],k∈Z.(2)由x∈[,],则∈.∴∈[0,1].∴f(x)∈[0,1].∵不等式f(x)﹣m+1<0在[,]上恒成立,∴m>[f(x)+1]max=2.∴实数m的取值范围是(2,+∞).【点评】本题考查了倍角公式、和差公式、三角函数的图象与性质、三角函数求值、恒成立问题等价转化方法,考查了推理能力与计算能力,属于中档题.24.对于函数f(x)=log x﹣a•log2x2,x∈[1,4],a∈R.(1)求函数f(x)的最小值g(a);(2)是否存在实数m、n,同时满足以下条件:①m>n≥0;②当函数g(a)的定义域为[n,m]时,值域为[﹣m,﹣n],若存在,求出所有满足条件的m、n的值;若不存在,说明理由.【考点】对数函数的图象与性质.【专题】计算题;转化思想;数形结合法;函数的性质及应用.【分析】(1)利用换元法求函数的最值.(2)根据二次函数图象和性质,结合定义域和值域之间的关系进行讨论即可.【解答】(本题满分为12分)解:(1)设t=log2x,∵x∈[1,4],∴t∈[0,2],f(x)=t2﹣2at=(t﹣a)2﹣a2,当t=a,即x=2a时,f(x)min=g(a)=﹣a2.…(2)∵m>n≥0,∴g(a)=﹣a2在[0,∞)上为减函数,…又∵g(a)的定义域为[n,m],值域为[﹣m,﹣n],∴﹣n2=﹣n,﹣m2=﹣m,∴m=n=1,这与m>n≥0矛盾.故满足条件的m,n不存在.…【点评】本题考查了函数与方程的关系,同时考查了换元法求函数的最值,要求熟练掌握二次函数的图象和性质,属于中档题.2016年3月7日。

2014-2015学年河北省石家庄市高一(上)期末数学试卷含参考答案

2014-2015学年河北省石家庄市高一(上)期末数学试卷含参考答案

2014-2015学年河北省石家庄市高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5.00分)已知集合A={﹣1,0,1,2},B={x|1≤2x<4},则A∩B=()A.{﹣1,0,1}B.{0,1,2}C.{0,1}D.{1,2}2.(5.00分)下列各组中的两个函数是同一函数的是()A.f(x)=和f(x)=x+1B.f(r)=πr2(r≥0)和g(x)=πx2(x≥0)C.f(x)=log a a x(a>0且a≠1)和g(x)=(a>0且a≠1)D.f(x)=x和g(t)和g(t)=3.(5.00分)函数f(x)=是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数4.(5.00分)函数f(x)的定义域为[0,1),则f(1﹣3x)的定义域是()A.(﹣2,1]B.(﹣,1]C.(0,]D.(﹣,0]5.(5.00分)设a=log20.4,b=0.42,c=20.4,则a,b,c的大小关系是()A.a>c>b B.a>b>c C.c>b>a D.b>c>a6.(5.00分)若O是△ABC所在平面内一点,且满足()•(﹣)=0,则△ABC一定是()A.等边三角形B.等腰直角三角形C.直角三角形D.斜三角形7.(5.00分)要得到y=cos2x的图象,可由函数y=cos(2x﹣)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5.00分)已知f(α)=,则f(﹣)的值为()A.﹣ B.﹣ C.D.9.(5.00分)已知向量,若A、B、D三点共线,则实数m、n应该满足的条件是()A.m+n=1 B.m+n=﹣1 C.mn=1 D.mn=﹣110.(5.00分)在△ABC中,M是BC的中点,AM=1,点P在AM上且满足,则等于()A.B.C.D.11.(5.00分)函数f(x)=Asin(ωx+φ)+b图象的一部分如图所示,则f(x)的解析式为()A.y=sin2x﹣2 B.y=2cos3x﹣1 C.y=sin(2x﹣)+1 D.y=1﹣sin(2x﹣)12.(5.00分)已知函数f(x)=,若关于x的方程f(x)=k有两个不同的根,则实数k的取值范围是()A.