2017-2018学年第一学期期中考试卷八年级上册数学试卷(无答案)

合集下载

2017-2018年河北省八年级上学期期中数学试卷和答案

2017-2018年河北省八年级上学期期中数学试卷和答案

2017-2018学年河北省八年级(上)期中数学试卷一、选择题(共12小题,每小题2分,满分30分)1.(2.00分)在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B.3 C.4 D.52.(2.00分)命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等.其中真命题有()A.1个 B.2个 C.3个 D.4个3.(2.00分)下列运算错误的是()A.B.C.D.4.(2.00分)不能判定两个三角形全等的是()A.三条边对应相等B.两条边及其夹角对应相等C.两角和一条边对应相等D.两条边和一条边所对的角对应相等5.(2.00分)下列各式中,无意义的是()A.B. C.D.6.(2.00分)下列约分中,正确的是()A.=x3B.=0C.D.7.(3.00分)在下列式子中,正确的是()A.B.﹣=﹣0.6 C.D.8.(3.00分)如图,笑笑书上的三角形被墨迹污损了一部分,但是笑笑根据所学知识画出一个与书本上完全一样的三角形,那么这两个三角形全等的依据不可能是()A.SSS B.ASA C.AAS D.SAS9.(3.00分)化简的结果是()A. B. C. D.10.(3.00分)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对 B.3对 C.2对 D.1对11.(3.00分)满足的整数x有()个.A.0个 B.1个 C.2个 D.3个12.(3.00分)某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3.00分)25的平方根是,的算术平方根是,﹣64的立方根是.14.(3.00分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.15.(3.00分)分式,当x=时分式的值为零.16.(3.00分)若x,y都是实数,且,则x+3y的立方根为.17.(3.00分)已知x=1是分式方程的根,则实数k=.18.(3.00分)已知△ABC≌△ADE,如果∠BAE=135°,∠BAD=40°,那么∠BAC=.三、解答题(共8小题,满分72分)19.(12.00分)求下列各式的平方根和算术平方根.9,14400,,,,.20.(10.00分)求下列各式的值.(1);(2);(3);(4);(5).21.(6.00分)如图,如果AB=AC,BD=CD,那么∠B和∠C相等吗?为什么?22.(6.00分)有四个实数分别为32,,,.(1)请你计算其中有理数的和.(2)若x﹣2是(1)中的和的平方,求x的值.23.(8.00分)先化简,再求值:,其中x是不等式3x+7>1的负整数解.24.(10.00分)解下列分式方程:(1)(2).25.(10.00分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26.(10.00分)如图,四边形ABCD中,点E在边CD上,连接AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××).并给出证明;(2)用序号再写出三个真命题(不要求证明).2017-2018学年河北省八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分30分)1.(2.00分)在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B.3 C.4 D.5【解答】解:实数0.3,0,,,0.123456…中,无理数有:,,0.123456…,共3个.故选:B.2.(2.00分)命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等.其中真命题有()A.1个 B.2个 C.3个 D.4个【解答】解:①邻补角互补,正确;②对顶角相等,正确;③被截线不平行则同旁内角不互补,故本小题错误;④两点之间线段最短,是线段的性质,正确;⑤直线是向两方无限延伸的,没有长短,故本小题错误;故选:C.3.(2.00分)下列运算错误的是()A.B.C.D.【解答】解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;故选:D.4.(2.00分)不能判定两个三角形全等的是()A.三条边对应相等B.两条边及其夹角对应相等C.两角和一条边对应相等D.两条边和一条边所对的角对应相等【解答】解:A、三条边对应相等的两个三角形,可以利用SSS定理判定全等,故此选项不合题意;B、两条边及其夹角对应相等的两个三角形,可以利用SAS定理判定全等,故此选项不合题意;C、两角和一条边对应相等的两个三角形,可以利用AAS定理判定全等,故此选项不合题意;D、两条边和一条边所对的角对应相等,不能判定两个三角形全等,故此选项符合题意;故选:D.5.(2.00分)下列各式中,无意义的是()A.B. C.D.【解答】解:A、因为负数没有算术平方根,故选项错误;B、任何数都有立方根,故选项正确;C、D中底数均为正,所以有意义.因此A没有意义.故选:A.6.(2.00分)下列约分中,正确的是()A.=x3B.=0C.D.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.7.(3.00分)在下列式子中,正确的是()A.B.﹣=﹣0.6 C.D.【解答】解:∵=5,故选项A正确;∵=﹣0.6,故选项B错误;∵,故选项C错误;∵,故选项D错误;故选:A.8.(3.00分)如图,笑笑书上的三角形被墨迹污损了一部分,但是笑笑根据所学知识画出一个与书本上完全一样的三角形,那么这两个三角形全等的依据不可能是()A.SSS B.ASA C.AAS D.SAS【解答】解:根据题意,三角形的三角和它们的两边是完整的,所以可以利用SAS、ASA、AAS定理作出完全一样的三角形,不能利用SSS定理进行判定,故选:A.9.(3.00分)化简的结果是()A. B. C. D.【解答】解:==,故选:D.10.(3.00分)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对 B.3对 C.2对 D.1对【解答】解:∵CD⊥AB,BE⊥AC,∴∠ADO=∠AEO=90°;∵∠1=∠2,AO=AO,∴△ADO≌△AEO(AAS).∴AD=AE,∵∠DAC=∠EAB,∠ADO=∠AEO,∴△ADC≌△AEB(ASA).∴AB=AC,∵∠1=∠2,AO=AO,∴△AOB≌△AOC(SAS).∴∠B=∠C,∵AD=AE,AB=AC,∴DB=EC;∵∠BOD=∠COE,∴△BOD≌△COE(AAS).故选:A.11.(3.00分)满足的整数x有()个.A.0个 B.1个 C.2个 D.3个【解答】解:∵1<3<4,9<13<16,∴1<<2,3<<4,∵,∴整数x有2,3.故选:C.12.(3.00分)某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【解答】解:由分析可得列方程式是:=25.故选:B.二、填空题(共6小题,每小题3分,满分18分)13.(3.00分)25的平方根是±5,的算术平方根是3,﹣64的立方根是﹣4.【解答】解:∵(±5)2=25,∴25的平方根是±5.=9,9的算术平方根是3,∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故答案为:±5;3;﹣4.14.(3.00分)下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF= 27cm.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.15.(3.00分)分式,当x=﹣3时分式的值为零.【解答】解:由分子x2﹣9=0解得:x=±3.而x=3时,分母x﹣3=3﹣3=0,分式没有意义;x=﹣3时,分母x﹣3=﹣3﹣3=﹣6≠0,所以x=﹣3.故答案为﹣3.16.(3.00分)若x,y都是实数,且,则x+3y的立方根为3.【解答】解:根据题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+3y=3+3×8=27,∵33=27,∴x+3y的立方根为3.故答案为:3.17.(3.00分)已知x=1是分式方程的根,则实数k=.【解答】解:将x=1代入得,=,解得,k=.故答案为:.18.(3.00分)已知△ABC≌△ADE,如果∠BAE=135°,∠BAD=40°,那么∠BAC= 95°.【解答】解:∵∠BAE=135°,∠BAD=40°,∴∠∠DAE=∠BAE﹣∠BAD=95°,∵△ABC≌△ADE,∴∠BAC=∠DAE=95°,故答案为:95°.三、解答题(共8小题,满分72分)19.(12.00分)求下列各式的平方根和算术平方根.9,14400,,,,.【解答】解:9的平方根是±=±3,算术平方根是=3,14400的平方根是±=±120,算术平方根是=120,的平方根是±=±,算术平方根是=,5的平方根是±=±=±,算术平方根是==,的平方根是±=±,算术平方根是=,(﹣)2的平方根是±=±,算术平方根是=.20.(10.00分)求下列各式的值.(1);(2);(3);(4);(5).【解答】解:(1)=±;(2)=;(3)=﹣;(4)=0.1;(5)=7.21.(6.00分)如图,如果AB=AC,BD=CD,那么∠B和∠C相等吗?为什么?【解答】解:∠B=∠C,理由为:连接AD,如图所示:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠B=∠C.22.(6.00分)有四个实数分别为32,,,.(1)请你计算其中有理数的和.(2)若x﹣2是(1)中的和的平方,求x的值.【解答】解:(1)有理数有:32=9,=﹣2,∴其中有理数的和为9+(﹣2)=7.(2)由题意可知x﹣2=72,解得:x=51.23.(8.00分)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【解答】解:原式=•=,由3x+7>1,解得x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,∴原式=324.(10.00分)解下列分式方程:(1)(2).【解答】解:(1)两边乘(x+2)(x﹣2)得到,(x﹣2)2﹣(x2﹣4)=3x2﹣4x+4﹣x2+4=3x=,经检验:x=是分式方程的解.(2)两边乘(2x+3)(2x﹣3)得到,2x(2x+3)﹣(2x﹣3)=4x2﹣94x2+6x﹣2x+3=4x2﹣9x=﹣3,经检验:x=﹣3是分式方程的解.25.(10.00分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.26.(10.00分)如图,四边形ABCD中,点E在边CD上,连接AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××).并给出证明;(2)用序号再写出三个真命题(不要求证明).【解答】解:(1)如果①②③,那么④⑤;理由如下:∵AD∥BC,∴∠1=∠F,∠D=∠ECF,在△AED 和△FEC 中,,∴△AED ≌△FEC (AAS ), ∴AD=CF ,AE=FE , ∴AD +BC=CF +BC=BF , ∵∠1=∠2, ∴∠2=∠F , ∴AB=BF , ∴AD +BC=AB ; ∵AB=BF ,AE=FE , ∴∠3=∠4;(2)如果①③④,那么②⑤; 如果①②④,那么③⑤; 如果①③⑤,那么②④.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2017-2018学年度八年级上数学期中考试试题

2017-2018学年度八年级上数学期中考试试题

2017-2018学年度八年级期中考试试题一、选择题(每小题 3分,计30分)1,如图,在 CD 上求一点P ,使它到OA , OB 的距离相等,则 P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与/ AOB 的平分线的交点2. 如图所示,△ ABD ◎△ CDB ,下面四个结论中,不正确的是( )A. △ ABD 和厶CDB 的面积相等 C.Z A+ / ABD = Z C+ / CBDB. △ ABD 和厶CDB 的周长相等 D.AD // BC ,且 AD = BC 3. 如图,已知 AB = DC , AD = BC , E, F 在 DB 上两点且 BF = DE ,若/ AEB = 120 ° Z ADB=30° 则Z BCF =(A.150 ° B.40 °4•如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全一样的三角形,那么这两个三角形完全一样的依据是( )5.如图,AB 丄 BC , BE 丄AC ,Z 1 = Z 2, AD = AB ,则( )A. Z 1 = Z EFDB.BE = ECC.BF = DF = CDD.FD // BC6.如图所示,BE 丄 AC 于点 D ,且 AD = CD , BD = ED ,若Z ABC = 54 ° 则Z E =( )O(1)D BA. SSSB. SASC. AASD. ASAA.25 °B.27C.30D.45(4)12(5)(6)C.80B(3) C7. 小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是()A. 10:51B.10:21C.15:01D.12:01 [l S: D8•在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是(A 80 °B 20 °C 80 。

2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案

2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。

将答案填在表格内。

1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。

湖北省武汉市洪山区2017-2018学年八年级上学期期中考试数学试题(原卷版)

湖北省武汉市洪山区2017-2018学年八年级上学期期中考试数学试题(原卷版)

湖北省武汉市洪山区2017-2018学年八年级上学期期中考试数学试题一、选择题(共10小题)1.下列图形中,具有稳定性的是()A. B. C. D. ...2.以下列各组线段为边,能组成三角形的是()A. 2cm,3cm,5cmB. 5cm,6cm,10cmC. 1cm,1cm,3cmD. 3cm,4cm,9cm3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC的()A. 三边垂直平分线的交点B. 三条内角平分线的交点C. 三条高的交点D. 三条中线的交点4.在直角坐标系中,点P(-3,2)关于x轴对称点的坐标是()A. (3,2)B. (3,-2)C. (-3,2)D. (-3,-2)5.如图,三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是()A. ∠γ=∠α+∠βB. 2∠γ=∠α+∠βC. 3∠γ=2∠α+∠βD. 3∠γ=2(α∠+∠β)6.下列条件中,能判定△ABC≌△DEF的是()A. ∠A=∠D,∠B=∠E,∠C=∠FB. AC=DF,∠B=∠E,BC=EFC. AB=DE,∠B=∠E,AC=DFD. AB=DE,∠B=∠E,BC=EF7.一个多边形的内角和是外角和的4倍,则这个多边形是()A. 六边形B. 八边形C. 十边形D. 十二边形8.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为()A. 120°B. 125°C. 130°D. 155°9.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).若点C落在AB边下方的点E处,则△ADE的周长p的取值范围是()A. 7<p<10B. 5<p<10C. 5<p<7D. 7<p<1910.如图,在Rt△ABC中,∠C=90°,以△ABC的一边BC为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为()A. 2B. 3C. 4D. 5二、填空题(本大题共6个小题)11.等腰三角形的两边长分别为4和8,则此等腰三角形的周长为________.12.在△ABC中,AB=7,AC=3,则BC边上的中线AD的取值范围是________.13.如图,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于AB的长为半径画弧,两弧在第四象限交于点P.若点P的坐标为(-2a,4a+6),则a的值为________.14.已知△ABC的周长为16,面积为20,其内角平分线交于点O,则点O到边BC的距离为________.15.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.16.如图,在△ABC中,∠BAD=∠DAC,DF上AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s 的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.当t=________秒时,△DFE与△DMG全等.三、解答题(共8题)17.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.18.如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE 于G,交AB于H.(1)直接写出∠CFE的度数________;(2)求证:CF=BH.19.如图,在正方形网格中,每个小正方形的边长都为1,△ABC在网格中的位置如图所示,△ABC的三个顶点都在格点上.将点A、B、C的横坐标不变,纵坐标都乘以-1,分别得到点A1、B1、C1(1)写出△A1B1C1,三个顶点的坐标________;(2)在图中画出△A1B1C1,则△ABC与△A1B1C1关于________对称;(3)若以点A、C、P为顶点的三角形与△ABC全等,直接写出所有符合条件的点P的坐标________.20.如图,△ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE.(1)如图,若点D为线段AC的中点,求证:AD=CE;(2)如图,若点D为线段AC上任意一点,求证:AD=CE21.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图,若BC=BD,求证:CD=DE;(2)如图,过点C作CH⊥DE,垂足为H,若CD=BD,,直接写出CE-BE的值为________.22.己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.(1)如图,若α=21°,∠ABC=32°,且AP交BC于点P,试探究线段AB、AC与PB之间的数量关系,并对你的结论加以证明;(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).23.已知△ABC中,AB=AC,∠BAC=90°.(1)如图,若CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD的数量关系,并证明你的结论(2)如图,若点D在线段BC延长上,BE⊥DE,垂足为E,DE与AB相交于点F.试探究线段BE和FD 的数量关系,并证明你的结论.24.在平面直角坐标系xOy中,直线AB交y轴于A点,交X轴于B点,A(0,6),B(6,0).点D是线段BO上一点,BN⊥AD交AD的延长线于点N.(1)如图,若OM∥BN交AD于点M.点O作0G⊥BN,交BN的延长线于点G,求证:AM=BG(2)如图,若∠ADO=67.5°,OM∥BN交AD于点M,交AB于点Q,求的值.(3)如图,若OC∥AB交BN的延长线于点C.请证明:∠CDN+2∠BDN=180°.。

