山西省百校联考2016年中考数学模拟试卷(一)(含解析)

合集下载

2016年山西省太原市中学考试数学一模考试卷

2016年山西省太原市中学考试数学一模考试卷

2016年省市中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.(3分)3的相反数是()A.﹣3 B.﹣C.3 D.2.(3分)下列运算正确的是()A.x2+x3=x6 B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x23.(3分)从《省页岩气地质调查与评价》获悉,我省页岩气资源储量约为4.44万亿立方米,把4.44万亿用科学记数法表示为()A.4.44×108B.4.44×1010C.4.44×1011D.4.44×10124.(3分)小明帮助做生意的父亲整理仓库,在仓库的一角整齐地堆放着若干个相同的正方体货箱,如图是小明画出的这堆货箱的三种视图,这堆正方体货箱共有()A.11箱B.10箱C.9箱D.8箱5.(3分)小明从一副扑克牌中取出3红桃、2黑桃共5牌与弟弟做游戏,把这5牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一,两人抽到花色相同的概率是()A.B.C.D.6.(3分)如图,四边形ABCD是⊙O的接四边形,若∠C=140°,则∠BOD的度数为()A.70°B.80°C.90°D.100°7.(3分)解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想B.转化思想C.方程思想D.函数思想8.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.9.(3分)如图,在钝角△ABC中,AC<BC,用尺规在BC上确定一点P,使PA+PC=BC,下面是四个同学的作法(只留下了作图痕迹,未连接PA),其中正确的是()A.B.C.D.10.(3分)如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F在△ABC部,则点E到BC的距离为()A.1 B.2 C.D.二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在答题卡对应的横线上.11.(3分)因式分解:a2﹣4= .12.(3分)如图,已知AD∥BE∥CF,,DE=3,则DF的长为.13.(3分)在一个纸箱中,装有红色、黄色、绿色的塑料球共60个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到红色球、绿色球的频率分别稳定在15%和45%,则这个纸箱中黄色球的个数可能有个.14.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,….依次规律,第n个图案有个黑棋子.(用含n的代数式表示)15.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 度.16.(3分)如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB=10,则该正方体的棱长为.三、解答题:本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)计算:|﹣2|+(2﹣π)0﹣4×2.(2)解方程:x2+4x﹣2=0.18.(6分)阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家九韶,曾提出利用三角形的三边求面积的“九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.19.(6分)如图,点A(m,3)在反比例函数y=(x>0)的图象上,点B在反比例函数y=的图象上,AB∥x轴,过点A作AD⊥x轴于点D,连接OB 与AD相交于点C,且AC=2CD.(1)求m的值;(2)求反比例函数y=的表达式.20.(7分)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.21.(8分)随着现代通讯工具的发展,学生带手机已经成为一种普遍现象,手机对于学生的影响越来越受到社会的关注.于是,某课题小组对此进行了问卷调查,其中的一个问题有三个选项:有利,无影响,有弊,要求每人必选且只选一项.他们随即调查了若干名学生和家长,整理并制作了如下两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)求这次调查的家长人数,并补全图(1);(2)求图(2)中表示“有利”的扇形圆心角的度数;(3)该地区约有10万名学生,据此估计学生认为带手机“有弊”的人数.22.(10分)如图是小明同学画出的某同学放风筝的示意图,从地面A处放飞的风筝几分钟后飞至C处,此时,点B与旗杆PQ的顶部点P以及点C恰好在一直线上,PQ⊥AB于点Q.(1)已知旗杆的高为10米,在B处测得旗杆顶部点P的仰角为30°,在A处测得点P的仰角为45°,求A、B之间的距离;(2)此时,在A处测得风筝C的仰角为75°,设绳子AC在空中为一条线段,求AC的长.(结果保留根号)23.(12分)在学习完矩形的容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.操作发现:如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.(1)小组成员甲发现“AE=CF”,请你完成证明;(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是,当AE的长为时,四边形BEDF是菱形”;探究发现:受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD的点A′,C′处.(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.24.(13分)如图,抛物线y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),点D为顶点,连接BC、BD、CD.(1)求抛物线的表达式;(2)试判断△BCD的形状,并说明理由;(3)将该抛物线平移,使它的顶点P与点A关于直线BD对称,求点P的坐标并写出平移的方法.2016年省市中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.1.(3分)(2014•)3的相反数是()A.﹣3 B.﹣C.3 D.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.2.(3分)(2016•二模)下列运算正确的是()A.x2+x3=x6 B.2x+3y=5xy C.(x3)2=x6D.x6÷x3=x2【解答】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式=x6,正确;D、原式=x3,错误.故选C.3.(3分)(2016•一模)从《省页岩气地质调查与评价》获悉,我省页岩气资源储量约为4.44万亿立方米,把4.44万亿用科学记数法表示为()A.4.44×108B.4.44×1010C.4.44×1011D.4.44×1012【解答】解:4.44万亿=00=4.44×1012,故选D.4.(3分)(2016•一模)小明帮助做生意的父亲整理仓库,在仓库的一角整齐地堆放着若干个相同的正方体货箱,如图是小明画出的这堆货箱的三种视图,这堆正方体货箱共有()A.11箱B.10箱C.9箱D.8箱【解答】解:由俯视图可得最底层有6箱,由正视图和左视图可得第二层有2箱,第三层有1个箱,共有6+2+1=9箱.故选:C.5.(3分)(2016•一模)小明从一副扑克牌中取出3红桃、2黑桃共5牌与弟弟做游戏,把这5牌背面朝上洗匀后放在桌子上,小明与弟弟同时各抽一,两人抽到花色相同的概率是()A.B.C.D.【解答】解:画树状图为:共有20种等可能的结果数,其中两人抽到花色相同的结果数为8,所以两人抽到花色相同的概率==.故选D.6.(3分)(2016•一模)如图,四边形ABCD是⊙O的接四边形,若∠C=140°,则∠BOD的度数为()A.70°B.80°C.90°D.100°【解答】解:∵四边形ABCD是⊙O的接四边形,∴∠A+∠C=180°,∴∠A=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:B.7.(3分)(2016•一模)解分式方程时,在方程的两边同时乘以(x ﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想B.转化思想C.方程思想D.函数思想【解答】解:解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想,故选B.8.(3分)(2016•一模)不等式组的解集在数轴上可表示为()A.B.C.D.【解答】解:,解①得x>1,解②得x≥2.则不等式组的解集是x≥2.故选A.9.(3分)(2016•一模)如图,在钝角△ABC中,AC<BC,用尺规在BC上确定一点P,使PA+PC=BC,下面是四个同学的作法(只留下了作图痕迹,未连接PA),其中正确的是()A.B.C.D.【解答】解:∵PA+PC=BC,BP+CP=BP,∴BP=AP,∴点P应在AB的垂直平分线上,根据线段垂直平分线的做法可得D正确;故选:D.10.(3分)(2016•一模)如图,小明把一个边长为10的正方形DEFG剪纸贴在△ABC纸片上,其中AB=AC=26,BC=20,正方形的顶点D,G分别在边AB、AC上,且AD=AG,点E、F在△ABC部,则点E到BC的距离为()A.1 B.2 C.D.【解答】解:过点A作AM⊥BC,交DG于点H,BC于点M,∵AB=AC,BC=20,∴BM=MC=BC=10,∴AH===24,∵正方形的顶点D,G分别在边AB、AC上,且AD=AG,∴DG⊥AH,DH=HG=DG,∵DG=10,∴DH=5,∵∠BAM=∠MAB,∠ABC=∠ADH,∴△ADH∽△ABM,∴=,∴=,∴AD=13,∴AH=HM=12,∴点E到BC的距离为:12﹣10=2;故选B.二、填空题:本大题共6个小题,每小题3分,共18分,把答案写在答题卡对应的横线上.11.(3分)(2016•市模拟)因式分解:a2﹣4= (a+2)(a﹣2).【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.(3分)(2016•一模)如图,已知AD∥BE∥CF,,DE=3,则DF的长为7.5 .【解答】解:∵AD∥BE∥CF,∴=,即=,解得:EF=4.5,∴DF=DE+EF=3+4.5=7.5.故答案为:7.5.13.(3分)(2016•一模)在一个纸箱中,装有红色、黄色、绿色的塑料球共60个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到红色球、绿色球的频率分别稳定在15%和45%,则这个纸箱中黄色球的个数可能有24 个.【解答】解:∵共60个球,其中摸到红色球、绿色球的频率分别稳定在15%和45%,∴黄球所占的比例为100%﹣15%﹣45%=40%,设盒子中共有黄球x个,则,解得:x=24.故答案为:24.14.(3分)(2016•一模)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,….依次规律,第n个图案有5n﹣1 个黑棋子.(用含n的代数式表示)【解答】解:观察图①有5×1﹣1=4个黑棋子;图②有5×2﹣1=9个黑棋子;图③有5×3﹣1=14个黑棋子;图④有5×4﹣1=19个黑棋子;…图n有5n﹣1个黑棋子,故答案为5n﹣1.15.(3分)(2017•江阴市一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 36 度.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.16.(3分)(2016•一模)如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图,如果AB=10,则该正方体的棱长为3 .【解答】解:如图,设这个展开图围成的正方体的棱长为x,则EG=x,ED=3x,FG=3x,BD=x,∵AB=10,∴AH=10﹣3x,∵EG∥AB,∴△EFG∽△AEH,∴,即,解得:x=3.∴正方体的棱长为3,故答案为:3.三、解答题:本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(2016•一模)(1)计算:|﹣2|+(2﹣π)0﹣4×2.(2)解方程:x2+4x﹣2=0.【解答】解:(1)原式=2+1﹣1﹣8=3﹣9=﹣6;(2)方程整理得:x2+4x=2,配方得:x2+4x+4=6,即(x+2)2=6,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.18.(6分)(2016•一模)阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家九韶,曾提出利用三角形的三边求面积的“九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于6.(2)若一个三角形的三边长分别是,求这个三角形的面积.【解答】解:(1)p===9,S===6.答:这个三角形的面积等于6.(2)S=====.答:这个三角形的面积是.故答案为:6.19.(6分)(2016•一模)如图,点A(m,3)在反比例函数y=(x>0)的图象上,点B在反比例函数y=的图象上,AB∥x轴,过点A作AD⊥x轴于点D,连接OB与AD相交于点C,且AC=2CD.(1)求m的值;(2)求反比例函数y=的表达式.【解答】解:(1)∵点A(m,3)在反比例函数y=(x>0)的图象上,∴3=,解得m=1,(2)过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=y=(x>0)上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF =3S矩形AFOD=9,∴k=9,∴反比例函数y=的表达式为y=.20.(7分)(2016•一模)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一年滞尘1000mg所需的银杏树叶的片数与一年滞尘550mg所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【解答】解:设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,由题意得:=,解得:x=22,经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.21.(8分)(2016•一模)随着现代通讯工具的发展,学生带手机已经成为一种普遍现象,手机对于学生的影响越来越受到社会的关注.于是,某课题小组对此进行了问卷调查,其中的一个问题有三个选项:有利,无影响,有弊,要求每人必选且只选一项.他们随即调查了若干名学生和家长,整理并制作了如下两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)求这次调查的家长人数,并补全图(1);(2)求图(2)中表示“有利”的扇形圆心角的度数;(3)该地区约有10万名学生,据此估计学生认为带手机“有弊”的人数.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,补全图形如下:(2)360°×=36°,答:图(2)中表示“有利”的扇形圆心角的度数为36°.(3)×10=1.5(万人),答:估计学生认为带手机“有弊”的人数约为1.5万人.22.(10分)(2016•一模)如图是小明同学画出的某同学放风筝的示意图,从地面A处放飞的风筝几分钟后飞至C处,此时,点B与旗杆PQ的顶部点P以及点C恰好在一直线上,PQ⊥AB于点Q.(1)已知旗杆的高为10米,在B处测得旗杆顶部点P的仰角为30°,在A处测得点P的仰角为45°,求A、B之间的距离;(2)此时,在A处测得风筝C的仰角为75°,设绳子AC在空中为一条线段,求AC的长.(结果保留根号)【解答】解:(1)∵PQ⊥AB,∴∠BQP=∠AQP=90°,在RT△BPQ中,∵PQ=10,∠BQP=90°,∠B=30°,∵tanB=,∴=,∴BQ=10,在RT△APQ中,,∠PAB=45°,∴APQ=90°﹣∠PAB=45°,AQ=PQ=10,∴AB=BQ+AQ=10+10.答:A、B之间的距离为(10+10)米.(2)如图作AE⊥BC于E.在RT△ABE中,∵∠AEB=90°,∠B=30°,AB=10+10,∴AE=AB=5+5,∵∠CAD=75°,∠B=30°,∴∠C=45°,在RT△CAE中,sinC=,∴=,∴AC=(5+5)=5+5,答:AC的长为(5+5)米.23.(12分)(2016•一模)在学习完矩形的容后,某课外学习小组对矩形的运动问题进行了研究,如图,在矩形ABCD中,AB=4,BC=6,点O为矩形ABCD对角线的交点.操作发现:如图(1)所示,点E为AD边上任意一点,连接EO并延长与BC边交于点F.(1)小组成员甲发现“AE=CF”,请你完成证明;(2)如图(2),连接BE、DF,小组成员乙发现“四边形BEDF的形状一定是平行四边形,当AE的长为时,四边形BEDF是菱形”;探究发现:受前面两位组员的启发,小组成员丙与丁对图形进一步操作,将图(2)中的△ABE与△CDF分别沿BE与DF进行翻折,点A与点C分别落在矩形ABCD的点A′,C′处.(3)如图(3),连接A′D,BC′,发现“四边形BA′DC′是平行四边形”,请你证明这个结论;(4)如图(4),连接A′C′,A′C′有最小值吗?若有,请你直接写出AE的长;若没有,请说明理由.【解答】(1)证明:如图1,连接AC,∴点O在线段AC上,AD∥BC,OA=OC,∴∠AOE=∠COF,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF;(2)解:如图2,连接BD,∵四边形ABCD为矩形,∴AB=CD,∠BAE=∠DCF,由(1)有AE=CF,∴DE=BFRt△ABE≌Rt△CDF,∴BE=DF,∵EF=EF,∴四边形BEDF是平行四边形.设AE=x,则DE=6﹣x,∵四边形BEDF是菱形,∴BE=BD=6﹣x,在Rt△ABE中,AB=4,根据勾股定理,得 AB2+AE2=BE2,∴16+x2=(6﹣x)2,∴x=.故答案为平行四边形,.(3)解:如图3,连接BD,由(1)有,AE=CF,∵四边形ABCD为矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴Rt△ABE≌Rt△CDF,∴∠ABE=CDF,∵沿BE翻折,点A落在A′处,∴Rt△ABE≌Rt△A′BE,∴A′B=AB,∠ABE=∠A′BE=∠ABA′同理可得,C′D=CD,∠CDF=∠C′DF=∠C′DC,∴∠ABA′=∠C′DC,A′B=C′D,∠ABO﹣∠ABA′=∠CDO﹣∠CDC′,∴∠OBA′=∠ODC′,∴A′B∥C′D,∴四边形BA′DC′是平行四边形;(4)解:如图4,由于A'C'始终过平行四边形A'BC'D的对角线的交点,∴要使A′C′最小,只有点A′,C′落在矩形对角线BD上,设AE=x,∴EA′=x,DE=6﹣x,矩形的对角线BD==2,由对折有BA′=BA=4∴DA′=BD﹣BA′=2﹣4,在Rt△DEA′中,有DE2=EA′2+DA′2,∴(6﹣x)2=x2+(2﹣4)2∴x=,即:AE=.24.(13分)(2016•一模)如图,抛物线y=x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),点D为顶点,连接BC、BD、CD.(1)求抛物线的表达式;(2)试判断△BCD的形状,并说明理由;(3)将该抛物线平移,使它的顶点P与点A关于直线BD对称,求点P的坐标并写出平移的方法.【解答】解:(1)∵抛物线y=x2+bx+c经过点B(3,0),点C(0,﹣3),∴,解得:b=﹣2,C=﹣3.∴抛物线的表达式为y=x2﹣2x﹣3.(2)△BCD是直角三角形.理由如下:如图1所示:∵点B的坐标为(3,0),点C的坐标为(0,﹣3),∴OB=OC=3.在Rt△COB中,∠BOC=90°,∴BC2=OB2+OC2=18.过点D作DE⊥x轴与点E.由y=x2﹣2x﹣3=(x﹣1)2﹣4,得顶点D的坐标为(1,﹣4).∴DE=4,OE=1.∴BE=2.在Rt△DEB中,∠DEB=90°,∴BD2=DE2+BE2=20.过点C作CF⊥DE于点F,则CF=OE=1,DF=DE﹣OC=1.∴DC2=CF2+DF2=2.∴BD2=BC2+DC2.∴△BCD是直角三角形.(3)如图2所示.作点A关于直线BD的对称点P交BD于点M.当y=0时,x2﹣2x﹣3=0.解得:x1=3,x2=﹣1.∴A(﹣1,0).设BD的解析式为y=kx+b.∵将D(1,﹣4),B(3,0)代入得;,解得:k=2,b=﹣6,∴直线BD的解析式为y=2k﹣6.∵AP与BD垂直,∴直线AP的一次项系数为﹣.设直线AP的解析式为y=﹣+n.∵将A(﹣1,0)代入得:+n=0,解得n=﹣,∴直线AP的解析式为y=﹣.∵将y=x与y=2x﹣6联立,解得:x=,y=﹣.∴点M的坐标为(,﹣).由轴对称的性质可知:M是AP的中点,∴点P的坐标为(,﹣).∵抛物线y=(x﹣1)2﹣4平移后的顶点坐标为P,∴抛物线y=x﹣1)2﹣4先向右平移个单位长度,再向上平移个单位长度所得抛物线的顶点与点A关于BD对称.参与本试卷答题和审题的老师有:智波;zhjh;sks;王学峰;HJJ;gsls;知足长乐;sd2011;lantin;gbl210;家有儿女;1987483819;sjzx;HLing;守拙;三界无我;弯弯的小河;星月相随;梁宝华(排名不分先后)菁优网2017年4月2日。