(﹣∞,1)B.(﹣∞,2)C.[1,2) D.(1,2)二、填空题(共4小题,每小题5分,满分20分)13.(5.00分)已知幂函数f(x)的图象经过点(2,8),则f(x)=.14.(5.00分)函数f(x)=﹣x3﹣3x+5的零点所在的区间为[n,n+1],n∈Z,则n的值为.15.(5.00分)已知f(x)=sin2(x﹣),则f(lg5)+f(1g)=.16.(5.00分)若,是两个非零向量,且||=||,|+|=||,则与﹣的夹角是.三、解答题(共6小题,满分70分)17.(10.00分)设全集为Z,A={x|x2+2x﹣15=0},B={x|ax﹣1=0}.(1)若a=,求A∩(∁Z B);(2)若B⊆A,求实数a的取值组成的集合C.18.(12.00分)已知向量=(cosα﹣5,﹣sinα),=(sinα﹣5,cosα),∥,且α∈(0,π),求tan2α的值.19.(12.00分)证明函数f(x)=log a(a>1)在[0,+∞)上是增函数.20.(12.00分)在△AOB上,点P为边AB上的一点,且||=2||.(1)试用表示;(2)若||=3,||=2,且∠AOB=,求的值.21.(12.00分)销售甲,乙两种商品所得到利润与投入资金x(万元)的关系分别为f(x)=m,g(x)=bx(其中m,a,b∈R),函数f(x),g(x)对应的曲线C1,C2,如图所示.(1)求函数f(x)与g(x)的解析式;(2)若该商场一共投资4万元经销甲,乙两种商品,求该商场所获利润的最大值.22.(12.00分)已知函数f(x)=lg(x2+tx+1),(t为常数,且t>﹣2)(1)当x∈[0,2]时,求f(x)的最小值(用t表示);(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2),若存在,求出实数t的取值范围;若不存在,请说明理由.2014-2015学年河北省石家庄市高一(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5.00分)已知集合A={﹣1,0,1,2},B={x|1≤2x<4},则A∩B=()A.{﹣1,0,1}B.{0,1,2}C.{0,1}D.{1,2}【解答】解:∵集合A={﹣1,0,1,2},B={x|20=1≤2x<4=22}={x|0≤x<2},∴A∩B={0,1},故选:C.2.(5.00分)下列各组中的两个函数是同一函数的是()A.f(x)=和f(x)=x+1B.f(r)=πr2(r≥0)和g(x)=πx2(x≥0)C.f(x)=log a a x(a>0且a≠1)和g(x)=(a>0且a≠1)D.f(x)=x和g(t)和g(t)=【解答】解:对于A,f(x)=和定义域是{x|x∈R且x≠1},y=x+1的定义域是R,两个函数的定义域不相同不是相同函数;对于B,f(r)=πr2(r≥0)和g(x)=πx2(x≥0)两个函数的定义域相同,对应法则相同,是相同的函数;对于C,f(x)=log a a x(a>0且a≠1)义域是{x|x∈R},和g(x)=(a >0且a≠1)定义域是{x|x>0},两个函数的定义域不相同不是相同函数;对于D,f(x)=x和g(t)和g(t)=;定义域是R,两个函数值域不相同,不是相同的函数;所以B正确.故选:B.3.(5.00分)函数f(x)=是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数【解答】解:函数的定义域为{x|x≠﹣1},定义域关于原点不对称,∴函数f(x)为非奇非偶函数,故选:D.4.(5.00分)函数f(x)的定义域为[0,1),则f(1﹣3x)的定义域是()A.(﹣2,1]B.(﹣,1]C.(0,]D.(﹣,0]【解答】解:函数f(x)的定义域为[0,1),由0≤1﹣3x<1,解得:0.∴则f(1﹣3x)的定义域为(0,].故选:C.5.