2017——2018学年人教版八年级数学上册期中试卷

2017——2018学年人教版八年级数学上册期中试卷

2017——2018学年度第一学期期中质量调研八年级数学试卷(考试时间:120分钟满分:120分)一、选择题(共10小题,每小题3分,共30分.每小题所给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入下面的表格内)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是().A. B. C. D.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是().A.带①去B.带②去 C.带③去D.带①和②去第2题第6题第7题3.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为().A. 5或7B. 7或9C. 7D. 94.等腰三角形的一个角是80°,则它的底角是().A. 50°B. 80°C. 50°或80°D. 20°或80°5.点M(3,2)关于y轴对称的点的坐标为().A.(-3,2)B.(-3,-2)C. (3,-2)D. (2,-3)6.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是().A. SSSB. SASC. ASAD. AAS7.如图,在ΔABC中,已知∠ABC=66°,∠ACB=54°BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是().A. 50°B. 40°C. 130°D.120°8.已知1405=a,2103=b,2802=c,则a、b、c的大小关系是(). A.a<b<c B.b<a<c C.c<a<b D.c<b<a9.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积为()班级:____________姓名:______________学号:____________——————————————————————装订线内不得答题————————————————————————A .2cm ²B .4cm ²C .6cm ²D .8cm 2 10.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B ,C ,E 在同一条直线上,AE 与CD 交于点G ,AC 与BD 交于点F ,连接FG ,则下列结论:①AE=BD ;②AG=BF ;③FG ∥BE ;④CF=CG.其中正确的结论的个数是( ).A .4个B .3个C .2个D .1个第9题 第10题 二.填空题.(每小题3分,共24分)11.已知,如图:∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF 还要添加的条件为_____________。

2017-2018学年度第一学期期中考试八年级数学试题及答案

2017-2018学年度第一学期期中考试八年级数学试题及答案

2017-2018学年度第一学期期中考试八年级数学试卷(温馨提示:请将前12题请将答案依次写在表格中.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案一、选择题(每题3分,共36分) 1、下列各数中,是无理数的是 ( )。

A 、16 B 、-2 C 、0 D 、π-2、平面直角坐标系内,点P (3,-4)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3、下列说法正确的是( )A 、若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B 、若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C 、若 a 、b 、c 是Rt△ABC 的三边,90=∠A ,则a 2+b 2=c 2;D 、若 a 、b 、c 是Rt△ABC 的三边,90=∠C ,则a 2+b 2=c 2. 4、下列各组数中,是勾股数的是( )A 、 12,8,5,B 、 30,40,50,C 、 9,13,15D 、 16 ,18 ,1105、0.64的平方根是( )A 、0.8B 、±0.8C 、0.08D 、±0.08 6、下列二次根式中, 是最简二次根式的是( )A.31B. 20C. 22D. 1217、点P (-3,5)关于x 轴的对称点P’的坐标是( )A 、(3,5)B 、(5,-3)C 、(3,-5)D 、(-3,-5)8、二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )A 、⎩⎨⎧==;3,4y xB 、⎩⎨⎧==;6,3y xC 、⎩⎨⎧==;4,2y xD 、⎩⎨⎧==.2,4y x9、下列计算正确的是( )A 、20=102B 、2(3)3-=- C 、224=- D 、632=⋅ 10、小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A .B .C .D .11、点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( ) A .(2,0) B .(0,-2) C .(4,0) D .(0,-4)12、在Rt △ABC 中,∠C=90°,AC=3.将其绕B 点顺时针旋转一周,则分别以BA 、BC 为半径的圆形成一圆环。

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年八年级数学上学期期中考试原(含答案)

2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版第11~13章。

第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。

人教版八年级数学上册期中测试卷 (22)

人教版八年级数学上册期中测试卷 (22)

2017-2018学年福建省龙岩市永定县湖坑中学八年级(上)期中数学试卷一、选择题(每小题4分,满分40分)1.(4分)下列角度中,不能成为多边形内角和的是()A.600 B.720 C.900 D.10802.(4分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.93.(4分)在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或104.(4分)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个B.2个C.1个D.0个5.(4分)如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A的度数等于()A.70°B.60°C.50°D.40°6.(4分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF 的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角7.(4分)如图,在直角三角形ABC中,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(除之C外)相等的角的个数是()A.2 B.3 C.4 D.58.(4分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块9.(4分)如图,已知∠1=∠2,AC=AD,有下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC∽△AED的条件有()A.4个B. 3个 C.2个D.1个10.(4分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.4二、填空题(每小题3分,满分24分)11.(3分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.(3分)已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是.13.(3分)如图,已知∠1=∠2,请你添加一个条件:,使△ABD≌△ACD.14.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .15.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是.16.(3分)正十边形的内角和为,外角和为,每个内角为.17.(3分)如图,在△ABC中,AB=3,BC=8,则BC边上的中线AD的取值范围是.18.(3分)如图,△ABC中,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF交AF的延长线于D,CE⊥AF于E,已知CE=5,BD=2,则ED= .三、解答题(共7小题,满分86分)19.(10分)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点P的射线OP便是∠AOB的平分线,请说明理由.20.(12分)如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC 于M,N两点.求证:∠1=∠2.21.(12分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.22.(12分)如图,如图,点P在AB上,∠1=∠2,∠3=∠4,(1)求证:△BDP≌△BCP(2)求证:AD=AC.23.(12分)如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,AD平分∠BAC,求证:AB=AC.24.(14分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.25.(14分)如图,已知:△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.(1)当EF与斜边BC不相交时,请证明EF=BE+CF(如图1);(2)如图2,当EF与斜边BC这样相交时,其他条件不变,证明:EF=BE﹣CF;(3)如图3,当EF与斜边BC这样相交时,猜想EF、BE、CF之间的关系,不必证明.2017-2018学年福建省龙岩市永定县湖坑中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,满分40分)1.(4分)下列角度中,不能成为多边形内角和的是()A.600 B.720 C.900 D.1080【解答】解:∵多边形内角和公式为(n﹣2)×180,∴多边形内角和一定是180的倍数.故选:A.2.(4分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.3.(4分)在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或10【解答】解:根据题意,①当AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选:B.4.(4分)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个B.2个C.1个D.0个【解答】解:(1)形状相同的两个三角形是相似形,但不一定是全等形,故错误;(2)在两个三角形中,相等的角是对应角,相等的边是对应边,对应边和对应角不一相等,故错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,正确,正确的有1个,故选:C.5.(4分)如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A的度数等于()A.70°B.60°C.50°D.40°【解答】解:∵∠1+∠2=100°,∴∠ADF+∠AEF=360°﹣100°=260°,∴∠ADE+∠AED=130°,∴∠A=180°﹣130°=50°.故选:C.6.(4分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选:B.7.(4分)如图,在直角三角形ABC中,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(除之C外)相等的角的个数是()A.2 B.3 C.4 D.5【解答】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:B.8.(4分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.9.(4分)如图,已知∠1=∠2,AC=AD,有下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC∽△AED的条件有()A.4个B.3个C.2个D.1个【解答】解:∵∠1=∠2,∴∠CAB=∠DAE;又AC=AD;所以要判定△ABC∽△AED,需添加的条件为:①AB=AE,根据全等三角形的判定定理SAS可以判定△ABC≌△AED,是一种特殊的相似三角形,故正确;③∠C=∠D(两角法),故正确;④∠B=∠E(两角法),故正确;故选:B.10.(4分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.4【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选:C.二、填空题(每小题3分,满分24分)11.(3分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(3分)已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是直角三角形.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选:C.13.(3分)如图,已知∠1=∠2,请你添加一个条件:∠B=∠C或∠BAD=∠CAD或BD=CD ,使△ABD≌△ACD.【解答】解:添加∠B=∠C,可用AAS判定两个三角形全等;添加∠BAD=∠CAD,可用ASA判定两个三角形全等;添加BD=CD,可用SAS判定两个三角形全等.故填∠B=∠C或∠BAD=∠CAD或BD=CD.14.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是31.5 .【解答】解:作O E⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.16.(3分)正十边形的内角和为1440°,外角和为360°,每个内角为144°.【解答】解;正十边形的内角和为 1440°,外角和为 360°,每个内角为 144°,故答案为:1440°,360°,144°.17.(3分)如图,在△ABC中,AB=3,BC=8,则BC边上的中线AD的取值范围是1<AD<7 .【解答】解:∵BC=8,AD是BC边上的中线,∴BD=4,∴4﹣3<AD<4+3,即1<AD<7.故答案为:1<AD<7.18.(3分)如图,△ABC中,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF交AF的延长线于D,CE⊥AF于E,已知CE=5,BD=2,则ED= 3 .【解答】解:在△ABC中,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥AF,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵CE⊥AF,∴∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD﹣AE=CE﹣BD=5﹣2=3.故答案为:3.三、解答题(共7小题,满分86分)19.(10分)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点P的射线OP便是∠AOB的平分线,请说明理由.【解答】解:射线OP是∠AOB的平分线,理由如下:在△OMP和△ONP中∵∴△OMP≌△ONP(SSS),∴∠MOP=∠NOP,∴OP平分∠AOB.20.(12分)如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC 于M,N两点.求证:∠1=∠2.【解答】证明:∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠2.21.(12分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=(120°﹣10°)=55°.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.22.(12分)如图,如图,点P在AB上,∠1=∠2,∠3=∠4,(1)求证:△BDP≌△BCP(2)求证:AD=AC.【解答】证明:(1)∵∠1=∠2,∴∠DPB=∠CPB,在△BDP和△BCP中,,∴△BDP≌△BCP(ASA);(2)由(1)知△BDP≌△BCP,∴BD=BC,在△BDA和△BCA中,,∴△BDA≌△BCA(SAS),∴AD=AC.23.(12分)如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,AD平分∠BAC,求证:AB=AC.【解答】证明:∵BE⊥AC、CF⊥AB于点E、F,∴∠BEA=∠CFA=90°.∵AD平分∠BAC,∴∠DAE=∠DAF.在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴AE=AF.在Rt△ABE和Rt△ACF中,,∴Rt△ABE≌Rt△ACF(ASA),∴AB=AC.24.(14分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【解答】证明:(1)∵AE⊥AB,AF⊥AC,∠EAB=∠FAC=90°,∴∠EAC=∠BAF,在△EAC和△BAF中,,∴△EAC≌△BAF,∴EC=BF.(2)设AC交BF于O.∵△EAC≌△BAF,∴∠AFO=∠OCM,∵∠AOF=∠MOC,∴∠OMC=∠OAF=90°,∴EC⊥BF.25.(14分)如图,已知:△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.(1)当EF与斜边BC不相交时,请证明EF=BE+CF(如图1);(2)如图2,当EF与斜边BC这样相交时,其他条件不变,证明:EF=BE﹣CF;(3)如图3,当EF与斜边BC这样相交时,猜想EF、BE、CF之间的关系,不必证明.【解答】(1)证明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△ABE和△CAF中,∴△BEA≌△AFC,∴EA=FC,BE=AF,∴EF=EA+AF=BE+CF.(2)证明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△ACF中,∴△BEA≌△AFC,∴EA=FC,BE=AF,∵EF=AF﹣AE,∴EF=BE﹣CF.(3)EF=CF﹣BE,理由是::∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFA=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△ACF中,∴△BEA≌△AFC,∴EA=FC,BE=CF,∵EF=EA﹣AF,∴EF=CF﹣BE.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________. 三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

人教版八年级数学上册期中测试卷 (80)

人教版八年级数学上册期中测试卷 (80)