2016中考模拟试题(2016年山西省百校联考二整编)分析

2016中考模拟试题(2016年山西省百校联考二整编)分析

2016年中考模拟试题5姓名:_______________班级:_______________成绩:_______________一、选择题(每题2分,共20分)1.关于高速公路上正常行驶的小汽车,下列估测最接近实际的是( )A.行驶速度约为100m/sB.发动机的最大功率约为0.1kwC.车的质量约为1.5×103kgD.车身的长度约为50m2.小明在动物世界节目中,知道大象可以发出次声波,通知远方的同伴,隔天他到动物园却听到大象响亮的叫声。

关于大象发出的次声波与小明在动物园听见的大象叫声进行比较,下列说法正确的是()A.前者不是由振动产生的B.前者的传播不需要介质C.在空气中,前者的传播速度比后者快D.前者的频率比后者小3.如图所示是某一物质发生物态变化时,吸热与放热的情形,甲乙丙代表物质的三种状态。

则那一种状态时,物质具有固定的体积,且具有固定的形状()A.甲B.乙C.丙D.无法确定4.蹦床是集艺术性和竞技性于一身的运动,是我国奥运新兴优势项目,也是深受广大青少年喜爱的健身运动。

如图所示是蹦床运动员运动到最高点后数值下落的情景。

不计空气的阻力,下列分析正确的是()A.运动员在最高点时,只受到重力并且不具有惯性B.运动员在接触蹦床前下落过程中,重力势能转化为动能C.运动员下落压缩蹦床过程中,运动员的动能不变D.运动员静止站立在蹦床上时,他的重力与对蹦床的压力是一对平衡力5.如图所示,在水平放置足够长的平板上,重为5N的铁块在水平向左的拉力F的作用下铁块沿直线水平向左一对,此时铁块受到的摩擦力为1.2N。

铁块一对过程中速度的大小随时间t变化的图像如图乙所示.下列说法正确的是()A.0—2s内,铁块做匀速直线运动B.2—6s内,铁块处于静止状态C.0—2s内,拉力等于1.2ND.2—6s内,拉力等于1.2N6.下列哪种现象是由光的折射形成的()A.看见水中的鱼B.树木在水中的倒影C.光遇到不透明的物体形成的影子D.路边建筑物的玻璃幕墙造成的光污染7.如图所示的天气预报的信息图片.关于图片中信息的解释正确的是()A.预报的最低气温读作“摄氏零下2度”B.雪形成属于凝华现象C.雨形成汽化现象D.雪熔化时需要放热8.甲乙是用相同滑轮组成的滑轮组,如图所示,用它们分别将重物G提高相同的高度,不计绳重和摩擦,下列说法中正确的是()A.乙滑轮组比甲滑轮组更省力B.拉力F1、F2做的总功相同C.甲滑轮组的机械效率比乙大D.以定滑轮为参照物,重物总是静止的9.把质量为0.5kg、体积为6×104m3的物体投入水中,当物体静止时,物体的状态和所受浮力分析正确的是()A.物体漂浮,F浮=5NB.物体悬浮,F浮=5NC.物体漂浮,F浮=6ND.物体沉在水底,F浮=6N10.如图所示是一科技创新小组同学们设计的水位计工作电路图,绝缘浮子随水位计的升降带动滑动变阻器R金属滑片P升降,通过水位计来显示水位升降情况。

太原2016百校联考(第二次)初三数学卷(解析版)

太原2016百校联考(第二次)初三数学卷(解析版)

太原2016百校联考 初三数学卷(解析版)第一部分 试试你的基本功一、精心选一选(每小题3分,共30分) 1.-21的相反数是( ) A .2 B .-2 C .21 D .-21 2.下列式子正确的是( ) A .-0.1>-0.01 B .—1>0 C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 (A B C D图4.多项式12++xy xy 是()A.二次二项式 B .二次三项式 C.三次二项式 D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①② 6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米图3 图28.图5是某市一天的温度变化曲线图,通过该图可 知,下列说法错误的是( )A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃4所示,用它围成的正方体只可能是( )10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶 C .5瓶 D .6瓶 二、细心填一填(每空3分,共15分)11.52xy -的系数是 。

12.某公园的成人单价是10元,儿童单价是4元。

某旅行团有a 名成人和b 名儿童;则旅行团的门票费用总和为 元。

13.已知(a +1)2+|b -2|=0,则1+ab 的值等于 。

山西省百校联考2016年中考数学模拟试卷(一)(含解析)

山西省百校联考2016年中考数学模拟试卷(一)(含解析)

2016年山西省百校联考中考数学模拟试卷(一)一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣16的相反数是()A.﹣B.﹣16 C.D.162.义务教育阶段,我们学习了很多平面几何图形,有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.如图是太原市某日八个整点的空气质量趋势图(空气指数越大越严重),根据图中的空气指数可知这组数据的中位数是()A.64 B.60 C.56 D.485.不等式组的解集是()A.x<1 B.x≥3 C.1≤x<3 D.1<x≤36.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50° B.65° C.80° D.90°7.如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(1,﹣3),则当x>1时,y1与y2的大小关系为()A.y1>y2B.y1=y2 C.y1<y2D.无法确定8.按照山西省“改薄工程”规划,我省5年投入85亿元用于改造农村县(市、区)薄弱学校,促进义务教育均衡发展,其中某项“改薄工程”建设,甲队单独完成需要20天,若由甲队先做13天,则剩下的工程由甲、乙两队合作3天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天,根据题意可列方程为()A.13+3+x=20 B. +3(+)=1C. +=1 D.(1﹣)+x=39.如图,在六边形ABCDEF中,∠A+∠B+∠C+∠D=460°,FP、EP分别平分∠AFE,∠FED,则∠P的度数是()A.50° B.55° C.60° D.65°10.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.关于x的一元二次方程ax2+bx+c=﹣4的两根分别为﹣5和﹣1D.若点(﹣2,m),(﹣5,n)在抛物线上,则m>n二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:3a2•a4+(﹣2a2)3=______.12.据教育部网站报道,为贯彻落实《国务院关于进一步完善城乡义务教育经费保障机制的通知》(国发[2016]67号),确保2016年春季开学城乡义务教育学校正常运转,中央财政提前下达2016年第二批城乡义务教育补助经费预算110.21亿元.数据110.21亿元用科学记数法表示为______元.13.某中学计划开设A、B、C、D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为1200人,由此可以估计选修B课程的学生约有______人.14.如图,小明在窗台C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B 的俯角为30°,已知窗台C处离地面的距离CD为5m,则大树的高度为______m.(结果保留根号)15.某社区将一块正方形空地划出如图所示区域(阴影部分)进行硬化后,原空地一边减少了5m,另一边减少了4m,剩余矩形空地的面积为240m2,则原正方形空地的边长是______m.16.如图,已知四边形ABCD与四边形CFGE都是矩形,点E在CD上,点H为AG的中点,AB=3,BC=2,CE=1.5,CF=1,则DH的长为______.三、解答题(本大题共8个小题,共72分。