(5.00分)设a=log20.4,b=0.42,c=20.4,则a,b,c的大小关系是()A.a>c>b B.a>b>c C.c>b>a D.b>c>a【解答】解:∵a=log20.4<0,0<b=0.42<1,c=20.4>1,∴c>b>a.故选:C.6.(5.00分)若O是△ABC所在平面内一点,且满足()•(﹣)=0,则△ABC一定是()A.等边三角形B.等腰直角三角形C.直角三角形D.斜三角形【解答】解:∵()•(﹣)=0,∴=0,∴C=90°.∴△ABC一定是直角三角形.故选:C.7.(5.00分)要得到y=cos2x的图象,可由函数y=cos(2x﹣)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:由函数y=cos(2x﹣)的图象向左平移个长度单位,可得函数y=cos[2(x+)﹣]=cos2x的图象,故选:C.8.(5.00分)已知f(α)=,则f(﹣)的值为()A.﹣ B.﹣ C.D.【解答】解:f(α)=﹣=﹣=﹣cosα,则f(﹣π)=﹣cos(﹣π)=﹣cosπ=﹣cos(10π+)=﹣cos=﹣.故选:A.9.(5.00分)已知向量,若A、B、D三点共线,则实数m、n应该满足的条件是()A.m+n=1 B.m+n=﹣1 C.mn=1 D.mn=﹣1【解答】解:由题意可得,∴,故有,∴mn=1,故选:C.10.(5.00分)在△ABC中,M是BC的中点,AM=1,点P在AM上且满足,则等于()A.B.C.D.【解答】解:如图所示,∵AM=1,点P在AM上且满足,∴.∵M是BC的中点,∴.∴==﹣4=﹣4×=﹣.故选:D.11.(5.00分)函数f(x)=Asin(ωx+φ)+b图象的一部分如图所示,则f(x)的解析式为()A.y=sin2x﹣2 B.y=2cos3x﹣1 C.y=sin(2x﹣)+1 D.y=1﹣sin(2x﹣)【解答】解:由函数图象观察可知函数f(x)的最大值是2,最小值是0,则:b==1,A=×(2﹣0)=1,=,可解得:T=π=,ω=2,故有:f(x)=sin(2x+φ)+1,由点(,1)在函数图象上,可得:sin(2×+φ)+1=1,解得:φ=k,k∈Z,当k=0时,有φ=﹣,则f(x)的解析式为:f(x)=sin(2x﹣)+1.故选:C.12.(5.00分)已知函数f(x)=,若关于x的方程f(x)=k有两个不同的根,则实数k的取值范围是()A.(﹣∞,1)B.(﹣∞,2)C.[1,2) D.(1,2)【解答】解:①当x≥4时,f(x)=1+是减函数,且1<f(x)≤2;②当x<4时,f(x)=log2x在(0,4)上是增函数,且f(x)<f(4)=2;且关于x的方程f(x)=k有两个不同的根可化为函数f(x)与y=k有两个不同的交点;故实数k的取值范围是(1,2);故选:D.二、填空题(共4小题,每小题5分,满分20分)13.(5.00分)已知幂函数f(x)的图象经过点(2,8),则f(x)=x3.【解答】解:设幂函数f(x)=xα,把点(2,8)代入函数的解析式可得2α=8,解得α=3,故函数的解析式为f(x)=x3,故答案为x3.14.(5.00分)函数f(x)=﹣x3﹣3x+5的零点所在的区间为[n,n+1],n∈Z,则n的值为1.【解答】解:∵函数f(x)=﹣x3﹣3x+5是单调递减函数,又∵f(1)=﹣13﹣3×1+5=1>0,f(2)=﹣23﹣3×2+5=﹣9<0,∴函数f(x)的零点必在区间(1,2)上,故答案为:1.15.(5.00分)已知f(x)=sin2(x﹣),则f(lg5)+f(1g)=1.【解答】解:f(x)=sin2(x﹣)=,则f(lg5)+f(1g)=﹣sin(2lg5)+﹣sin2(1g)=1﹣sin(2lg5)﹣sin(﹣21g5)=1﹣sin(2lg5)+sin(21g5)=1,故答案为:1.16.(5.00分)若,是两个非零向量,且||=||,|+|=||,则与﹣的夹角是.【解答】解:根据已知条件得:;∴;∴;∴=;∴的夹角为.故答案为:.三、解答题(共6小题,满分70分)17.