2017-2018学年吉林省吉林市吉化九中八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分.)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C. D.2.下列图形具有稳定性的是()A.正五边形 B.正方形C.梯形D.等腰三角形3.对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2) B.(3,﹣2)C.(3,2)D.(﹣3,2)7.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则这样的P点有多少个()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分.)11.四边形的内角和为.12.如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件,则有△AOC≌△BOD.13.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= °.14.已知:如图,在△ABC中,AB=AC,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点,连接BE,则∠CBE= .15.如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 度.16.如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= .三、解答题(每题6分,共24分)17.已知多边形的每个内角与其外角的差均为90°,求每个内角的度数与多边形的边数.18.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.19.观察右面两个图形,解答下列问题:(1)其中是轴对称图形的为,是中心对称图形的为(填序号);(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)20.如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形,这个三角形的面积为.(2)在图②中画出一个以AB为底边的等腰三角形,这个三角形的面积为.四、解答题(每题7,共28分)21.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:22.如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?23.已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC.①求证:△BED≌△ACD.②求证:BF⊥AC.24.如图所示,∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC,且交AB于点F.(1)求证:△AFD为等腰三角形;(2)若DF=10cm,求DE的长.五、解答题:(每题10分,共20分)25.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)26.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB 延长线上一动点,与点P同时以2厘米/每秒的相同速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.设运动时间为t秒.(1)用含t的式子表示:AP= ,AE= ,BE= .(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.2017-2018学年吉林省吉林市吉化九中八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分.)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列图形具有稳定性的是()A.正五边形 B.正方形C.梯形D.等腰三角形【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:正五边形,正方形,梯形,等腰三角形中具有稳定性的是等腰三角形.故选D.【点评】本题考查了三角形的稳定性,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等.3.对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选B.【点评】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,注意不同形状的三角形的高的位置.4.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【考点】三角形三边关系.【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.5.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【考点】等腰三角形的性质;三角形内角和定理.【专题】分类讨论.【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选C.【点评】此题主要考查了学生的三角形的内角和定理及等腰三角形的性质的运用.6.点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2) B.(3,﹣2)C.(3,2)D.(﹣3,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),可以直接得到答案.【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.【点评】此题主要考查了考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容,比较基础,关键是熟记点的坐标变化规律.7.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【考点】全等三角形的判定与性质.【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.【点评】本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的性质.【分析】由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.9.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.【解答】解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC==50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.【点评】此题比较简单,考查的是等腰三角形的性质及三角形内角和定理.10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则这样的P点有多少个()A.1 B.2 C.3 D.4【考点】等腰三角形的判定;坐标与图形性质.【专题】计算题;分类讨论.【分析】没有指明点P在正半轴还是在负半轴,也没有说明哪个底哪个是腰,故应该分情况进行分析,从而求解.【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=AP=2,∴P的坐标是(﹣2,0).故选D.【点评】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用.二、填空题(本大题共6小题,每小题3分,共18分.)11.四边形的内角和为360°.【考点】多边形内角与外角.【分析】根据n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(4﹣2)×180°=360°.故四边形的内角和为360°.故答案为:360°.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.12.如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件AC=BD ,则有△AOC≌△BOD.【考点】全等三角形的判定.【分析】补充条件:AC=BD,可利用AAS定理判定△AOC≌△BOD.【解答】解:补充条件:AC=BD,∵在△AOC和△DOB中,∴△AOC≌△BOD(AAS).故答案为:AC=BD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 540 °.【考点】多边形内角与外角;三角形的外角性质.【专题】计算题.【分析】根据三角形的内角和与四边形的内角和公式得∵∠1+∠2+γ=180°①,∠3+∠4+β+θ=360°②,∠5+∠6+∠7+α=360°③,三式相加,再由邻补角的性质即可得出答案.【解答】解:如图,∵∠1+∠2+γ=180°①,∠3+∠4+β+θ=360°②,∠5+∠6+∠7+α=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+α+β+γ+θ=900°,∵α+β=180°,γ+θ=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=900°﹣180°﹣180°,=540°.故答案为:540.【点评】本题考查了多边形的内角和与外角和以及三角形外角的性质,是基础知识要熟练掌握.14.已知:如图,在△ABC中,AB=AC,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点,连接BE,则∠CBE= 45°.【考点】线段垂直平分线的性质.【分析】由线段AB的垂直平分线交AB于D,交AC于E,连接BE,根据线段垂直平分线的性质,可得AE=BE,又由等腰三角形的性质,可求得∠ABE与∠ABC的度数,继而求得答案.【解答】解:∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=30°,∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=∠C==75°,∴∠CBE=∠ABC﹣∠ABE=45°.故答案为;45°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.15.如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 15 度.【考点】等边三角形的性质;等腰三角形的性质.【分析】根据等边三角形的性质得到∠ABD=ABC=30°,∠ADB=90°,根据等腰三角形的性质得到∠BDE=∠BED==75°,于是得到结论.【解答】解:∵等边三角形ABC中,BD是AC边上的中线,∴∠ABD=ABC=30°,∠ADB=90°,∵BD=BE,∴∠BDE=∠BED==75°,∴∠EDA=15°.故答案为:15.【点评】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握等边三角形的性质是解题的关键.16.如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= 9 .【考点】等边三角形的判定与性质;含30度角的直角三角形.【分析】求△EFC的周长,可求出其各边,要求其边长,可利用勾股定理进行求解.【解答】解:在Rt△ADE中,∠A=60°,∴∠ADE=30°,又AE=1,∴AD=2AE=2,∵D为AB的中点,∴AB=AC=4,∴CE=AC﹣AE=4﹣1=3,∵EF∥AB,∴∠EFC=∠B=60°,又∠C=60°,∴△EFC为等边三角形,∴EF=FC=EC=3,∴△EFC的周长=3+3+3=9.【点评】熟练掌握等边三角形的性质,能用勾股定理解决一些简单的计算问题.三、解答题(每题6分,共24分)17.已知多边形的每个内角与其外角的差均为90°,求每个内角的度数与多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的每个内角都相等,每个内角与每个外角的差是90°,则每个外角是45°.正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的个数,就得到外角和中外角的个数,外角的个数就是多边形的边数.再根据多边形的内角和定理就可以求出这个多边形的内角和.【解答】解:设每一个外角为x°,则每一个内角为(x+90)°,根据题意,得x+x+90=180,解得x=45,360÷45=8.答:每个内角的度数为45°,它的边数为8.【点评】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.18.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【考点】作图-轴对称变换.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1,并写出点C1的坐标即可;(2)根据关于y轴对称的点的坐标特点画出△A2B2C2,并写出点C2的坐标即可.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.19.观察右面两个图形,解答下列问题:(1)其中是轴对称图形的为②,是中心对称图形的为①(填序号);(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)【考点】作图-轴对称变换.【分析】(1)根据轴对称图形和中心对称图形的定义分析.(2)连接关键的对应点,作连线的垂直平分线即可.【解答】解:(1)②,①;(2分)(2)(3分)评分标准:(1)每填对一个得(1分),填“V“、“N“不扣分(2)作法1、作法2中不作虚线不扣分.【点评】本题主要考查了轴对称图形和中心对称图形的定义及对称轴的画法,掌握轴对称图形的画法即可20.如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形,这个三角形的面积为 3 .(2)在图②中画出一个以AB为底边的等腰三角形,这个三角形的面积为 2.5 .【考点】勾股定理;三角形的面积;等腰三角形的性质.【专题】计算题.【分析】(1)画图可得出以AB为腰的等腰三角形的底边长为2,底上的高为3,根据三角形的面积公式计算即可;(2)画图可得出以AB为底的等腰三角形如图所示,用边长为2和和3的矩形的面积减去三个直角三角形的面积即可.【解答】解:(1)以AB为腰的等腰三角形的面积:×2×3=3;面积为:4或5或3;(2)以AB为底的等腰三角形的面积:2×3﹣×3×1﹣×1×2×2=2.5,故答案为3,2.5.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的性质.四、解答题(每题7,共28分)21.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【考点】全等三角形的判定与性质;命题与定理.【专题】压轴题.【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.22.如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质得出AB=BC,BE=BD,∠ABC=∠EBD=60°,求出∠ABE=∠CBD,根据SAS推出△ABE≌△CBD,根据全等得出AE=CD=4,即可求出答案.【解答】解:∵△ABC和△BED都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°,∴∠ABE=∠CBD=60°﹣∠CBE,在△ABE和△CBD中∴△ABE≌△CBD(SAS),∴AE=CD=4,∵△BED是等边三角形,∴DE=BD=2,∴AD=2+4=6.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质的应用,能推出△ABE≌△CBD是解此题的关键.23.已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC.①求证:△BED≌△ACD.②求证:BF⊥AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】①求出∠BDE=∠ADC=90°,根据SAS推出两三角形全等即可;②根据全等三角形的性质得出∠CAD=∠DBE,根据三角形内角和定理求出∠DBE+∠BED=90°,求出∠AEF+∠CAD=90°,根据三角形内角和定理求出∠AFE=90°,即可得出答案.【解答】证明:①∵AD⊥BC,∴∠BDE=∠ADC=90°,在△BED和△ACD中∴△BED≌△ACD(SAS);②∵△BED≌△ACD,∴∠CAD=∠DBE,∵∠BDE=90°,∴∠DBE+∠BED=90°,∵∠BED=∠AEF,∠DBE=∠CAD,∴∠AEF+∠CAD=90°,∴∠AFE=180°﹣90°=90°,∴BF⊥AC.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理的应用,能推出△BED≌△ACD是解此题的关键.24.如图所示,∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC,且交AB于点F.(1)求证:△AFD为等腰三角形;(2)若DF=10cm,求DE的长.【考点】等腰三角形的判定;平行线的性质;角平分线的性质.【专题】计算题;证明题.【分析】(1)利用平行线和角平分线的性质,证得等角,利用等角对等边这一判定定理证明△AFD为等腰三角形.(2)AD是角平分线,易证∠GFD=30°,又△GFD是直角三角形,所以30°锐角所对的直角边等于斜边的一半这一性质,求出DE=5.【解答】(1)证明:如图所示,∵DF∥AC,∴∠3=∠2,∵AD是角平分线,∴∠1=∠2,∴∠1=∠3,∴FD=FA,∴△AFD为等腰三角形.(2)解:过D作DG⊥AB,垂足为G,∵∠1=∠2=∠BAC,∠BAC=30°,∴∠1=15°,又∵∠1=∠3,∴∠1=∠3=15°,∴∠GFD=∠1+∠3=15°+15°=30°,在Rt△FDG中,DF=10cm,∠GFD=30°,∴DG=5cm,∵AD为∠BAC的平分线,DE⊥AC,DG⊥AB,∴DE=DG=5cm.【点评】本题考查了角平分线和平行线的性质及等腰三角形的判定;正确作出辅助线、计算出各角的度数是解答本题的关键.五、解答题:(每题10分,共20分)25.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′(3,5)、C′(5,﹣2);归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(b,a)(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)【考点】轴对称-最短路线问题;坐标与图形变化-对称.【专题】数形结合.。

2017-2018学年山东省德州五中八年级(上)期中数学试卷(解析版)

2017-2018学年山东省德州五中八年级(上)期中数学试卷(解析版)