2016年山西数学中考试卷+答案

2016年山西数学中考试卷+答案

2016年⼭西数学中考试卷+答案⼭西省2016年⾼中阶段教育学校招⽣统⼀考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)⼀、选择题(本⼤题共10个⼩题,每⼩题3分,共30分.在每个⼩题给出的四个选项中,只有⼀项符合题⽬要求)1.-的相反数是( )A. B.-6 C.6 D.-2.不等式组的解集是( )A.x>-5B.x<3C.-5D.x<53.以下问题不适合全⾯调查的是( )A.调查某班学⽣每周课前预习的时间B.调查某中学在职教师的⾝体健康状况C.调查全国中⼩学⽣课外阅读情况D.调查某校篮球队员的⾝⾼4.如图是由⼏个⼤⼩相同的⼩正⽅体搭成的⼏何体的俯视图,⼩正⽅形中的数字表⽰该位置⼩正⽅体的个数,则该⼏何体的左视图是( )5.我国计划在2020年左右发射⽕星探测卫星.据科学研究,⽕星距离地球的最近距离约为5 500万千⽶,这个数据⽤科学记数法可表⽰为( )A.5.5×106千⽶B.5.5×107千⽶C.55×106千⽶D.0.55×108千⽶6.下列运算正确的是( )A.-=-B.(3a2)3=9a6C.5-3÷5-5=D.-7.甲、⼄两个搬运⼯搬运某种货物,已知⼄⽐甲每⼩时多搬运600 kg,甲搬运5 000 kg所⽤时间与⼄搬运8 000 kg所⽤时间相等,求甲、⼄两⼈每⼩时分别搬运多少kg货物.设甲每⼩时搬运x kg货物,则可列⽅程为( )= B.=A.-C.=D.=-8.将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-39.如图,在?ABCD中,AB为☉O的直径,☉O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为( )A.πB.πC.πD.2π10.宽与长的⽐是-(约0.618)的矩形叫做黄⾦矩形.黄⾦矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以⽤这样的⽅法画出黄⾦矩形:作正⽅形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆⼼,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H.则图中下列矩形是黄⾦矩形的是( )A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH第Ⅱ卷(⾮选择题,共90分)⼆、填空题(本⼤题共5个⼩题,每⼩题3分,共15分)11.如图是利⽤⽹格画出的太原市地铁1,2,3号线路部分规划⽰意图.若建⽴适当的平⾯直⾓坐标系,表⽰双塔西街的点的坐标为(0,-1),表⽰桃园路的点的坐标为(-1,0),则表⽰太原⽕车站的点(正好在⽹格点上)的坐标是.12.已知点(m-1,y1),(m-3,y2)是反⽐例函数y=(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”).13.如图是⼀组有规律的图案,它们是由边长相同的⼩正⽅形组成,其中部分⼩正⽅形涂有阴影,依此规律,第n个图案中有个涂有阴影的⼩正⽅形(⽤含有n的代数式表⽰).14.如图是⼀个能⾃由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,⾯积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘⾃由转动两次,当每次转盘停⽌后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.15.如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为.三、解答题(本⼤题共8个⼩题,共75分.解答应写出⽂字说明、证明过程或演算步骤)16.(本题共2个⼩题,每⼩题5分,共10分)(1)计算:(-3)2--- ×+(-2)0;(2)先化简,再求值:---,其中x=-2.17.(本题7分)解⽅程:2(x-3)2=x2-9.18.(本题8分)每年5⽉的第⼆周为“职业教育活动周”,今年我省开展了以“弘扬⼯匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师⽣并邀请学⽣家长和社区居民参加“职教体验观摩”活动,相关职业技术⼈员进⾏了现场演⽰,活动后该校教务处随机抽取了部分学⽣进⾏调查:“你最感兴趣的⼀种职业技能是什么?”并对此进⾏了统计,绘制了如图所⽰的统计图(均不完整).请解答以下问题:(1)补全条形统计图和扇形统计图;(2)若该校共有1 800名学⽣,请估计该校对“⼯业设计”最感兴趣的学⽣有多少⼈;(3)要从这些被调查的学⽣中,随机抽取⼀⼈进⾏访谈,那么正好抽到对“机电维修”最感兴趣的学⽣的概率是.19.(本题7分)阿基⽶德折弦定理图1证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.图2(2)填空:如图3,已知等边△ABC内接于☉O,AB=2,D为上⼀点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.图320.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售⽅案(客户只能选择其中⼀种⽅案):⽅案A:每千克5.8元,由基地免费送货.⽅案B:每千克5元,客户需⽀付运费2 000元.(1)请分别写出按⽅案A,⽅案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选⽤⽅案A⽐⽅案B付款少;(3)某⽔果批发商计划⽤20 000元,选⽤这两种⽅案中的⼀种,购买尽可能多的这种苹果,请直接..写出他应选择哪种⽅案.21.(本题10分)太阳能光伏发电因其清洁、安全、便利、⾼效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板⽀撑架的截⾯图,其中的粗线表⽰⽀撑⾓钢,太阳能电池板与⽀撑⾓钢AB的长度相同,均为300 cm,AB的倾斜⾓为30°,BE=CA=50 cm,⽀撑⾓钢CD,EF与底座地基台⾯接触点分别为D,F,CD垂直于地⾯,FE⊥AB于点E.两个底座地基⾼度相同(即点D,F到地⾯的垂直距离相同),均为30 cm,点A到地⾯的垂直距离为50 cm,求⽀撑⾓钢CD和EF的长度各是多少cm(结果保留根号).22.(本题12分)综合与实践问题情境在综合与实践课上,⽼师让同学们以“菱形纸⽚的剪拼”为主题开展数学活动.如图1,将⼀张菱形纸⽚ABCD(∠BAD>90°)沿对⾓线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中⼼,按逆时针⽅向旋转⾓α,使α=∠BAC,得到如图2所⽰的△AC'D,分别延长BC和DC'交于点E,则四边形ACEC'的形状是;(2)创新⼩组将图1中的△ACD以A为旋转中⼼,按逆时针⽅向旋转⾓α,使α=2∠BAC,得到如图3所⽰的△AC'D,连接DB,C'C,得到四边形BCC'D,发现它是矩形.请你证明这个结论;实践探究(3)缜密⼩组在创新⼩组发现结论的基础上,量得图3中BC=13 cm,AC=10 cm,然后提出⼀个问题:将△AC'D沿着射线DB⽅向平移a cm,得到△A'C″D',连接BD',CC″,使四边形BCC″D'恰好为正⽅形,求a的值.请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同⼀平⾯内进⾏⼀次平移,得到△A'C'D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图⽅法,写出你发现的结论,不必证明.图423.(本题14分)综合与探究如图,在平⾯直⾓坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l 经过坐标原点O,与抛物线的⼀个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8),(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE,若存在,请直接写出....点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的⼀个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m 为何值时,△OPQ是等腰三⾓形.答案全解全析:⼀、选择题1.A 只有符号不同的两个数互为相反数,所以-的相反数是--=.评析相反数、倒数、绝对值等是⼭西中考数学第1题通常考查的内容,所以这些知识简单却很重要.2.C 解不等式x+5>0得x>-5,解不等式2x<6得x<3,所以不等式组的解集为-53.故选C.评析解不等式(组)是中考必考内容之⼀,解这类题的关键是正确运⽤不等式的性质准确求出不等式(组)的解集.3.C A.班级学⽣⼈数较少,适合全⾯调查;B.某中学在职教师⾝体健康状况适合全⾯调查;C.全国中⼩学⽣课外阅读情况不适合全⾯调查;D.某校篮球队员的⾝⾼适合全⾯调查.故选C.4.A 由左视图的定义知选A.5.B 5 500万千⽶=55 000 000千⽶=5.5×107千⽶,故选B.6.D -=,故A选项不正确;(3a2)3=27a6,故B选项不正确;5-3÷5-5=25,故C选项不正确;=2-5=-3,故D选项正确.故选D.评析本题考查了实数的运算,掌握幂的乘⽅、同底数幂的运算法则,⼆次根式的运算是解题的关键.7.B 甲每⼩时搬运x kg货物,则⼄每⼩时搬运(x+600)kg货物,根据时间相等可列⽅程为=,故选B.评析本题的关键是找出等量关系,并把其中的量⽤含有未知数的代数式表⽰出来.8.D y=x2-4x-4=(x-2)2-8,抛物线的顶点坐标为(2,-8),平移后的顶点坐标为(-1,-3),根据顶点式得平移后抛物线的表达式是y=(x+1)2-3,故选D.评析先求顶点坐标,再根据平移确定新顶点坐标,最后由顶点式求出函数关系式,这是解决此类题的⽅法.9.C 连接EO,FO,∵CD与☉O相切于点E,∴EO⊥CD,∵CD∥AB,∴∠AOE=90°,∵∠A=∠C=60°,AO=OF,∴∠AOF=60°,∴∠EOF=90°-60°=30°,∵AB为☉O的直径,AB=12,∴OE=6.∴的长为π=π,故选C.评析本题考查了平⾏四边形、切线和圆的有关知识,求弧长的关键是求出圆⼼⾓和半径.10.D A.=,不符合.B.=,不符合.C.设正⽅形ABCD的边长为a,则EF=a,FG==,∴==,不符合.D.由C可得GC=a-,则=-=-,符合,故选D.⼆、填空题11.答案(3,0)解析先通过双塔西街对应的点的坐标(0,-1)和桃园路对应的点的坐标(-1,0)确定坐标轴,再根据⽹格中表⽰太原⽕车站的点的位置确定出其坐标是(3,0).评析⽤⽹格图确定坐标的关键是要正确理解坐标系和点的坐标的意义.12.答案>解析反⽐例函数y=中m<0,所以在每⼀个象限内,y随x的增⼤⽽增⼤,∵m-1<0,m-3<0,m-1>m-3,∴y1>y2.评析本题考查反⽐例函数的性质,属容易题.13.答案(4n+1)解析第1个图案,阴影正⽅形有5=(4×1+1)个,第2个图案,阴影正⽅形有9=(4×2+1)个,第3个图案,阴影正⽅形有13=(4×3+1)个,……故第n个图案,阴影正⽅形有(4n+1)个.评析本题考查学⽣探索规律的能⼒.14.答案解析画树状图如图:∴共有9种等可能的结果,都是奇数有4种结果,∴P(都是奇数)=.评析本题考查概率问题,正确地画出树状图或列出表格是解题的关键.15.答案3-解析∵CD⊥AB,CD=AB=4,C为AB的中点,∴AC=AB=2,在Rt△DAC中,AD2=AC2+CD2,可得AD=2.∵AE平分∠DAB,∴∠EAB=∠DAE.∵EH⊥CD,∴EH∥AB,∴∠EAB=∠AEH=∠EAH,∴AH=EH,易证四边形BCGE是矩形,∴CB=GE=2,设HG=x,则HE=HA=x+2,∵HG∥AC,∴△DHG∽△DAC,∴=,即-=,解得x==3-.评析本题是⼀道⼏何综合题,考查学⽣综合应⽤知识的能⼒,解题的关键是把⽐较复杂的图形分成等腰三⾓形,矩形和直⾓三⾓形,运⽤其性质找出未知量与已知量的关系,⽤⽅程的思想解决问题.三、解答题16.解析(1)原式=9-5-4+1=1.(2)原式=---=-=.当x=-2时,原式==--=2.17.解析解法⼀:原⽅程可化为2(x-3)2=(x+3)(x-3), 2(x-3)2-(x+3)(x-3)=0,(x-3)[2(x-3)-(x+3)]=0,(x-3)(x-9)=0,解得x1=3,x2=9.解法⼆:原⽅程可化为x2-12x+27=0.a=1,b=-12,c=27.∵b2-4ac=(-12)2-4×1×27=36>0,∴x===6±3.因此,原⽅程的根为x1=3,x2=9.18.解析(1)如图:(2)1 800×30%=540(⼈).∴估计该校对“⼯业设计”最感兴趣的学⽣⼈数是540⼈.(3)0.13或或.19.解析(1)证明:⼜∵∠A=∠C,∴△MBA≌△MGC.∴MB=MG.⼜∵MD⊥BC,∴BD=GD.∴CD=CG+GD=AB+BD.(2)2+2.评析本题把圆的知识放到数学⽂化背景上考查,既普及了数学⽂化⼜考查了圆的知识,还有助于提⾼学⽣的阅读能⼒.20.解析(1)⽅案A:函数表达式为y=5.8x.⽅案B:函数表达式为y=5x+2 000.(2)由题意,得5.8x<5x+2 000.解不等式,得x<2 500.∴当购买量x的取值范围为2 000≤x<2 500时,选⽤⽅案A⽐⽅案B付款少.(3)他应选择⽅案B.评析本题考查了⼀次函数的应⽤,根据题意准确地建⽴数学模型是解决问题的关键.21.解析如图,设G为射线AG与线段CD的交点.则∠CAG=30°.在Rt△ACG中,CG=AC·sin 30°=50×=25(cm).由题意,得GD=50-30=20(cm),∴CD=CG+GD=25+20=45(cm).连接FD并延长与BA的延长线交于点H.由题意,得∠H=30°.在Rt△CDH中,=2CD=90(cm),CH=°∴EH=EC+CH=AB-BE-AC+CH=300-50-50+90=290(cm).在Rt△EFH中,EF=EH·tan 30°=290×=(cm).答:⽀撑⾓钢CD的长为45 cm,EF的长为 cm.评析把解直⾓三⾓形问题与现代绿⾊能源的建设结合在⼀起,是数学应⽤的⼀个⽅向,引导了学⽣在学习中要多关注现实⽣活.22.解析(1)菱形.(2)证明:如图,作AE⊥CC'于点E.由旋转得AC'=AC,∴∠CAE=∠C'AE=α=∠BAC.由题意知BA=BC,∴∠BCA=∠BAC.∴∠CAE=∠BCA,∴AE∥BC.同理,AE∥DC',∴BC∥DC'.⼜∵BC=DC',∴四边形BCC'D是平⾏四边形.⼜∵AE∥BC,∠CEA=90°,∴∠BCC'=180°-∠CEA=90°,∴四边形BCC'D是矩形.(3)过点B作BF⊥AC,垂⾜为F.∵BA=BC,∴CF=AF=AC=×10=5(cm).在Rt△BCF中,BF=-=-=12(cm).在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF.∴=,即=,解得CE=.当四边形BCC″D'恰好为正⽅形时,分两种情况:①点C″在边C'C上,a=C'C-13=-13=.②点C″在C'C的延长线上,a=C'C+13=+13=.综上所述,a的值为或.(4)答案不唯⼀.例:如图.平移及构图⽅法:将△ACD沿着射线CA⽅向平移,平移距离为AC的长度,得到△A'C'D,连接A'B,DC.结论:四边形A'BCD是平⾏四边形.23.解析(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴----解得-∴抛物线的函数表达式为y=x2-3x-8.∵y=x2-3x-8=(x-3)2-,∴抛物线的对称轴为直线x=3.⼜∵抛物线与x轴交于A,B两点,点A的坐标为(-2,0),∴点B的坐标为(8,0).设直线l的函数表达式为y=kx(k≠0).∵点D(6,-8)在直线l上,∴6k=-8,解得k=-.∴直线l的函数表达式为y=-x.∵点E为直线l和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-×3=-4,即点E的坐标为(3,-4).(2)抛物线上存在点F,使△FOE≌△FCE.点F的坐标为(3-,-4)或(3+,-4).(3)解法⼀:分两种情况:①当OP=OQ时,△OPQ是等腰三⾓形.∵点E的坐标为(3,-4),∴OE==5.过点E作直线ME∥PB,交y轴于点M,交x轴于点H,则=.∴OM=OE=5.∴点M的坐标为(0,-5). 设直线ME的函数表达式为y=k1x-5(k1≠0).∴3k1-5=-4,解得k1=.∴ME的函数表达式为y=x-5.令y=0,得x-5=0,解得x=15.∴点H的坐标为(15,0).⼜∵MH∥PB,∴=,即-=,∴m=-.②当QO=QP时,△OPQ是等腰三⾓形.∵当x=0时,y=x2-3x-8=-8,∴点C的坐标为(0,-8).∴CE=-=5.∴OE=CE.∴∠1=∠2.⼜∵QO=QP,∴∠1=∠3.∴∠2=∠3,∴CE∥PB.设直线CE交x轴于点N,其函数表达式为y=k2x-8(k2≠0),∴3k2-8=-4,解得k2=.∴CE的函数表达式为y=x-8.令y=0,得x-8=0.∴x=6.∴点N的坐标为(6,0).∵CN∥PB,∴=,∴-=,解得m=-.综上所述,当m的值为-或-时,△OPQ是等腰三⾓形.解法⼆:设抛物线的对称轴交直线PB于点M,与x轴交于点H.分两种情况: ①当QO=QP时,△OPQ为等腰三⾓形.当x=0时,y=x2-3x-8=-8,∴点C的坐标为(0,-8).∵点E的坐标为(3,-4),∴OE==5,CE=-=5,∴OE=CE,∴∠1=∠2.∴∠1=∠3,∴∠2=∠3,∴PB∥CE.⼜∵HM∥y轴,∴四边形PMEC是平⾏四边形.∴EM=CP=-8-m.∴HM=HE+EM=4+(-8-m)=-4-m,BH=8-3=5.∵HM∥y轴,∴△BHM∽△BOP,∴=,=,∴---∴m=-.②当OP=OQ时,△OPQ为等腰三⾓形.∵EH∥y轴,∴△OPQ∽△EMQ,∴=,∴EQ=EM.∴EM=EQ=OE-OQ=OE-OP=5-(-m)=5+m.∴HM=4-(5+m)=-1-m.∵EH∥y轴,∴△BHM∽△BOP.=,∴=.∴---∴m=-.∴当m的值为-或-时,△OPQ为等腰三⾓形.评析本题考查学⽣的综合探究能⼒,通过对存在性和结论开放性问题的探究,考查学⽣综合运⽤所学知识的能⼒.第(3)问考查学⽣运⽤分类讨论的思想⽅法解决问题的能⼒.。

