已知实数a不等于0,函数f(x)=alnx+根号(x+1),x

合集下载

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元测试卷第三章函数的概念和性质知识梳理1. 知识系统整合2. 规律方法收藏1.同一函数的判定方法(1)定义域相同;(2)对应关系相同(两点必须同时具备).2.函数解析式的求法(1)定义法;(2)换元法;(3)待定系数法;(4)解方程(组)法;(5)赋值法.3.函数的定义域的求法(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.(3)复合函数问题①若函数f(x)的定义域为[a,b],函数f[g(x)]的定义域应由a≤g(x)≤b 解出;②若函数f[g(x)]的定义域为[a,b],则函数f(x)的定义域为函数g(x)在[a,b]上的值域.注意:①函数f(x)中的x与函数f[g(x)]中的g(x)地位相同.②定义域所指永远是x的范围.4.函数值域的求法(1)配方法(二次或四次);(2)判别式法;(3)换元法;(4)函数的单调性法.5.判断函数单调性的步骤(1)设x1,x2是所研究区间内任意两个自变量的值,且x1<x2;(2)判定f(x1)与f(x2)的大小:作差比较或作商比较;(3)根据单调性定义下结论.6.函数奇偶性的判定方法首先考查函数的定义域是否关于原点对称,再看函数f(-x)与f(x)之间的关系:①若函数f(-x)=f(x),则f(x)为偶函数;若函数f(-x)=-f(x),则f(x)为奇函数;②若f(-x)-f(x)=0,则f(x)为偶函数;若f(x)+f(-x)=0,则f(x)为奇函数;③若f(x)f(-x)=1(f(-x)≠0),则f(x)为偶函数;若f(x)f(-x)=-1(f(-x)≠0),则f(x)为奇函数.7.幂函数的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,图象最多只能同时出现在两个象限内,至于是否在第二、三象限内出现,则要看幂函数的奇偶性.(2)幂函数的图象在第一象限内的变化规律为:在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大,直线x =1的左侧,图象从下到上,相应的指数由大到小.8.函数的应用解决函数应用题关键在于理解题意,提高阅读能力.一方面要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面,要不断拓宽知识面,增加间接的生活阅历,诸如了解一些物价、行程、产值、利润、环保等实际问题,及有关角度、面积、体积、造价的问题,培养实际问题数学化的意识和能力.3 学科思想培优一、函数的定义域函数的定义域是指函数y =f (x )中自变量x 的取值范围.确定函数的定义域是进一步研究函数其他性质的前提,而研究函数的性质,利用函数的性质解决数学问题是中学数学的重要组成部分.所以熟悉函数定义域的求法,对于函数综合问题的解决起着至关重要的作用.[典例1] (1)函数f (x )=x x -132+(3x -1)0的定义域是( )A.)31,(-∞B.)131(,C.)3131(,-D.)31,(-∞∪)131(,(2)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A.]25,0[ B .[-1,4]C.[-5,5] D .[-3,7] 【答案】(1)D (2)A【解析】(1)由题意,得⎩⎨⎧≠->-01301x x ,解得x <1且x ≠31.(2)设u =x +1,由-2≤x ≤3,得-1≤x +1≤4,所以y =f (u )的定义域为[-1,4].再由-1≤2x -1≤4,解得0≤x ≤25,即函数y =f (2x -1)的定义域是]25,0[ 二、分段函数问题所谓分段函数是指在定义域的不同子区间上的对应关系不同的函数.分段函数是一个函数而非几个函数,其定义域是各子区间的并集,值域是各段上值域的并集.分段函数求值等问题是高考常考的问题.[典例2] 已知实数a ≠0,函数f (x )=⎩⎨⎧≥--<+1,21,2x a x x a x 若f (1-a )=f (1+a ),则a 的值_____.【答案】-43【解析】①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-23(舍去); ②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得-(1-a )-2a =2(1+a )+a ,解得a =-43,符合题意.综上所述,a =-43. 三、函数的单调性与奇偶性单调性是函数的一个重要性质,某些数学问题,通过函数的单调性可将函数值间的关系转化为自变量之间的关系进行研究,从而达到化繁为简的目的,特别是在比较大小、证明不等式、求值或求最值、解方程(组)等方面应用十分广泛.奇偶性是函数的又一重要性质,利用奇偶函数图象的对称性可以缩小问题研究的范围,常能使求解的问题避免复杂的讨论.[典例3]设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y +=+,112f ⎛⎫= ⎪⎝⎭,当0x >时,()0f x >. (1)求(0)f 的值; (2)判断函数的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.【解析】(1)令0x y ==,则(0)(0)(0)f f f =+,∴(0)0f =.(2)令y x =-,得(0)()()0f f x f x =+-=, ∴()()f x f x -=-,故函数()f x 是R 上的奇函数. (3)任取12,R x x ∈且12x x <,则210x x ->. ∵()()21f x f x -()()2111f x x x f x =-+- ()()()2111f x x f x f x =-+- ()210f x x =->,∴()()12f x f x <.故()f x 是R 上的增函数.∵112f ⎛⎫= ⎪⎝⎭,∴()1111122222f f f f ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()(2)2f x f x ++<∴[]()(2)((2)(22)(1)f x f x f x x f x f ++=++=+<.又由()y f x =是定义在R 上的增函数,得221x +<,解得21x <-四、函数图象及应用函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于函数图象正确地画出.函数图象广泛应用于解题过程中,利用数形结合解题具有直观、明了、易懂的优点.[典例4] 设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:函数f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )的单调性; (4)求函数的值域.【解析】(1)证明:∵函数f (x )的定义域关于原点对称, 且f (-x )=(-x )2-2|-x |-1 =x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数. (2)当0≤x ≤3时,f (x )=x 2-2x -1=(x -1)2-2.当-3≤x <0时,f (x )=x 2+2x -1=(x +1)2-2.即f (x )=⎪⎩⎪⎨⎧<≤--+≤≤--)03(2)1()30(,2)1(22x x x x 根据二次函数的作图方法,可得函数图象如下图.(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1)和[0,1)上单调递减, 在[-1,0)和[1,3]上单调递增.(4)当0≤x ≤3时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2;当-3≤x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2.故函数f (x )的值域为[-2,2].五、幂函数的图象问题对于给定的幂函数图象,能从函数图象的分布、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性等性质.注意图象与函数解析式中指数的关系,能够根据图象比较指数的大小.[典例5] 如图是幂函数y =x a ,y =x b ,y =x c ,y =x d 在第一象限内的图象,则a ,b ,c ,d 的大小关系为( )A.a <b <c <dB.a <b <d <cC.b <a <c <dD.b <a <d <c 【答案】A【解析】由幂函数的图象特征可知,在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大.故选A.六、函数模型及其应用建立恰当的函数模型解决实际问题的步骤:(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示;(2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域; (3)求解函数模型,并还原为实际问题的解.[典例6] 已知A ,B 两城市相距100 km ,在两地之间距离A 城市x km 的D 处修建一垃圾处理厂来解决A ,B 两城市的生活垃圾和工业垃圾.为保证不影响两城市的环境,垃圾处理厂与市区距离不得少于10 km.已知垃圾处理费用和距离的平方与垃圾量之积的和成正比,比例系数为0.25.若A 城市每天产生的垃圾量为20 t ,B 城市每天产生的垃圾量为10 t .(1)求x 的取值范围;(2)把每天的垃圾处理费用y 表示成x 的函数;(3)垃圾处理厂建在距离A 城市多远处,才能使每天的垃圾处理费用最少? 【解析】(1)由题意可得x ≥10,100-x ≥10. 所以10≤x ≤90.所以x 的取值范围为[10,90].(2)由题意,得y =0.25[20x 2+10(100-x )2],即y =215x 2-500x +25000(10≤x ≤90). (3)由y =215x 2-500x +25000=350000)3100(2152+-x (10≤x ≤90),则当x =3100时,y 最小.即当垃圾处理厂建在距离A 城市3100km 时,才能使每天的垃圾处理费用最少.《第三章 函数的概念和性质》单元测试卷(一)基础测评卷(时间:120分钟,满分:150分)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=-3x +2,则f (2x +1)等于( B ) A .-3x +2 B .-6x -1 C .2x +1 D .-6x +5【答案】B【解析】在f (x )=-3x +2中,用2x +1替换x ,可得f (2x +1)=-3(2x +1)+2=-6x -3+2=-6x -1.2.函数1()f x x=的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞D .[1,0)(0,)-+∞【答案】D【解析】由题意可得:10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选:D3.已知21,[1,0),()1,[0,1],x x f x x x +∈-⎧=⎨+∈⎩则函数()y f x =-的图象是( ) A .B .C . D .【答案】A【解析】当0x =时,依函数表达式知2(0)(0)011f f -==+=,可排除B ;当1x =时,(1)(1)10f -=-+=,可排除C 、D .故选A4.已知函数y =21,02,0x x x x ⎧+≤⎨->⎩,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52- 【答案】C【解析】当0x ≤时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-,故选C.5.某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为 ()A .y 10x ⎡⎤=⎢⎥⎣⎦B .3y 10x +⎡⎤=⎢⎥⎣⎦C .4y 10x +⎡⎤=⎢⎥⎣⎦D .5y 10x +⎡⎤=⎢⎥⎣⎦【答案】B【解析】根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为310x y +⎡⎤=⎢⎥⎣⎦,也可以用特殊取值法,若56,5x y ==,排除C ,D ,若57,6x y ==,排除A ,故选B .6.设函数f (x )(x ∈R)为奇函数,f (1)=21,f (x +2)=f (x )+f (2),则f (5)等于( C )A .0B .1C .25D .5【答案】C【解析】令x =-1,得f (1)=f (-1)+f (2).∵f (x )为奇函数,∴f (-1)=-f (1),∴f (1)=-f (1)+f (2),∴21=-21+f (2),∴f (2)=1.令x =1,得f (3)=f (1)+f (2)=21+1=23.令x =3,得f (5)=f (2)+f (3)=257.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C【解析】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<.故选:C 8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( C )A .-6B .6C .-8D .8【答案】C【解析】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),故f (x )关于x =-2对称,f (x )=m 的根关于x =-2对称,∴x 1+x 2+x 3+x 4=4×(-2)=-8.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列各组函数表示的是同一个函数的是( BD )A .f (x )=32x -与g (x )=x ·x 2-B .f (x )=|x |与g (x )=x 2C .f (x )=x +1与g (x )=x +x 0D .f (x )=x x与g (x )=x 0【答案】BD【解析】对于A ,f (x )=32x -与g (x )=x ·x 2-的对应关系不同,故f (x )与g (x )表示的不是同一个函数;对于B ,f (x )=|x |与g (x )=x 2的定义域和对应关系均相同,故f (x )与g (x )表示的是同一个函数;对于C ,f (x )的定义域为R ,g (x )的定义域为{x |x ≠0},故f (x )与g (x )表示的不是同一个函数;对于D ,f (x )=x x与g (x )=x 0的对应关系和定义域均相同,故f (x )与g (x )表示的是同一个函数.10.下列函数既是定义域上的减函数又是奇函数的是( BD )A .f (x )=x 1B .f (x )=-x 3C .f (x )=x |x |D .f (x )=-3x【答案】BD【解析】A .f (x )=x 1在定义域(-∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足题意;对于B ,f (x )=-x 3在定义域R 上是奇函数,且是减函数,∴满足题意,对于C ,f (x )=x |x |=⎪⎩⎪⎨⎧<-≥0,0,22x x x x ,在定义域R 上是奇函数,且是增函数,∴不满足题意;对于D ,f (x )=-3x 在定义域R 上是奇函数,且是减函数,∴满足题意.故选BD .11.已知函数f (x )=31++-x x ,则( ABD ) A .f (x )的定义域为[-3,1] B .f (x )为非奇非偶函数 C .f (x )的最大值为8 D .f (x )的最小值为2【答案】ABD【解析】由题设可得函数的定义域为[-3,1],f 2(x )=4+2×322+--x x=4+2×2)1(4+-x ,而0≤2)1(4+-x ≤2,即4≤f 2(x )≤8,∵f (x )>0,∴2≤f (x )≤22,∴f (x )的最大值为22,最小值为2,故选ABD .12.下列说法正确的是( )A .若方程x 2+(a -3)x +a =0有一个正实根,一个负实根,则a <0B .函数f (x )=2211x x -+-是偶函数,但不是奇函数C .若函数f (x )的值域是[-2,2],则函数f (x +1)的值域为[-3,1]D .曲线y =|3-x 2|和直线y =a (a ∈R)的公共点个数是m ,则m 的值不可能是1【答案】AD【解析】设方程x 2+(a -3)x +a =0的两根分别为x 1,x 2,则x 1·x 2=a <0,故A 正确;函数f (x )=2211x x -+-的定义域为⎪⎩⎪⎨⎧≥-≥-010122x x ,则x =±1,∴f (x )=0,所以函数f (x )既是奇函数又是偶函数,故B 不正确;函数f (x +1)的值域与函数f (x )的值域相同,故C 不正确;曲线y =|3-x 2|的图像如图,由图知曲线y =|3-x 2|和直线y =a 的公共点个数可能是2,3或4,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.若函数()(31)4,1,1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围【答案】11,83⎡⎫⎪⎢⎣⎭【解析】因为函数()f x 是定义在R 上的减函数,所以3100314a a a a a -<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<. 14.函数f (x )=x x+-11的定义域为___,单调递减区间为___.【答案】(-∞,-1)∪(-1,+∞),(-∞,-1)【解析】函数f (x )的定义域为(-∞,-1)∪(-1,+∞).任取x 1,x 2∈(-1,+∞)且x 1<x 2,则f (x 1)-f (x 2)=)1)(1()22121x x x x ++-(>0,即f (x 1)>f (x 2),故f (x )在(-1,+∞)上为减函数;同理,可得f (x )在(-∞,-1)上也为减函数.15.函数y =f (x )是R 上的增函数,且y =f (x )的图像经过点A (-2,-3)和B (1,3),则不等式|f (2x -1)|<3的解集为____.【答案】1(,1)2-【解析】因为y =f (x )的图像经过点A (-2,-3)和B (1,3),所以f (-2)=-3,f (1)=3.