2017-2018 学年山东省德州五中八年级(上)期中数学试卷一、选择题(每题4 分,共48 分)1.(4 分)下列图形中不是轴对称图形的是()A.B.C.D.2.(4分)三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(4 分)等腰三角形的两边长分别为4cm 和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm 或20cm4.(4 分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8 厘米,AB=10 厘米,则△EBC 的周长为()厘米.A.16 B.18 C.26 D.285.(4 分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.76.(4 分)已知:如图,AD 是△ABC 的角平分线,且AB:AC=3:2,则△ABD 与△ACD 的面积之比为()A.3:2 B.9:4 C.2:3 D.4:97.(4 分)△ABC 中,∠ABC 与∠ACB 的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40° B.50° C.65°D.80°8.(4 分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550° C.650° D.180°9.(4 分)如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′ B.∠A=∠A′ C.AC=A′C′D.∠C=∠C′10.(4 分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3 等于()A.90° B.120° C.150°D.180°11.(4 分)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若A E=2,当EF+CF 取得最小值时,则∠ECF 的度数为()A.15° B.22.5° C.30° D.45°12.(4 分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON 上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7 的边长为()A.6 B.12 C.32 D.64二、填空题(每题4 分,共24 分)13.(4 分)从长度为2cm,3cm,4cm,5cm 四条线段中任意取三条组成三角形,则组成三角形的个数为.14.(4 分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.15.(4 分)如图,点P 是∠AOB 外一点,点M、N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在线段MN 的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为.16.(4 分)点P(3a+6,3﹣a)关于x 轴的对称点在第四象限内,则a 的取值范围为.17.(4 分)在△ABC 中AB=AC,中线BD 将△ABC 的周长分为12cm 和15cm,则三角形底边长.18.(4 分)如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正△ABC 和正△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题:(共78 分)19.(8 分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.20.(10 分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 对称的对称的△A1B1C1;(2)在直线DE 上画出点P,使△PAC 周长最小.21.(10 分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.22.(12 分)如图,O 为码头,A、B 两个灯塔与码头O 的距离相等,OA,OB 为海岸线,一轮船P 离开码头,计划沿∠AOB 的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P 始终保持与灯塔A、B 的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.23.(12 分)如图,已知△ABC 中,AB>AC,BE、CF 都是△ABC 的高,P 是BE 上一点且BP=AC,Q 是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.24.(12 分)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1 的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN 绕点C 旋转到图2 的位置时,直接写出DE、AD、BE 的关系为:(3)当直线MN 绕点C 旋转到图3 的位置时,试问DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.25.(14 分)如图,已知△ABC 中,AB=AC=10cm,BC=8cm,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?2017-2018 学年山东省德州五中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4 分,共48 分)1.(4 分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念可知:A,B,D 是轴对称图形,C 不是轴对称图形,故选:C.2.(4分)三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.3.(4 分)等腰三角形的两边长分别为4cm 和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm 或20cm【解答】解:等腰三角形的两边长分别为4cm 和8cm,当腰长是4cm 时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.4.(4 分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8 厘米,AB=10 厘米,则△EBC 的周长为()厘米.A.16 B.18 C.26 D.28【解答】解:∵DE 是△ABC 中AC 边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC 的周长=BC+BE+CE=10 厘米+8 厘米=18 厘米,故选:B.5.(4 分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:设该多边形的边数为n则:(n﹣2)•180°=900°,解得:n=7.故选:D.6.(4 分)已知:如图,AD 是△ABC 的角平分线,且AB:AC=3:2,则△ABD 与△ACD 的面积之比为()A.3:2 B.9:4 C.2:3 D.4:9【解答】解:过点D 作DE⊥AB 于E,DF⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(AB•DE):(AC•DF)=AB:AC=3:2.故选:A.7.(4 分)△ABC 中,∠ABC 与∠ACB 的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40° B.50° C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF 是△ABC 的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.8.(4 分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550° C.650° D.180°【解答】解:如图,∠6+∠7=∠8+∠9,由五边形内角和定理得:∠1+∠2+∠3+∠8+∠9+∠4+∠5=540°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.故选:A.9.(4 分)如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′ B.∠A=∠A′C.AC=A′C′ D.∠C=∠C′【解答】解:A、若添加BC=BˊCˊ,可利用SAS 进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA 进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS 进行全等的判定,故本选项错误;故选:C.10.(4 分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+ ∠3 等于()A.90° B.120° C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.11.(4 分)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取得最小值时,则∠ECF 的度数为()A.15° B.22.5° C.30° D.45°【解答】解:过E 作EM∥BC,交AD 于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E 和M 关于AD 对称,连接CM 交AD 于F,连接EF,则此时EF+CF 的值最小,∵△ABC 是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF= ∠ACB=30°,故选:C.12.(4 分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON 上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1 ,则△A6B6A7 的边长为()A.6 B.12 C.32 D.64【解答】解:∵△A1B1A2 是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3 、△A3B3A4 是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题4 分,共24 分)13.(4 分)从长度为2cm,3cm,4cm,5cm 四条线段中任意取三条组成三角形,则组成三角形的个数为 3 个.【解答】解:任意三条线段组合有:2cm,3cm,4cm;2cm,3cm,5cm;2cm,4cm,5cm;3cm,4cm,5cm.根据三角形的三边关系,可知2cm,3cm,5cm 不能组成三角形.故答案为:3 个14.(4 分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入 1 号球袋.【解答】解:如图,该球最后将落入1 号球袋.15.(4 分)如图,点P 是∠AOB 外一点,点M、N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在线段MN 的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为4.5cm .【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.16.(4 分)点P(3a+6,3﹣a)关于x 轴的对称点在第四象限内,则a 的取值范围为﹣2<a<3 .【解答】解:∵P 关于x 轴的对称点在第四象限内,∴点P 位于第一象限.∴3a+6>0①,3﹣a>0②.解不等式①得:a>﹣2,解不等式②得:a<3,所以a 的取值范围是:﹣2<a<3.故答案为:﹣2<a<3.17.(4 分)在△ABC 中AB=AC,中线BD 将△ABC 的周长分为12cm 和15cm,则三角形底边长 11cm 或7cm .【解答】解:如图,∵DB 为△ABC 的中线,∴AD=CD.设AD=CD=x,则AB=2x,当x+2x=12,解得x=4,BC+x=15,解得BC=11,此时△ABC 的底边长为11cm;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC 的底边长为7cm.故答案为11cm 或7cm.18.(4 分)如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正△ABC 和正△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【解答】解:①∵正△ABC 和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、解答题:(共78 分)19.(8 分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.【解答】解:设此多边形的边数为n,则:(n﹣2)•180=1440+360,解得:n=12.答:这个多边形的边数为12.20.(10 分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 对称的对称的△A1B1C1;(2)在直线DE 上画出点P,使△PAC 周长最小.【解答】解:(1)如图所示:从△ABC 各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点C 关于直线DE 的对称点C1,连接C1A,交直线DE 于点P 点,P 即为所求,此时△PAC 的周长最小.21.(10 分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【解答】证明:∵AB∥DE,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC 和△DEF 中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.22.(12 分)如图,O 为码头,A、B 两个灯塔与码头O 的距离相等,OA,OB 为海岸线,一轮船P 离开码头,计划沿∠AOB 的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P 始终保持与灯塔A、B 的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【解答】解:(1)如图所示:OC 即为所求.(2)没有偏离预定航行,理由如下:在△AOP 与△BOP 中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C 在∠AOB 的平分线上.23.(12 分)如图,已知△ABC 中,AB>AC,BE、CF 都是△ABC 的高,P 是BE 上一点且BP=AC,Q 是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.【解答】解:△APQ 是等腰直角三角形.∵BE、CF 都是△ABC 的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2 又∵AC=BP,CQ=AB,在△ACQ 和△PBA 中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ 是等腰直角三角形24.(12 分)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1 的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN 绕点C 旋转到图2 的位置时,直接写出DE、AD、BE 的关系为:DE=AD﹣BE(3)当直线MN 绕点C 旋转到图3 的位置时,试问DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN 于D,BE⊥MN 于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC 和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)DE=AD﹣BE,在△ADC 和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;故答案为:DE=AD﹣BE(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.25.(14 分)如图,已知△ABC 中,AB=AC=10cm,BC=8cm,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q 运动的时间s,∴cm/s;(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得x=3x+2×10,解得.∴点P 共运动了×3=80cm.△ABC 周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB 的长度,∴点P、点Q 在AB 边上相遇,∴经过s 点P 与点Q 第一次在边AB 上相遇.。