山西省2016年中考模拟数学试题及答案

山西省2016年中考模拟数学试题及答案

山西省2016年中考模拟数学试题2015.12.10一、填空题(每小題3分,共计30分)1.下列四个数中绝对值最大的数是( )• (A)-3 (B)0 (C)l (D)22.下列计算正确的是( ).(A)931-2-=)( (B)6234)(-2a a = (C) 2)2(2-=-a (D)236a a a =÷ 3.“珍惜生命,注意安全”是一个永恒的话题.在现代化的城市,交通安全万万不能被忽视,下列四个图形是国际通用的四种交通标志,其中不是中心对称图形的是().4、已知A(x 1,y 1)、B(x 2,y 2)均在反比例函数xy 2=的图象上,若x 1<0 <x 2,则y 1、y 2 的大小关系为( )(A)y 1<0<y 2 (B)y 2<0<y 1 (C) y 1<y 2<0 (D) y 2<y 1<05.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是( )6.如图,为了测量河两岸A 、B 两点间的距离,只需在与AB 垂直方向的点C 处测得AC=a ,∠ACB=a,那么AB 等于( )(A)a.tana (B) a.sina (C)a.cosa(D)aatan7.如图,在平行四边形ABCD 中, E 是BC 延长线上一点, AE 交CD 于F.且CE=错误!未找到引用源。

BC ,则=∆∆EBAADFS S ( ) A 41 B 21 C 错误!未找到引用源。

D 94 8.某商品原价为200元,经过连续两次降价后售价为148元,禁止驶入F ED CBA设平均每次降价为a%,则下面所列方程正确的是(〉. (A) 200 (l+a%)2 =148 (B) 200 (l-a% )2=148(C) 200 (l-2a% ) =148 (D) 200 (1-a 2%)= l4B9.如图,△ABC 为等腰直角三角形,∠ACB=90°,将△ABC 绕点 A 逆时针 旋转75°,得到△AB ′C ′、过点B ′作B ′D ⊥CA,交CA 的延长线于点D, 若AC=6,则AD 的长为( ) (A) 2 (B) 3 (C)32(D) 2310、笔直的海岸线上依次有A 、B 、C 三个港口,甲船从A 港 口出发,沿海岸线勻速驶向C 港,1小时后乙船从B 港口 出发,沿海岸线匀速驶向A 港,两船同时到达目的地。

山西省2016年名校联考中考模拟数学试题(含答案)

山西省2016年名校联考中考模拟数学试题(含答案)

启用前*绝密万安中学中考数学总复习绝密资料山西省2016年名校联考中考模拟数学试题时间120分钟满分120分2016.4.10一、选择题(每小题3分,共36分)1.﹣的倒数是()A.﹣3 B.3 C.﹣D.2.某市2014年末,全州普查登记常住人口约为403.25万人.将403.25万用科学记数法表示正确的是()A.4.0325×104B.4.0325×106C.4.0325×108D.4.0325×1073.要使式子﹣有意义,字母x的取值必须满足()A.x≤B.x≥﹣C.x≥且x≠3 D.x≥4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°5.数据1,2,4,2,3,3,2,5的中位数是()A.1 B.2 C.3 D.2.56.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B. C. D.7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.248.如图,矩形ABCD的外接圆O与水平地面相切于点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时与地面相切的弧为()A.B.C.D.9.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.10.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A. cm B. cm C. cm D.2cm11.α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A.30°B.45°C.30°或150°D.60°12.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A.1 B.C.D.二、填空题(每小题3分,共12分)13.因式分解:xy2﹣4xy+4x= .14.已知,A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点(横,纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示).15.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,动点P从点B开始沿边BC向点C 以每秒2个单位长度的速度运动,动点Q从点C开始沿C﹣A﹣B向点B以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当P点到达C点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t= 秒时,PQ∥AB.(2)在整个运动过程中,线段PQ的中点所经过的路程长为.三、解答题(本大题共8小题,共66分)17(6分).计算: +.18(6分).如图方格中,有两个图形.(1)画出图形(1)向右平移7个单位的图形a;(2)画出图形a关于直线AB轴对称的图形b;(3)将图形b与图形(2)看成一个整体图形,请写出这个整体图形的对称轴的条数.19(6分).商场销售A,B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?20(8分).卫生部修订的《公共场所卫生管理条例实施细则》从今年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整;(3)求以上五种戒烟方式人数的众数.21(10分).已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+AE2=DE2.22(10分).如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=6cm.求:(1)线段BE的长;(2)图中阴影部分的面积.23(8分).将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于4的概率(用树状图或列表法求解).24(14分).如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N (2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P 为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题1.故选:A.2.故选B.3.故选:C.4.故选:A.5.故选D.6.故选:C.7.故选B.8.故选B.9.故选C.10.故选:B.11.故选B.12.故选C.二、填空题13.故答案为:x(y﹣2)2.14故答案为:13π﹣26.15.故答案为:20.16.故答案为:(1);(2)+.三、解答题17.【解答】解:原式=+==.18.【解答】解:(1)(2)所作图形如下:(3)从图知,共2条.19.【解答】解:设A种品牌的衬衣有x件,B种品牌的衬衣有y件.依题意可得解得答:A种品牌的衬衣有100件,B种品牌的衬衣有200件.20.【解答】解:(1)这次调查中同学们调查的总人数为20÷10%=200(人);(2)由(1)可知,总人数是200人.药物戒烟:200×15%=30(人);警示戒烟:200×30%=60,强制戒烟:70÷200=35%.完整的统计图如图所示:(3)∵五种戒烟方式中有两种是20人,其余均为1种,∴以上五种戒烟方式人数的众数是20.21.【解答】证明:(1)∵△ACB和△DCE都是等腰直角三角形,∴CE=CD,AC=CB,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠ACE=∠DCB,在△ACE和△BCD中∴△ACE≌△BCD(SAS).(2)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴在Rt△AED中,由勾股定理得:AD2+AE2=DE2.22.【解答】解:(1)连接AE.∵AB 是⊙O 的直径,∴∠AEB=90°,又∵BC ⊥DM ,∴∠ECB=90°,∴∠AEB=∠ECB ,∵直线DM 与⊙O 相切于点E ,∴∠CEB=∠EAB ,∴△AEB ∽△ECB ,∴,∴BE 2=AB •BC ,∴BE=(cm );(2)连接OE ,过点O 作OG ⊥BE 于点G . ∴BG=EG ,在Rt △ABE 中,cos ∠ABE=, ∴∠ABE=30°,在Rt △OBG 中,∠ABE=30°,BO=4, ∴OG=2,∴, ∵OE=OB ,∴∠OEB=∠OBE=30°,∴∠BOE=120°,∴S 扇形OBE =,∴S 阴影=S 扇形OBE ﹣S △EOB =()cm 2.23.【解答】解:(1)从口袋中随机摸出一个,其标号为奇数的概率为;(2)列举所有等可能的结果,画树状图(列表法略):∴一共有9种情况,摸出的两个球上数字之和小于4的有3种;∴摸出的两个球上数字之和小于4的概率为=24.【解答】解:(1)因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)所以,可建立方程组:,解得:所以,所求二次函数的解析式为y=﹣x2+2x+3,所以,顶点M(1,4),点C(0,3).(2)直线y=kx+d经过C、M两点,所以,即k=1,d=3,直线解析式为y=x+3.令y=0,得x=﹣3,故D (﹣3,0)∴CD=,AN=,AD=2,CN=2∴CD=AN ,AD=CN∴四边形CDAN 是平行四边形.(3)假设存在这样的点P ,使以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 因为这个二次函数的对称轴是直线x=1,故可设P (1,y 0),则PA 是圆的半径且PA 2=y 02+22,过P 做直线CD 的垂线,垂足为Q ,则PQ=PA 时以P 为圆心的圆与直线CD 相切. 由第(2)小题易得:△MDE 为等腰直角三角形,故△PQM 也是等腰直角三角形,由P (1,y 0)得PE=y 0,PM=|4﹣y 0|,,由PQ 2=PA 2得方程:,解得,符合题意,所以,满足题意的点P 存在,其坐标为(1,)或(1,).。