又|f (2x -1)|<3,所以-3<f (2x -1)<3,即f (-2)<f (2x -1)<f (1).因为函数y =f (x )是R 上的增函数,所以-2<2x -1<1,即⎩⎨⎧<-->-112212x x ,即⎪⎩⎪⎨⎧<->121x x ,所以-21<x <1.16.对于任意定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.现给定一个实数a ∈(4,5),则函数f (x )=x 2+ax +1的不动点共有___个.【答案】2【解析】由定义,令x 2+ax +1=x ,则x 2+(a -1)x +1=0,当a ∈(4,5)时,Δ=(a -1)2-4>0,所以方程有两根,相应地,函数f (x )=x 2+ax +1(a ∈(4,5))有2个不动点.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知幂函数39*()m y x m N -=∈的图象关于y 轴对称且在()0,∞+上单调递减,求满足()()33132mm a a +<---的a 的取值范围.【解析】因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<, 解得3m <.又因为*m N ∈,所以1m =,2; 因为函数的图象关于y 轴对称, 所以39m -为偶数,故1m =. 则原不等式可化为()()1133132a a +<---,因为13y x-=在(),0-∞,()0,∞+上单调递减,所以1320a a +>->或3210a a -<+<或1032a a +<<-, 解得2332a <<或1a <-. 故a 的取值范围是1a <-或2332a <<. 18.(10分)已知函数21()1x f x x -=+(1)试判断函数在(-1,+∞)上的单调性,并给予证明;(2)试判断函数在[3,5]x ∈的最大值和最小值 【解析】(1)∵()213211x y f x x x -===-++, ∴函数()f x 在()1,-+∞上是增函数, 证明:任取1x ,()21x ∈-+∞,,且12x x <, 则()()1212213333221111f x f x x x x x ⎛⎫⎛⎫-=---=- ⎪ ⎪++++⎝⎭⎝⎭()()()1212311x x x x -=++, ∵121x x -<<,∴120x x -<,()()12110x x ++>, ∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()1,-+∞上是增函数. (2)∵()f x 在()1,-+∞上是增函数, ∴()f x 在[3]5,上单调递增, 它的最大值是()25135512f ⨯-==+,最小值是()23153314f ⨯-==+. 19.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求函数f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.【解析】(1)∵f (x )的两个零点是-3和2,∴-3和2是方程ax 2+(b -8)x -a -ab =0的两根,∴有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③将③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0.∵a ≠0,∴a =-3,∴b =a +8=5,∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3(x +21)2+43+18.图像的对称轴是直线x =-21.∵0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18,∴此时函数f (x )的值域是[12,18].20.(12分)已知函数())1f x a =≠. (1)若0a >,求()f x 的定义域;(2)若()f x 在区间(]0,1上是减函数,求实数a 的取值范围. 【解析】(1)当0a >且1a ≠时,由30ax -≥得3x a≤,即函数()f x 的定义域是3,a ⎛⎤-∞ ⎥⎝⎦.(2)当10a ->即1a >时,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1上为减函数,即0a -<,并且且310a -⨯≥,解得13a ;当10a -<即1a <时 ,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1为增函数,即0a -> 并且310a -⨯≥,解得0a <综上可知,所求实数a 的取值范围是()(],01,3-∞.21.(12分)已知函数f (x )=x mx+,且此函数图象过点(1,2). (1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)讨论函数f (x )在(0,1)上的单调性,并证明你的结论. 【解析】(1)∵函数f (x )=x mx+,且此函数图象过点(1,2), ∴2=1+m , ∴m =1;(2)f (x )=x 1x +,定义域为:()()00-∞⋃+∞,,, 又f (﹣x )=﹣x 1x+=--f (x ), ∴函数f (x )是奇函数;(3)函数f (x )在(0,1)上单调递减, 设0<x 1<x 2<1, 则()()()()211212121212121212111x x x x f x f x x x x x x x x x x x x x ---=+--=-+=-⋅⋅⋅, ∵0<x 1<x 2<1,∴x 1﹣x 2<0,0<x 1x 2<1,x 1x 2﹣1<0, ∴()()()1212121210x x f x f x x x x x --=-⋅>, 即f (x 1)>f (x 2),∴f (x )在(0,1)上的单调递减.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好为51元? (2)当销售商一次订购x 个零件时,该厂获得的利润为P 元,写出P =f (x )的表达式.【解析】(1)设每个零件的实际出厂价格恰好为51元时,一次订购量为x 0个,则60-0.02(x 0-100)=51,解得x 0=550,所以当一次订购量为550个时,每个零件的实际出厂价恰好为51元.(2)设一次订量为x 个时,零件的实际出厂单价为W ,工厂获得利润为P ,由题意P =(W -40)·x ,当0<x ≤100时,W =60;当100<x <550时,W =60-0.02(x -100)=62-50x;当x ≥550时,W =51.当0<x ≤100时, f (x )=(60-40)x =20x ;∴当100<x <550时, f (x )=(22-50x )x =22x -501x 2;当x ≥550时, f (x )=(51-40)x =11x .故f (x )=⎪⎪⎩⎪⎪⎨⎧∈≥∈<<-∈≤<+++),550(,11),550100(5022),1000(202N x x x N x x x x N x x x《第三章 函数的概念和性质》单元测试卷(二)能力测评卷(时间:120分钟,满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,既是奇函数又是在其定义域上是增函数的是( )A .y =x +1B .y =-x 3C .y =x 1D .y =x |x |【答案】D【解析】选项A 中,函数为非奇非偶函数,不符合题意;选项B 中,函数为奇函数,但在定义域为减函数,不符合题意;选项C 中,函数为奇函数,但在定2.已知幂函数y =f (x )的图象过点2,则下列结论正确的是( )A .y =f (x )的定义域为[0,+∞)B .y =f (x )在其定义域上为减函数C .y =f (x )是偶函数D .y =f (x )是奇函数3.函数f (x )=x x 2的定义域为( )A .(0,1)B .[0,1]C .(-∞,0]∪[1,+∞)D .(-∞,0)∪(1,+∞)【答案】D【解析】:由题意知:x 2-x >0,解得x <0或x >1,∴函数f (x )的定义域为(-∞,0)∪(1,+∞).4.已知函数f (3x +1)=x 2+3x +1,则f (10)=( ) A .30 B .19 C .6 D .20 【答案】B【解析】令x =3得f (10)=32+3×3+1=19.5.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A.(-∞,1] B.(-∞,-1) C.[1,+∞) D.(-∞,1)【答案】A【解析】由于f(x)=|x+a|的零点是x=-a,且在直线x=-a两侧左减右增,要使函数f(x)=|x+a|在(-∞,-1)上是单调函数,则-a≥-1,解得a≤1.故选A.6.为了节约用电,某城市对居民生活用电实行“阶梯电价”,计费方法如下:( ) A.475度 B.575度 C.595.25度 D.603.75度【答案】D【解析】不超过230度的部分费用为:230×0.5=115;超过230度但不超过400度的部分费用为:(400-230)×0.6=102,115+102<380;设超过400度的部分为x,则0.8x+115+102=380,∴x=203.75,故用电603.75度.7.已知函数y=x2-4x+5在闭区间[0,m]上有最大值5,最小值1,则m 的取值范围是( )A.[0,1] B.[1,2] C.[0,2] D.[2,4]【答案】D【解析】∵函数f(x)=x2-4x+5=(x-2)2+1的对称轴为x=2,此时,函数取得最小值为1,当x=0或x=4时,函数值等于5.又f(x)=x2-4x+5在区间[0,m]上的最大值为5,最小值为1,∴实数m的取值范围是[2,4],故选D.8.已知定义域为R的函数y=f(x)在(0,4)上是减函数,又y=f(x+4)是偶函数,则( )A.f(2)<f(5)<f(7) B.f(5)<f(2)<f(7)C.f(7)<f(2)<f(5) D.f(7)<f(5)<f(2)【答案】B【解析】因为y=f(x+4)是偶函数,所以f(x+4)=f(-x+4),因此f(5)=f(3),f(7)=f(1),因为y=f(x)在(0,4)上是减函数,所以f(3)<f(2)<f(1),f(5)<f(2)<f(7),选B.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数y=xα的定义域为R且为奇函数,则α可能的值为( )A.-1 B.1 C.2 D.3【答案】BD【解析】当α=-1时,幂函数y=x-1的定义域为(-∞,0)∪(0,+∞),A不符合;当α=1时,幂函数y=x,符合题意;当α=2时,幂函数y=x2的定义域为R且为偶函数,C不符合题意;当α=3时,幂函数y=x3的定义域为R且为奇函数,D符合题意.故选BD.10.某工厂八年来某种产品总产量y(即前x年年产量之和)与时间x(年)的函数关系如图,下列五种说法中正确的是( )A.前三年中,总产量的增长速度越来越慢B.前三年中,年产量的增长速度越来越慢C.第三年后,这种产品停止生产D.第三年后,年产量保持不变【答案】AC【解析】由题中函数图象可知,在区间[0,3]上,图象是凸起上升的,表明总产量的增长速度越来越慢,A正确;由总产量增长越来越慢知,年产量逐年减小,因此B错误;在[3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,因此C正确,D错误,故选AC.11.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列命题中正确的是( )A .f (-3.9)=f (4.1)B .函数f (x )的最大值为1C .函数f (x )的最小值为0D .方程f (x )-21=0有无数个根值可能是( )A .2B .3C .4D .5 【答案】ABC【解析】函数y =x 2-4x -4的部分图象如图,f (0)=f (4)=-4,f (2)=-8.因为函数y =x 2-4x -4的定义域为[0,m ],值域为[-8,-4],所以m 的取值范围是[2,4],故选ABC.三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若函数f (x )=12+++bx x a x 在[-1,1]上是奇函数,则f (x )的解析式为________.14.已知幂函数()221()33mm f x m m x--=-+在(0,)+∞上单调递增,则m 值为_____.【答案】2【解析】由题意可知2233110m m m m ⎧-+=⎪⎨-->⎪⎩,解得2m =,故答案为:215.若定义在R 上的奇函数()f x 满足()()4f x f x +=,()11f =,则()()()678f f f ++的值为_______.【答案】1-【解析】由于定义在R 上的奇函数()y f x =满足()()4f x f x +=,则该函数是周期为4的周期函数,且()11f =,则()()800f f ==,()()()7111f f f =-=-=-,()()()622f f f =-=,又()()22f f -=-,()20f ∴=,则()60f =,因此,()()()6781f f f ++=-. 16.已知函数()(),f x g x 分别是定义在R 上的偶函数和奇函数,()()23x f x g x +=⋅.则函数()f x =__________;关于x 不等式()()2240g x x g x ++->的解集__________.【答案】33x x -+ ()(),41,-∞-+∞【解析】函数()f x 、()g x 分别是定义在R 上的偶函数和奇函数, ∴()()f x f x -=,()()g x g x -=-,又()()23xf xg x +=⋅,…①∴()()23xf xg x --+-=⋅, 即()()23xf xg x --=⋅,…②由①②求得函数()33x x f x -=+,()33x xg x -=-. 易知()33x xg x -=-是定义域R 上的单调增函数,所以不等式()()2240g x x g x ++->可化为()()()2244g x x g x g x +>--=-,即224x x x +>-,整理得2340x x +->, 解得4x <-或1x >, 所以不等式的解集为()(),41,-∞-+∞, 故答案为33x x -+,()(),41,-∞-+∞四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=61x -,(1)求函数f(x)的定义域; (2)求f(-1), f(12)的值.【解析】(1)根据题意知x -1≠0且x +4≥0,∴x≥-4且x≠1, 即函数f(x)的定义域为[-4,1)∪(1,+∞).(2) ()6132f -==---f(12)=66412111-=--=3811-. 18.(12分)已知幂函数f (x )=(m 2-5m +7)·x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 【解析】(1)由题意得m 2-5m +7=1, 即m 2-5m +6=0,解得m =2或m =3. 又f (x )为偶函数,所以m =3,此时f (x )=x 2.(2)由(1)知,g (x )=x 2-ax -3,因为g (x )=x 2-ax -3在[1,3]上不是单调19.(12分)已知函数()2f x x =+, (1)若该函数在区间()-2∞,+上是减函数,求a 的取值范围. (2)若1a =-,求该函数在区间[1,4]上的最大值与最小值. 【解析】(1)因为函数()212112()222a x a ax af x a x x x ++-+-===++++在区间(2,)-+∞上是减函数,所以120a ->,解得12a <, 所以a 的取值范围1,2⎛⎫-∞ ⎪⎝⎭.(2)当1a =-时,13()122x f x x x -+==-+++,则()f x 在(),2-∞-和()2,-+∞上单调递减,因为[](),,421⊆-+∞,所以()f x 在[]1,4的最大值是()111012f -+==+,最小值是()4114422f -+==-+, 所以该函数在区间[]1,4上的最大值为0,最小值为12-.20.已知函数f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2+2x .(1)现已画出函数f (x )在y 轴左侧的图象,如图所示,请补全函数f (x )的图象;(2)求出函数f (x )(x >0)的解析式;(3)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 【解析】函数f(x)的图象如下:(2)因为f(x)为奇函数,则f(-x)=- f(x)∴当x 0>时,x 0-<∴f(-x)=- f(x)=()()2222x x x x ⎡⎤-+-=-⎣⎦故f(x)()220x x x =-+>(3)由(1)中图象可知:y=f(x)与y=a 的图象恰好有三个不同的交点1a ∴-<<121.已知函数2()4f x x =+. (1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[2,)+∞上单调递增;(2)当0a >时,解关于x 的不等式2()(1)2(1)f x a x a x >-++.【解析】(1)由题意得,124(),,[2,)g x x x x x=+∀∈+∞,且12x x <,则()()()()()121212121212121244444x x x x g x g x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由212x x >≥,得12120,40x x x x -<->.于是()()120g x g x -<,即()()12g x g x <所以函数()g x 在区间[2,)+∞上单调递增(2)原不等式可化为22(1)40ax a x -++>.因为0a >,故2(2)0x x a ⎛⎫--> ⎪⎝⎭. (i )当22a <,即1a >时,得2x a <或2x >. (ii )当22a=,即1a =时,得到2(2)0x ->,所以2x ≠;(iii )当22a >,即01a <<时,得2x <或2x a >.综上所述,当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭22. 2018年10月24日,世界上最长的跨海大桥—港珠澳大桥正式通车。