2017-2018学年江苏省常州市八年级(上)期中数学试卷

2017-2018学年江苏省常州市八年级(上)期中数学试卷

2017-2018学年江苏省常州市八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)以下四个银行标志中,是轴对称图形的是()A.B. C.D.2.(2分)下列说法中,正确的是()A.形状相同的两个三角形全等B.线段不是轴对称图形C.等腰三角形的底角必小于90°D.面积相等的两个三角形全等3.(2分)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS4.(2分)如图,△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,已知∠C=38°,则∠BAE的度数为()A.13°B.14°C.15°D.16°5.(2分)下列各组数中不能作为直角三角形的三边长的是()A.6,12,8 B.7,24,25 C.1.5,2,2.5 D.9,12,156.(2分)等腰△ABC的周长为20,其中一边长为9,则这个等腰三角形的腰长为()A.5.5 B.9 C.11 D.5.5或97.(2分)△ABC中,∠A>90°,AB=6,AC=8,则BC的长度可能是()A.8 B.10 C.12 D.148.(2分)如图,正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则以EF为直径的圆的面积为()A.πB.πC.πD.π二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B分别对应D、E),若BC=10cm,AB=5cm,则EF为cm.10.(2分)在镜子中看到时钟显示的时间是,实际时间是.11.(2分)等腰三角形最多有条对称轴.12.(2分)如图,CD=CB,那么添加条件能根据SAS判定△ABC≌△ADC.13.(2分)△ABC中,∠A:∠B:∠C=1:3:2,且最长边为10cm,则最短边长为cm.14.(2分)如图,△ABC中,∠BAC=90°,BC=6,以△ABC的三边向外作正方形,以AC为边的正方形的面积为25cm2,则正方形M的面积为cm2.15.(2分)如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.16.(2分)如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是50cm2,AB=11cm,BC=14cm,则DE=cm.17.(2分)如图,△ABC中,D是BC上一点,若AB=AC=CD,AD=BD,∠ADB 的度数为.18.(2分)△ABC中,AB=AC=9,BC=12,D是线段BC上的动点(不含端点B,C),当线段AD=7时,BD的长为.三、作图题(共14分,其中第19题6分,第20题8分)19.(6分)如图,已知∠ABC=50°,请你利用直尺和圆规在射线BA上找一点P,使得∠BPC=80°,并画出△BPC.(保留作图痕迹)20.(8分)如图,在8×8的正方形网格中,已知△ABC的三个顶点在格点上.(1)在图中画出△ABC关于直线l的轴对称图形△A1B1C1;(2)在(1)中,将点B1沿网格线平移一次到格点D,使得△A1C1D为直角三角形,且A1C1为直角边,试在图中画出点D的位置.四、解答题(共50分)21.(6分)如图,△ABC中,AB=AC,点D、E、F分别在△ABC的三边上,且∠B=∠1,BD=CF.求证:△EBD≌△DCF.22.(8分)如图,已知BA⊥AC,CD⊥DB,AC与BD交于O,BD=CA.求证:(1)BA=CD;(2)△OBC是等腰三角形.23.(8分)如图,小明所在学校的旗杆BD高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE,活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等,请你求出该位置与旗杆之间的距离.24.(8分)如图,△ABC中,∠ACB=90°,AC=4,BC=3,点P是AB边上一动点,当△PCB是等腰三角形时,求AP的长度.25.(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度,△ABC的三个顶点都在格点上.(1)在线段AC上找一点P(不能借助圆规),使得PC2﹣PA2=AB2,画出点P的位置,并说明理由.(2)求出(1)中线段PA的长度.26.(10分)在△ABC中,∠BAC=90°,AC=AB,点D为直线BC上的一动点,以AD为边作△ADE(顶点A、D、E按逆时针方向排列),且∠DAE=90°,AD=AE,连接CE.(1)如图1,若点D在BC边上(点D与B、C不重合),求∠BCE的度数;(2)如图2,若点D在CB的延长线上,连结BE,若DB=5,BC=7,求△ADE的面积.2017-2018学年江苏省常州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)以下四个银行标志中,是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下列说法中,正确的是()A.形状相同的两个三角形全等B.线段不是轴对称图形C.等腰三角形的底角必小于90°D.面积相等的两个三角形全等【分析】根据轴对称图形的概念,全等三角形的判定以及等腰三角形的性质对各选项分析判断即可得解.【解答】解:A、形状相同的两个三角形全等,错误,这两个三角形大小不一定相等,故本选项错误;B、线段是轴对称图形,对称轴为线段的垂直平分线或线段本身所在的直线,故本选项错误;C、等腰三角形的底角必小于90°,正确,故本选项正确;D、面积相等的两个三角形全等错误,例如,三角形的中线将三角形分成的两个三角形面积相等,但不一定全等,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,全等三角形的判定以及等腰三角形的性质.3.(2分)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选:D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.4.(2分)如图,△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,已知∠C=38°,则∠BAE的度数为()A.13°B.14°C.15°D.16°【分析】根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质得到∠EAC=∠C=38°,计算即可.【解答】解:∵ED是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C=38°,∵∠C=38°,∠B=90°,∴∠BAC=52°,∴∠BAE=∠BAC﹣∠CAE=14°,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(2分)下列各组数中不能作为直角三角形的三边长的是()A.6,12,8 B.7,24,25 C.1.5,2,2.5 D.9,12,15【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、62+82≠122,不符合勾股定理的逆定理,故正确.B、72+242=252,符合勾股定理的逆定理,故错误;C、1.52+22=2.52,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误;故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.(2分)等腰△ABC的周长为20,其中一边长为9,则这个等腰三角形的腰长为()A.5.5 B.9 C.11 D.5.5或9【分析】根据已知的等腰三角形的周长和一边的长,先分清三角形的底和腰,再计算腰长.【解答】解:∵等腰三角形的周长为20,∴当腰长=9时,底边=2,∴当底边=9时,腰长=5.5,故选:D.【点评】本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论9为腰长还是底边长.7.(2分)△ABC中,∠A>90°,AB=6,AC=8,则BC的长度可能是()A.8 B.10 C.12 D.14【分析】首先由三角形的三边关系得到2<BC<14,然后求得当∠A=90°时BC=10,故当∠A>90°时BC的长度10<BC<14.【解答】解:∵在△ABC中,AB=6,AC=8,∴2<BC<14,当∠A=90°时,BC===10.∵∠A>90°,∴10<BC<14.观察选项,C选项符合题意.故选:C.【点评】考查了勾股定理,三角形的三边关系,根据当∠A=90°时,利用勾股定理求得BC的长度是解题的关键.8.(2分)如图,正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则以EF为直径的圆的面积为()A.πB.πC.πD.π【分析】先延长BE交CF于G,再根据全等三角形的性质,得出CG=BE=3,BG=AE=4,进而得到得出EG=1,GF=1,再根据勾股定理得出EF的长,即可得到以EF为直径的圆的面积.【解答】解:如图,延长BE交CF于G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴同理可得,△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=90°,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,∴△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4﹣3=1,GF=4﹣3=1,∴EF=,∴以EF为直径的圆的面积=π×()2=,故选:A.【点评】此题考查正方形的性质以及全等三角形的判定与性质的运用,解决问题的关键是根据全等三角形的性质得出EG=FG=1,再利用勾股定理计算.二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B分别对应D、E),若BC=10cm,AB=5cm,则EF为10cm.【分析】根据全等三角形的对应边相等解答.【解答】解:∵△ABC≌△DEF,∴EF=BC=10cm,故答案为:10.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.10.(2分)在镜子中看到时钟显示的时间是,实际时间是16:25:08.【分析】实际时间和镜子中的时间关于竖直的线对称,画出相关图形可得实际时间.【解答】解:∵实际时间和镜子中的时间关于竖直的线成轴对称,∴|16:25:08,故答案为:16:25:08.【点评】考查镜面对称的知识;得到相应的对称轴是解决本题的关键;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(2分)等腰三角形最多有3条对称轴.【分析】根据等腰三角形的对称性和等边三角形的对称性解答.【解答】解:等腰三角形底边的高线所在的直线是对称轴,所以,当等腰三角形为等边三角形时对称轴最多,有3条.故答案为:3.【点评】本题考查了轴对称图形,熟练掌握等腰三角形和等边三角形的对称性是解题的关键.12.(2分)如图,CD=CB,那么添加条件∠DCA=∠BCA能根据SAS判定△ABC ≌△ADC.【分析】CD=CB,公共边AC=AC,要利用SAS判定△ABC≌△ADC,需加条件∠DCA=∠BCA.【解答】解:添加条件:∠DCA=∠BCA,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:∠DCA=∠BCA【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2分)△ABC中,∠A:∠B:∠C=1:3:2,且最长边为10cm,则最短边长为5cm.【分析】根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵∠A:∠B:∠C=1:3:2,∴设∠A、∠B、∠C分别为k、3k、2k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=90°,∠C=60°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5【点评】本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.14.(2分)如图,△ABC中,∠BAC=90°,BC=6,以△ABC的三边向外作正方形,以AC为边的正方形的面积为25cm2,则正方形M的面积为11cm2.【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,AB==,∴正方形M的面积为:()2=11cm2.故答案为:11.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.(2分)如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有3个.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.16.(2分)如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是50cm2,AB=11cm,BC=14cm,则DE=4cm.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵△ABC的面积是50,AB=11,BC=14,∴×BC×DF+×AB×DE=50,∴×14×DE+×11×DE=50,∴DE=4,故答案为:4【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.17.(2分)如图,△ABC中,D是BC上一点,若AB=AC=CD,AD=BD,∠ADB的度数为108°.【分析】由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA 的度数,然后根据三角形内角和定理即可得到结论.【解答】解:∵AD=BD,∴设∠BAD=∠DBA=x°,∵AB=AC=CD,∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°,∴5x=180°,∴∠DBA=36°,∴∠ADC=180°﹣36°﹣36°=108°.故答案为:108°.【点评】此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.18.(2分)△ABC中,AB=AC=9,BC=12,D是线段BC上的动点(不含端点B,C),当线段AD=7时,BD的长为4或8.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE,DE长,然后可得BD的长,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC=9,∴EC=BE=BC=6,∴AE==3,∵D是线段BC上的动点(不含端点B、C),AD=7,∴DE==2,∴BD的长为6﹣2=4或6+2=8.故答案为:4或8.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AE,DE长.三、作图题(共14分,其中第19题6分,第20题8分)19.(6分)如图,已知∠ABC=50°,请你利用直尺和圆规在射线BA上找一点P,使得∠BPC=80°,并画出△BPC.(保留作图痕迹)【分析】作线段BC的垂直平分线l交射线AB于点P,连接PC,则∠BPC即为所求.【解答】解:作线段BC的垂直平分线l交射线AB于点P,连接PC,则∠BPC即为所求.理由:∵直线l垂直平分线段BC,∴PB=PC,∴∠B=∠C=50°,∴∠BPC=180°﹣50°﹣50°=80°.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质等等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(8分)如图,在8×8的正方形网格中,已知△ABC的三个顶点在格点上.(1)在图中画出△ABC关于直线l的轴对称图形△A1B1C1;(2)在(1)中,将点B1沿网格线平移一次到格点D,使得△A1C1D为直角三角形,且A1C1为直角边,试在图中画出点D的位置.【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)直接利用勾股定理逆定理分析得出答案.【解答】解:(1)如图,△A1B1C1为所作三角形;(2)如图,点D1与点D2即为所作点.【点评】此题主要考查了轴对称变换以及平移变换和勾股定理以及其逆定理等知识,正确得出对应点位置是解题关键.四、解答题(共50分)21.(6分)如图,△ABC中,AB=AC,点D、E、F分别在△ABC的三边上,且∠B=∠1,BD=CF.求证:△EBD≌△DCF.【分析】根据全等三角形的判定证明即可.【解答】证明:∵AB=AC,∴∠B=∠C,∵∠EDC是△EBD的外角,∴∠EDC=∠BED+∠B,即∠1+∠FDC=∠BED+∠B,∵∠B=∠1,∴∠FDC=∠BED,在△EBD和△DCF中∴△EBD≌△DCF(AAS).【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.(8分)如图,已知BA⊥AC,CD⊥DB,AC与BD交于O,BD=CA.求证:(1)BA=CD;(2)△OBC是等腰三角形.【分析】(1)根据HL只要证明△ABC≌△DCB即可解决问题;(2)利用全等三角形的性质只要证明∠OCB=∠OBC即可;【解答】(1)∵BA⊥AC,CD⊥DB∴∠A=∠D=90°,在Rt△ABC和Rt△DCB中,∴△ABC≌△DCB (HL),∴BA=CD,(2)∵△ABC≌△DCB∴∠ACB=∠DBC,∴BO=CO,∴△OBC是等腰三角形.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.23.(8分)如图,小明所在学校的旗杆BD高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE,活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等,请你求出该位置与旗杆之间的距离.【分析】根据题意可得:AE=3m,AB=20m,BD=13m,由于CE2=CD2,根据勾股定理得到方程求解即可.【解答】解:根据题意可得:AE=3m,AB=20m,BD=13m.如图,设该位置为点C,且AC=xm.由AC=xm得:BC=(20﹣x)m (1分)由题意得:CE=CD,则CE2=CD2,∴32+x2=(20﹣x)2+132,解得:x=14,∴CB=20﹣x=6,由0<14<20可知,该位置是存在的.答:该位置与旗杆之间的距离为6米.【点评】考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.24.(8分)如图,△ABC中,∠ACB=90°,AC=4,BC=3,点P是AB边上一动点,当△PCB是等腰三角形时,求AP的长度.【分析】在直角△ABC中利用勾股定理求出AB=5.当△PCB为等腰三角形时,分PC=PB;BC=BP;CB=CP三种情况进行讨论即可.【解答】解:∵△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5.当△PCB为等腰三角形时,则PC=PB或BC=BP或CB=CP.①若PC=PB,则P在BC的垂直平分线上,此时P为AB中点,所以AP=AB=2.5;②若BP=BC=3,则AP=AB﹣BP=2;③若CB=CP,过点C作CD⊥AB于点D,则DP=DB.利用面积可求得:CD=2.4.Rt△CBD中,利用勾股定理求得:BD=1.8,∴BP=2BD=3.6,∴AP=1.4.综上:AP的长为2.5或2或1.4.【点评】本题考查了勾股定理,等腰三角形的性质,三角形的面积等知识.进行分类讨论是解题的关键.25.(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度,△ABC的三个顶点都在格点上.(1)在线段AC上找一点P(不能借助圆规),使得PC2﹣PA2=AB2,画出点P的位置,并说明理由.(2)求出(1)中线段PA的长度.【分析】(1)直接利用网格结合垂线平分线的性质以及勾股定理得出答案;(2)结合勾股定理进而得出答案.【解答】解:(1)作BC的垂直平分线,分别交AC、BC于点P、Q,则PC=PB.△APB中,∠A=90°,由根据定理得:PA2+AB2=PB2,即:PB2﹣PA2=AB2,∴PC2﹣PA2=AB2.(2)由图可得:AC=6,AB=4,设PA=x,则PB=PC=6﹣x,△PAB中,∠A=90°,PA2+AB2=PB2,∴x2+42=(6﹣x)2,解得:x=,答:线段PA的长度为:.【点评】此题主要考查了勾股定理以及线段垂直平分线的性质与作法,正确得出P点位置是解题关键.26.(10分)在△ABC中,∠BAC=90°,AC=AB,点D为直线BC上的一动点,以AD为边作△ADE(顶点A、D、E按逆时针方向排列),且∠DAE=90°,AD=AE,连接CE.(1)如图1,若点D在BC边上(点D与B、C不重合),求∠BCE的度数;(2)如图2,若点D在CB的延长线上,连结BE,若DB=5,BC=7,求△ADE的面积.【分析】(1)根据条件判定△ABD≌△ACE(SAS),利用全等三角形的性质可得∠ACE=∠B,由∠BAC=90°,可得∠B+∠ACB=90°,等量代换易得结论;(2)过点A作AF⊥DE于点F,利用等腰三角形的性质和直角三角形的性质,易得AF=,利用全等三角形的判定定理可得△ABD≌△ACE,由全等三角形的性质可得∠ADB=∠AEC,DB=EC,易得EC=5,DC=12,利用勾股定理可得DE的长,利用三角形的面积公式可得结论.【解答】(1)∵∠BAC=90°,∠DAE=90°∴∠BAD+∠DAC=90°,∠EAC+∠DAC=90°,∴∠BAD=∠EAC在△ABD和△ACE中,,∴△ABD≌△ACE (SAS)∴∠ACE=∠B,∵∠BAC=90°,∴∠B+∠ACB=90°∴∠ACE+∠ACB=90°,即∠BCE=90°;(2)过点A作AF⊥DE于点F.∵AD=AE,∴点F是DE的中点,∵∠DAE=90°,∴AF=,同理可证△ABD≌△ACE,∴∠ADB=∠AEC,DB=EC,∵DB=5,BC=7,∴EC=5,DC=12,∵∠DAE=90°,∴∠ADE+∠AED=90°,∴∠ADC+∠CDE+∠AED=90°,∴∠AEC+∠AED+∠CDE=90°,即∠CED+∠CDE=90°,∴∠ECD=90°,∴DE2=CE2+CE2=25+144=169,∵DE>0,∴DE=13,∴AF=,∴△ADE的面积为==.【点评】本题主要考查了全等三角形的判定定理及性质定理,还有等腰三角形的性质等,综合利用定理,作出恰当的辅助线是解答此题的关键.。

人教版2017-2018学年八年级数学上册期中测试卷(含答案)

人教版2017-2018学年八年级数学上册期中测试卷(含答案)