山西省2016年中考数学模拟试题及答案

山西省2016年中考数学模拟试题及答案

山西省2016年中考数学模拟试题时间120分钟满分120分 2015.8.24一、选择题(每小题3分,共30分)1.下列四个有理数:1,﹣2,0,.其中最小的一个有理数是()A. 1 B.﹣2 C. 0 D.2.式子在实数范围内有意义,则x的取值范围是()A.x≥5B. x>﹣5 C.x≥﹣5 D. x>53.分解因式:ax2﹣a,正确的结果是()A. a(x2﹣1)B. a(x﹣1)2C. a(x+1)(x﹣1)D. ax24.某中学随机调查了15名学生一天在家里做作业的时间,列表如下:做作业时间(小时)0.5 1 2 2.5人数 3 5 4 3则这15名同学这一天在家里做作业时间的中位数与众数分别为()A. 1,1 B. 1,2 C. 1,3 D. 2,15.下列计算中,正确的是()A. a2+a3=a5B.(a+b)2=a2+b2C. ab﹣2ab=﹣ab D. a6÷a3=a26.如图,直角坐标系中,线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(﹣4,0),则A1的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣4,﹣2)7.一机器零件如图,其主视图为()A.B.C.D.8.武汉市统计局统计了今年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图.下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP 比1月份低;③这三个月的人均GDP都在增长.其中正确的结论是()A.①②③B.①②C.①③D.②③ 10题图9.将大小相同的小正方体木块按如图方式摆放于一墙角,图①中摆放有1个小正方体,图②中摆放有4个小正方体,图③中摆有9个小正方体,…,按此规律,图⑥中摆放的小正方体个数为()A. 25 B. 36 C. 49 D. 5010.如图,直角坐标系中,P点坐标为(0,4),M为线段OP上(不含O、P)一动点,以OM为直径作⊙A,PN切⊙A于N,设PN﹣PM=m,则m的值()A.为定值1 B. 0<m≤1C. 0<m≤2D.≤m≤1二、填空题(每小题3分,共18分)11.计算:2﹣(﹣1)= .12.近年来,我国高速铁路建设发展迅猛,截止今年五月,全国高速铁路总长接近12000千米.12000这个数据用科学记数法表示为.13.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为.14.甲、乙两车从A地出发以各自的速度匀速开往450km外的B地,甲车先行0.5h后乙车出发,乙车到达B地后原地休息.甲、乙两车的距离s与乙车行驶的时间t之间的函数关系如图,则此次行程中,甲、乙两车两次相遇的时间间隔为h.14题图 15题图 16题图15.如图,点A、B在双曲线y=上,AB的延长线交x轴于C,连OA.若AB=2BC,S△OAC=12,则k= .16.如图,等腰Rt△ABC中,AC=BC,AB=2,将线段AB绕A点逆时针方向旋转,B点的对应点为D,若CD∥AB,则CD的长为.三、解答题(共8小题,共72分)17.已知直线y=x+b经过点(2,3),求不等式x+b<1的解集.18.如图1,▱ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:△AED≌△CFB;(2)如图2,连AF、CE,请你判断四边形AECF的形状,并证明你的结论.19.如图所示的两张图片形状完全相同,把两张图片全部从中间剪断,再把4张形状相同的小图片混合在一起.从4张图片中随机地摸取一张,接着再随机地摸取一张.(1)用树状图法或列表法求摸取的两张小图片恰好合成一张完整图片的概率;(2)老师将四张小图片洗均匀后先由小明随机抽出两张,剩下的给小亮,谁手中的两张图片恰好能合成一张完整图片谁就可获取老师发给的一张游戏卡,经过若干轮这样的游戏后,小明与小亮谁获得的游戏卡多?请直接写出结果.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立了平面直角坐标系后,△ABC的三个顶点都在格点上,将△ABC绕(0,1)点逆时针方向旋转90°,得到△A′B′C′.(1)请画出△A′B′C′,并直接写出A′的坐标;(2)在旋转变换中,点A所经路径的长为;(3)在x轴上存在点P,使PA+PB′最小,请直接写出P点坐标.21.如图1,AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,连AC.(1)求证:AC平分∠DAB;(2)如图2,延长AB,交直线DC于E,若=,求tan∠E.22.商场经营的某品牌童装,其成本为每件80元.4月的销售额(销售额=销售量×售价)为20000元,5月份商场对这种童装售价打9折销售,结果销售量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)在“六一儿童节”商场在4月份售价基础上打折促销,在不亏本的前提条件下,销售的数量y(件)与打折的折数x满足一次函数y=﹣50x+600.试求商场打几折时利润最大,最大利润是多少?(3)在(2)的条件下,6月份商场市场调研发现打了m折销售时,其利润与原价销售的利润相同,求m的值.23.如图,△ABC中,AB=AC,AD∥BC,CD⊥AC,连BD,交AC于E.(1)如图(1),若∠BAC=60°,求的值;(2)如图(2),CF⊥AB于F,交BD于G,求证:CG=FG;(3)若AB=13,tan∠ABC=,直接写出EC的长为.24.已知如图1,抛物线y=ax2+4ax+交x轴于A、B(A在B的左侧),过A点的直线y=kx+3k(k>)交抛物线于另一点C(x1,y1),交y轴于M.(1)直接写出A点坐标,并求a的值;(2)连BC,作BD⊥BC交AC于D,若CB=5BD,求k的值;(3)设P(﹣1,﹣2),中图2连CP交抛物线于另一点E(x2,y2),连AE交y 轴于N.请你探究OM•ON的值的变化情况,若变化,求其变化范围;若不变,求其值.参考答案一、选择题1.故选B. 2.故选A. 3.故选C4.故选:A.5. C. 6. B. 7.A. 8. C. 9.B. 10. B.二、填空题11. 3 . 12. 1.2×104. 13..14. 6 h. 15.﹣6 . 16.+1或﹣1 .三、解答题17.解答:解:把(2,3)代入y=x+b中得:3=1+b,解得:b=2,把b=2代入x+b<1得:x<﹣2.18.解答:证明:(1)在▱ABCD中,AD∥CB,且AD=CB,∴∠ADB=∠CBD,∵BE=FD,∴BE+EF=DF+EF,∴BF=DE,在△AED和△CFB中,,∴△AED≌△CFB(SAS);(2)四边形AECF为平行四边形.理由如下:由(1)△AED≌△CFB,∴AE=CF,∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.19.解答:解:(1)设:一张图片分为1和2两部分,列表如下:1 2 1 21 ﹣﹣﹣(1,2)(1,1)(1,2)2 (2,1)﹣﹣﹣(2,1)(2,2)1 (1,1)(1,2)﹣﹣﹣(1,2)2 (2,1)(2,2)(2,1)﹣﹣﹣由图表知共有12种等可能结果,其中能合成的有4种,∴P(合成)==;(2)∵两张小图片恰好合成一张完整图片的概率是,∴他们获得的游戏卡一样多,故答案为:一样多.20.解答:解:(1)所作图形如图所示:A′(﹣1,4);(2)点A所经路径的长==π;(3)P点如图所示,坐标为(﹣1,0).故答案为:(﹣1,4);π;(﹣1,0).21.解答:(1)证明:连结OC,如图1,∵CD为⊙O的切线,∴OC⊥CD,而AD⊥CD,∴OC∥AD,∴∠1=∠2,∵OA=OC,∴∠1=∠2,∴∠2=∠3,∴AC平分∠DAB;(2)解:连结OC,如图2,由=,可设AD=4x,AB=5x,则OC=OA=x,∵OC∥AD,∴△EOC∽△EAD,∴=,即=,解得EO=x,在Rt△OCE中,CE===x,∴tanE===.22.解答:解:(1)设四月份的销售单价为a元,销量为b件,则 ab=20000,a(b+50)=27000,解得a=200,b=100.答:四月份的销售单价为200元.(2)设利润为W,则W═(×200﹣80)(﹣50x+600),=﹣1000x2+16000x﹣48000=﹣1000(x﹣8)2+16000,∵﹣1000<0,∴当x=8时,W最大,值为16000,答:当商场打8折时,利润最大,最大利润为16000元,(3)由(1)知4月份利润为100(200﹣80)=12000元,依题意:(×200﹣80)(﹣50m+600)=12000,解得m1=10(舍) m2=6.23.解答:(1)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵AD∥BC,∴∠DAC=∠ACB=60°,∵CD⊥AC,∴∠ACD=90°,∴∠ADC=30°,∴AD=2AC,∴AD=2BC,∵AD∥BC,∴=2,∴=;(2)证明:作CQ∥AB于Q,如图1所示:则,,∵AD∥BC,∴,∠ACB=∠DAC,∴,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠DAC,∵CF⊥AB,∴∠BFC=90°=∠ACD,∴△CFB∽△DCA,∴,∴,∴CQ=BF,∴=1,∴CG=FG;(3)解:作AM⊥BC于M,如图2所示:∵AC=AB=13,∴BM=CM,∠ACB=∠ABC,∵tan∠ABC=,∴tan∠ACM=tan∠ABC==,设AM=3x,则CM=2x,根据勾股定理得:(2x)2+(3x)2=132,解得:x=,∴CM=2,∴BC=2CM=4,∵∠DAC=∠ACM,tan∠CAD==,∴CD=AC=,∴AD===,∵AD∥BC,∴,即,解得:EC=.故答案为:.24.解答:解:(1)∵直线y=kx+3k(k>)过点A,∴y=0时,0=kx+3k,解得:x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得:a=;(2)联立直线和抛物线解析式得:解得C(4k﹣1,4k2+2k),如图1,作DF⊥x轴于F,CG⊥x轴于G,则△BDF∽△CBG,∵CB=5BD,∴CG=5BF,BG=5DF,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k1=﹣(舍去),k2=1;(3)直线PC解析式为y=ax+a﹣2,与抛物线y=x2+x+联立消去y得:x2﹣4(a ﹣1)x+11﹣4a=0,∴x1+x2=4a﹣4,x1x2=11﹣4a,∵===(x1+1)(x2+1)=(11﹣4a+4a﹣4+1)=,∴OM•ON=OA2=.。

(完整word)山西省2016年中考数学试题及解析

(完整word)山西省2016年中考数学试题及解析

山西省2016年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( )A .61 B .—6 C .6 D .61-答案:A 考点:相反数解析: 61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x 〉5B .x <3C .—5<x 〈3D .x <5答案:C考点:解一元一次不等式组解析:解⎩⎨⎧<>+②① 6205x x 由①得x > —5 由②得x <3所以不等式组的解集是—5<x <33.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高答案:C考点:全面调查与抽样调查解析:解:调查某班学生每周课前预习的时间适合全面调查; 调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查; 调查某校篮球队员的身高适合全面调查4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )答案:A 考点:三视图解析:从左面看第一列可看到3个小正方形,第二列有1个小正方形5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯答案:B考点:科学记数法 解析:5500万=5。