函数、导数、三角函数、数列、极坐标与参数方程考试试卷

函数、导数、三角函数、数列、极坐标与参数方程考试试卷


,若
A

B
都在曲线
C1
上,

1 12
+
1 22
的值.
17、已知函数 f x ax2 a 2 x lnx ,其中 a R .
(Ⅰ)当 a 1时,求曲线 y f x 的点 1, f 1 处的切线方程;
(Ⅱ)当 a 0 时,若 f x 在区间1,e 上的最小值为-2,求 a 的取值范围.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
又 c 2a ,
∴ b2 2a2 ,故得 b 2a .
cosB a2 c2 b2 a2 (2a )2 ( 2a )2 3

2ac
2 a (2a)
4.
故选 B. 【点睛】 本题考查余弦定理的应用,解题的关键是根据题意得到三角形中三边间的关系,并用统 一的参数表示,属于基础题. 6、【答案】A

S99

1 50
,则
k
__________.
12、在
ABC
中,角
A,B,C
的对边分别为
a,
b,
c
,若
b
cos
C


2a

c

sin

B

2


且 b 3 ,记 h 为 AC 边上的高,则 h 的取值范围为

高考数学一轮复习利用导数研究不等式恒(能)成立问题

高考数学一轮复习利用导数研究不等式恒(能)成立问题

g(x)m in=g23=-8257, ∴M≤1--8257=12172, ∴满足条件的最大整数 M 为 4. (2)对任意的 s,t∈12,2有 f(s)≥g(t), 则 f(x)m in≥g(x)m . ax 由(1)知当 x∈12,2时,g(x)m ax=g(2)=1,
∴当 x∈12,2时,f(x)=ax+xln x≥1 恒成立, 即 a≥x-x2ln x 恒成立. 令 h(x)=x-x2ln x,x∈12,2, ∴h′(x)=1-2xln x-x, 令 φ(x)=1-2xln x-x, ∴φ′(x)=-3-2ln x< 0, h′(x)在12,2单调递减,
[针对训练] (2023·珠海检测)已知 f(x)=12ln x-mx(m> 0),g(x)=x-ax(a> 0). (1)求函数 f(x)的单调区间; (2)若 m=21e2,∀x1,x2∈[2,2e2],g(x1)≥f(x2),求实数 a 的取值范围. 解:f(x)=12ln x-mx 的定义域为(0,+∞), f′(x)=21x-m=1-22xmx=-mxx-21m.
解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1, 令 f′(x)> 0,得 x> 1e,令 f′(x)< 0,得 0< x< 1e,所以 f(x)在1e,+∞单调 递增,在0,1e单调递减; 所以当 x=1e时,f(x)取得极小值,且极小值为 f1e=1eln1e=-1e;无极大值.
[方法技巧] 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题, 此类问题关键是对参数分类讨论,在参数的每一段上求函数的最值,并判 断是否满足题意,若不满足题意,只需找一个值或一段内的函数值不满足 题意即可.
[针对训练] 已知函数f(x)=ex+(1-a)x-ln a·ln x(a>0). (1)若a=e,求函数f(x)的单调区间; (2)若不等式f(x)<1在区间(1,+∞)有解,求实数a的取值范围. 解:(1)当 a=e 时,f(x)=ex+(1-e)x-ln x, f′(x)=ex+(1-e)-1x=(ex-e)+x-x 1, 当 x> 1 时,ex-e> 0,x-x 1> 0,所以 f′(x)> 0,即 f(x)在(1,+∞)单调递增,

选修1-1《第三章导数及其应用》单元质量评估试卷含答案

选修1-1《第三章导数及其应用》单元质量评估试卷含答案

单元质量评估(三)第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·台州高二检测)函数y=lgx的导数为( )A. B.ln10C. D.【解析】选C.因为(log a x)′=,所以(lgx)′=.2.(2019·泉州高二检测)已知f(x)=sinx+lnx,则f′(1)的值为( )A.1-cos1B.1+cos1C.-1+cos1D.-1-cos1【解析】选B.f′(x)=cosx+,f′(1)=cos1+1.3.设f(x)=x2(2-x),则f(x)的单调递增区间是( )A. B.C.(-∞,0)D.(-∞,0)∪【解析】选A.f(x)=2x2-x3,f′(x)=4x-3x2,由f′(x)>0得0<x<.4.已知物体的运动方程是s=t3-4t2+12t(t表示时间,s表示位移),则瞬时速度为0的时刻是( )A.0秒、2秒或6秒B.2秒或16秒C.2秒、8秒或16秒D.2秒或6秒【解析】选D.s′=t2-8t+12=0,解得t=2或t=6.5.函数y=2x3-2x2在[-1,2]上的最大值为( )A.-5B.0C.-1D.8【解析】选D.y′=6x2-4x=2x(3x-2),列表:-所以y max=8.6.(2019·临沂高二检测)曲线y=3lnx+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是( )A.(0,1)B.(1,-1)C.(1,3)D.(1,0)【解析】选C.f′(x)=+1.设P0(x0,y0),则+1=4,解得x0=1.因为(x0,y0)在直线4x-y-1=0上,所以y0=3.所以点P0的坐标为(1,3).7.若x=1是函数f(x)=(ax-2)·e x的一个极值点,则a的值为( )A.1B.2C.eD.5【解析】选A.因为f′(x)=ae x+(ax-2)e x,所以f′(1)=ae+(a-2)e=0,解得:a=1,把a=1代入函数得:f(x)=(x-2)·e x,所以f′(x)=e x+(x-2)e x=e x(x-1),所以f′(1)=0,且x<1时,f′(x)<0,x>1时,f′(x)>0.故a=1符合题意.8.做一个无盖的圆柱形水桶,若要使其体积是27π且用料最省,则圆柱的底面半径为( )A.5B.6C.3D.2【解析】选C.设圆柱的底面半径为R,母线长为l,则V=πR2l=27π,所以l=.要使用料最省,只需使水桶的表面积最小,而S表=πR2+2πR l=πR2+,令S表′=2πR-=0,解得R=3,即当R=3时,S表最小.9.(2019·菏泽高二检测)函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是( )A.(0,1)B.(-∞,1)C.(0,+∞)D.【解析】选D.f′(x)=3x2-6b,因为f(x)在(0,1)内有极小值,所以f′(x)=0在x∈(0,1)有解.所以所以0<b<.10.(2019·合肥高二检测)设a<b,函数y=(x-a)2(x-b)的图象可能是( )【解析】选C.y′=2(x-a)(x-b)+(x-a)2=(x-a)·(3x-a-2b),由y′=0得x=a或x=.因为a<b,所以a<,所以当x=a时,y取极大值0;当x=时,y取极小值且极小值为负.11.(2019·烟台高二检测)已知a<0,函数f(x)=ax3+lnx,且f′(1)的最小值是-12,则实数a的值为( )A.2B.-2C.4D.-4【解析】选B.f′(x)=3ax2+,所以f′(1)=3a+≥-12,即a+≥-4,又a<0,有a+≤-4.故a+=-4,此时a=-2.12.(2019·全国卷Ⅰ)若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是( )A.[-1,1]B.C. D.【解析】选C.方法一:用特殊值法:取a=-1,f(x)=x-sin2x-sinx,f′(x)=1-cos2x-cosx,但f′(0)=1--1=-<0,不具备在(-∞,+∞)上单调递增,排除A,B,D.方法二:f′(x)=1-cos2x+acosx≥0对x∈R恒成立,故1-(2cos2x-1)+acosx≥0,即acosx-cos2x+≥0恒成立,令t=cosx,所以-t2+at+≥0对t∈[-1,1]恒成立,构造函数f(t)=-t2+at+, 开口向下的二次函数f(t)的最小值的可能值为端点值,故只需解得-≤a≤.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2019·中山高二检测)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.【解析】y′=3lnx+1+x·=3lnx+4,所以y′|x=1=3ln1+4=4.又f(1)=1×(3ln1+1)=1,所以所求的切线方程为y-1=4(x-1),即4x-y-3=0.答案:4x-y-3=014.(2019·郑州高二检测)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0,则a= ,b= .【解析】f′(x)=-.由于直线x+2y-3=0的斜率为-,且过点(1,1).故即解得a=1,b=1.答案:1 115.函数y=x+2cosx-在区间上的最大值是.【解析】y′=1-2sinx=0,在区间上解得x=,故y=x+2cosx-在区间上是增函数,在区间上是减函数,所以x=时,y=,而x=0时,y=2-,x=时y=-,且>2->-,故函数y=x+2cosx-在区间上的最大值是.答案:【补偿训练】曲线y=x3-2以点为切点的切线的倾斜角为. 【解析】y′=x2,当x=1时,y′=1,从而切线的倾斜角为45°.答案:45°16.设f(x)=x3-x2-2x+5,当x∈[-1,2]时,f(x)<m恒成立,则实数m的取值范围是.【解析】f′(x)=3x2-x-2=(x-1)(3x+2),令f′(x)=0,得x=1或x=-.f(x)极小值=f(1)=1--2+5=,f(x)极大值=f=--++5=5.又f(-1)=-1-+2+5=,f(2)=8-2-4+5=7,比较可得f(x)max=f(2)=7.因为f(x)<m对x∈[-1,2]恒成立.所以m>7.答案:(7,+∞)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2019·南昌高二检测)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值.(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.【解析】f′(x)=18x2+6(a+2)x+2a.(1)由已知有f′(x1)=f′(x2)=0,从而x1x2==1,所以a=9.(2)由于Δ=36(a+2)2-4×18×2a=36(a2+4)>0,所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.【补偿训练】已知函数f(x)=ax2+2x-lnx.(1)当a=0时,求f(x)的极值.(2)若f(x)在区间上是增函数,求实数a的取值范围.【解析】(1)函数的定义域为(0,+∞).因为f(x)=ax2+2x-lnx,当a=0时,f(x)=2x-lnx,则f′(x)=2-,令f′(x)=0得x=,所以当x变化时,f′(x),f(x)的变化情况如表所以当x=时,f(x)的极小值为1+ln2,无极大值.(2)由已知,得f(x)=ax2+2x-lnx,且x>0,则f′(x)=ax+2-=.若a=0,由f′(x)>0得x>,显然不合题意;若a≠0,因为函数f(x)在区间上是增函数,所以f′(x)≥0对x∈恒成立,即不等式ax2+2x-1≥0对x∈恒成立,即a≥=-=-1恒成立,故a≥.而当x=时,函数-1的最大值为3,所以实数a的取值范围为a≥3. 18.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程.(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程. 【解析】(1)因为f′(x)=(x3+x-16)′=3x2+1,所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.所以切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)因为切线与直线y=-+3垂直,所以切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3+1=4,所以x0=±1,所以或即切点坐标为(1,-14)或(-1,-18).切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.19.(12分)(2019·临沂高二检测)已知函数f(x)=lnx-ax2-2x.(1)若函数f(x)在x=2处取得极值,求实数a的值.(2)若函数f(x)在定义域内单调递增,求a的取值范围.【解析】(1)f′(x)=-(x>0),因为x=2时,f(x)取得极值,所以f′(2)=0,解之得a=-,经检验符合题意.(2)由题意知f′(x)≥0在x>0时恒成立,即ax2+2x-1≤0在x>0时恒成立,则a≤=-1在x>0时恒成立,即a≤(x>0),当x=1时,-1取得最小值-1.所以a的取值范围是(-∞,-1].20.(12分)某5A级景区为提高经济效益,现对某景点进行改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:y=f(x)=ax2+x-bln,a,b为常数,当x=10万元时,y=19.2万元;当x=50万元时,y=74.4万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)(1)求f(x)的解析式.(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入) 【解析】(1)由条件可得解得a=-,b=1.则f(x)=-+x-ln(x≥10).(2)由T(x)=f(x)-x=-+x-ln(x≥10),则T′(x)=-+-=-,令T′(x)=0,则x=1(舍)或x=50,当x∈(10,50)时,T′(x)>0,因此T(x)在(10,50)上是增函数;当x>50时,T′(x)<0,因此T(x)在(50,+∞)上是减函数,故x=50为T(x)的极大值点,也是最大值点,且最大值为24.4万元.即该景点改造升级后旅游利润T(x)的最大值为24.4万元.21.(12分)(2019·绍兴高二检测)已知函数f(x)=x3-3ax2-9a2x+a3.(1)设a=1,求函数f(x)的极值.(2)若a>,且当x∈[1,4a]时,f(x)≥a3-12a恒成立,试确定a的取值范围. 【解析】(1)当a=1时,f(x)=x3-3x2-9x+1且f′(x)=3x2-6x-9,由f′(x)=0得x=-1或x=3.当x<-1时,f′(x)>0,当-1<x<3时,f′(x)<0,因此x=-1是函数f(x)的极大值点,极大值为f(-1)=6;当-1<x<3时f′(x)<0,当x>3时f′(x)>0,因此x=3是函数的极小值点,极小值为f(3)=-26.(2)因为f′(x)=3x2-6ax-9a2=3(x+a)(x-3a),a>,所以当1≤x<3a时,f′(x)<0;当3a<x≤4a时,f′(x)>0.所以x∈[1,4a]时,f(x)的最小值为f(3a)=-26a3.由f(x)≥a3-12a在[1,4a]上恒成立得-26a3≥a3-12a.解得a≤-或0≤a≤.又a>,所以<a≤.即a的取值范围为.22.(12分)奇函数f(x)=ax3+bx2+cx的图象过点A(-,),B(2,10).(1)求f(x)的表达式.(2)求f(x)的单调区间.(3)若方程f(x)+m=0有三个不同的实数根,求m的取值范围.【解析】(1)因为f(x)=ax3+bx2+cx为奇函数,所以f(-x)=-f(x)(x∈R).所以b=0.所以f(x)=ax3+cx.因为图象过点A(-,),B(2,10),所以即所以所以f(x)=x3-3x.(2)因为f(x)=x3-3x,所以f′(x)=3x2-3=3(x-1)(x+1),所以当-1<x<1时,f′(x)<0;当x<-1或x>1时,f′(x)>0,所以f(x)的递增区间是(-∞,-1)和(1,+∞),递减区间是(-1,1).(3)因为f(-1)=2,f(1)=-2,为使方程f(x)+m=0,即f(x)=-m有三个不等实数根,则-2<-m<2,即-2<m<2,所以m的取值范围是(-2,2).。

2019高考数学一轮复习专题突破16【恒成立问题】

2019高考数学一轮复习专题突破16【恒成立问题】

e
2
则实数 m 的取值范围为( )
A. ( − ∞, − 2] ∪ [2, + ∞) B. ( − ∞,1 − 5] ∪ [1 + 5, + ∞)
C. ( − ∞,1 − 5] ∪ [2, + ∞) D. ( − ∞, − 2] ∪ [1 + 5, + ∞)
【答案】D
4
【点睛】
本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:
① 分离参数 a ≥ fx恒成立(a ≥ fxmax即可)或 a ≤ fx恒成立(a ≤ fxmin即可);② 数形结合(y = fx 图 象在 y = gx 上方即可);③ 讨论最值 fxmin ≥ 0 或 fxmax ≤ 0 恒成立;④ 讨论参数. 【例 4】【河南省信阳高级中学 2019 届高三第一次大考】已知函数 f(x) = m+xlnx,m ∈ R,x > 1. (1)讨论 fx的单调区间;

1
>
0,则h'a
=
1

1 a
令h'a = 0,可得 a = 1
当 a ∈ 0,1时,ha递减;当 a ∈ 1, + ∞时,ha递增;
则当 a = 1 时,hamin = 0,故 ga > 0 的解集为:a > 0 且 a ≠ 1 则 a 的取值范围是0,1 ∪ 1, + ∞
故选 A
【点睛】
本题运用导数解答了恒成立问题,先通过导数求出不等式左边的最小值,然后代入不等式,构造新函
数,再次运用导数求出最值,从而计算出结果,本题导数的运用性较强、综合性强,需要掌握其解答
方法。

已知函数f(x)=xlnx......

已知函数f(x)=xlnx......