2017-2018学年八年级(上)期中数学试卷一、选择题1.下列实数是无理数的是( )A .﹣1B .0C .πD .2.下列各组数是勾股数的是( )A .3,4,5B .7,8,9C .9,41,47D .52,122,1323.满足﹣<x <的整数x 的个数是( ) A .1 B .2C .3D .4 4.下列二次根式中的最简二次根式是( )A .B .C .D .5.下列计算正确的是( )A .2×3=6B . +=C .2﹣=2D .2÷= 6.如果点P 在第二象限内,点P 到x 轴的距离是5,到y 轴的距离是2,那么点P 的坐标为( )A .(﹣5,2)B .(﹣5,﹣2)C .(﹣2,5)D .(﹣2,﹣5) 7.点M (3,﹣4)关于y 的轴的对称点是M 1,则M 1关于x 轴的对称点M 2的坐标为( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,4)D .(3,﹣4)8.某商店售货时,在进价基础上加一定利润,其数量x 与售价y 如下表所示,则售价y 与数量x 的函数关系式为( )A .y=8+0.4xB .y=8x +0.4C .y=8.4xD .y=8.4x +0.49.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m B.2.5m C.2.25m D.3m10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A 落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题11.的立方根是.12.比较大小:.13.如图,说出数轴上点A所表示的数是.14.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.15.如图,Rt△ABO中,∠ABO=90°,其顶点O为坐标原点,点B在第二象限,点A在x轴负半轴上.若BD⊥AO于点D,OB=,AB=2,则点A的坐标为,点B的坐标为.16.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运运,若∠AOB=45°,OP=2,则△PMN的周长的最小值为.17.如图:A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=2,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为.三、解答题18.计算(1)×﹣3(2)(+)(﹣)﹣(3)+﹣(4)(3﹣2+)÷2.19.解方程(1)4x2﹣1=0(2)8(x+1)3=﹣27.20.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1:,B1:,C1:;(3)求△ABC的面积.21.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W 元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)23.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.24.如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)、C(4,0)(1)求△ABC的面积;(2)在y轴上是否存在一个点D,使得△ABD是以AB为底的等腰三角形,若存在,求出点D坐标;若不存,说明理由.=S△ABC,请你求出a的值.(3)有一个P(﹣4,a),使得S△PAB四、附加题25.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC 为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)一、选择题1.下列实数是无理数的是()A.﹣1 B.0 C.πD.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,故A选项错误;B、是整数,是有理数,故B选项错误;C、是无理数,故C选项正确;D、是分数,是有理数,故D选项错误.故选:C.2.下列各组数是勾股数的是()A.3,4,5 B.7,8,9 C.9,41,47 D.52,122,132【考点】勾股数.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、是,因为32+42=52;B、不是,因为72+82≠92;C、不是,因为92+412≠472;D、不是,因为(52)2+2.故选:A.3.满足﹣<x<的整数x的个数是()A.1 B.2 C.3 D.4【考点】估算无理数的大小.【分析】先求出和的范围,即可得出答案.【解答】解:∵1,2<3,∴﹣2<﹣<﹣1,∴满足﹣<x<的整数x有﹣1,0,1,2,共4个,故选D.4.下列二次根式中的最简二次根式是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A5.下列计算正确的是()A.2×3=6B. += C.2﹣=2 D.2÷=【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B、D进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=6,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=,所以D选项正确.故选D.6.如果点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为﹣2,纵坐标为5,∴点P的坐标为(﹣2,5).故选C.7.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4)B.(﹣3,﹣4)C.(3,4) D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出M1,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:∵点M(3,﹣4)关于y的轴的对称点是M1,∴M1的坐标为(﹣3,﹣4),∴M1关于x轴的对称点M2的坐标为(﹣3,4).故选A.8.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()A.y=8+0.4x B.y=8x+0.4 C.y=8.4x D.y=8.4x+0.4【考点】函数关系式.【分析】根据数量x与售价y如下表所示所提供的信息,列出售价y与数量x的函数关系式y=(8+0.4)x.【解答】解:依题意得:y=(8+0.4)x=8.4x,故选:C.9.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.2m B.2.5m C.2.25m D.3m【考点】勾股定理的应用.【分析】经分析知:可以放到一个直角三角形中计算.此直角三角形的斜边是竹竿的长,设为x米.一条直角边是1.5,另一条直角边是(x﹣0.5)米.根据勾股定理,得:x2=1.52+(x﹣0.5)2,x=2.5.那么河水的深度即可解答.【解答】解:若假设竹竿长x米,则水深(x﹣0.5)米,由题意得,x2=1.52+(x﹣0.5)2解之得,x=2.5所以水深2.5﹣0.5=2米.故选A.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A 落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,=AC•BC=AB•CE,∵S△ABC∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:B.二、填空题11.的立方根是.【考点】立方根.【分析】直接根据立方根的定义求解.【解答】解:的立方根为.故答案为.12.比较大小:>.【考点】实数大小比较.【分析】先求出的取值范围为3<<4,可得1<﹣2<2,再比较分子的大小即可求解.【解答】解:∵3<<4,∴1<﹣2<2,∴>.故答案为:>.13.如图,说出数轴上点A所表示的数是﹣.【考点】实数与数轴.【分析】先根据勾股定理求出斜边的长度,再根据点A在数轴上的位置即可求解.【解答】解:由勾股定理,得斜边的长为:=,则数轴上点A所表示的数是﹣.故答案为﹣.14.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=﹣2a+c.【考点】二次根式的性质与化简.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.15.如图,Rt△ABO中,∠ABO=90°,其顶点O为坐标原点,点B在第二象限,点A在x轴负半轴上.若BD⊥AO于点D,OB=,AB=2,则点A的坐标为(﹣5,0),点B的坐标为(﹣1,2).【考点】勾股定理;坐标与图形性质.【分析】根据勾股定理求出AO,即可得出A的坐标,证△BDO∽△ABO,得出比例式,代入求出OD、BD,即可得出B的坐标.【解答】解:在Rt△ABO中,∠ABO=90°,OB=,AB=2,由勾股定理得:OA==5,即A的坐标是(﹣5,0),∵BD⊥OA,∴∠BDO=∠BAO=90°,∵∠BOD=∠BOD,∴△BDO∽△ABO,∴,∴,解得:OD=1,BD=2,即B的坐标是(﹣1,2),故答案为:(﹣5,0),(﹣1,2).16.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运运,若∠AOB=45°,OP=2,则△PMN的周长的最小值为4.【考点】轴对称﹣最短路线问题.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=OC=×2=4.故答案是:4.17.如图:A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=2,且MN=4,P为直线上的动点,|PA﹣PB|的最大值为2.【考点】轴对称﹣最短路线问题.【分析】作点B于直线l的对称点B,则PB=PB′因而|PA﹣PB|=|PA﹣PB′|,则当A,B′、P在一条直线上时,|PA﹣PB|的值最大.根据平行线分线段定理即可求得PN和PM的值然后根据勾股定理求得PA、PB′的值,进而求得|PA﹣PB|的最大值.【解答】解:作点B于直线l的对称点B′,连AB′并延长交直线l于P.∴B′N=BN=2,∵AM∥B′N,∴=,即=,解得:PN=4,PM=4+4=8,∴PA==4,PB′==2,∴|PA﹣PB|的最大值=2.故答案为:2.三、解答题18.计算(1)×﹣3(2)(+)(﹣)﹣(3)+﹣(4)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)首先利用二次根式的乘法法则计算,然后进行减法计算;(2)首先利用平方差公式计算,化简二次根式,然后进行加减即可;(3)首先对二次根式进行化简,然后合并同类二次根式即可;(4)首先对二次根式进行化简,然后对括号内的根式合并同类二次根式,然后进行除法计算即可.【解答】解:(1)原式=﹣3=4﹣3=1;(2)原式=3﹣7﹣4=﹣8;(3)原式=5+﹣6=﹣;(4)原式=(6﹣+4)÷2=÷2=.19.解方程(1)4x2﹣1=0(2)8(x+1)3=﹣27.【考点】立方根;平方根.【分析】根据平方根与立方根的性质即可求出x的值.【解答】解:(1)x2=x=±(2)(x+1)3=﹣x+1=﹣x=﹣20.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1:(﹣3,4),B1:(﹣5,1),C1:(﹣1,2);(3)求△ABC的面积.【考点】作图﹣轴对称变换.【分析】(1)首先确定A、B、C三点关于y轴的对称点,再连接即可;(2)根据平面直角坐标系写出各点坐标即可;(3)利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)A1(﹣3,4),B1(﹣5,1),C1(﹣1,2);故答案为:(﹣3,4);(﹣5,1);(﹣1,2);(3)△ABC的面积:3×4﹣2×2﹣2×3﹣1×4=12﹣2﹣2﹣2=6.21.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.【考点】勾股定理的逆定理;勾股定理.【分析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形;(2)根据S阴影=S Rt△ABC﹣S Rt△ACD,利用三角形的面积公式计算即可求解.【解答】(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)解:S阴影=S Rt△ABC﹣S Rt△ACD=×10×24﹣×8×6=96.22.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W 元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)【考点】一次函数的应用.【分析】(1)根据题意和表格中的数据可以得到W关于x的函数关系式;(2)根据表格中的数据可以求得购进两种T恤的件数,然后根据(1)中函数关系式即可求得超市所获利润.【解答】解:(1)由题意可得,W=(80﹣50)x+(65﹣40)=5x+5000,即W关于x的函数关系式W=5x+5000;(2)由题意可得,50x+×40=9500,解得,x=150,∴W=5×150+5000=5750(元),即超市所获利润为5750元.23.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.【考点】二次根式的化简求值.【分析】(1)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)首先化简a,然后把所求的式子化成4(a﹣1)2代入求解即可.【解答】解:(1)原式=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1=10﹣1=9;(2)a=+1,则原式=4(a2﹣2a+1)﹣3=4(a﹣1)2,当a=+1时,原式=4×()2=8.24.如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)、C(4,0)(1)求△ABC的面积;(2)在y轴上是否存在一个点D,使得△ABD是以AB为底的等腰三角形,若存在,求出点D坐标;若不存,说明理由.=S△ABC,请你求出a的值.(3)有一个P(﹣4,a),使得S△PAB【考点】等腰三角形的判定;坐标与图形性质;勾股定理.【分析】(1)根据AO=1,BC=6,求得△ABC的面积;(2)设D(0,a),则AD=1+a,OD=a,根据BD=AD=1+a,∠BOD=90°,可得Rt △BOD中,OD2+OB2=BD2,即a2+22=(a+1)2,进而得出点D坐标;=S△ABC,(3)分两种情况进行讨论,点P在第二象限或第三象限内,根据S△PAB求出a的值.【解答】解:(1)∵A(0,﹣1)、B(﹣2,0)、C(4,0),∴AO=1,BC=6,∴△ABC的面积=×6×1=3;(2)存在一个点D,使得△ABD是以AB为底的等腰三角形.如图所示,设D(0,a),则AD=1+a,OD=a,∵BD=AD=1+a,∠BOD=90°,∴Rt△BOD中,OD2+OB2=BD2,∴a2+22=(a+1)2,解得a=,∴D(0,);(3)在x轴负半轴上取点D(﹣4,0),过D作x轴的垂线l,则点P在该垂线l上,=S△ABC,过C作CP∥AB,交l于点P,则S△PAB∵A(0,﹣1)、B(﹣2,0),∴直线AB的解析式为y=﹣x﹣1,设直线CP解析式为y=﹣x+b,把C(4,0)代入,可得0=﹣2+b,解得b=2,∴直线CP解析式为y=﹣x+2,∴F(0,2),当x=﹣4时,y=2+2=4,∴P(﹣4,4);当点P'在x轴下方时,设过P'且平行于AB的直线交y轴于E,则AE=AF=3,∴OE=4,即E(0,﹣4),∴直线P'E解析式为y=﹣x﹣4,当x=﹣4时,y=2﹣4=﹣2,∴P'(﹣4,﹣2),∴a的值为4或﹣2.四、附加题25.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC 为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=2;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【考点】勾股定理的应用;相似形综合题.【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长;过点C作CD⊥AB,垂足为D,从而可求得CD、PD的长,然后在Rt三角形CDP中依据勾股定理可求得PC的长;②△ACB为等腰直角三角形,CD⊥AB,从而可求得:CD=AD=DB,然后根据AP=DC﹣PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CD⊥AB,垂足为D,则AP=(AD+PD)=(DC+PD),PB=(DP﹣BD)=(PD﹣DC),可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PD的长(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC 和PC的长度即可.【解答】解:(1)如图①:①∵△ABC是等腰直直角三角形,AC=1+∴AB===+,∵PA=,∴PB=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,PC=CQ,∠ACP=∠BCQ,∴△APC≌△BQC.∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ=.∴PC=PQ=2.故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2D C•PD+PD2∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵,∴.∴.在Rt△CP1D中,由勾股定理得:==DC,在Rt△ACD中,由勾股定理得:AC===DC,∴.②当点P位于点P2处时.∵=,∴.在Rt△CP2D中,由勾股定理得:==,在Rt△ACD中,由勾股定理得:AC===DC,∴.综上所述,的比值为或.2017年5月5日。

八年级数学上学期期中试题新人教版(2)

八年级数学上学期期中试题新人教版(2)

四川省成都市高新区2017-2018学年八年级数学上学期期中试题注意事项:1、本试卷分A卷(100分)和B卷(50分)两部分;2、本堂考试120分钟,满分150分;3、答题前,考生务必先将自己的姓名、考号填写在答卷上,并用2B铅笔填涂考号和选择题;4、考试结束后,将答题卷交回。