5×1076.(2016·山西)下列运算正确的是 ( )A .49232-=⎪⎭⎫ ⎝⎛- B .63293a a =)( C .251555-3-=÷ D .23-50-8= 答案:D考点:实数的运算,幂的乘方,同底数幂的除法解析:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误B .632273a a =)(,故B 错误C .255551515155253535-3-==⨯=÷=÷,故C 错误.D .23252250-8-=-=7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=- B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 答案:B考点:由实际问题抽象出分式方程解析:解:设甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克,由题意得:60080005000+=x x8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y答案:D考点:二次函数图象与几何变换解析:解:因为y=x 2—4x —4=(x —2)2-8,所以抛物线y=x 2—4x —4的顶点坐标为(2,-8),把点(2,—8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(-1,—3),所以平移后的抛物线的函数表达式为y=(x+1)2—39.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F , 已知AB =12,︒=∠60C ,则FE 的长为( )A .3πB .2πC .πD .π2答案:C考点:切线的性质;平行四边形的性质;弧长的计算 解析:解:如图连接OE 、OF , ∵CD 是⊙O 的切线, ∴OE ⊥CD , ∴∠OED=90°,∵四边形ABCD 是平行四边形,∠C=60°, ∴∠A=∠C=60°,∠D=120°, ∵OA=OF,∴∠A=∠OFA=60°, ∴∠DFO=120°,∴∠EOF=360°—∠D-∠DFO-∠DEO=30°, 的长=ππ=•180630.为0.618)10.(2016·山西)宽与长的比是21-5(约的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH答案:D考点:黄金分割;矩形的性质;正方形的性质 解析:解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF 中,DF=52+122=∴FG=5 ∴CG=5—1∴215CD-=CG ∴矩形DCGH 为黄金矩形二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,—1),表示桃园路的点的坐标为(—1,0),则表示太原火车站的点(正好在网格点上)的坐标是 . 答案:(3,0) 考点:坐标确定位置解析:解:由双塔西街点的坐标为(0,—1)与桃园路的点的坐标为(—1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0)12.(2016·山西)已知点(m —1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“〉”或“=”或“<”)答案:>考点:反比例函数图象上点的坐标特征;反比例函数的性质 解析:解:∵在反比例函数xm y (m <0)中,k=m <0,∴该反比例函数在第二象限内y 随x 的增大而增大, ∵m-3<m —1<0, ∴y 1>y 213.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形( 用含有n 的代数式表示).答案:4n+1考点:规律型:图形的变化类解析:解:由图可得,第1个图案涂有阴影的小正方形的个数为5, 第2个图案涂有阴影的小正方形的个数为5×2-1=9, 第3个图案涂有阴影的小正方形的个数为5×3—2=13, …,第n 个图案涂有阴影的小正方形的个数为5n —(n —1)=4n+1. 故答案为:4n+114.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 答案:94。