已知函数f(x)=xlnx,,(a>0).(Ⅰ)求f(x)在区间[1,e](e为⾃然对数的底数)上的最⼤值;(Ⅱ)若对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成⽴,求实数a的取值范围.解:(Ⅰ)∵f(x)=xlnx,∴x>0,f′(x)=lnx+1,由f′(x)=lnx+1>0,得x>,∴f(x)的增区间是().由f′(x)=lnx+1<0,得x<,∴f(x)的减区间是(0,).∴f(x)在区间[1,e]上上单调递增,∴f(x)在区间[1,e]上的最⼤值f(x)max=f(e)=elne=e.(Ⅱ)对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成⽴,等价于对任意的x1,x2∈[1,e]都有[g(x)]min≥[f(x)]max.当x∈[1,e]时,f′(x)=lnx+1>0.∴函数f(x)=xlnx在[1,e]上是增函数.∴[f(x)]max=f(e)=e.∵,(a>0),∴=,且x∈[1,e],a>0.①当0<a<1且x∈[1,e]时,>0,∴函数,在[1,e]上是增函数,∴[g(x)]min=g(1)=1+a2.由1+a2≥e,得a≥,⼜0<a<1,∴a不合题意.②当1≤a≤e时,若1≤x<a,则<0,若a<x≤e,则>0.∴函数在[1,a)上是减函数,在(a,e]上是增函数.∴[g(x)]min=g(a)=2a.由2a≥e,得a≥,⼜1≤a≤e,∴≤a≤e.③当a>e且x∈[1,e]时,<0,∴函数在[1,e]上是减函数.∴.由≥e,得a∈R,⼜a>e,∴a>e.(15分)综上所述,a的取值范围为.分析:(Ⅰ)由f(x)=xlnx,知x>0,f′(x)=lnx+1,由此能求出f(x)在区间[1,e](e为⾃然对数的底数)上的最⼤值.(Ⅱ)若对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成⽴等价于g(x1)min≥f(x2)max,从⽽转化为分别求函数g(x),f(x)在[1,e]的最⼩值、最⼤值.点评:本题综合考查了极值存在的性质及零点判定定理的运⽤,函数的恒成⽴问题,解决此类问题常把问题进⾏转化,体现了转化的思想、⽅程与函数的思想的运⽤.属于中等难度的试题.。

导数讨论含参单调性习题含详细讲解问题详解

导数讨论含参单调性习题含详细讲解问题详解

实用标准文案m(x + n)f(x) = lnx z g(x) = --- (m > 0)1.设函数X + 1 (D 当m = 1时,函数y = f(x)与y = g(x)在x = i 处的切线互相垂直,求n 的值:(2)若函数y = f(x)-g(x)在定义域不单调,求m-n 的取值国; 满足条件的实数a ;若不存在,请说明理由.2. 已知函数= (ax + l)lnx-ax + 3z a € R /g (x)^f(x)^导函数,e 为自然对数的底数. (1) 讨论g(x)的单调性; (2) 当a>e 时,证明:g(e _a)>0.(3) 当a>e 时,判断函数f(x)零点的个数,并说明理由. bf(x) = a(x + -)+ blnx3. 已知函数 x (其中,a,b 6 R).(1) 当b = -4时,若f(x)在其定义域为单调函数,求a 的取值围;(2) 当a = 7时,是否存在实数b,使得当xe [e,e 2]时,不等式f(x)>0恒成立,如果存在, 求b的取值围,如果不存在,说明理由(其中e 是自然对数的底数,e = 2.71828 -).4. 已知函数g(x) = x 2+ ln(x + a),其中a 为常数. (1) 讨论函数g(x)的单调性;g(xj + g(x 2) x x + x 2 > g( --------- )(2) 若g(x)存在两个极值点X/2,求证:无论实数a 取什么值都有2 2・5. 已知函数f(x) = ln(e x+ a) (a 为常数)是实数集R 上的奇函数,函数g(x) = Xf(x) + sinx 是 区间【-1, 1]上的减函数.(1)求a 的值;(2)若g(x)<t 2+ Xt + l 在xEHL, 1]及入所在的取值国上恒成立,求t 的取值国:Inx 2—=x -2ex + m(3)讨论关于x 的方程f(x)的根的个数.(3)是否存在正实数6使得 2a xf(;)・f 声屮(寿 <0对任意正实数X 恒成立?若存在,求出文档大全实用标准文案6. 已知函数 f (x) = ax-\nx,F (x) = e x + ax ,其中 x>O,a <0.(1) 若/(X)和F(x)在区间(0,ln3)上具有相同的单调性,数a 的取值围;(2) 若aw -oo,-—,且函数 g (x) = xe a ^1 - 2av+ f (x)的最小值为 M,求M 的X €-最小值.7. 已知函数 f(x) = e x+m -\nx.(1 )如X = 1是函数/(X)的极值点,数〃7的值并讨论的单调性/(X):(2)若X = A O 是函数/(X)的极值点,且f(x) > 0恒成立,数加的取值围(注:已知 常数a 满足<71116/= 1)・牙3(1) 当加=1 时,求证:-lvxS 0 时,f (x) < —:(2) 试讨论函数y = /(A )的零点个数.9. 已知£ 是自然对数的底数,F(x) = 2e'~1+x+liix,/(x) = d r(x-l) + 3.⑴设T(x) = F(x)-/(x),当0 = 1 + 2以时,求证:T(x)在(0,+oo)±单调递增;(2)若 Vx>l,F(x)>/(x),数a 的取值囤. 10. 已知函数 /(x) = e v+ax-2(1) 若a = -l 求函数/(%)在区间[-1,1]的最小值; (2) 若a G /?,讨论函数/(X)在(0,+co)的单调性; (3) 若对于任意的為,耳丘(°,+8),且兀 <耳,都有xJ/CG + a ] vxJ/Vj + a ]成立,求a 的取值囲。

高考数学复习:导数的运算

高考数学复习:导数的运算

考点二
导数运算的应用(多考向探究预测)
考向1 与导数运算有关的新定义问题
例2(2024·山东烟台模拟)给出定义:若函数f(x)在D上可导,即f'(x)存在,且导
函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))'.若
f″(x)<0在D上恒成立,则称f(x)在D上为凸函数,以下四个函数在(0,
处的曲率K=
|″()|
[1 +
3
2 2
('()) ]
.已知f(x)=cos(x-1)-ln x,则曲线y=f(x)在点(1,f(1))处
的曲率为__________.
0
解析 因为 f(x)=cos(x-1)-ln x,所以

1
f'(1)=- -sin
1
1
0=-1,f″(1)= -cos
1
1
1
运算量,减少差错;
(3)复合函数求导,要正确分析函数的复合过程,分清内外层函数,按照法则
进行求导;
(4)求函数在某一点处的导数且解析式未知时,应先 根 据 条 件 求 出 该 点
所 在 区 间 的 解 析 式 再求导;
(5)当函数解析式中含有待定系数(如f'(x0)等)时,应将待定系数看成常数进
行求解.
π
当 x∈(0,2)时,f″(x)>0 恒成立,该函数不是凸函数,故选 D.
规律方法
导数新定义问题的求解策略
新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几
个新模型来创设全新的问题情境,要求考生在阅读理解的基础上,依据题目
提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目

高中数学选修2-2分章节测试卷(含答案)

高中数学选修2-2分章节测试卷(含答案)

第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走()A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +dc +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f (n )(n ∈N *),满足条件:①f (2)=2,②f (xy )=f (x )·f (y ),③f (n )∈N *,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a=1,∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞). ∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m).答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3, 所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x =±a ,列表讨论如下:由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2).当x <x 1时,f ′(x )>0,函数为增函数,由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.∴当a =4时,x =2是f (x )的极小值点.∴a =4.(2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ).(3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C 6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的. ③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立. ∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *). (3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1.②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2, 2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b ,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n )22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C. 9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i 1+i )n =i n+(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -z z (z -a )=-1z =-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0. ∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i =[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a 2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i (x +1)2+y 2是纯虚数,∴x 2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y 2)i 为实数, ∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5.(3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析

江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。

23全国新高考冲刺压轴卷五

23全国新高考冲刺压轴卷五

23全国新高考冲刺压轴卷五数学一.选择题:每小题5分。

1.复数z=10i 4−3i,则|z|=( ) A. 1 B. √2 C. 2 D. 2√22.设集合A={x|x(x+2)<0},B={x|x<3},则B ∩(C R A)=( )A. {x|-2≤x<0或0<x<3}B. {x|x ≤-2或x ≥3}C. {x|x ≤-2或0<x<3}D. {x|x ≤-2或0≤x<3} 3.若函数f(x)是奇函数,当x<0时,f(x)=log 3(-x),则f(19)=( ) A. -2 B. -1 C. 1 D. 24.某校在一次月考中共有800人参加考试.其数学考试成绩X 近似服从正态分布N(105,σ2),试卷满分150分.已知同学甲的数学成绩为90分,学校排名为640.同学乙的数学成绩为75分,学校排名为720,若同学丙的数学成绩为120分,那么他的数学成绩在学校的排名约为( ) A. 150 B. 160 C. 80 D. 905.将函数y=5cos(2x-π4)的图象向右平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A. π8B. π4C. 3π8D. 3π46.若直线y=3x-3是曲线y=ae x +x 2的一条切线,则实数a=( ) A. -1e2 B. 3e2或1e3 C. -1e2或-3e3 D. 1e37.已知正三棱柱ABC-A 1B 1C 1中,AA 1=3,AB=2√2,则以A 1为球心,√10为半径的球面与此三棱柱的三个侧面 的交线的长度之和为( ) A. (√102+1) π B. √10π C. (√102+√2)π D. (2√103+1) π 8.已知a=65ln1.2,b=0.2e 0.2,c=13.则( ) A. a<b<c B. a<c<b C. c<a<b D. c<b<a二.选择题:全部选对的得5分,部分选对的得2分,有选错的得0分。

2020届内蒙古包头市高三下学期普通高等学校招生全国统一考试(第一次模拟考试)数学(文)试题(解析版

2020届内蒙古包头市高三下学期普通高等学校招生全国统一考试(第一次模拟考试)数学(文)试题(解析版

2020年高考数学一模试卷(文科)一、选择题1 .设集合 A={0, 1, 2}, B = {x|1〈xW2},则 AAB=( )A . {2}B . {1 , 2}C . {0}D .{0 ,2 .已知i 是虚数单位,若7马-=1,则|z 尸( )1-1A.破B. 2C. V3D. 33 .设等差数列{a n }的前n 项和为S n,若a 4=5, S 9=81,则a i0=()A. 23B. 25C. 28D. 29 4 .已知实数x, y 满足则z= x+2y 的最大值为()3A. 2B. —C. 1D. 05 .已知角a 的终边与单位圆x 2+y2=1交于点P (=, y 。

),则cos2 a 等于(A ・卷B.-看C- -fD-i6 .下列说法正确的是()A. “若a>1,则a 2>1 "的否命题是“若a>1,则ay1"B.在△ ABC 中,"A>B ”是“sinA>sinB”成立的必要不充分条件兀C. “若tan#1,则是真命题D,存在xoC (-巴0),使得2/〈3女:成立AC 1与A 1B 1所成的角为(B. 45°C. 60°D. 90°A. 30°8.)=(x 2- ax)e x 的图象大致是(B.Q1, 2}7.在直二棱柱ABC —A 1B 1C 1 中,已知 AB ± BC , AB = BC=2, CC[=2 板,则异面直线9.小张家订了一份报纸,送报人可能在早上6: 30- 7: 30之间把报送到小张家,小张离开家去工作的时间在早上 7.00- 8: 00之间.用A 表示事件:“小张在离开家前能得到x,小张离开家的时间为 yn (x, y)看成平面中的点,Bz B- 510 .已知直线l 过抛物线C : y 2=2px 的焦点F,且直线l 与C 的对称轴垂直,与 C 交于A, B 两点,|AB|=4, P 为C 的准线上的一点,则^ ABP 的面积为(11 .在△ ABC 中,D 为 BC 边上的中点,且 1AB |=1,|AU |=2, /BAC = 120° ,则|AU |=( )C. -74二、填空题(共4小题)为.14 .已知圆柱的上下底面的中心分别为 O I ,。

【解析版】数学高一上期末测试题(课后培优)(1)

【解析版】数学高一上期末测试题(课后培优)(1)