A卷(100分)一.选择题(每小题3分,共30分)1.在实数,,,,3.14中,无理数有()A.1个B.2个C.3个D.4个2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,233.下列说法中,不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④(π﹣4)2的算术平方根是π﹣4;⑤算术平方根不可能是负数,A.2个B.3个C.4个D.5个4.下列说法正确的是()A.若,则a<0 B.,则a>0C.D.5的平方根是5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()A.B.C.D6.下列说法不正确的是()A.若x+y=0,则P(x,y)在第二、四象限角平分线上;B.在x轴上的点纵坐标为0 C.点P(﹣1,3)到y轴的距离是1;D.点A(﹣a2﹣1,|b|)一定在第二象限7.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15 B.20 C.3 D.247题图 9题图 10题图 14题图8.已知:4+和4﹣的小数部分分别是a和b,则ab﹣3a+4b﹣7等于()A.﹣3 B.﹣4 C.﹣5 D.﹣69.如9题图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线上,则A2016的坐标是()A.(2014,2016)B.(2015,2016)C.(2016,2016)D.(2016,2018)10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h,有下列说法:①a•b=c•h;②a+b<c+h;③以a+b、h、c+h为边的三角形是直角三角形;④+=.正确的有()A.1个B.2个C.3个D.4个二.填空题(每小题4分,共16分)11.直角三角形两直角边长分别为3和4,则它斜边上的高为.12.若最简二次根式与是同类二次根式,则m的值是.13.已知点(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,则a=.14.如14题图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.三.解答题(共54分)15.计算:(每小题6分,共12分)(1)×+(2)+(+1)(﹣1)16.已知y=y1+y2,而y1与x+1成正比例,y2与x2成正比例,并且x=1时,y=2;x=0时,y=2,求y与x的函数关系式.(8分)17.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?(8分)18.已知x、y、a满足:,求长度分别为x、y、a的三条线段组成的三角形的面积.(8分)19.如图,经过原点的直线l1与经过点A(0,24)的直线l2相交于点B(18,6).在x轴上有一点P(a,0)(a>0),过点P作x轴的垂线分别交直线l1、l2于点C、D.(1)求直线l2的表达式;(2)若线段CD长为12,求此时a的值;(8分)20.在学完勾股定理的证明后发现运用“不同方式表示同一图形的面积”可以证明一类含有线段的等式,这种方法称之为面积法.学有所用:在等腰△ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2.(1)结合图1,(1)结合图1,写出h1、h2、h之间有什么样的结论.(不证明)(2)如图2,当点M在BC延长线上时,直接写出h1、h2、h之间又有什么样的结论;(3)利用以上结论解答,如图3在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是.求点M的坐标.(10分)B卷(50分)一、填空题(每小题4分,共20分)21.若分式有意义,则x的取值范围是.22.已知一个正数的两个平方根分别是3x﹣2和5x+6,则这个正数是.23.如图,有一个圆柱,它的高为13cm ,底面周长为10cm ,在圆柱的下底面上A 点处有一个蚂蚁想吃到离上底面1cm 处的B 点的食物,需爬行的最短距离为.23题图 24题图 25题图24.如图,正方形ABDE 、CDFI 、EFGH 的面积分别为25、9、16,△AEH 、△BDC 、△GFI 的面积分别为S 1、S 2、S 3,则S 1+S 2+S 3=.25.如图,在平面直角坐标系中,点P (1,2),将线段OP 沿y 轴正方向移动m (m >0)个单位长度至O ′P ′,以O ′P ′为直角边在第一象限内作等腰直角△O ′P ′Q ,若点Q 在直线y=x 上,则m 的值为.二、解答题(30分) 26、(8分)(1)已知:321,321-=+=y x .求xy y x -+2222的值;(2)已知x=215+,求331xx x ++的值.27.(10分)如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),且a 、b 满足|a+1|+(b ﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M (﹣2,m ),请用含m 的式子表示△ABM 的面积; (3)在(2)条件下,当m=﹣时,在y 轴上有一点P ,使得△BMP 的面积与△ABM 的面积相等,请求出点P 的坐标.28、(12分)刘同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm ;图②中,∠D=90°,∠E=45°,DE=4cm .图③是刘同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).刘同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:在△DEF的移动过程中,S△ADB+S△CEB的值是否为一定值?如果是,求出此定值;如果不是,请说明.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?请你分别完成上述三个问题的解答过程.初二数学试卷参考答案与试题解析一.选择题(每小题3分,共30分)二.填空题(每小题4分,共16分)11.12.±2 13.﹣9 14.(7,3)三.解答题(共54分)15.计算:(每小题6分,共12分)(1)×+(2)+(+1)(﹣1)【解答】(1)原式=+2=3+2=5;(2)原式=﹣+3﹣1=3﹣+3﹣1=5﹣;16.(8分)已知y=y1+y2,而y1与x+1成正比例,y2与x2成正比例,并且x=1时,y=2;x=0时,y=2,求y与x的函数关系式.【解答】∵y1与x+1成正比例,y2与x2成正比例, 设y1=a(x+1),y2=bx2,(ab≠0)∴y=a(x+1)+bx2,,解得,∴y=﹣2x2+2x+2.17.(8分)已知某开发区有一块四边形的空地ABCD,如图,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【解答】连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC===36.所以需费用36×200=7200(元).18.已知x、y、a满足:,求长度分别为x、y、a的三条线段组成的三角形的面积.(8分)【解答】根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数得解得x=3,y=5,a=4,∴可以组成直角三角形,面积为6.19.(8分)如图,经过原点的直线l1与经过点A(0,24)的直线l2相交于点B(18,6).在x轴上有一点P(a,0)(a>0),过点P作x轴的垂线分别交直线l1、l2于点C、D.(1)求直线l2的表达式;(2)若线段CD长为12,求此时a的值;【解答】解:(1)设l1:y=k1x,∵过点B(18,6),∴18k1=6,解得:k1=,∴l1的表达式为y=x;设l2:y=k2x+b,∵过点A (0,24),B(18,6)∴,解得:k2=﹣1,b=24,∴直线l2的表达式y=﹣x+24;(2)∵在x轴上有一点P(a,0),过点P作x轴的垂线分别交直线l1、l2于点C、D,∴C(a,a),D(a,﹣a+24),∴a﹣(﹣a+24)=12或﹣a+24﹣a=12,解得:a=27或a=9;21.(10分)在学完勾股定理的证明后发现运用“不同方式表示同一图形的面积”可以证明一类含有线段的等式,这种方法称之为面积法.学有所用:在等腰△ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2.(1)结合图1,写出h 1、h 2、h 之间有什么样的结论.(不证明)(2)如图2,当点M 在BC 延长线上时,直接写出h 1、h 2、h 之间又有什么样的结论; (3)利用以上结论解答,如图3在平面直角坐标系中有两条直线l 1:y=x+3,l 2:y=﹣3x+3,若l 2上的一点M 到l 1的距离是.求点M 的坐标.【解答】(1)解:h 1+h 2=h ;(2)h 1﹣h 2=h .(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A (﹣4,0),B (0,3)同理求得C (1,0).AB==5,AC=5,所以AB=AC ,即△ABC 为等腰三角形.(ⅰ)当点M 在BC 边上时,由h 1+h 2=h 得:+M y =OB ,M y =3﹣=, 把它代入y=﹣3x+3中求得:M x =,所以此时M (,).(ⅱ)当点M 在CB 延长线上时,由h 1﹣h 2=h 得:M y ﹣=OB ,M y =3+=, 把它代入y=﹣3x+3中求得:M x =﹣,所以此时M (﹣,). 综合(ⅰ)、(ⅱ)知:点M 的坐标为M (,)或(﹣,). B 卷(50分) 一、填空题(每小题4分,共20分) 21. x <3且x ≠﹣3 22.23.13cm24. 18 25. 2或3 .二、解答题(30分) 26、(8分)(1)已知:321,321-=+=y x .求xy y x -+2222的值;(2)已知x=215+,求331xx x ++的值. 【解答】解:(1)x=321+=2-; y=2+;所以原式=2(2-)2+2(2+)2-(2-)(2+)=14-8+14+8-1=27;(2)因为x=215+,所以2x=15+,所以2x-1=,平方的:4x 2-4x=4,x 2-x=1.所以x+1=x 2所以原式=323x x x +=x x x ==+3432xx )1(x =215+ 27.(10分)如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),其中a ,b 满足|a+1|+(b ﹣3)2=0.(1)填空:a=﹣1 ,b= 3 ;(2)如果在第三象限内有一点M (﹣2,m ),请用含m 的式子表示△ABM 的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.【解答】解:(1)∵|a+1|+(b﹣3)2=0,解得:a=﹣1,b=3,(2)过点M作MN⊥x轴于点N,∵A(﹣1,0)B(3,0)∴AB=1+3=4,又∵点M(﹣2,m)在第三象限∴MN=|m|=﹣m∴S△ABM=AB•MN=×4×(﹣m)=﹣2m;(3)当m=﹣时,M(﹣2,﹣)∴S△ABM=﹣2×(﹣)=3,点P有两种情况:①当点P在y轴正半轴上时,设点p(0,k)S△BMP=5×(+k)﹣×2×(+k)﹣×5×﹣×3×k=k+,∵S△BMP=S△ABM,∴k+=3,解得:k=0.3,∴点P坐标为(0,0.3);②当点P在y轴负半轴上时,设点p(0,n),S△BMP=﹣5n﹣×2×(﹣n﹣)﹣×5×﹣×3×(﹣n)=﹣n﹣,∵S△BMP=S△ABM,∴﹣n﹣=3,解得:n=﹣2.1∴点P坐标为(0,﹣2.1),综上:点P的坐标为(0,0.3)或(0,﹣2.1).28、(12分)刘同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF 沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).刘同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:在△DEF的移动过程中,S△ADB+S△CEB的值是否为一定值?如果是,求出此定值;如果不是,请说明.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?请你分别完成上述三个问题的解答过程.【解答】问题①:∵∠B=90°,∠A=30°,BC=6,∴AC=2BC=12,∵∠FDE=90°,∠DEF=45°,DE=4,∴DF=4,如图1,连接FC,当FC∥AB时,∠FCD=∠A=30°∴在Rt△FDC中,DC=4,∴AD=AC﹣DC=12﹣4,∴AD=(12﹣4)cm时,FC∥AB;问题②:S△ADB+S△CEB=12cm2.理由如下:如图2,连接BD、BE,作BH⊥AC于H,∵∠B=90°,∠A=30°,BC=6cm,∴BH=3cm,∴△BDE的面积为:×DE×BH=×4×3=6,∴S△ADB+S△CEB=×6×6﹣6=12cm2.问题③:设AD=x,在Rt△FDC中,FC2=DC2+FD2=(12﹣x)2+16,(I)当FC为斜边时,由AD2+BC2=FC2得,x2+62=(12﹣x)2+16,x=;(II)当AD为斜边时,由FC2+BC2=AD2得,(12﹣x)2+16+62=x2,x=;∵DE=4,∴AD=AC﹣DE=12﹣4=8,∴x=>8(不合题意舍去),(III)当BC为斜边时,由AD2+FC2=BC2得,x2+(12﹣x)2+16=36,整理得:x2﹣12x+62=0,∴方程无解,∴由(I)、(II)、(III)得,当x=cm时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形;。

2017-2018学年北京市房山区八年级(上)期中数学试卷

2017-2018学年北京市房山区八年级(上)期中数学试卷

=2 + ﹣1﹣2﹣
=2 ﹣3 (2)( +
)2﹣
÷.
=3+2 +2﹣
=5+
【点评】本题考查了二次根式的混合运算,掌握合并同类二次根式是解题的关键.
18.(8 分)计算:
(1)
(2)

【分析】根据分式的运算法则即可求出答案.
【解答】解:(1)原式=
×
第11页(共16页)

(2)原式=
+

+

【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于
四、解答题(共 16 分,其中第 22 题 4 分,第 23、24 题每题 6 分)
22.(4 分)数学课上,对于式子
中 a 的取值范围,小红根据被开方数是非负数,得
出 a 的取值范围是 a≥ ,小慧认为还应考虑分母不为 0 的情况,你认为小慧的想法正确
吗?试求出 a 的取值范围.
第3页(共16页)



显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是: , 请你接着小强的方法完成化简.
第4页(共16页)
24.(6 分)阅读下列材料,并回答问题.
画一个直角三角形,使它的两条直角边分别是 3 和 4,那么我们可以量得直角三角形的斜
边长为 5,并且 32+42=52.事实上,在任何一个直角三角形中,两条直角边的平方之和
第5页(共16页)
参考答案与试题解析
一、选择题(每小题 3 分,共 30 分) 1.(3 分)若代数式 有意义,则实数 x 的取值范围是( )
A.x=0
B.x=4

2017-2018学年八年级(上)期中数学试卷(含解析)

2017-2018学年八年级(上)期中数学试卷(含解析)

2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.。

河南省安阳市正一中学2017-2018学年上期八年级第一次阶段性考试数学试题(无答案)

河南省安阳市正一中学2017-2018学年上期八年级第一次阶段性考试数学试题(无答案)

2017-2018学年度第一学期第一次阶段考试八年级数学一、选择题(每小题2分,共20分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是2.下列等式从左到右的变形是因式分解的是3.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为A.30°B.30°或150°C.60°或150°D.60°或120°4.△ABC 边AB 的垂直平分线分别交BC 、AB 于点D 、E,AE=3cm,△ADC 的周长为9cm,则△ABC 的周长是A.10cmB.12cmC.15cmD.17cm5.下列各式是完全平方式的是 A.412+-x x B.12+x C.1+-xy x D.122-+x x 6.如图所示的4×4正方形网格中,求∠1+∠2+∠3+∠4+∠5+∠6+∠7=第6题 第7题 第8题A.330°B.315°C.310°D.320°7.如图,已知OQ 平分∠AOB,点P 为OQ 上任意一点,点N 为OA 上一点,点M 为OB 上一点,∠PNO+∠PMO=180°,则PM 和PN 的大小关系式为A.PM >PNB.PM <PNC.PM=PND.不能确定8.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD,则△ADE 的形状为A.等腰三角形B.等边三角形C.不等边三角形D.不能确定9.如图,已知点B 、C 、D 在同一直线上,△ABC 和△CDE 都是等边三角形,BE 交AC 于F ,AD 交CE 于G,则下列结论中错误的是A.AD=BEB.BE ⊥ACC.△CFG 为正三角形D.FG ∥BC10.如图,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 的周长的最小值是5cm,则∠A0B 的度数是第9题 第10题A.25°B.30°C.35°D.40°二、填空题(每小题2分,共20分)11.若825252==y x ,,则=÷x y 432_____________. 12.分解因式:=+-2332ab b a a ___________.13.已知b a 、均为实数且75==+ab b a ,,则=+22b a _______.14、已知点A(n m ,),若与A 点关于x 轴的点为B(n --,3),与A 点关于y 轴对称的点为C(2,m -),则点A 的坐标为____________.15.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()nb a +(n 为非负整数)的展开式的项数及各项系数的有关规律,请观察,并根据此规律写出:()7b a +的展开式共有_____ 项,第二项的系数是________,()nb a +的展开式共有_______项,各项的系数和是_______.16.如图,在Rt △ABC 中,∠BAC=90°,过顶点A 的直线DE ∥BC ,∠ABC 、∠ACB 的平分线分别交DE 于E 、D ,且BE 、CD 相交于点0,若AC=6,AB=8,则∠D0E=______,DE 的长为____.第16题 第18题17.计算:=+2-201820162017222_________. 18.如图,在△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F,①若△AEF 的周长为10cm,则BC 的长为________cm ;②若∠BAC=138°,则∠EAF=_________.19.已知1>a ,且31=+a a ,则=-221aa 的值 20.(1)已知:如图左,求∠1+∠2+∠3+∠4+∠5+∠6=________.(2)已知:如图右,求∠1+∠2+∠3+∠4+∠5+∠6∠7+∠8=__________.三、计算下列各式(每小题4分,共32分)(21)()()32342a a a a ∙- (22)()()()ab abc b a 5453--(23)()()()()y x y x y x y y x 22222-+----- (24)()()()[]332422312abc c b a abc ab ÷-÷(25)()()z y x z y x 3232+--+ (26)()2223+-y x(27)先化简,再求值:()()()b a b a ab b a ab -++÷-22484223,其中12==b a ,(28)先化简,再求值:()()[]y xy y x x y x 48422÷----,其中21=-=y x ,四、在有理数范围内将下列各式因式分解(每小题4分,共24分)(29)3123x x - (30)2293025n mn m +-(31)()()442+---b a b a (32)()()x y b y x a -+-2249(33)1424422+--++y x y xy x (34)()()()222210235b a b a b a ----+五、解答题(本题共24分)35.(本小题4分)由()()12432-+=+-x x x x ,可以得到()()43122+=-÷-+x x x x ,这说明122-+x x 能被3-x 整除,同时也说明多项式122-+x x 有一个因式3-x .另外,当3=x 时,多项式122-+x x 的值为0。