(10.00分)设全集为Z,A={x|x2+2x﹣15=0},B={x|ax﹣1=0}.(1)若a=,求A∩(∁Z B);(2)若B⊆A,求实数a的取值组成的集合C.【解答】解:(1)A={x|x2+2x﹣15=0}={﹣5,3},当a=,则B={x|ax﹣1=0}={5},则A∩(∁Z B)={﹣5,3};(2)当B=∅时,a=0,此时满足B⊆A,当B≠∅时,B={},此时若满足B⊆A,则=﹣5或=3,解得a=或,综上C={,,0}.18.(12.00分)已知向量=(cosα﹣5,﹣sinα),=(sinα﹣5,cosα),∥,且α∈(0,π),求tan2α的值.【解答】解:∵∥,∴(cosα﹣5)cosα+sinα(sinα﹣5)=0,即cos2α+sin2α﹣5(sinα+cosα)=0,即5(sinα+cosα)=1,即sinα+cosα=,平方得2sinαcosα=<0,∴α∈(,π),∵sin2α+cos2α=1,∴解得sinα=,cosα=,则tanα=,tan2α==.19.(12.00分)证明函数f(x)=log a(a>1)在[0,+∞)上是增函数.【解答】证明:设x1,x2为[0,+∞)上的任意两个实数,且x1<x2,则=,当a>1时,∵y=a x为增函数,∴,即0<,又y=log a x也为增函数,∴=<0,即f(x1)<f(x2).∴函数f(x)=log a(a>1)在[0,+∞)上是增函数.20.(12.00分)在△AOB上,点P为边AB上的一点,且||=2||.(1)试用表示;(2)若||=3,||=2,且∠AOB=,求的值.【解答】解:(1)如图可知,;∴;∴;(2)==﹣1﹣3+=.21.(12.00分)销售甲,乙两种商品所得到利润与投入资金x(万元)的关系分别为f(x)=m,g(x)=bx(其中m,a,b∈R),函数f(x),g(x)对应的曲线C1,C2,如图所示.(1)求函数f(x)与g(x)的解析式;(2)若该商场一共投资4万元经销甲,乙两种商品,求该商场所获利润的最大值.【解答】解:(1)根据题意,得,解得,,所以f(x)=(x≥0),又由题意知,即,所以g(x)=(x≥0);(2)设销售甲商品投入资金x万元,则乙投入(4﹣x)万元,由(1)得y=+(0≤x≤4),令=t,则,故=(),当t=2即x=3时,y取最大值1,答:该商场所获利润的最大值为1万元.22.(12.00分)已知函数f(x)=lg(x2+tx+1),(t为常数,且t>﹣2)(1)当x∈[0,2]时,求f(x)的最小值(用t表示);(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2),若存在,求出实数t的取值范围;若不存在,请说明理由.【解答】解:(1)令g(x)=x2+tx+1,对称轴方程为x=﹣,∵x∈[0,2],∴由对称轴x=﹣与区间[0,2]的位置关系进行分类讨论:①当﹣≤0,即t≥0时,g(x)min=g(0)=1,∴f(x)min=0.②当0<﹣<2,即﹣4<t<0时,g(x)min=g(﹣)=1﹣,考虑到g(x)>0,所以﹣2<t<0,f(x)min=f(﹣)=lg(1﹣);③当﹣≥2,即t≤﹣4时,g(x)min=g(2)=5+2t,考虑到g(x)>0,∴f(x)没有最小值.综上所述:当t≤﹣2时f(x)没有最小值;当t>﹣2时,f(x)min=.(2)假设存在.由题设条件,得,等价于x2+tx+1=x在区间(0,2)上有两个不同的实根,令h(x)=x2+(t﹣1)x+1在(0,2)上有两个不同的零点∴,即,解得﹣<t<﹣1.故实数t的取值范围是(﹣,﹣1).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石家庄市第中学
201—2016学年学期期考试年级试题
试卷Ⅰ一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上.1.设, ,则
A. B. C. D.
2.sin20°cos10°-cos160°sin10°=A. B. C. D.