一、选择题1.(0分)[ID :12118]已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.(0分)[ID :12116]已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >>D .c a b >>3.(0分)[ID :12093]设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则BA =( ) A .()0,1B .[)0,1C .(]0,1D .[]0,14.(0分)[ID :12127]在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.(0分)[ID :12121]若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞)C .[-2,+∞)D .(-∞,-2]6.(0分)[ID :12076]若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 7.(0分)[ID :12058]已知函数()2log 14x f x x ⎧+=⎨+⎩0x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .68.(0分)[ID :12057]设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( ) A .()()1,00,1-⋃ B .()(),11,-∞-⋃+∞ C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃9.(0分)[ID :12036]已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<10.(0分)[ID :12032]函数121y x x =-++的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)11.(0分)[ID :12031]设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是( ) A .()1,2B .()2,+∞C .()31,4D .()34,212.(0分)[ID :12071]已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( ) A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,213.(0分)[ID :12069]已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( )A .1sin x +B .1sin x -C .1sin x --D .1sin x -+14.(0分)[ID :12038]曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 15.(0分)[ID :12074]对数函数y =log a x(a >0且a ≠1)与二次函数y =(a −1)x 2−x 在同一坐标系内的图象可能是( )A .B .C .D .二、填空题16.(0分)[ID :12208]已知()y f x =是定义在R 上的奇函数,且当0x 时,11()42x xf x =-+,则此函数的值域为__________. 17.(0分)[ID :12191]已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.18.(0分)[ID :12176]若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.19.(0分)[ID :12165]已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 20.(0分)[ID :12161]已知函数1()41x f x a =+-是奇函数,则的值为________. 21.(0分)[ID :12158]对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____. 22.(0分)[ID :12142]若函数()242xx f x a a =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.23.(0分)[ID :12137]已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m 的取值范围为______.24.(0分)[ID :12133]已知二次函数()f x ,对任意的x ∈R ,恒有()()244f x f x x +-=-+成立,且()00f =.设函数()()()g x f x m m =+∈R .若函数()g x 的零点都是函数()()()h x f f x m =+的零点,则()h x 的最大零点为________.25.(0分)[ID :12131]高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题26.(0分)[ID :12323]定义在()(),00,-∞⋃+∞上的函数()y f x =满足()()1f xy f x f y ⎛⎫=- ⎪⎝⎭,且函数()f x 在(),0-∞上是减函数.(1)求()1f -,并证明函数()y f x =是偶函数; (2)若()21f =,解不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭. 27.(0分)[ID :12322]已知函数2()ln(3)f x x ax =-+. (1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围; (2)当3a =时,解不等式()x f e x ≥.28.(0分)[ID :12298]已知函数2()1()f x x mx m =-+∈R . (1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围;(2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 29.(0分)[ID :12286]已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.30.(0分)[ID :12238]已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.D 3.B 4.C 5.B 6.C 7.C8.C9.C10.A11.D12.C13.B14.A15.A二、填空题16.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函17.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题18.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【19.【解析】【分析】由题意可得f(x)g(x)的图象均过(﹣11)分别讨论a>0a<0时f(x)>g(x)的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题20.【解析】函数是奇函数可得即即解得故答案为21.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力22.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解23.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没24.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点25.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<,c a b ∴<<.故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.D解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.B解析:B 【解析】 【分析】先化简集合A,B,再求BA 得解.【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}BA x x =≤<.故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.5.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.6.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.343066f ππ⎛⎫=≈-=-<⎪⎝⎭,20.7850.7070.078044f ππ⎛⎫=≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫ ⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.7.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 9.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-<故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.10.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.11.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解12.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.13.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.14.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法15.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】由题意,若0<a <1,则y =log a x 在(0,+∞)上单调递减,又由函数y =(a −1)x 2−x 开口向下,其图象的对称轴x =12(a−1)在y 轴左侧,排除C ,D. 若a >1,则y =log a x 在(0,+∞)上是增函数,函数y =(a −1)x 2−x 图象开口向上,且对称轴x =12(a−1)在y 轴右侧, 因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题16.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函解析:11,44⎡⎤-⎢⎥⎣⎦【解析】 【分析】可求出0x ≥时函数值的取值范围,再由奇函数性质得出0x ≤时的范围,合并后可得值域. 【详解】设12x t =,当0x ≥时,21x ≥,所以01t <≤,221124y t t t ⎛⎫=-+=--+ ⎪⎝⎭,所以104y ≤≤,故当0x ≥时,()10,4f x ⎡⎤∈⎢⎥⎣⎦. 因为()y f x =是定义在R 上的奇函数,所以当0x <时,()1,04f x ⎡⎫∈-⎪⎢⎣⎭,故函数()f x 的值域是11,44⎡⎤-⎢⎥⎣⎦.故答案为:11,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查指数函数的性质,考查函数的奇偶性,求奇函数的值域,可只求出0x ≥时的函数值范围,再由对称性得出0x ≤时的范围,然后求并集即可.17.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤ 【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.18.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t -≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-.综上,256a ≥-.故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.19.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤⎥⎝⎦.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.20.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x xa a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1221.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1 【解析】 【分析】直接利用对数计算公式计算得到答案. 【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣故答案为:1 【点睛】本题考查了对数式的计算,意在考查学生的计算能力.22.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12【解析】 【分析】 将函数化为()2()26x f x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a . 【详解】()242x x f x a a =+-()226x a =+-, 11x -≤≤,01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a =1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =,故答案为:12或2. 【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.23.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没解析:{|2m m >或2}3m <- 【解析】 【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围. 【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得23m <-.综上,m 的取值范围为{|2m m >或2}3m <-. 故答案为:{|2m m >或2}3m <-. 【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题.24.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点解析:4 【解析】 【分析】采用待定系数法可根据已知等式构造方程求得,a b ,代入()00f =求得c ,从而得到()f x 解析式,进而得到()(),g x h x ;设0x 为()g x 的零点,得到()()0000g x h x ⎧=⎪⎨=⎪⎩,由此构造关于m 的方程,求得m ;分别在0m =和3m =-两种情况下求得()h x 所有零点,从而得到结果. 【详解】设()2f x ax bx c =++()()()()2222244244f x f x a x b x c ax bx c ax a b x ∴+-=++++---=++=-+ 44424a a b =-⎧∴⎨+=⎩,解得:14a b =-⎧⎨=⎩又()00f = 0c ∴= ()24f x x x ∴=-+()24g x x x m ∴=-++,()()()222444h x x x x x m =--++-++设0x 为()g x 的零点,则()()0000g x h x ⎧=⎪⎨=⎪⎩,即()()2002220000404440x x m x x x x m ⎧-++=⎪⎨--++-++=⎪⎩即240m m m --+=,解得:0m =或3m =- ①当0m =时()()()()()()()22222244444442h x x x x x x x x x x x x =--++-+=-+-+=---()h x ∴的所有零点为0,2,4②当3m =-时()()()()()2222244434341h x x x x x x x x x =--++-+-=--+--+-()h x ∴的所有零点为1,3,2综上所述:()h x 的最大零点为4 故答案为:4 【点睛】本题考查函数零点的求解问题,涉及到待定系数法求解二次函数解析式、函数零点定义的应用等知识;解题关键是能够准确求解二次函数解析式;对于函数类型已知的函数解析式的求解,采用待定系数法,利用已知等量关系构造方程求得未知量.25.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题 解析:{}1,0,1-【解析】 【分析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x xe f x e e e +-=-=--=-+++, 11x e +>,1011xe ∴<<+, 2201xe ∴-<-<+, 19195515xe ∴-<-<+, 所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题 26.(1)()10f -=,证明见解析;(2)[1,2)(2,3]⋃ 【解析】 【分析】(1)根据函数解析式,对自变量进行合理赋值即可求得函数值,同时也可以得到()f x 与()f x -之间的关系,进而证明;(2)利用函数的奇偶性和单调性,合理转化求解不等式即可. 【详解】(1)令10y x =≠,则()111f x f x f x x ⎛⎫ ⎪⎛⎫⋅=- ⎪ ⎪⎝⎭ ⎪⎝⎭,得()()()10f f x f x =-=,再令1x =,1y =-,可得()()()111f f f -=--, 得()()2110f f -==,所以()10f -=, 令1y =-,可得()()()()1f x f x f f x -=--=, 又该函数定义域关于原点对称, 所以()f x 是偶函数,即证.(2)因为()21f =,又该函数为偶函数,所以()21f -=. 因为函数()f x 在(),0-∞上是减函数,且是偶函数 所以函数()f x 在()0,∞+上是增函数.又412f f x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭()2424x f x f x x -⎛⎫=⋅=-⎪⎝⎭, 所以()()242f x f -≤,等价于240,242,x x ->⎧⎨-≤⎩或240,242,x x -<⎧⎨-≥-⎩解得23x <≤或12x ≤<.所以不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭的解集为[1,2)(2,3]⋃. 【点睛】本题考查抽象函数求函数值、证明奇偶性,以及利用函数奇偶性和单调性求解不等式.27.(1)24a ≤<;(2){0x x ≤或}ln3x ≥ 【解析】 【分析】(1)根据复合函数单调性的性质,结合二次函数性质即可求得a 的取值范围.(2)将3a =代入函数解析式,结合不等式可变形为关于x e 的不等式,解不等式即可求解. 【详解】 (1)()f x 在(,1]-∞上单调递减,根据复合函数单调性的性质可知23y x ax =-+需单调递减则12130a a ⎧≥⎪⎨⎪-+>⎩解得24a ≤<.(2)将3a =代入函数解析式可得2()ln(33)f x x x =-+则由()x f e x ≥,代入可得()2ln 33x x e e x -+≥同取对数可得233x x x e e e -+≥即2(e )430x x e -+≥,所以()(e 1)30x x e --≥即e 1x ≤或3x e ≥ 0x ∴≤或ln x ≥3, 所以原不等式的解集为{}0ln 3x x x ≤≥或【点睛】本题考查了对数型复合函数单调性与二次函数单调性的综合应用,对数不等式与指数不等式的解法,属于中档题. 28.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m ≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m ≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值,当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =.【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.29.(1)()26f x x π⎛⎫=+ ⎪⎝⎭06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)a ∈⎣ 【解析】【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式;(2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知2A B A B ⎧+=⎪⎪⎨⎪-+=-⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ.所以()26f x x π⎛⎫=+ ⎪⎝⎭ 由222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3. (2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减, 要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础. 30.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【解析】【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围.【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足AB =∅.②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥. 综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版