太原市2016届中考数学一模试卷含答案解析

太原市2016届中考数学一模试卷含答案解析

2016年山西省太原市中考数学一模试卷一、选择题1.计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.52.如图,∠FAB与∠ECD都是锐角,其中AB∥CD,AF∥CE,射线AB与CE相交于点O,若∠FAB=60°,则∠ECD的度数是()A.30°B.60°C.80°D.120°3.下列运算正确的是()A.(﹣a2)2=﹣a4B.+=2C.(π﹣2)0=0 D.()﹣2=94.某区计划从甲、乙、丙、丁四支代表队中推选一支参加市级汉字听写,为此,该区组织了五轮选拔赛,在这五轮选拔赛中,甲、乙、丙、丁四支代表队的平均分都是95分,而方差依次为s甲2=0.2,s乙2=0.8,s丙2=1.6,s丁2=1.2.根据以上数据,这四支代表队中成绩最稳定的是()A.甲代表队 B.乙代表队 C.丙代表队 D.丁代表队5.如图,四边形ABCD内接于⊙O,若四边形ABCD的外角∠DCE=70°,则∠BAD的度数为()A.140°B.110°C.220°D.70°6.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球实验.她将盒子里面的球搅匀后从中随机摸出一个球记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据数据,并得出了四个结论,其中正确的是()摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 903摸到白球的频率0.75 0.64 0.57 0.604 0.601 0.599 0.602A.试验1500次摸到白球的频率比试验800次的更接近0.6B.从该盒子中任意摸出一个小球,摸到白球的频率约为0.6C.当试验次数n为2000时,摸到白球的次数m一定等于1200D.这个盒子中的白球定有28个7.对于反比例函数y=,下列四个结论正确的是()A.图象经过点(2,2)B.y随x的增大而减小C.图象位于第一、三象限 D.当x<1时,y的值都大于28.用一个平面按如图所示的方式“切割”正方体,可以得到一个正方形的截面,将该正方体的侧面展开,“切割线”(虚线)位置正确的是()A.B.C.D.9.水分子的直径为4×10﹣10m,而一滴水中大约有1.67×1021个水分子,若将一滴水中的所有分子一个接着一个排列在一条直线上,其总长度用科学记数法表示为()A.6.68×1031m B.6.68×10﹣11m C.6.68×10﹣31m D.6.68×1011m10.如图,某小区为增加居民的活动面积,将一块矩形空地设计为休闲区域,其中正六边形ABCDEF 的顶点均在矩形边上,正六边形内部有一正方形GHIJ.根据设计,图中阴影部分种植草坪,则草坪面积为()A.a2B.(+1)a2C.2a2D.a2二、填空题(本大题有6小题,每小题3分,共18分)11.计算(a﹣2)2的结果是.12.二次函数y=x2+2x﹣3的最小值是.13.学校图书馆有甲、乙两名同学担任志愿者,他们二人各自在周六、日两天中任意选择一天参加图书馆的公益活动,则该图书馆恰好周六、周日都有志愿者参加公益活动的概率是.14.分式方程+=的解为.15.如图,直线y=kx+4与x,y轴分别交于A,B两点,以OB为边在y轴左侧作等边三角形OBC,将△OBCB沿y轴翻折后,点C的对应点C′恰好落在直线AB上,则k的值为.16.如图,矩形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,线段EF与BH相交于点P,DF与GH相交于点Q.若四边形HPFQ是矩形,则的值为.三、简答题(共8个小题,共72分)17.(1)先化简,再求值:(+)÷,其中x=﹣1.(2)解不等式组,并将其解集表示在数轴上.18.为了解某市七年级学生参加社会实践活动的情况,有关部门随机调查了该市部分七年级学生一学期参加社会实践活动的天数,并将调查结果绘制成下面的条形统计图和扇形统计图,根据图中提供的信息,回答下列问题:(1)这次接受随机调查的学生有人;(2)请将上面的两幅图补充完整;(3)被调查学生一学期参加社会实践活动天数的平均数是天,中位数是天,众数是天;(4)若该市七年级学生40000人,请根据调查结果估计:该市七年级学生中一学期参加综合实践活动的天数超过5天的学生大约有多少人?19.(1)请写出是旋转对称图形的两种多边形(正三角形除外)的名称,并分别写出其旋转角α的最小值;(2)下面的网格图都是由边长为1的正三角形组成的,请以图中给出的图案为基本图形(其顶点均在格点上),在图2、图3中再分别添加若干个基本图形,使添加的图形与原基本图形组成一个新图案,要求:①图2中设计的图案既是旋转对称图形又是轴对称图形;②图3中设计的图案是旋转对称图形,但不是中心对称图形;③所设计的图案顶点都在格点上,并给图案上阴影(建议用一组平行线段表示阴影).20.如图,A,B两地之间有一座山,汽车原来从A地到B地需经C地沿折线A﹣C﹣B行驶,现开通隧道后,汽车直接沿直线AB行驶即可到达B地.已知AC=120千米,∠A=30°,∠B=135°,求隧道开通后汽车从A地到B地行驶多少千米?21.如图,AB是⊙O的直径,点C在⊙O上,以C为顶点在△ABC外侧作∠ACM=∠ABC.(1)判断射线CM与⊙O的位置关系,并说明理由;(2)延长BC到点D,使BC=CD,连接AD与⊙O交于点E,若AB=6,∠ABC=60°,则阴影部分的面积为.22.某城区为了改善全区中、小学办学条件,去年分三批为学校配备了教学器材,其中第三批共投入经费144000元.采购了电子白板16块和投影机8台.已知1块电子白板的单价比1台投影机的多3000元.(1)求购买1块电子白板和一台投影机各需多少元?(2)已知该区去年第一批教学器材投入经费为100000元,后续两批经费的增长率相同,试求该区去年教学器材投入的经费总额.23.问题情境:小彬、小颖和小明对一道教学问题进行研究.已知,如图1,正方形ABCD中,对角线AC,BD相交于点O,点E是线段OC上一点,过点A作BE的垂线,交线段OB于点G,垂足为点F,易知:OG=OE.变式探究:分析完图1之后,小彬和小颖分别对此进行了研究,并提出了下面两个问题,请回答:(1)小彬:如图2,将图1中的点E改为线段OC延长线上的一点,过点A作BE 垂线,交OB的延长线于点G,垂足为点F.求证:OG=OE.(2)小颖:如图3,将图中的“正方形ABCD”改为“菱形ABCD”,且∠ABC=60°,其余条件不变,试求的值.拓展延伸:(3)小明解决完上述问题后,又提出了如下问题:如图4,将图3中的“∠ABC=60°”改为“∠ABC=α”,并且点E,G分别在OC,OB的延长线上,其余条件不变,直接用含“α”的式子表示的值.24.如图1,平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(﹣2,0)、(0,﹣3),过点B,C的抛物线y=x2+bx+c与x轴交于点D,E(D在E的左侧),直线DC与线段AB交于点F.(1)求抛物线y=x2+bx+c的表达式;(2)求点F的坐标;(3)如图2,设动点P从点E出发,以每秒1个单位的速度沿射线ED运动,过点P作直线DC的平行线l,过点F作x轴的平行线,交直线l于点Q.设点P的运动时间为t秒.①当点P在射线ED上运动时,四边形PQFD能否成为菱形?若能,求出相应的t的值;若不能,说明理由;②当0≤t≤4时,设四边形PQFD与四边形ODBC重合部分的面积为S,直接写出S与t的函数关系式以及相应的自变量t的取值范围.2016年山西省太原市中考数学一模试卷参考答案与试题解析一、选择题1.计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数即可求解.【解答】解:﹣2﹣3=﹣2+(﹣3)=﹣5.故选:A.【点评】本题考查了有理数的减法,熟记减法法则是解决本题的关键.2.如图,∠FAB与∠ECD都是锐角,其中AB∥CD,AF∥CE,射线AB与CE相交于点O,若∠FAB=60°,则∠ECD的度数是()A.30°B.60°C.80°D.120°【考点】平行线的性质.【分析】根据AB∥CD,得出∠EOB=∠ECD,再根据AF∥CE,得出∠EOB=∠FAB解答即可.【解答】解:∵AB∥CD,∴∠EOB=∠ECD,∵AF∥CE,∴∠EOB=∠FAB,∴∠FAB=∠ECD=60°,故选B【点评】此题考查平行线的性质,关键是根据两直线平行,同位角相等.3.下列运算正确的是()A.(﹣a2)2=﹣a4B.+=2C.(π﹣2)0=0 D.()﹣2=9【考点】幂的乘方与积的乘方;实数的运算;零指数幂;负整数指数幂.【分析】根据积的乘方、二次根式的化简,0次幂和负指数幂,即可解答.【解答】解:A.(﹣a2)2=a4,故错误;B.,故错误;C.(π﹣2)0=1,故错误;D.,正确;故选:D.【点评】本题考查了积的乘方、二次根式的化简,0次幂和负指数幂,解决本题的关键是熟记相关法则.4.某区计划从甲、乙、丙、丁四支代表队中推选一支参加市级汉字听写,为此,该区组织了五轮选拔赛,在这五轮选拔赛中,甲、乙、丙、丁四支代表队的平均分都是95分,而方差依次为s甲2=0.2,s乙2=0.8,s丙2=1.6,s丁2=1.2.根据以上数据,这四支代表队中成绩最稳定的是()A.甲代表队 B.乙代表队 C.丙代表队 D.丁代表队【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵s=0.2,s=0.8,s=1.6,s=1.2,∴s<s<s<s,∴这四支代表队中成绩最稳定的是甲代表队;故选A.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.如图,四边形ABCD内接于⊙O,若四边形ABCD的外角∠DCE=70°,则∠BAD的度数为()A.140°B.110°C.220°D.70°【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角即可解答.【解答】解:∵四边形ABCD内接于⊙O,∴∠BAD=∠DCE=70°,故选D.【点评】此题考查了圆内接四边形的性质,熟记圆内接四边形的外角等于它的内对角是解题的关键.6.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球实验.她将盒子里面的球搅匀后从中随机摸出一个球记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据数据,并得出了四个结论,其中正确的是()摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 903摸到白球的频率0.75 0.64 0.57 0.604 0.601 0.599 0.602A.试验1500次摸到白球的频率比试验800次的更接近0.6B.从该盒子中任意摸出一个小球,摸到白球的频率约为0.6C.当试验次数n为2000时,摸到白球的次数m一定等于1200D.这个盒子中的白球定有28个【考点】利用频率估计概率.【分析】观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,据此求解即可.【解答】解:观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,故选B.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.7.对于反比例函数y=,下列四个结论正确的是()A.图象经过点(2,2)B.y随x的增大而减小C.图象位于第一、三象限 D.当x<1时,y的值都大于2【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【解答】解:A、把点(2,2)代入反比例函数y=,1=2不成立,故选项错误;B、当x>0时,y随x的增大而减小,故选项错误.C、∵k=2>0,∴它的图象在第一、三象限,故选项正确;D、∵当x<0时图象位于第四象限,所以错误;故选C.【点评】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8.用一个平面按如图所示的方式“切割”正方体,可以得到一个正方形的截面,将该正方体的侧面展开,“切割线”(虚线)位置正确的是()A.B.C.D.【考点】几何体的展开图.【分析】将ABCD作为面向自己的面,展开即可.【解答】解:将ABCD作为面向自己的面展开,即可得到,故选C.【点评】本题考查了几何体的展开图,熟悉正方体的展开图,并逐步培养自己的空间意识.9.水分子的直径为4×10﹣10m,而一滴水中大约有1.67×1021个水分子,若将一滴水中的所有分子一个接着一个排列在一条直线上,其总长度用科学记数法表示为()A.6.68×1031m B.6.68×10﹣11m C.6.68×10﹣31m D.6.68×1011m【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:由题意可得:4×10﹣10×1.67×1021=6.68×1011,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,某小区为增加居民的活动面积,将一块矩形空地设计为休闲区域,其中正六边形ABCDEF 的顶点均在矩形边上,正六边形内部有一正方形GHIJ.根据设计,图中阴影部分种植草坪,则草坪面积为()A.a2B.(+1)a2C.2a2D.a2【考点】列代数式.【专题】几何图形问题.【分析】首先根据正六边形的性质求得∠MAB的度数,然后求得三角形MAB的面积,用4个三角形的面积加上正方形的面积即可求得阴影部分的面积.【解答】解:如图:∵六边形ABCDEF是正六边形,∴∠BAF=120°,AF=AB=a,∴∠BAM=60°,∴MA=,MB=a,∴S△ABM=MA•MB=××a=a2,∴S阴影=4S△ABM+S=(+1)a2,正方形GHIJ故选B.【点评】本题考查了列代数式的知识,解题的关键是根据正六边形的性质求得三角形MAB的面积,难度不大.二、填空题(本大题有6小题,每小题3分,共18分)11.计算(a﹣2)2的结果是a2﹣4a+4.【考点】完全平方公式.【分析】根据完全平方公式计算即可.【解答】解:(a﹣2)2=a2﹣4a+4,故答案为:a2﹣4a+4【点评】此题考查完全平方公式,关键是完全平方公式的形式计算.12.二次函数y=x2+2x﹣3的最小值是﹣4.【考点】二次函数的最值.【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数最值问题解答即可.【解答】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴二次函数y=x2+2x﹣3的最小值是﹣4.故答案为:﹣4.【点评】本题考查了二次函数的最值问题,把函数解析式整理成顶点式形式求解更简便.13.学校图书馆有甲、乙两名同学担任志愿者,他们二人各自在周六、日两天中任意选择一天参加图书馆的公益活动,则该图书馆恰好周六、周日都有志愿者参加公益活动的概率是.【考点】列表法与树状图法.【分析】列表或树状图将所有等可能的结果,利用概率公式求解即可.【解答】解:列树状图得:∵共有4种等可能的结果,周六、周日都有志愿者参加的有2种,∴P(周六、周日都有志愿者参加公益活动)==.故答案为:.【点评】考查了列表或树状图的知识,解题的关键是能够将所有等可能的结果列举出来,难度不大.14.分式方程+=的解为x=﹣1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣3+x+2=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.如图,直线y=kx+4与x,y轴分别交于A,B两点,以OB为边在y轴左侧作等边三角形OBC,将△OBCB沿y轴翻折后,点C的对应点C′恰好落在直线AB上,则k的值为﹣.【考点】翻折变换(折叠问题);一次函数图象上点的坐标特征;等边三角形的性质.【分析】由等边三角形的性质和折叠的性质得出∠ABO=∠OBC=60°,由三角函数求出OA,得出点A的坐标,代入直线y=kx+4求出k即可.【解答】解:∵△OBC是等边三角形,∴∠OBC=60°,∵直线y=kx+4,当x=0时,y=4,∴B(0,4),∴OB=4,由折叠的性质得:∠ABO=∠OBC=60°,∵∠AOB=90°,∴OA=OB=4,∴A(4,0),把点A(4,0)代入直线y=kx+4得:4k+4=0,解得:k=﹣.故答案为:﹣.【点评】本题考查了等边三角形的性质、翻折变换的性质、三角函数、求一次函数的解析式;熟练掌握翻折变换和等边三角形的性质是解决问题的关键.16.如图,矩形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,线段EF与BH相交于点P,DF与GH相交于点Q.若四边形HPFQ是矩形,则的值为.【考点】相似三角形的判定与性质;矩形的性质.【分析】由矩形ABCD中,四边形HPFQ是矩形,易证得△BEF∽△CFD,然后由相似三角形的对应边成比例,可得,又由点E,F,G,H分别是AB,BC,CD,DA的中点,即可求得答案.【解答】解:∵四边形HPFQ是矩形,∴∠EFD=90°,∴∠BFE+∠CFD=90°,∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,∴∠BFE+∠BEF=90°,∴∠CFD=∠BEF,∴△BEF∽△CFD,∴,∵点E,F,G,H分别是AB,BC,CD,DA的中点,∴,∴=.故答案为:.【点评】此题考查了相似三角形的判定与性质以及矩形的性质.注意证得△BEF∽△CFD是解此题的关键.三、简答题(共8个小题,共72分)17.(1)先化简,再求值:(+)÷,其中x=﹣1.(2)解不等式组,并将其解集表示在数轴上.【考点】分式的化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)根据运算顺序,先算括号里面的,再算除法,分子因式分解,约分即可,再把x=﹣1代入即可得出答案;(2)先解两个不等式,再求解集的公共部分,把解集画在数轴上即可.【解答】解:(1)原式=•=,把x=﹣1代入原式==﹣;(2),解①得x<3,解②得x≥﹣2,把不等式组的解集画在数轴上,不等式组的解集为﹣2≤x<3.【点评】本题考查了分式的化简求值以及解一元一次不等式组,分式的通分、因式分解以及不等式组解集的四种情况是解题的关键.18.为了解某市七年级学生参加社会实践活动的情况,有关部门随机调查了该市部分七年级学生一学期参加社会实践活动的天数,并将调查结果绘制成下面的条形统计图和扇形统计图,根据图中提供的信息,回答下列问题:(1)这次接受随机调查的学生有300人;(2)请将上面的两幅图补充完整;(3)被调查学生一学期参加社会实践活动天数的平均数是 4.18天,中位数是4天,众数是4天;(4)若该市七年级学生40000人,请根据调查结果估计:该市七年级学生中一学期参加综合实践活动的天数超过5天的学生大约有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据2天的人数和所占的百分比即可求出随机调查的学生总数;(2)用调查的总人数减去其它天数的人数求出参加社会实践活动5天的人数,从而补全统计图;(3)根据平均数的计算公式、众数和中位数的定义即可得出答案;(4)用该市七年级学生的总数乘以参加综合实践活动的天数超过5天的学生所占的百分比即可得出答案.【解答】解:(1)这次接受随机调查的学生有=300(人);故答案为:300;(2)参加社会实践活动5天的人数是:300﹣30﹣75﹣90﹣36﹣24=45(人),画图如下:(3)被调查学生一学期参加社会实践活动天数的平均数是:(2×30+3×75+4×90+5×45+6×36+7×24)÷300=4.18 (天),最中间两个数的平均数是(4+4)÷2=4,则中位数是4天,4出现了90次,出现的次数最多,则众数是4天,故答案为:4.18,4,4;(4)根据题意得:40000×(15%+8%+12%)=14000(人),答:该市七年级学生中一学期参加综合实践活动的天数超过5天的学生大约有14000人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(1)请写出是旋转对称图形的两种多边形(正三角形除外)的名称,并分别写出其旋转角α的最小值;(2)下面的网格图都是由边长为1的正三角形组成的,请以图中给出的图案为基本图形(其顶点均在格点上),在图2、图3中再分别添加若干个基本图形,使添加的图形与原基本图形组成一个新图案,要求:①图2中设计的图案既是旋转对称图形又是轴对称图形;②图3中设计的图案是旋转对称图形,但不是中心对称图形;③所设计的图案顶点都在格点上,并给图案上阴影(建议用一组平行线段表示阴影).【考点】利用旋转设计图案;利用轴对称设计图案.【分析】(1)利用旋转对称图形的性质分别得出符合题意的答案;(2)①利用旋转对称图形以及轴对称图形的性质得出符合题意的答案;②利用旋转对称图形以及轴对称图形的性质得出符合题意的答案.【解答】解:(1)正方形是旋转对称图形,最小旋转角为90°,正六边形是旋转对称图形,最小旋转角为60°;(2)①如图2所示:②如图3所示:【点评】此题主要考查了利用旋转设计图案以及轴对称图形的性质,正确把握旋转对称图形的定义是解题关键.20.如图,A,B两地之间有一座山,汽车原来从A地到B地需经C地沿折线A﹣C﹣B行驶,现开通隧道后,汽车直接沿直线AB行驶即可到达B地.已知AC=120千米,∠A=30°,∠B=135°,求隧道开通后汽车从A地到B地行驶多少千米?【考点】解直角三角形的应用.【分析】利用锐角三角函数关系得出CE,AE,BE的长,进而求出隧道开通后汽车从A地到B地行驶的路程.【解答】解:如图所示:过点C作CE⊥AB延长线于点E,∵∠A=30°,AC=120km,∴EC=60km,AE=120×cos30°=60(km),∵∠B=135°,∴BE=EC=60km,∴AB=60﹣60=60(﹣1)km,答:隧道开通后汽车从A地到B地行驶60(﹣1)km.【点评】此题主要考查了解直角三角形的应用,分别求出CE,AE,BE的长是解题关键.21.如图,AB是⊙O的直径,点C在⊙O上,以C为顶点在△ABC外侧作∠ACM=∠ABC.(1)判断射线CM与⊙O的位置关系,并说明理由;(2)延长BC到点D,使BC=CD,连接AD与⊙O交于点E,若AB=6,∠ABC=60°,则阴影部分的面积为3π﹣.【考点】切线的判定;扇形面积的计算.【专题】计算题.【分析】(1)由AB为直径得到∠OCB+∠ACO=90°,加上∠B=∠OCB,∠B=∠ACM,则∠ACO+∠ACM=90°,所以OC⊥CM,于是根据切线的判定定理即可得到CM为⊙O的切线;(2)在Rt△ACB=90°利用含30度的直角三角形三边的关系得到BC=AB=3,AC=BC=3,由OA=OC得到S△AOC=S△BOC,则可计算出S△AOC=S△ABC=,然后根据扇形面积公式和阴影部分﹣S△AOC进行计算.的面积=S扇形AOC【解答】解:(1)CM与⊙O相切.理由如下:∵AB为直径,∴∠ACB=90°,即∠OCB+∠ACO=90°,∵OB=OC,∴∠B=∠OCB,而∠B=∠ACM,∴∠ACO+∠ACM=90°,即∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴BC=AB=3,AC=BC=3,∵OA=OC,∴∠OAC=∠OCA=30°,S△AOC=S△BOC,∴S△AOC=S△ABC=×××3=,∴阴影部分的面积=S﹣S△AOC扇形AOC=﹣=3π﹣.故答案为3π﹣.【点评】本切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形的计算.22.某城区为了改善全区中、小学办学条件,去年分三批为学校配备了教学器材,其中第三批共投入经费144000元.采购了电子白板16块和投影机8台.已知1块电子白板的单价比1台投影机的多3000元.(1)求购买1块电子白板和一台投影机各需多少元?(2)已知该区去年第一批教学器材投入经费为100000元,后续两批经费的增长率相同,试求该区去年教学器材投入的经费总额.【考点】二元一次方程组的应用.【分析】(1)可设购买1块电子白板需x元,购买一台投影机需y元,根据等量关系:①其中第三批共投入经费144000元.采购了电子白板16块和投影机8台;②已知1块电子白板的单价比1台投影机的多3000元;列出方程组求解即可;(2)可设增长率为z,根据等量关系为:第一批教学器材投入经费×(1+增长率)2=第三批教学器材投入经费,把相关数值代入计算求得合适解即可.【解答】解:(1)设购买1块电子白板需x元,购买一台投影机需y元,依题意有,解得.答:购买1块电子白板需7000元,购买一台投影机需4000元;(2)可设增长率为z,依题意有100000(1+z)2=144000,(1+z)2=1.44,∵1+z>0,∴1+z=1.2,∴z=20%.100000+100000×(1+20%)+144000=100000+120000+144000=364000(元).答:该区去年教学器材投入的经费总额是364000元.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键;同时考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.23.问题情境:小彬、小颖和小明对一道教学问题进行研究.已知,如图1,正方形ABCD中,对角线AC,BD相交于点O,点E是线段OC上一点,过点A作BE的垂线,交线段OB于点G,垂足为点F,易知:OG=OE.变式探究:分析完图1之后,小彬和小颖分别对此进行了研究,并提出了下面两个问题,请回答:(1)小彬:如图2,将图1中的点E改为线段OC延长线上的一点,过点A作BE 垂线,交OB的延长线于点G,垂足为点F.求证:OG=OE.(2)小颖:如图3,将图中的“正方形ABCD”改为“菱形ABCD”,且∠ABC=60°,其余条件不变,试求的值.拓展延伸:(3)小明解决完上述问题后,又提出了如下问题:如图4,将图3中的“∠ABC=60°”改为“∠ABC=α”,并且点E,G分别在OC,OB的延长线上,其余条件不变,直接用含“α”的式子表示的值.【考点】四边形综合题.【分析】(1)证明△AOG≌△BOE,根据全等三角形的性质证明即可;(2)证明△AOG∽△BOE,再根据∠ABC=60°求出的值,得到答案;(3)证明△AOG∽△BOE,再根据∠ABC=α求出的值,得到答案.【解答】(1)证明:∵四边形ABCD为正方形,∴OA=OB,AC⊥BD,∴∠AOG=90°,∴∠AGO+∠GAO=90°,∵AF⊥BE,∴∠E+∠GAO=90°,∴∠AGO=∠E,在△AOG和△BOE中,。