3.设,则
A. B. C. D.
4.为了得到函数的图像,只需把函数的图像
A.向左平移个长度单位 B.向右平移个长度单位
C.向左平移个长度单位 D.向右平移个长度单位
5.若非零向量满足,则与的夹角为
A. 300 B. 600 C.1200 D.1500
6.在△ABC中,角A,B,C所对的边长分别为a,b,c,若C=120°,c=a,则
A.a>b B.a<b C.a=b D.a与b的大小关系不能确定
7.在中,若,则角的取值范围是
A. B. C. D.
8.若是方程式的解,则属于区间
A.(0,1) B.(1,1.25) C.(1.25,1.75) D.(1.75,2)
9.设集合A=若AB,则实数必满足
A. B. C. D.
10.若等边的边长为,平面内一点满足,则
A. B. C. D.
11.设函数,的零点分别为,则
A. B. C. D.
12.定义域为的函数的图象的左、右端点分别为A、B,点是的图象上的任意一点,且.向量,其中为坐标原点.若恒成立,则称函数在上“阶线性相似”.若函数在[1,3]上“阶线性相似”,则实数的取值范围为
A. B. C. D.
试卷二、填空题:本大题共4小题,每小题5分,共20分.答案填在答题纸相应的空内.为偶函数,则.
14.记那么中,//,,,,点是内或边界上的一个动点,点是边的中点,则的最大值是 .
16.在平面四边形ABCD中,A=∠B=∠C=75°,BC=2,则AB的取值范围是 .
三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,
并写出文字说明、证明过程或演算步骤.
已知集合或,,若,,求实数、的值.
18.(本小题满分12分)
已知分别为三个内角的对边,.
(Ⅰ)求(Ⅱ)若,的面积为,求.
19.(本小题满分12分)
已知函数()的最小正周期为I)求的值及函数的单调递增区间当时求函数的取值范围中,点为边上的一点,且().
(I)若等边三角形边长为,且,求;
(Ⅱ)若,求实数的取值范围.
21.(本小题满分12分)
已知向量,(其中实数和不同时为零),当时,有,当时,.
(I)求函数式;
(Ⅱ)若对任意的,求实数的取值范围.
22.(本小题满分12分)
已知定义在上的函数满足:
①对任意的实数,有;
②;
③在上为增函数.
(Ⅰ)判断函数的奇偶性,并证明;
(Ⅱ)设为周长不超过2的三角形三边的长,求证:也是某个三角形三边的长; (Ⅲ)解不等式.
石家庄市第中学
201—2016学年学期期考试年级案一、选择题:BC ACDDC AB
二、填空题:1 .14.
15. 12 . 1. .
三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,
并写出文字说明、证明过程或演算步骤.
或,,若,,求实数、的值.
解:或,
又∵ ,且,
∴ ,∴ 和是方程的根,
由韦达定理得:,∴.
18.(本小题满分12分)
已知分别为三个内角的对边,
(1)求(2)若,的面积为;求。

【解析】(1)由正弦定理得:
(2)
解得:
19.(本小题满分12分)
已知函数()的最小正周期为I)求的值及函数的单调递增区间当时求函数的取值范围解:I)
………………4分
因为最小正周期为,所以所以.由,,得.所以函数的单调递增区间为[], 因为,所以, 所以所以函数在上的取值范围是
20.(本小题满分12分)
已知在等边三角形中,点为边上的一点,且().
(I)若等边三角形边长为,且,求;
(Ⅱ)若,求实数的取值范围.
解:(I)当时,,

∴ ………4分
(Ⅱ)设等边三角形的边长为,则
,………6分
………8分
即,
∴ ,∴ .………10分
又,∴ . ………12分
21.(本小题满分12分)
已知向量,(其中实数和不同时为零),当时,有,当时,. (I)求函数式;
(Ⅱ)若对,都有,求实数的取值范围.
解:(I)
(Ⅱ)设
(1)时显然,都有不成立,
)时,或解得。

22.(本小题满分12分)
已知定义在上的函数满足:
①对任意的实数,有;
②;
③在上为增函数.
(Ⅰ)判断函数的奇偶性,并证明;
(Ⅱ)设为周长不超过2的三角形三边的长,求证:也是某个三角形三边的长; (Ⅲ)解不等式
解:,,又所以以函数。

相关文档
最新文档