高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版

• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2

函数与导数习题及答案

函数与导数习题及答案

函数与导数 一、选择题1.已知f(x)=xln x ,若00',2)(x x f 则=等于( )A .2eB .eC.ln 22D .ln 22、设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .33.若函数c bx ax x f ++=24)(满足f′(1)=2,则f′(-1)等于( )A .-1B .-2C .2D .04.设函数f (x )=ax 3+2,若f ′(-1)=3,则a 等于( ) A .-1 B.12 C .1 D.135.设f (x )为可导函数,且lim h →∞ f (3)-f (3+h )2h=5,则f ′(3)等于( )A .5B .10C .-5D .-106.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =7x +2 C .y =x -4D .y =x -2 7.在曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4) C .(14,116)D .(12,14)8.设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .29.已知f (x )=12x 2-cos x ,]1,1[-∈x ,则导函数f ′(x )是( )A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .既有最大值,又有最小值的奇函数10.已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1 D.1211.设函数f (x )=-2x1+x2,则f (x )( ) A .在(-∞,+∞)内单调递增 B .在(-∞,+∞)内单调递减C .在(-1,1)内单调递减,其余区间单调递增D .在(-1,1)内单调递增,其余区间单调递减12.如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )A .函数f(x)在区间(-3,0)上是减函数B .函数f (x )在区间(-3,2)上是减函数C .函数f (x )在区间(0,2)上是减函数D .函数f (x )在区间(-3,2)上是单调函数13.已知函数f (x )=mx 3+3(m -1)x 2-m 2+1(m >0)的单调递减区间是(0,4),则m 等于( )A .3 B.13 C .2 D.1214.函数f (x )=12x 2-ln x 的单调递减区间是( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 15.若f (x )是定义在R 上的可导函数,且对任意x ∈R ,满足f (x )+f ′(x )>0,则对任意实数a ,b ( )A .a >b ⇔e a f (b )>e b f (a )B .a >b ⇔e a f (b )<e b f (a )C .a >b ⇔e a f (a )<e b f (b )D .a >b ⇔e a f (a )>e b f (b )16.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)17.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )上的图象如图所示,则函数f (x )在(a ,b )上的极大值点的个数为( ) A .1 B .2 C .3D .418.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b 等于( ) A .-1 B .0 C .1 D .219.已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围是( )A .(-1,2)B .(-1,12)C .(12,2)D .(-2,1)20.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角α为( ) A.π4 B .0 C.3π4D .1 21.已知点A (1,2)在函数f (x )=ax 3的图象上,则过点A 的曲线C :y =f (x )的切线方程是( ) A .6x -y -4=0 B .x -4y +7=0C .6x -y -4=0或x -4y +7=0D .6x -y -4=0或3x -2y +1=022.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)内存在最小值,则实数a 的取值范围是( ) A .[-5,0) B .(-5,0) C .[-3,0)D .(-3,0)23.若函数y =x 3-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是( ) A .1<a <2 B .1<a <4 C .2<a <4D .a >4或a <124.已知函数f (x )=x 3+ax 2+x +2 (a >0)的极大值点和极小值点都在区间(-1,1)内,则实数a 的取值范围是( ) A .(0,2] B .(0,2) C .[3,2)D .(3,2)25.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞) C .(-∞,-2)D .(-∞,-1)26.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3]27.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .228.曲线y =ln x 在x =3处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π229.曲线f (x )=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(2,8)或(-1,-4)D .(1,0)或(-1,-4)30.函数f (x )=12x 2-ln x 的最小值为( )A.12B .1C .-2D .3 31.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =( )A .1 B.12C .0D .-132.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )A B C D33.定义域为R 的函数f (x ),满足f (0)=1,f ′(x )<f (x )+1,则不等式f (x )+1<2e x 的解集为( )A .{x ∈R |x >1}B .{x ∈R |0<x <1}C .{x ∈R |x <0}D .{x ∈R |x >0}34.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在区间[-1,1]上是减函数,则a 的取值范围是( )A .0<a <34 B.12<a <34 C .a ≥34 D .0<a <1235.设1<x <2,则 ln x x ,⎝⎛⎭⎪⎫ln x x 2,ln x 2x 2的大小关系是( ) A.⎝ ⎛⎭⎪⎫ln x x 2<ln x x <ln x2x 2B.ln x x <⎝⎛⎭⎪⎫ln x x 2<ln x2x 2 C.⎝ ⎛⎭⎪⎫ln x x 2<ln x 2x 2<ln xxD.ln x 2x 2<⎝ ⎛⎭⎪⎫ln x x 2<ln xx36.函数214y x x=+的单调增区间为( ) A .(0,)+∞B .1(,)2+∞C .(,1)-∞-D .1(,)2-∞-37.如果函数()y f x =的图象如左下图,那么导函数'()y f x =的图象可能是( )38.已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .eB .e -C .1eD .1e-39.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .0a ≤B .1a <C .0a <D .1a ≤40.函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,'()2f x >,则()24f x x >+的解集为( )A .(1,1)-B .(1,)-+∞C .(,1)-∞-D .(,)-∞+∞41.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( ) A .(1,2)- B .(,3)(6,)-∞-+∞ C .(3,6)-D .(,1)(2,)-∞-+∞42.函数2ln xy x=的极小值为( )A .24e B .0 C .2eD .143.函数,[0,4]x y xe x -=∈的最小值为( ) A .0B .1eC .44e D .22e 44.设直线x t =与函数2()f x x =,()ln g x x =的图象分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12C D 45.设函数2()(,,)f x ax bx c a b c =++∈R .若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )二、填空题1.曲线y =ln x -1在x =1处的切线方程为____________.2.已知函数3()3f x x ax a =--在(0,1)内有最小值,则a 的取值范围是___________.3.若曲线5()l n f x a x x =+存在垂直于y 轴的切线,则实数a 的取值范围是________.4.已知直线1y x =+与曲线ln()y x a =+相切,则a 的值为________.5. 已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.6.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.7.设函数f(x)=(x2+2x-2)e x(x∈R),则f(x)的单调递减区间是________.) 8.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.9.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是____________.10.设函数f(x)=ax+1x+b(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.则函数f(x)的解析式为____________.11.已知函数f(x)=ln x-f′(-1)x2+3x-4,则f′(1)=________.12.已知曲线y=13x3上一点P(2,83),则过点P的切线方程为____________________________________.13.已知定义在区间(-π,π)上的函数f(x)=x sin x+cos x,则f(x)的单调递增区间是________________.14.已知函数f(x)=x2+3x-2ln x,则函数f(x)的单调递减区间为__________.15.已知函数f(x)=12x2-2ax-a ln x在(1,2)上单调递减,则a的取值范围是________.16.设函数y=f(x),x∈R的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:e f(2),f(3),e2f(-1)从小到大依次排列为________________.17.曲线y=x(x+1)(2-x)有两条平行于直线y=x的切线,则两切线之间的距离是________.18.已知函数f(x)=x ln k-k ln x(k>1)的图象不经过第四象限,则函数g(x)=f(x)+k的值域为________.19.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是________________.20.函数f(x)=ax-cos x,x∈[π4,π3],若∀x1,x2∈[π4,π3],x1≠x2,f(x2)-f(x1)x2-x1<0,则实数a的取值范围是________.21.若f (x )=13x 3-ax 2+x 在R 上不是单调函数,则a 的取值范围是________________.22.已知函数f (x )=e x1+ax 2(a >0),若f (x )为R 上的单调函数,则实数a 的取值范围是________.23.函数f (x )=2ln x +x 2在点x =1处的切线方程是________.24.已知函数f (x )=x 3+ax 2+bx +c ,若f (1)=0,f ′(1)=0,但x =1不是函数f (x )的极值点,则abc 的值为________. 25.已知函数ln ln ()a xf x x+=在[1,)+∞上为减函数,则实数a 的取值范围为___________. 三、解答题1.已知函数2()(2),(,)x f x x ax e x a R =++∈.(Ⅰ)当0a =时,求函数()f x 的图像在点(1,(1))A f 处的切线方程; (Ⅱ)若()f x 在R 上单调,求a 的取值范围; (Ⅲ)当52a =-时,求函数()f x 的极小值.2.已知函数f (x )=ln 2x -kx 在定义域内单调递减,求实数k 的取值范围.3.已知函数f (x )=(x +1)2(x -2),当x ∈[a ,a +2]时,f (x )的最大值为0,求实数a 的取值.4.已知x=0是函数f(x)=x3+bx2+cx的一个极值点,f(x)的图像经过点A(3,0).设f(x)在其图像上不同两点P(x1,y1),Q(x2,y2)处的切线分别为l1,l2.当l1∥l2时,求证x1+x2为定值.5.已知函数f(x)=ax2-2x+ln x(a∈R).若函数f(x)有两个极值点,求a的取值范围,并说明f(x)的极小值小于-3 2.6.设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图像在x =m处的切线的斜率为-3a.(1)求证:0≤ba<1;(2)若函数f(x)在区间[s,t]上单调递增,求|s-t|的取值范围.7.已知函数f(x)=e x2-1e x-ax(a∈R).(1)当a=32时,求函数f(x)的单调区间;(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.8.若x0是函数y=f(x)的极值点,同时也是其导函数y=f′(x)的极值点,则称x0是函数y=f(x)的“致点”.(1)已知a>0,求函数f(x)=(x2+ax+1)e x的极值和单调区间;(2)函数f(x)=(x2+ax+1)e x是否有“致点”?若有,求出“致点”;若没有,试说明理由.9.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.10.已知函数f(x)=ax3+bx+c在x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.11.已知函数f(x)=x3+bx2+cx的图象在点(1,f(1))处的切线方程为6x-2y-1=0,f′(x)为f(x)的导函数,g(x)=a e x(a,b,c∈R,e为自然对数的底数).(1)求b,c的值;(2)若∃x0∈(0,2],使g(x0)=f′(x0)成立,求a的取值范围.12.(2015·南平质检)已知函数f (x )=sin x ,g (x )=mx -x 36(m 为实数). (1)求曲线y =f (x )在点P (π4,f (π4))处的切线方程; (2)求函数g (x )的单调递减区间;(3)若m =1,证明:当x >0时,f (x )<g (x )+x 36.13.(2015·北京)设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点.14.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求函数F (x )=f (x )f ′(x )+(f (x ))2的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+sin 2x cos 2x -sin x cos x 的值.15.已知函数f (x )=ax -e x (a >0). (1)若a =12,求函数f (x )的单调区间; (2)当1≤a ≤1+e 时,求证:f (x )≤x .16.已知函数f (x )=ax +ln x ,a ∈R , (1)求f (x )的单调区间;(2)设g (x )=x 2-2x +1,若对任意x 1∈(0,+∞),总存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.17.(2015·陕西)设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎝ ⎛⎭⎪⎫0,23内有且仅有一个零点(记为a n ),且0<a n -12<13⎝ ⎛⎭⎪⎫23n .18.(2015·山东济宁育才中学上学期期中)已知a ∈R ,函数f (x )=12ax 2-ln x . (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)讨论f (x )的单调性;(3)是否存在实数a ,使得方程f (x )=2有两个不等的实数根?若存在,求出a 的取值范围;若不存在,请说明理由.19.已知函数f(x)=ln x-ax2+(a-2)x.(1)若f(x)在x=1处取得极值,求a的值;(2)求函数y=f(x)在[a2,a]上的最大值.20.已知函数f(x)=e x-ax-1(a∈R).(1)求函数f(x)的单调区间.(2)函数F(x)=f(x)-x ln x在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.(3)若g(x)=ln(e x-1)-ln x,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.21.已知函数f(x)=e x-a2x2e|x|.(1)若f(x)在[0,+∞)上是增函数,求实数a的取值范围;(2)证明:当a≥1时,不等式f(x)≤x+1对x∈R恒成立;(3)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得f(x0)>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.22.已知函数f(x)=x-ln x-1.(1)求曲线y=f(x)在x=2处的切线方程;(2)若x∈(0,+∞)时,f(x)≥ax-2恒成立,求实数a的取值范围.23.已知函数f(x)=x2-3x+a ln x(a>0).(1)若a=1,求函数f(x)的单调区间和极值;(2)设函数f(x)图像上任意一点处的切线l的斜率为k,当k的最小值为1时,求此时切线l的方程.24.设函数f (x )=p ⎝ ⎛⎭⎪⎫x -1x -2ln x ,g (x )=2e x (p >1,e 是自然对数的底数).(1)若对任意x ∈[2,e],不等式f (x )>g (x )恒成立,求p 的取值范围;(2)若对任意x 1∈[2,e],总存在x 2∈[2,e],使不等式f (x 1)>g (x 2)成立,求p 的取值范围.25.已知函数f (x )=1+ln xx .(1)若函数f (x )在区间⎝ ⎛⎭⎪⎫2a -1,a +14内有极值,求实数a 的取值范围;(2)当x ≥1时,不等式f (x )≥kx +1恒成立,求实数k 的取值范围;(3)求证:[(n +1)!]2>(n +1)e n -2+2n +1.(n ∈N *,e 为自然对数的底数)26.已知函数f (x )=(2-a )(x -1)-2ln x ,g (x )=e x -x +1.(a 为常数,e 为自然对数的底数)(1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值;(3)若对任意给定的x 0∈(0,1],在(0,e]上总存在两个不同的x i (i =1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.27.设a ∈R ,函数2()()e x f x x ax a =--.(1)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 在[2,2]-上的最小值.28.已知函数3()1f x x ax =--.(Ⅰ)若()f x 在(,)-∞+∞上单调递增,求实数a 的取值范围;(Ⅱ)是否存在实数a ,使()f x 在(1,1)-上单调递减?若存在,求出a 的取值范围;若不存在试说明理由.29.已知函数()ln 3()f x a x ax a =--∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45,对于任意的[1,2]t ∈,函数32()['()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围.30.已知函数()()x f x x k e =-.(Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.31.已知函数2()ln(1)(1)f x a x x =+++在1x =处有极值. (Ⅰ)求实数a 值;(Ⅱ)求函数()f x 的单调区间; (Ⅲ)令()'()gx f x=,若曲线()g x 在(1,(1))g 处的切线与两坐标轴分别交于,A B 两点(O 为坐标原点),求AOB ∆的面积.32.已知函数()ln(21)1f x a x bx =+++.(Ⅰ)若函数()y f x =在1x =处取得极值,且曲线()y f x =在点(0,(0))f 处的切线与直线230x y +-=平行,求a 的值;(Ⅱ)若12b =,试讨论函数()y f x =的单调性.33.已知函数2()1x af x x +=+(其中a R ∈).(Ⅰ)若函数()f x 在点(1,(1))f 处的切线为12y x b =+,求实数,a b 的值; (Ⅱ)求函数()f x 的单调区间.34.已知函数()ln a f x x x=+.(Ⅰ)当0a <时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在[1,]e 上的最小值是32,求a 的值.35.已知函数()2ln pf x px x x=--. (Ⅰ)若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;(Ⅱ)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围.36.已知函数()32331f x ax x a=-+-(R a ∈,且0)a ≠,求()f x '及函数()f x 的极大值与极小值.37.已知函数1()ln f x a x x=-,a ∈R .(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当1a =,且2x ≥时,证明:(1)25f x x -≤-.38.已知函数()ln a xf x x x-=+,其中a 为大于零的常数. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线1-2y x =平行,求a 的值; (Ⅱ)求函数()f x 在区间[1,2]上的最小值.39.已知函数22()ln axf x x e=-(a ∈R ,e 为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0,)()P t t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x 和22212(,())()P x f x x x ≠,求证:120x x +=.一、选择题1-5 BDBCD 6-10 DDADB 11-15 CABBD 16-20 BBCAA21-25 DCBDC 26-30 CBADA 31-35 BADCA 36-40 BACAB 41-45 BBADD 二、填空题1、x -y -2=02、(0,1)3、(-∞,0)4、25、86、a =37、(-4,0) 8、a =8 9、(-∞,-1)∪(0,1) 10、f (x )=x +1x -111、a =3. 12、[45,+∞) 13、(-π,-π2]和[0,π2] 14、.⎝⎛⎭⎪⎫0,12 15、12x -3y -16=0或3x -3y +2=0 16、f (3)<e f (2)<e 2f (-1) 17、16227 18、[e ,+∞) 19、(-∞,2-1e )∪(2-1e,2) 20、(-∞,-1)∪(1,+∞) 21、(-∞,-32] 22、[e ,+∞)23、4x -y -3=0 24、9 25、(0,1] 三、解答题1、解:2()[(2)2]x f x e x a x a '=++++(Ⅰ)当a=0时,2()(2),x f x x e =+2()(22)x f x e x x '=++,(1)3f e =,(1)5f e '=,∴函数f (x )的图像在点A (1,f (1))处的切线方程为y-3e=5e (x-1),即5ex-y-2e=0(Ⅱ)2()[(2)2]x f x e x a x a '=++++,考虑到0x e >恒成立且2x 系数为正,∴f (x )在R 上单调等价于 2(2)20x a x a ++++≥恒成立. ∴(a+2)2-4(a+2)≤0,∴-2≤a ≤2 , 即a 的取值范围是[-2,2], (若得a 的取值范围是(-2,2),可扣1分)(Ⅲ)当52a =-时, 25()(2),2x f x x x e =-+211()()22x f x e x x '=--,令()0f x '=,得12x =-,或,令()0f x '>,得12x <-,或,令()0f x '<,得112x -<<x,()f x ',f (x )的变化情况如下表所以,函数f (x )的极小值为f (1)=2e2..解:∵函数f (x )在定义域内单调递减,∴f ′(x )=2ln xx -k ≤0在(0,+∞)上恒成立.设φ(x )=ln xx ,则φ′(x )=1-ln x x 2,∴φ(x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴φ(x )max =φ(e)=1e ,故实数k 的取值范围为⎣⎢⎡⎭⎪⎫2e ,+∞3.解:f ′(x )=2(x +1)(x -2)+(x +1)2=3(x -1)(x +1),所以f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减, 所以极大值为f (-1)=0.又f (2)=0,所以a +2=2或⎩⎨⎧a ≤-1,a +2≥-1,得a =0或-3≤a ≤-1.4.证明:由f (x )=x 3+bx 2+cx ,得f ′(x )=3x 2+2bx +c .由x =0是函数f (x )的一个极值点知f ′(0)=c =0.又由f (x )的图像经过点A (3,0),得f (3)=27+9b +3c =0, 所以b =-3,所以f (x )=x 3-3x 2.由l 1∥l 2,得f ′(x 1)=f ′(x 2),即3x 21-6x 1=3x 22-6x 2, 即3(x 1-x 2)(x 1+x 2-2)=0.因为x 1-x 2≠0,所以x 1+x 2=2, 所以当l 1∥l 2时,x 1+x 2为定值.5.