2016学年山西省中考数学年试题答案

2016学年山西省中考数学年试题答案


.
数学试卷 第 4 页(共 8 页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------------
()
A. 3
B.0
C.1
D.2
2.如 图 ,直 线 AB∥CD , A 40 , D 45 ,则 1 的 度 数 是
(
)

A. 80 答
C. 90
B. 85 D. 95
3.下列计算正确的
A. x3 x2 x
B. x3 x2 x6
C. x3 x2 x 题
② BD AC ;
③四边形 ACED 是菱形.
其中正确的个数
()
A. 0
B.1
C. 2
D. 3
13.二次函数 y ax2 bx c ,自变量 x 与函数 y 的对应值如下表:
x … 5 4 3 2 1 0 …
y… 4
0 2 2 0
4…
下列说法正确的是
()
A.抛物线的开口向下 B.当 x>-3 时, y 随 x 的增大而增大
(3)该校九年级一共有 600 名学生,估计身高不低于165 cm 的学生大约有多少人?
效 数学试卷 第 5 页(共 8 页)

山西省百校中考数学第一次模拟联考试题(扫描版)

山西省百校中考数学第一次模拟联考试题(扫描版)

山西省百校2016届中考数学第一次模拟联考试题山西中考模拟百校联考试卷(一)数学参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案 DDABDCCBAD 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11. -5a612. 1.1021伊101013. 288 14.(5+5 姨 )15. 20316. 姨 13 4三、解答题(本大题共 8 个小题,共 72 分)4员7. 1 = 3 +1- 3 -4伊 2 解:()原式 1 1 1分 =-1.5 分 ()原式 a+2 (a+2)(a-2)8分 2 =a+1 衣 a (a+1) a+2 · a (a+1) 9分 +1 +2 -2 =a . (a )(a ) = a a10 分-22 18. 解:(1)如图所示; 分 (2)如图所示;4分y AC O BB 1B 2 x P A 1C 1 A 2C2 (3)(9,原7)6 分数学(一)答案 第 1 页(共 6 页)证明:()n(n+1)n2 n ( n )219. 1 伊8+1=4 +4 +1= 2 +1 .23 分亦任意一个三角形数乘 8 再加 1 是一个完全平方数.()第 n 个三角形数为n(n+1);第(n )个三角形数为(n+1)(n+2);2 +12 2这两个数的和为 n(n+1)(n+1)(n+2)(n+1)(2n+2)(n+)2+ = =1 .2 2 26 分亦连续两个三角形数的和是一个完全平方数.20. 解:(1)不同意援 1 分理由如下:疫有 2 名女生和 1 名男生,每人被选中的可能性相等援亦选中男生的概率为1 ;选中女生的概率为2 . 2 分疫1 屹2 3 3,3 33 分亦选出的校园记者是男生和女生的可能性大小不同.(2)画出树状图如下:开始女 1 2 男女女 2 男女 1 男女 1 女 26 分一共有 6 种等可能情况,参加第一次培训的是女生,参加第二次培训的是男生的情况有 2 种,8 分所以,P= 26 = 13 .所以,参加第一次培训的是女生,参加第二次培训的是男生的概率为13 . 9 分21.(1)证明:连接 OA ,OC.A E在吟A OB 和吟A OC 中,D扇设设A O=A O,设设缮设设BO=CO,亦吟A OB艺吟A OC(SSS).设设O设A B=A C,设墒亦蚁BA O=蚁CA O. 1 分 B C 疫A O=BO,亦蚁BA O =蚁A BD.数学(一)答案第 2 页(共 6 页)亦蚁CA O=蚁A BD. 2 分 又疫蚁A CD=蚁A BD , 亦蚁CA O=蚁A CD.亦OA 椅CE.3 分 亦蚁E+蚁OA E=180毅. 疫A E 为已O 的切线, 亦OA 彝A E. 亦蚁OA E =90毅.亦蚁E=90毅. 4 分 亦A E 彝DE ;(2)解:疫BD 为已O 的直径,已O 的半径为 5, 5 分 亦蚁BA D=90毅,BD=10.在 Rt 吟BA D 中,由勾股定理,得A B= 姨 = 姨 =4 姨 . 6 分 102-(2 姨 )2 5 BD -A D 5 疫A B=A C ,亦A C=4 姨.5疫蚁BA D=蚁E=90毅,蚁A BD=蚁ECA , 7 分亦吟ECA 易吟A BD. 4 姨EC A C EC = ,即 5 亦 A B BD 4 姨 5 = 10 . 8 分 亦EC=8.22. 解:(1)在实体店购买的函数表达式为 y=40伊0.8x ,即 y=32x. 1 分 在网店购买的函数表达式为 y=40伊100+40伊0.7·(x-100),即 y=28x+1200. 2 分 (2)由 28x+1200>32x ,得 x 约300.4 分 当 100约x 约300 时,选择在实体店购买省钱. 由 28x+1200=32x ,得 x=300.5 分 当 x=300 时,选择两种方式购买所需的资金一样. 由 28x+1200<32x ,得 x>300.6 分 当 x 跃300 时,选择在网店购买省钱. (3)由题意,得 28x+1200臆10000.7 分臆314 7 .解得 x2答:王先生最多能购买 314 条跳绳.8 分数学(一)答案第 3 页(共 6 页)23. 1 2 . 1解:()MN 与 EC 的数量关系是 MN= 1 EC 分证明:疫点 M,N 分别是 DB,EC 的中点,2 亦2MN= 1 BE. 分疫吟A BC 和吟A ED 是等腰直角三角形,蚁A ED=蚁A CB=90毅,3 分亦蚁B=蚁A CE=45毅.亦蚁BCE=蚁A CB-蚁A CE=90毅-45毅=45毅.亦BE=EC.. 4 亦2MN= 1 EC 分(2)成立. 5 分证明:连接 EM 并延长到点 F,使 MF=EM,连接 CM,CF,BF.F 在吟EDM 和吟FBM 中,B扇M设设DM=BM,设E D设设设设蚁EMD=蚁FMB,缮设设EM=FM,设N墒6 分亦吟EDM艺吟FBM(SAS). A C亦BF=DE=A E,蚁FBM=蚁EDM.疫吟A BC 和吟A ED 为等腰直角三角形,蚁A ED=蚁A CB=90毅,亦蚁EA D=蚁EDA =蚁BA C=蚁A BC=45毅,A C=BC.亦蚁FBM=蚁EDM=135毅.7 分亦蚁FBC=蚁EA C=90毅.在吟EA C 和吟FBC 中,设设A E=BF,扇设设设设蚁EA C=蚁FBC,设缮设设A C=BC,设墒亦吟EA C艺吟FBC(SAS). 8 分亦FC=EC.又疫点 M,N 分别是 EF,EC 的中点,亦MN= 21 FC.亦MN= 1 EC. 9 分23 彝1 . 11()MN 与 EC 的位置关系是 MN EC,数量关系是 MN= EC 分224. 解:(1)疫 抛物线 y=-x 2+bx+c 经过点 A (原1,0),B (4,0),亦 -(-1)2-b+c=0, b=3,1 分 解方程组,得 嗓c=4.嗓-42+4b+c=0, 2 2 分 亦抛物线的表达式为 y=-x +3x+4. (2)吟CDB 是等腰直角三角形.3 分 理由如下:疫 点 C (2,a )在抛物线 y=-x 2+3x+4 上,亦 a=-22+3伊2+4=6. 4 分 亦点 C 的坐标为(2,6).设直线 A C 的表达式为 y=kx+d.亦 -k+d=0, k=2, 解方程组,得 嗓d=2. 嗓2k+d=6,亦直线 A C 的表达式为 y=2x+2.函数 y=2x+2,当 x=0 时,y=2. 5 分 亦点 D 的坐标为(0,2).疫A (原1,0),B (4,0),D (0,2).亦A B=5,A D= 姨A O 2+OD 2= 姨12+22= 姨5 ,BD= 姨BO 2+OD 2= 姨42+22=2 姨5 .6 分 疫(姨5 )2+(2 姨5 )2=52,即 A D 2+BD 2=A B 2, yC 亦蚁A DB=90毅. 7 分 过点 C 作 CG 彝A B 于点 G , 疫 点 C 的坐标为(2,6),D 亦点 G 的坐标为(2,0). A 亦 A G=3,CG=6.G B xO 亦 A C= 姨A G 2+CG 2= 姨32+62=3 姨5 . 8 分 亦CD=A C 原A D=3 姨5 - 姨5 =2姨5 . y P3 CF 亦 CD=BD. 9 分 E 亦吟CDB 是等腰直角三角形. Q (3)能援理由如下:P 2 H P 1 如图,过点 E 作 x 轴的垂线交 A C 于点 H ,D Q 疫E (m ,n )(原1约m 约2),A O x 亦H (m ,2m+2)援 B疫点 E (m ,n )在抛物线上,l数学(一)答案第 5 页(共 6 页)亦E (m ,原m 2+3m+4).疫吟A CE 的面积为 278 , 亦 12 [原m 2+3m+4-(2m+2)][(m+1)+(2-m )]= 278 .整理,得 4m 2原4m+1=0. 1= 2= 2 . 10 解得 m m 1 分 亦 E ( 1 ,21 )2 4 援3 25疫 y=-x 2 x (x )2+3 +4=- - 2 + 4 . 3 亦抛物线的对称轴 l 为直线 x= . 2 疫点 E 关于 l 的对称点为点 F , 亦F( 5 ,21 ) 亦 2 2 4 援11= - 2 =2.EF 5 1 分以点 E ,F ,P ,Q 为顶点的四边形为平行四边形,有两种情况: 当 EF 为边时,则有 PQ 椅EF 且 PQ=EF=2援亦点 P 的横坐标为 32 +2= 72 或 32 -2=- 12 .亦点 P 的纵坐标为-(72 - 32 )2+ 254 = 94 或-(- 12 - 32 )2+ 254 = 94 . 亦 24 - 24 .13点 P 的坐标为( 7 ,9 )或( 1 ,9 ) 分当 EF 为对角线时,则可知点 P 为抛物线的顶点,即 P (32 ,254 ). 综上可知,存在满足条件的点 P ,其坐标为(72 ,94 )或(- 12 ,94 )或(32 ,254 ).14 分注:如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准制定相 应的评分细则后评阅.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年山西省百校联考中考数学模拟试卷(一)
一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,
只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.﹣16的相反数是()
A.﹣B.﹣16 C.D.16
2.义务教育阶段,我们学习了很多平面几何图形,有一种美丽的图形,它具有独特的对称
美,有无数条对称轴,这种图形是()
A.等边三角形B.正方形C.正六边形 D.圆
3.一个几何体的表面展开图如图所示,则这个几何体是()
A.四棱锥B.四棱柱C.三棱锥D.三棱柱
4.如图是太原市某日八个整点的空气质量趋势图(空气指数越大越严重),根据图中的空气
指数可知这组数据的中位数是()
A.64 B.60 C.56 D.48
5.不等式组的解集是()
A.x<1 B.x≥3 C.1≤x<3 D.1<x≤3
6.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()
A.50° B.65° C.80° D.90°
7.如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(1,﹣3),则当x>1时,y1与y2的大小关系为()
1。

相关文档
最新文档