解:f ′(x )=2ax 2-2x +1x,由题知2ax 2-2x +1=0在(0,+∞)上有两个不同的实根.设方程2ax 2-2x +1=0的两根为x 1,x 2,且0<x 1<x 2,根据题意得0<a <12, 所以f (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减, 在(x 2,+∞)上单调递增, 所以f (x )极小值=f (x 2).f (x 2)<-32的证明如下:由f ′(x 2)=0,得2ax 22-2x 2+1=0,则a =2x 2-12x 22∈⎝ ⎛⎭⎪⎫0,12,解得x 2>12且x 2≠1.f (x 2)=x 22·2x 2-12x 22-2x 2+ln x 2=-x 2-12+ln x 2,令g (x )=-x -12+ln x ,g ′(x )=-1+1x =1-x x ,则g (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,在(1,+∞)上单调递减,所以g (x )max <g (1)=-32,所以f (x )的极小值小于-32.6.解:(1)证明:f ′(x )=3ax 2+2bx +c ,由题设,得f ′(1)=3a +2b +c =0,① f ′(m )=3am 2+2bm +c =-3a .②∵a <b <c ,∴6a <3a +2b +c <6c ,∴a <0,c >0.将①代入②得3am 2+2bm -2b =0,∴Δ=4b 2+24ab ≥0,得⎝ ⎛⎭⎪⎫b a 2+6ba ≥0,∴b a ≤-6或b a ≥0③.将c =-3a -2b 代入a <b <c 中,得-1<ba <1.④ 由③④得0≤ba <1.(2)由(1)知,f ′(x )=3ax 2+2bx +c (a <0),Δ=4b 2-12ac >0,∴方程f ′(x )=3ax 2+2bx +c =0有两个不等的实根,不妨设其为x 1,x 2,又f ′(1)=3a +2b +c =0,∴不妨令x 1=1,则x 2=-2b3a -1, ∴x 2<0<x 1,∴当x <x 2或x >x 1时,f ′(x )<0;当x 2<x <x 1时,f ′(x )>0.∴函数f (x )的单调递增区间是[x 2,x 1].∵|x 1-x 2|=2+2b3a ,0≤b a <1,∴2≤|x 1-x 2|<83.∵函数f (x )在区间[s ,t ]上单调递增,∴[s ,t ]⊆[x 2,x 1],∴0<|s -t |<83,即|s -t |的取值范围是⎝ ⎛⎭⎪⎫0,83.7.解 (1)当a =32时,f (x )=e x 2-1e x -32x , f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2), 令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,得0<x <ln 2.∴f (x )的增区间是(-∞,0],[ln 2,+∞),减区间是(0,ln 2). (2)f ′(x )=e x 2+1e x -a , 令e x =t ,由于x ∈[-1,1], ∴t ∈[1e ,e].令h (t )=t 2+1t (t ∈[1e ,e]),h ′(t )=12-1t 2=t 2-22t 2,∴当t ∈[1e ,2)时,h ′(t )<0,函数h (t )为单调递减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调递增函数.故h(t)在[1e,e]上的极小值点为t=2,且h(2)= 2.又h(e)=e2+1e<h(1e)=12e+e,∴2≤h(t)≤e+12e.∵函数f(x)在[-1,1]上为单调函数,①若函数在[-1,1]上单调递增,则a≤t2+1t对t∈[1e,e]恒成立,所以a≤2;②若函数f(x)在[-1,1]上单调递减,则a≥t2+1t对t∈[1e,e]恒成立,所以a≥e+12e,综上可得a的取值范围是(-∞,2]∪[e+12e,+∞).8.解(1)由已知得,f′(x)=(x2+ax+1)e x+e x(2x+a)=[x2+(a+2)x+a+1]e x=(x +a+1)(x+1)e x.∵a>0,∴-a-1<-1.∴当x∈(-∞,-a-1)时,f′(x)>0;当x∈(-a-1,-1)时,f′(x)<0;当x∈(-1,+∞)时,f′(x)>0.f(x)的单调递增区间为(-∞,-a-1)和(-1,+∞),单调递减区间为(-a-1,-1).且当x=-1时,f(x)有极小值(2-a)e-1,当x=-a-1时,f(x)有极大值(a+2)e-a-1.(2)由(1)知,f′(x)=(x+a+1)(x+1)e x,令g(x)=f′(x),则g′(x)=[x2+(a+4)x+2a+3]e x.假设f(x)有“致点”x0,则x0首先应是f(x)的极值点,即f′(x0)=0,∴x0=-1或x0=-a-1.当a=0时,-a-1=-1,此时f′(x)≥0恒成立,f(x)无极值.∴要使f(x)有极值,须a≠0.若x0=-1,则由题意可知g′(-1)=0,∴1-(a+4)+2a+3=0,解得a=0,与a≠0矛盾,即-1不是f(x)的“致点”.若x0=-a-1,则g′(-a-1)=0,即(a+1)2-(a+4)·(a+1)+2a+3=0,解得a =0,与a≠0矛盾,即-a-1也不是f(x)的“致点”.∴函数f(x)无“致点”.9.解(1)当k=1时,f(x)=(x-1)e x-x2,∴f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,即x(e x-2)>0,∴x>ln 2或x<0.令f′(x)<0,即x(e x-2)<0,∴0<x<ln 2.因此函数f(x)的单调递减区间是(0,ln 2);单调递增区间是(-∞,0)和(ln 2,+∞).(2)易知f′(x)=e x+(x-1)e x-2kx=x(e x-2k).∵f(x)在[0,+∞)上是增函数,∴当x≥0时,f′(x)=x(e x-2k)≥0恒成立.∴e x-2k≥0,即2k≤e x在[0,+∞)上恒成立.由于e x≥1,∴2k≤1,则k≤12.又当k =12时,f ′(x )=x (e x -1)≥0,当且仅当x =0时取等号. 因此,实数k 的取值范围是(-∞,12]. 10.解 (1)因为f (x )=ax 3+bx +c , 故f ′(x )=3ax 2+b .由于f (x )在x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧ 12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2. 当x ∈(-∞,-2)时,f ′(x )>0, 故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0, 故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0, 故f (x )在(2,+∞)上为增函数.由此可知f (x )在x =-2处取得极大值f (-2)=16+c , f (x )在x =2处取得极小值f (2)=c -16. 由题设条件知16+c =28,解得c =12. 此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.11.解(1)由题意得f′(x)=3x2+2bx+c,∴f′(1)=2b+c+3=3.又f(1)=b+c+1,点(1,f(1))在直线6x-2y-1=0上,∴6-2(b+c+1)-1=0,故b=-32,c=3.(2)∵g(x0)=f′(x0),∴a e x0=3x20-3x0+3,∴a=3x20-3x0+3e x0.令h(x)=3x2-3x+3e x,则h′(x)=-3(x2-3x+2)e x,令h′(x)=0,得x=1或x=2.当x变化时,h(x)与h′(x)在x∈(0,2]上的变化情况如下表所示:∴h(x)在x∈(0,2]上有极小值h(1)=3e ,又h(2)=9e2,h(0)=3>9e2,∴h(x)在x∈(0,2]上的取值范围为[3e,3),∴a的取值范围为[3e,3).12.(1)解 由题意得所求切线的斜率k =f ′(π4)=cos π4=22. 切点P (π4,22),则切线方程为y -22=22(x -π4), 即x -2y +1-π4=0. (2)解 g ′(x )=m -12x 2.①当m ≤0时,g ′(x )≤0,则g (x )的单调递减区间是(-∞,+∞); ②当m >0时,令g ′(x )<0, 解得x <-2m 或x >2m ,则g (x )的单调递减区间是(-∞,-2m ),(2m ,+∞). (3)证明 当m =1时,g (x )=x -x 36.令h (x )=g (x )+x 36-f (x )=x -sin x ,x ∈(0,+∞), h ′(x )=1-cos x ≥0,则h (x )是(0,+∞)上的增函数,故当x >0时,h (x )>h (0)=0,即sin x <x ,f (x )<g (x )+x 36. 13.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx .由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x ,k (k f (x )在x =k 处取得极小值f (k )=k (1-ln k )2,无极大值.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1, e ]上的唯一零点.当k >e 时,f (x )在区间(0, e )上单调递减,且f (1)=12>0,f (e)=e -k 2<0, 所以f (x )在区间(1, e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点14.解 (1)已知函数f (x )=sin x +cos x , 则f ′(x )=cos x -sin x , 代入F (x )=f (x )f ′(x )+(f (x ))2,可得F (x )=cos 2x +sin 2x +1=2sin(2x +π4)+1, 当2x +π4=2k π+π2(k ∈Z ),即x =k π+π8(k ∈Z )时,F (x )max =2+1,其最小正周期T =2π2=π.(2)由f (x )=2f ′(x ),易得sin x +cos x =2cos x -2sin x ,解得tan x =13.∴1+sin2xcos2x-sin x cos x =2sin2x+cos2xcos2x-sin x cos x=2tan2x+11-tan x=116.15.(1)解当a=12时,f(x)=12x-ex.f′(x)=12-e x,令f′(x)=0,得x=-ln 2.当x<-ln 2时,f′(x)>0;当x>-ln 2时,f′(x)<0,∴函数f(x)的单调递增区间为(-∞,-ln 2);单调递减区间为(-ln 2,+∞).(2)证明令F(x)=x-f(x)=e x-(a-1)x,①当a=1时,F(x)=e x>0,∴f(x)≤x成立.②当1<a≤1+e时,F′(x)=e x-(a-1)=e x-e ln(a-1),∴当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,∴F(x)在(-∞,ln(a-1))上单调递减,在(ln(a-1),+∞)上单调递增,∴F(x)≥F(ln(a-1))=e ln(a-1)-(a-1)·ln(a-1)=(a-1)[1-ln(a-1)],∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,∴F(x)≥0,即f(x)≤x成立.综上,当1≤a≤1+e时,f(x)≤x.16.解(1)f′(x)=a+1x=ax+1x(x>0).①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,所以f(x)的单调递增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a ,在区间(0,-1a )上,f ′(x )>0,f (x )单调递增. 在区间(-1a ,+∞)上,f ′(x )<0,f (x )单调递减.综上所述,当a ≥0时,f (x )的单调递增区间为(0,+∞);当a <0时,f (x )的单调递增区间为(0,-1a ),f (x )的单调递减区间为(-1a ,+∞). (2)由已知,转化为f (x )max <g (x )max , 又g (x )max =g (0)=1.由(1)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意. 当a <0时,f (x )在(0,-1a )上单调递增,在(-1a ,+∞)上单调递减, 故f (x )的极大值即为最大值,即f (x )max =f (-1a )=-1+ln(-1a )=-1-ln(-a ), 所以1>-1-ln(-a ),解得a <-1e 2. 故实数a 的取值范围是(-∞,-1e 2).17.(1)解 方法一 由题设f n ′(x )=1+2x +…+nx n -1, 所以f n ′(2)=1+2×2+…+(n -1)2n -2+n 2n -1,① 则2f n ′(2)=2+2×22+…+(n -1)2n -1+n 2n ,②①-②得,-f n ′(2)=1+2+22+…+2n -1-n 2n =1+2-2n 1-2-n 2n =(1-n )2n -1,所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2, 可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n+1. (2)证明 因为f n (0)=-1<0,f n ⎝ ⎛⎭⎪⎫23=23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23-1=1-2×⎝ ⎛⎭⎪⎫23n ≥1-2×⎝ ⎛⎭⎪⎫232>0, 所以f n (x )在⎝ ⎛⎭⎪⎫0,23内至少存在一个零点, 又f ′n (x )=1+2x +…+nx n -1>0, 所以f n (x )在⎝ ⎛⎭⎪⎫0,23内单调递增,因此f n (x )在⎝ ⎛⎭⎪⎫0,23内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x-1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12, 故12<a n <23,所以0<a n -12=12a n +1n <12×⎝ ⎛⎭⎪⎫23n +1=13⎝ ⎛⎭⎪⎫23n.18.解 (1)当a =1时,f (x )=12x 2-ln x (x >0), f ′(x )=x -1x ,x >0,∴k =f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线的斜率为0.(2)f ′(x )=ax -1x =ax 2-1x ,x >0.当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减; 当a >0时,令f ′(x )=0,解得x =aa (负值舍去). 当x ∈(0,a a )时,f ′(x )<0,f (x )在(0,aa )上单调递减; 当x ∈(a a ,+∞)时,f ′(x )>0,f (x )在(aa ,+∞)上单调递增. (3)存在a ∈(0,e 3),使得方程f (x )=2有两个不等的实数根. 理由如下:由(2)可知当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减,方程f (x )=2不可能有两个不等的实数根;当a >0时,函数f (x )在(0,a a )上单调递减,在(aa ,+∞)上单调递增,使得方程f (x )=2有两个不等的实数根,等价于函数f (x )的极小值f (a a )<2,即f (a a )=12+12ln a <2,解得0<a <e 3,所以a 的取值范围是(0,e 3).19.解: (1)∵f (x )=ln x -ax 2+(a -2)x ,∴函数的定义域为(0,+∞).∴f ′(x )=1x -2ax +(a -2)=1-2ax 2+(a -2)x x =-(2x -1)(ax +1)x.∵f (x )在x =1处取得极值, 即f ′(1)=-(2-1)(a +1)=0,∴a =-1.当a =-1时,在⎝ ⎛⎭⎪⎫12,1内f ′(x )<0,在(1,+∞)内f ′(x )>0,∴x =1是函数y =f (x )的极小值点.∴a =-1.(2)∵a 2<a ,∴0<a <1.f ′(x )=1x -2ax +(a -2)=1-2ax 2+(a -2)x x=-(2x -1)(ax +1)x,∵x ∈(0,+∞),∴ax +1>0,∴f (x )在⎝ ⎛⎭⎪⎫0,12上递增;在⎝ ⎛⎭⎪⎫12,+∞上递减,①当0<a ≤12时,f (x )在[a 2,a ]上单调递增,∴f (x )max =f (a )=ln a -a 3+a 2-2a ;②当⎩⎪⎨⎪⎧a >12,a 2<12,即12<a <22时,f (x )在⎝ ⎛⎭⎪⎫a 2,12上单调递增,在⎝ ⎛⎭⎪⎫12,a 上单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫12=-ln 2-a 4+a -22=a 4-1-ln 2;③当12≤a 2,即22≤a <1时,f (x )在[a 2,a ]上单调递减, ∴f (x )max =f (a 2)=2ln a -a 5+a 3-2a 2.20.解: (1)由f (x )=e x -ax -1,得f ′(x )=e x -a .当a ≤0时,对∀x ∈R ,有f ′(x )>0,所以函数f (x )在区间(-∞,+∞)上单调递增;当a >0时,由f ′(x )>0,得x >ln a ;由f ′(x )<0,得x <ln a ,此时函数f (x )的单调增区间为(ln a ,+∞),单调减区间为(-∞,ln a ). 综上所述,当a ≤0时,函数f (x )的单调增区间为(-∞,+∞); 当a >0时,函数f (x )的单调增区间为(ln a ,+∞),单调减区间为(-∞,ln a ).(2)函数F (x )=f (x )-x ln x 的定义域为(0,+∞),由F (x )=0,得a =e x-1x -ln x (x >0),令h (x )=e x -1x -ln x (x >0),则h ′(x )=(e x -1)(x -1)x 2,由于x >0,e x -1>0,可知当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0, 故函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,故h (x )≥h (1)=e -1.(随着x >0的增长,y =e x -1的增长速度越来越快,会超过并远远大于y =x 的增长速度,而y =ln x 的增长速度则会越来越慢.则当x >0且x 无限接近于0时,h (x )趋向于正无穷大.)故当a >e -1时,函数F (x )有两个不同的零点; 当a =e -1时,函数F (x )有且仅有一个零点; 当a <e -1时,函数F (x )没有零点.(3)由(1)知当a =1时,对∀x >0,有f (x )>f (ln a )=0,即e x -1>x ,当x >0时,e x -1>x ,故对∀x >0,g (x )>0,先用分析法证明:∀x >0,g (x )<x .要证对∀x >0,g (x )<x ,只需证对∀x >0,e x -1x <e x,即证对∀x >0,x e x -e x +1>0,构造函数H (x )=x e x -e x +1(x >0),则H ′(x )=x e x >0,故函数H (x )在(0,+∞)上单调递增,所以H (x )>H (0)=0,则对∀x >0,x e x -e x +1>0成立.当a ≤1时,由(1)知,f (x )在(0,+∞)上单调递增,则f (g (x ))<f (x )在(0,+∞)上恒成立;当a >1时,由(1)知,函数f (x )在(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,故当0<x <ln a 时,0<g (x )<x <ln a ,所以f (g (x ))>f (x ),则不满足题意. 所以满足题意的a 的取值范围是(-∞,1].21.解: (1)∵x ∈[0,+∞),∴f (x )=e x ⎝ ⎛⎭⎪⎫1-a 2x 2, ∴f ′(x )=e x ⎝ ⎛⎭⎪⎫-a 2x 2-ax +1 .由题意,f ′(x )≥0在[0,+∞)上恒成立,当a =0时,f ′(x )=e x >0恒成立,即满足条件. 当a ≠0时,要使f ′(x )≥0,而e x >0恒成立,故只需-a2x 2-ax +1≥0在[0,+∞)上恒成立,即⎩⎪⎨⎪⎧-a 2>0,-a 2·02-a ·0+1≥0,解得a <0. 综上,a 的取值范围为a ≤0.(2)证明:由题知f (x )≤x +1即为e x -a2x 2e |x |≤x +1.在x ≥0时,要证明e x-a 2x 2e |x |≤x +1成立,只需证e x ≤a 2x 2e x +x +1,即证1≤a2x 2+x +1e x ,①令g (x )=a 2x 2+x +1e x ,得g ′(x )=ax +1·e x -(x +1)e x (e x )2=ax -xe x ,整理得g ′(x )=x ⎝ ⎛⎭⎪⎫a -1e x ,∵x ≥0时,1e x ≤1,结合a ≥1,得g ′(x )≥0,∴g (x )在[0,+∞)上是增函数,故g (x )≥g (0)=1,从而①式得证.在x ≤0时,要使e x -a2x 2e |x |≤x +1成立,只需证e x ≤a 2x 2e -x +x +1,即证1≤a2x 2e -2x +(x +1)e -x ,②令m (x )=ax 22e -2x+(x +1)e -x ,得m ′(x )=-x e -2x [e x +a (x -1)], 而φ(x )=e x +a (x -1)在x ≤0时为增函数, 故φ(x )≤φ(0)=1-a ≤0,从而m ′(x )≤0,∴ m (x )在x ≤0时为减函数,则m (x )≥m (0)=1,从而②式得证.综上所述,原不等式e x -a2x 2e |x |≤x +1,即f (x )≤x +1在a ≥1时恒成立.(3)要使f (x 0)>x 0+1成立,即e x 0-a 2x 20e x 0>x 0+1,变形为ax 202+x 0+1e x 0-1<0,③要找一个x 0>0使③式成立,只需找到函数t (x )=ax 22+x +1e x -1的最小值,满足t (x )min <0即可.∵t ′(x )=x ⎝ ⎛⎭⎪⎫a -1e x , 令t ′(x )=0得e x =1a ,则x =-ln a ,在0<x <-ln a 时,t ′(x )<0,在x >-ln a 时,t ′(x )>0,即t (x )在(0,-ln a )上是减函数,在(-ln a ,+∞)上是增函数,∴ 当x =-ln a 时,t (x )取得最小值t (-ln a )=a2(ln a )2+a (-ln a +1)-1.下面只需证明:a2(ln a )2-a ln a +a -1<0在0<a <1时恒成立即可.令p (a )=a2(ln a )2-a ln a +a -1,则p ′(a )=12(ln a )2≥0,从而p (a )在(0,1)上是增函数,则p (a )<p (1)=0,从而a2(ln a )2-a ln a +a -1<0,得证. 于是t (x )的最小值t (-ln a )<0,因此可找到一个常数x 0=-ln a (0<a <1),使得③式成立.22.解: (1)由题意得,f ′(x )=1-1x ,∴f ′(2)=1-12=12,f (2)=1-ln 2,∴曲线y =f (x )在x =2处的切线方程为y -(1-ln 2)=12(x -2)⇒x -2y -2ln 2=0.(2)当x ∈(0,+∞)时,f (x )≥ax -2恒成立,∴a ≤1+1x -ln xx ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0⇒x =e 2, 可得g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即a ≤1-1e 2,故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,1-1e 223.解: (1)f (x )的定义域为(0,+∞),当a =1时,f ′(x )=2x -3+1x =2x 2-3x +1x,由f ′(x )>0得x <12或x >1,由f ′(x )<0得12<x <1,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫12,1.∴f (x )的极大值为f ⎝ ⎛⎭⎪⎫12=-54-ln 2;极小值为f (1)=-2.(2)由题意知f ′(x )=2x -3+ax ≥22a -3=1,∴a =2,此时2x =a x ,即2x =2x ,∴x =1,切点为(1,-2), ∴此时的切线l 的方程为x -y -3=0.24.解: (1)由不等式f (x )-g (x )=p ·⎝ ⎛⎭⎪⎫x -1x -2ln x -2e x >0对x ∈[2,e]恒成立, ∴p >2x ln x +2e x 2-1对x ∈[2,e]恒成立.令h (x )=2x ln x +2ex 2-1,x ∈[2,e],则p >h (x )max .∵h ′(x )=-2(1+x 2)ln x -2x (2e -x )-2(x 2-1)2<0.∴h (x )在区间[2,e]上是减函数,∴h (x )max =h (2)=4ln 2+2e 3,故p >4ln 2+2e3.(2)依题意f (x )min >g (x )min .∵f ′(x )=p +p x 2-2x >0,∴f (x )在[2,e]上单调递增,故f (x )min =f (2).又g (x )=2ex 在[2,e]上单调递减,故g (x )min =g (e),由f (2)>g (e),解得p >4+4ln 23. 25.解: (1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln xx 2,由f ′(x )=0得x =1,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )在x =1处取得唯一的极值,由题意得⎩⎪⎨⎪⎧a +14>2a -1,2a -1<1<a +14⇒34<a <1,故实数a 的取值范围为⎝ ⎛⎭⎪⎫34,1.(2)x ≥1时,不等式f (x )≥k x +1化为1+ln x x ≥kx +1⇒k ≤(x +1)(1+ln x )x ,令g (x )=(x +1)(1+ln x )x,由题意知k ≥g (x )在[1,+∞)上恒成立,g ′(x )=x -ln x x 2,再令h (x )=x -ln x (x ≥1),则h ′(x )=1-1x ≥0,当且仅当x =1时取等号, 因此h (x )=x -ln x 在[1,+∞)上递增,所以h (x )≥h (1)=1>0,故g ′(x )=x -ln xx 2>0,所以g (x )在[1,+∞)上递增,g (x )min =g (1)=2, 因此k ≤2,即k 的取值范围为(-∞,2].(3)由(2)知,当x ≥1时,f (x )≥2x +1恒成立,即1+ln x x ≥2x +1,∴ln x ≥1-2x +1>1-2x .令x =k (k +1),k ∈N *,则有ln[k (k +1)]>1-2k (k +1)=1-2⎝ ⎛⎭⎪⎫1k -1k +1,分别令k =1,2,3,…,n ,。

A新高考数学 高考重难专攻(二) 恒成立与有解问题

A新高考数学   高考重难专攻(二) 恒成立与有解问题

根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题如若: (1)f(x)≥a恒成立,则f(x)min≥a,然后利用最值确定参数满足的不等式,解不 等式即得参数范围;
(2)f(x)≥a能成立(有解),则可等价转化为f(x)max≥a求参数范围.
已知f(x)=ex-ax2,若f(x)≥x+(1-x)ex在[0,+∞)恒成立,求实数a的取值范围. 解:f(x)≥x+(1-x)ex,即ex-ax2≥x+ex-xex,即ex-ax-1≥0,x≥0. 令h(x)=ex-ax-1(x≥0),则h′(x)=ex-a(x≥0),当a≤1时,由x≥0知 h′(x)≥0, ∴在[0,+∞)上h(x)≥h(0)=0,原不等式恒成立. 当a>1时,令h′(x)>0,得x>ln a;令h′(x)<0,得0≤x<ln a. ∴h(x)在[0,ln a)上单调递减,又∵h(0)=0,∴在[0,+∞)上h(x)≥0不恒成立, ∴a>1不合题意. 综上,实数a的取值范围为(-∞,1].
含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有: (1)∀x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)min; (2)∀x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)min>g(x2)max; (3)∃x1∈M,∃x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)min; (4)∃x1∈M,∀x2∈N,f(x1)>g(x2)⇔f(x1)max>g(x2)max.
利用分离参数法确定不等式f(x,λ)≥0(x∈D,λ为参数)恒成立问题中参数范围 的步骤:
(1)将参数与变量分离,化为f1(λ)≥f2(x)或f1(λ)≤f2(x)的形式; (2)求f2(x)在x∈D时的最大值或最小值; (3)解不等式f1(λ)≥f2(x)max或f1(λ)≤f2(x)min,得到λ的取值范围.

根号xlnx的极限 -回复

根号xlnx的极限 -回复

根号xlnx的极限-回复根号xlnx的极限是一个经典的数学问题,它涉及到很多重要的数学概念和技巧。

在这篇文章中,我们将一步一步地回答这个问题,并解释其中的数学原理和推理过程。

首先,让我们回顾一下极限的定义。

对于函数f(x),当x趋近于某个特定的值a时,我们说函数的极限为L,如果对于任意给定的ε>0,存在δ>0,使得当0 < x - a < δ时,有f(x) - L < ε成立。

那么现在让我们考虑根号xlnx的极限。

这个函数在x=0附近是不定义的,因为lnx在x=0处的取值是负无穷大。

所以,我们可以将问题重新定义为x>0时,根号xlnx的极限。

接下来,我们可以用一些基本的数学技巧来解决这个问题。

首先,我们可以将函数根号xlnx写成一个复合函数的形式,即f(x) = (lnx)^(1/2)。

现在,我们想要找到x趋近于0时,f(x)的极限。

要做到这一点,我们需要引入一些重要的数学定理和方法。

首先,我们应用连续函数的性质,如果f(x)和g(x)是连续函数,并且lim(x→a)g(x) = L存在,那么lim(x→a)f(g(x)) = f(L)。

在我们的例子中,我们可以将f(x) = (lnx)^(1/2)看作是一个连续函数,而g(x) = lnx则是另一个连续函数。

现在,我们来计算lim(x→0)lnx的极限。

lnx是一个常见的对数函数,它在x=1处的取值为0,而且是单调递增的。

在x趋近于0时,lnx趋近于负无穷大。

因此,我们可以得出lim(x→0)lnx = -∞。

根据连续函数的性质,我们知道lim(x→-∞)(lnx)^(1/2)的极限等于f(-∞)。

但是,我们知道函数(lnx)^(1/2)在负无穷大处并不定义。

所以,我们还需要一些更高级的数学工具来解决这个问题。

接下来,我们可以应用洛必达法则来求解极限。

洛必达法则告诉我们,如果两个函数f(x)和g(x)在某个点a的附近都可导,并且lim(x→a)f(x) = lim(x→a)g(x) = 0(或无穷大),那么极限lim(x→a)f(x)/g(x)就等于lim(x→a)f'(x)/g'(x)。

已知函数性质求参数范围

已知函数性质求参数范围

已知函数性质求参数范围1.若函数()ln f x kx x =-在区间()1,+∞单调递增,则k 的取值范围是() A. (],2-∞- B. (],1-∞- C. [)2,+∞ D. [)1,+∞2.已知可导函数()f x 的导函数为()f x ',若对任意的x R ∈,都有()()2f x f x >'+,且()2019f x -为奇函数,则不等式()20172xf x e -<的解集为()A. (),0-∞B. ()0,+∞C.D. 3.已知定义在实数集R 上的函数()f x 满足()13f =,且()f x 的导数()f x '在R 上恒有()()2f x x R '<∈,则不等式()21f x x <+的解集为()A. ()1,+∞B. (),1-∞-C. ()1,1-D. ()(),11,-∞-⋃+∞4.若函数()2ln f x m x x mx =+-在区间()0,+∞内单调递增,则实数m 的取值范围为()A. []0,8B. (]0,8C. ][(),08,-∞⋃+∞ D. ()(),08,-∞⋃+∞512分) (1)若函数()f x 在[)1,+∞上为增函数,求实数a 的取值范围; (2)当1a =时,求()f x 在.6 (1)若曲线()y f x =在点()()1,1f 处的切线与直线10x y --=平行,求a 的值; (2)在(1)条件下,求函数()f x 的单调区间和极值; 7(a R ∈). (Ⅰ)若0x >,恒有()f x x ≤成立,求实数a 的取值范围; (Ⅱ)若函数()()g x f x x =-有两个相异极值点1x ,2x ,求证: 8.已知函数f (x )=ln x ax (a 是实数),g (x ) 1.(1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.9.已知函数()()22ln 21R f x x ax x a a =--+∈ .(1)若2a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若()0f x ≥对任意在[)1,x ∈+∞恒成立,求实数a 的取值范围.10 (1)若1a =,求函数()f x 的极值;(2)若()f x 在[)1,+∞内为单调增函数,求实数a 的取值范围; (3)对于n N +∈,求证:11,其中实数0a ≥. (1)若0a =,求函数()f x 在[]1,5x ∈上的最值; (2)若0a >,讨论函数()f x 的单调性.12.已知函数()2x f x e x a =-+,x R ∈,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求函数()y f x =的解析式;(2)当x R ∈时,求证:()2f x x x ≥-+;(3)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.参考答案1.D【解析】对()f x ,由于()f x 在()1,+∞()1,x ∈+∞都成立,对于任意的()1,x ∈+∞都成立,又在()1,+∞上,无限趋近于1,所以1k ≥。

专题10 含参函数的极值、最值讨论(原卷版)

专题10 含参函数的极值、最值讨论(原卷版)

专题10 含参函数的极值、最值讨论考点一 含参函数的极值【例题选讲】[例1] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ). (1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程.(2)求函数f (x )的极值.[例2] 已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.[例3] 设f (x )=x ln x -32ax 2+(3a -1)x . (1)若g (x )=f ′(x )在[1,2]上单调,求a 的取值范围;(2)已知f (x )在x =1处取得极小值,求a 的取值范围.[例4] (2016·山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.[例5] 已知函数f (x )=⎝⎛⎭⎫x -1-a 6e x +1,其中e =2.718…为自然对数的底数,常数a >0. (1)求函数f (x )在区间(0,+∞)上的零点个数;(2)函数F (x )的导数F ′(x )=()e x -a f (x ),是否存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点?请说明理由.【对点训练】1.已知函数f (x )=ln x -12ax 2+x ,a ∈R . (1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.3.已知函数f (x )=x 2-3x +a x. (1)若a =4,讨论f (x )的单调性;(2)若f (x )有3个极值点,求实数a 的取值范围.4.已知函数f(x)=ax-x2-ln x(a∈R).(1)求函数f(x)的单调区间;(2)若函数f(x)存在极值,且这些极值的和大于5+ln2,求实数a的取值范围.5.(2018·全国Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x .(1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)若x =0是f (x )的极大值点,求a .考点二 含参函数的最值【例题选讲】[例1] 已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[例2] 已知函数f (x )=ax 2+(1-2a )x -ln x .(1)当a >0时,求函数f (x )的单调递增区间;(2)当a <0时,求函数f (x )在⎣⎡⎦⎤12,1上的最小值.[例3] 已知函数f (x )=ln x x-1. (1)求函数f (x )的单调区间及极值;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.[例4] 已知函数f (x )=m ln x x+n ,g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2(m ,n ,a ∈R ),且曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(1)求实数m ,n 的值及函数f (x )的最大值;(2)当a ∈⎝⎛⎭⎫-e ,1e 时,记函数g (x )的最小值为b ,求b 的取值范围.[例5] (2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+b .(1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【对点训练】1.已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).2.已知函数f (x )=(x -a )e x (a ∈R ).(1)当a =2时,求函数f (x )的图象在x =0处的切线方程;(2)求函数f (x )在区间[1,2]上的最小值.3.已知函数f (x )=ax -ln x ,F (x )=e x +ax ,其中x >0,a <0.(1)若f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a ∈⎝⎛⎦⎤-∞,-1e 2,且函数g (x )=x e ax -1-2ax +f (x )的最小值为M ,求M 的最小值.4.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.5.已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围.考点三 含参函数的极值与最值的综合问题【例题选讲】[例1] 已知函数f (x )=e x 1+ax 2,其中a 为正实数,x =12是f (x )的一个极值点. (1)求a 的值;(2)当b >12时,求函数f (x )在[b ,+∞)上的最小值.[例2] 已知函数f (x )=a ln (x +b )-x .(1)若a =1,b =0,求f (x )的最大值;(2)当b >0时,讨论f (x )极值点的个数.[例3] 设函数f (x )=a x +e -x (a >1).(1)求证:f (x )有极值;(2)若x =x 0时f (x )取得极值,且对任意正整数a 都有x 0∈(m ,n ),其中m ,n ∈Z ,求n -m 的最小值.[例4] 已知函数f (x )=a ln x +1x(a >0). (1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.[例5] 已知函数f (x )=(ax -1)ln x +x 22. (1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],求g (x 1)-g (x 2)的最小值.[例6] 已知函数g (x )=x 22+x +ln x . (1)若函数g ′(x )≥a 恒成立,求实数a 的取值范围;(2)函数f (x )=g (x )-mx ,若f (x )存在单调递减区间,求实数m 的取值范围;(3)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.【对点训练】1.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1)求f (x )在区间(-∞,1)上的极小值和极大值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.(1)若x=3是f(x)的极值点,求f(x)的单调区间;(2)求g(x)=f(x)-2x在区间[1,e]上的最小值h(a).4.已知常数a≠0,f(x)=a ln x+2x.(1)当a=-4时,求f(x)的极值;(2)当f(x)的最小值不小于-a时,求实数a的取值范围.(1)若f (x )在⎝⎛⎭⎫0,π2上有极值点,求a 的取值范围; (2)若a =1,x ∈⎝⎛⎭⎫0,2π3时,f (x )≥bx cos x ,求b 的最大值.6.已知函数f (x )=ln x +12x 2-ax +a (a ∈R ). (1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知实数0a ≠
,设函数()=ln 0.f x a x x +
> (1)当34
a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞
均有()2f x a
≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.
分析:本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.
解:(1)当34a =-时,3()ln 04
f x x x =->.
3()
4f 'x x =-= 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).
(2)由1(1)2f a
≤,得04a <≤.
当0a <≤()f x ≤2ln 0x -≥.
令1t a
=,则t ≥.
设()22ln ,g t t
x t =≥
则2()2ln g t t x
=-.
(i )当1
,7x ⎡⎫∈+∞⎪⎢⎣⎭ ≤
()2ln g t g x ≥=.
记1()ln ,7
p x x x =≥,则
1()
p'x x ==
=. 故
所以,()(1)0p x p ≥=.
因此,()2()0g t g p x ≥=≥.
(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….

211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦
,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣
⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭….
由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-
<-= ⎪ ⎪⎝⎭⎝⎭
. 所以,()<0q x .
因此()0
g t g =>….
由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,
即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ….
综上所述,所求a 的取值范围是⎛ ⎝⎦.。

相关文档
最新文档