2017-2018学年江苏省徐州市市区联考八年级(上)期中数学试卷

2017-2018学年江苏省徐州市市区联考八年级(上)期中数学试卷

2017-2018学年江苏省徐州市市区联考八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案(阴影)中,不是轴对称图形的是()A.B.C.D.2.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,6 3.(3分)若△ABC与△DEF全等,且∠A=60°,∠B=70°,则∠D的度数不可能是()A.50°B.60°C.70°D.80°4.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°5.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM6.(3分)下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边7.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°8.(3分)如图,点O是△ABC的两外角平分线的交点,下列结论:①OB=OC;②点O到AB、AC的距离相等;③点O到△ABC的三边的距离相等;④点O在∠A的平分线上.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)如图,△OAD≌△OBC,且OA=2,OC=6,则BD=.10.(3分)在△ABC中,∠ACB=90°,D是AB的中点,AB=6,则CD=.11.(3分)如图,在四边形ABCD中,AD=AB,∠B=∠D=90°,∠ACB=35°,则∠DAB=°.12.(3分)若等腰三角形的周长是13cm,其中一边长为3cm,则该等腰三角形的一腰长是cm.13.(3分)如图,在四边形ABCD中,AC平分∠DAB,AD=5,AB=6,若△ACD 的面积为10,则△ABC的面积为.14.(3分)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.15.(3分)如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5,则A,B,C,D四个小正方形的面积之和等于.16.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画条.三、解答题(本大题共9小题,共72分)17.(6分)已知:如图,点D,C在BF上,且BD=CF,∠B=∠F,∠A=∠E.求证:△ABC≌△EFD.18.(6分)已知:如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,且DE∥BC.求证:AD=AE.19.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形ABC;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积=.20.(6分)如图,AD是等边三角形ABC的中线,E是AB上的点,且AE=AD,求∠EDB的度数.21.(8分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP 的最小值;若不存在,说明理由.22.(8分)如图,AB为一棵大树(垂直于地面,即AB⊥BC),在树上距地面12m 的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处向上爬到树顶A处,再利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子经过的路程都是20m,求树高AB.23.(10分)如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.24.(10分)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.25.(10分)如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?2017-2018学年江苏省徐州市市区联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案(阴影)中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【解答】解:A、B、D都是轴对称图形,只有C不是轴对称图形.故选:C.【点评】此题主要考查了轴对称图形,关键是正确找出轴对称图形的对称轴.2.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,6【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、22+22≠32,不能构成直角三角形,故此选项错误;B、22+32≠42,不能构成直角三角形,故此选项错误;C、32+42=52,能构成直角三角形,故此选项正确;D、42+52≠62,不能构成直角三角形,故此选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(3分)若△ABC与△DEF全等,且∠A=60°,∠B=70°,则∠D的度数不可能是()A.50°B.60°C.70°D.80°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答.【解答】解:∵∠A=60°,∠B=70°,∴∠C=180°﹣60°﹣70°=50°,∵△ABC与△DEF全等,∴∠D的度数可能是60°、70°、50°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.4.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°【分析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【解答】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.5.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选:B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.6.(3分)下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边【分析】根据等腰三角形与直角三角形的性质作答.【解答】解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意.故选:D.【点评】本题主要考查了三角形的性质,等腰三角形与直角三角形的性质的区别.7.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°【分析】由l1∥l2,∠ABC=54°,根据两直线平行,内错角相等,即可求得∠2的度数,又由以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC,可得AC=AB,即可证得∠ACB=∠ABC=54°,然后由平角的定义即可求得答案.【解答】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.故选:C.【点评】此题考查了平行线的性质与等腰三角形的性质,以及平角的定义.注意两直线平行,内错角相等.8.(3分)如图,点O是△ABC的两外角平分线的交点,下列结论:①OB=OC;②点O到AB、AC的距离相等;③点O到△ABC的三边的距离相等;④点O在∠A的平分线上.其中结论正确的个数是()A.1B.2C.3D.4【分析】过点O作OE⊥AB于E,作OF⊥BC于F,作OG⊥AC于G,根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据到角的两边距离相等的点在角的平分线上解答.【解答】解:如图,过点O作OE⊥AB于E,作OF⊥BC于F,作OG⊥AC于G,∵点O是△ABC的两外角平分线的交点,∴OE=OG,OF=OG,∴OE=OF=OG,∴点O在∠B的平分线上,故②③④正确,只有点G是AC的中点时,BO=CO,故①错误,综上所述,说法正确的是②③④.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)如图,△OAD≌△OBC,且OA=2,OC=6,则BD=4.【分析】根据全等三角形的性质可得DO=CO=6,BO=AO=2,再利用线段的和差关系可得答案.【解答】解:∵△OAD≌△OBC,∴DO=CO=6,BO=AO=2,∴BD=6﹣2=4,故答案为:4.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.10.(3分)在△ABC中,∠ACB=90°,D是AB的中点,AB=6,则CD=3.【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=×6=3.故答案为:3.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.11.(3分)如图,在四边形ABCD中,AD=AB,∠B=∠D=90°,∠ACB=35°,则∠DAB=110°.【分析】先求出∠BAC,再根据HL证明Rt△ADC≌Rt△ABC,得出∠DAC=∠BAC,即可得出结果.【解答】解:∵∠ABC=90°,∠ACB=35°,∴∠BAC=90°﹣35°=55°,在Rt△ADC和Rt△ABC中,,∴Rt△ADC≌Rt△ABC(HL),∴∠DAC=∠BAC=55°,∴∠DAB=∠DAC+∠BAC=110°;故答案为:110.【点评】本题考查了全等三角形的判定与性质;利用HL证明直角三角形全等是解决问题的关键.12.(3分)若等腰三角形的周长是13cm,其中一边长为3cm,则该等腰三角形的一腰长是5cm.【分析】已知给出了其中一边长为3cm,没有明确该边的名称,所以长为3的边可能为腰,也可能为底边,故应分两种情况讨论.【解答】解:由题意知,应分两种情况:(1)当腰长为3cm时,则另一腰也为3cm,底边为13﹣2×3=7cm,∵3+3<7,∴边长分别为3,3,7不能构成三角形;(2)当底边长为3cm时,腰的长=(13﹣3)÷2=5cm,∵0<3<5+5=10,∴边长为3,5,5,能构成三角形,则该等腰三角形的一腰长是5cm.故填5.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(3分)如图,在四边形ABCD中,AC平分∠DAB,AD=5,AB=6,若△ACD 的面积为10,则△ABC的面积为12.【分析】作CE⊥AB于E,CF⊥AD于F,根据三角形的面积公式求出CF,根据角平分线的性质得到CE=CF,根据三角形的面积公式计算即可.【解答】解:作CE⊥AB于E,CF⊥AD于F,由题意得,×AD×CF=10,解得CF=4,∵AC平分∠DAB,CE⊥AB,CF⊥AD,∴CE=CF=4,∴△ABC的面积=×AB×CE=12,故答案为:12.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.(3分)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP ≌△BOP,和R t△AOP≌R t△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.15.(3分)如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5,则A,B,C,D四个小正方形的面积之和等于50.【分析】根据勾股定理可知正方形A和C的面积和就是大正方形的面积.同理正方形B和D的面积和等于大正方形的面积,所以四个正方形的面积和就等于两个大正方形的面积由此即可得出结论.【解答】解:∵所有的三角形都是直角三角形,∴正方形A和C的面积和就是大正方形的面积,同理,正方形B和D的面积和等于大正方形的面积,∴四个小正方形的面积=2×5×5=50.故答案为:50.【点评】此题主要考查勾股定理这一知识点,解答此题的关键是熟知勾股定理.16.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画4条.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故答案为:4.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、解答题(本大题共9小题,共72分)17.(6分)已知:如图,点D,C在BF上,且BD=CF,∠B=∠F,∠A=∠E.求证:△ABC≌△EFD.【分析】根据全等三角形的判定定理AAS证得结论.【解答】证明:∵BD=FC,∴BC=FD,∵在△ABC和△EFD中,,∴△ABC≌△EFD(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.(6分)已知:如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,且DE∥BC.求证:AD=AE.【分析】根据等腰三角形的性质可得∠B=∠C,再根据平行线的性质和等量关系可得∠ADE=∠AED,再根据等腰三角形的性质可得AD=AE.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE.【点评】此题考查了等腰三角形的性质及平行线的性质,得到∠ADE=∠AED是解答本题的关键.19.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形ABC;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积=10.【分析】(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.【解答】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..此时正方形的面积为()2=10,故答案为:10.【点评】本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.20.(6分)如图,AD是等边三角形ABC的中线,E是AB上的点,且AE=AD,求∠EDB的度数.【分析】由AD是等边△ABC的中线,根据等边三角形中三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠AED的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDB=∠ADB﹣∠ADE=90°﹣75°=15°.【点评】此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.21.(8分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP 的最小值;若不存在,说明理由.【分析】根据垂直平分线的性质,可得AM与MB的关系,再根据三角形的周长,可得答案;根据两点之间线段最短,可得P点与M点的关系,可得PB+PC与AC的关系.【解答】解:如图:(1)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(2)当点P与点M重合时,PB+CP的值最小,最小值是8cm.【点评】本题考查了轴对称,线段垂直平分线上的点到线段两端点的距离相等得出PB=PA.22.(8分)如图,AB为一棵大树(垂直于地面,即AB⊥BC),在树上距地面12m 的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D 处向上爬到树顶A处,再利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子经过的路程都是20m,求树高AB.【分析】直接利用勾股定理得出AB2+BC2=AC2,进而求出AB的值.【解答】解:设AD长为x m,则AC=(20﹣x)m,BC=20﹣12=8(m),在Rt△ABC中,由勾股定理得:AB2+BC2=AC2,则(12+x)2+82=(20﹣x)2,解得:x=3,故AB=AD+BD=3+12=15,答:树的高度为15m.【点评】此题主要考查了勾股定理的应用,正确表示出各边长是解题关键.23.(10分)如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.【分析】(1)利用直角三角形斜边中线的性质以及线段的垂直平分线的性质即可解决问题;(2)设∠BCE=x,想办法构建方程即可解决问题;【解答】(1)证明:连接DE.∵AD⊥BC,∴∠ADB=90°,∵AE=EB,∴DE=EB=EA,∵DG⊥EC,EG=GC,∴DE=CD,∴DC=BE.(2)设∠BCE=x.∵EB=DE=DC,∴∠DCE=∠DEC=x,∴∠EBD=∠BDE=∠DEC+∠DCE=2x,∵∠AEC=∠EBD+∠ECD,∴66°=3x,∴x=22°,∴∠BCE=22°.【点评】本题考查直角三角形斜边中线的性质、线段的垂直平分线的性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(10分)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【分析】(1)通过图中小正方形面积证明勾股定理;(2)可设AC=x,根据勾股定理列出方程可求x,再根据直角三角形面积公式计算即可求解;(3)根据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.=(a﹣b)2=a2﹣2ab+b2,另一方面S小正方形=c2﹣4×ab=c2【解答】解:(1)S小正方形﹣2ab,即b2﹣2ab+a2=c2﹣2ab,则a2+b2=c2.(2)24÷4=6,设AC=x,依题意有(x+3)2+32=(6﹣x)2,解得x=1,×(3+1)×3×4=×4×3×4=24.故该飞镖状图案的面积是24.(3)将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=40,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=.故答案为:.【点评】考查了勾股定理的证明,本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.(3)考查了图形面积关系,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=40求出是解决问题的关键.25.(10分)如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

人教版八年级数学上册期中测试卷(12)

人教版八年级数学上册期中测试卷(12)

2017-2018学年江西省赣州市宁都县八年级(上)期中数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.B.C.D.2.(3分)若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8 B.7 C.6 D.53.(3分)妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如右图所示(分针正好指向整点位置),她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分4.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对5.(3分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题3分,共18分.)7.(3分)若n边形内角和为900°,则边数n=.8.(3分)在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是.9.(3分)如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:.(答案不唯一,写一个即可)10.(3分)若等腰三角形的周长为26cm,一边为10cm,则腰长为cm.11.(3分)当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为.12.(3分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为.(点C不与点A重合)三、(本大题共5小题,每小题6分,共30分).13.(6分)一个多边形的内角和比它的外角的2倍还大180度,求这个多边形的边数.14.(6分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB=CD,AB∥CD,CE=BF.求证:∠A=∠D.15.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.16.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为3,面积为6的钝角三角形;(2)画一个面积为16,且具有轴对称性质的钝角三角形.17.(6分)如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,过点D作DF⊥AE,DG⊥CE,垂足分别是F、G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.四、(本大题共3小题,每小题8分,共24分).18.(8分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD的关系,并说明理由.20.(8分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②③,点D在线段BC(或CB)的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.五、(本大题共2小题,每小题9分,共18分.)21.(9分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.22.(9分)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA 的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;六、(本大题1小题,满分12分.)23.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2017-2018学年江西省赣州市宁都县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.(3分)若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8 B.7 C.6 D.5【解答】解:∵△MNP≌△MNQ,∴MP=MQ,已知PM=6,∴MQ=6.故选:C.3.(3分)妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如右图所示(分针正好指向整点位置),她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分【解答】解:根据对称性质得:正确的时间是5点40分,故选:D.4.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.5.(3分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm【解答】解:∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=18.又∵BC=8,∴AC=10(cm).故选:C.6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.4个 B.3个 C.2个 D.1个【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴③正确;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴④正确;即正确的有4个,故选:A.二、填空题(本大题共6小题,每小题3分,共18分.)7.(3分)若n边形内角和为900°,则边数n=7.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.8.(3分)在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是(1,2).【解答】解:点P(1,﹣2)关于x轴对称的点的坐标是(1,2),故答案为:(1,2).9.(3分)如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:∠CBE=∠DBE.(答案不唯一,写一个即可)【解答】解:根据判定方法,可填AC=AD(SAS);或∠CBA=∠DBA(ASA);或∠C=∠D(AAS);∠CBE=∠DBE(ASA).10.(3分)若等腰三角形的周长为26cm,一边为10cm,则腰长为10或8cm.【解答】解:①10cm是腰长时,腰长为10cm,②10cm是底边时,腰长=(26﹣10)=8cm,所以,腰长是10cm或8cm.故答案为:10或8.11.(3分)当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为120°.【解答】解:∵α=20°,∴β=2α=40°,∴最大内角的度数=180°﹣20°﹣40°=120°.故答案为:120°.12.(3分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C 不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).三、(本大题共5小题,每小题6分,共30分).13.(6分)一个多边形的内角和比它的外角的2倍还大180度,求这个多边形的边数.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)•180°=2×360°+180°,解得n=7,答:这个多边形的边数7.14.(6分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB=CD,AB∥CD,CE=BF.求证:∠A=∠D.【解答】证明:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CE+EF=FB+EF,即CF=BE,在△AEB和△DFC中,∴△AEB≌△DFC(SAS),∴∠A=∠D.15.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.【解答】证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,,∴△ABE≌△ABD(SAS),∴BE=BD.16.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为3,面积为6的钝角三角形;(2)画一个面积为16,且具有轴对称性质的钝角三角形.【解答】解:(1)如图(a),△ABC即为所求;(2)如图(b),△DEF即为所求.17.(6分)如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,过点D作DF⊥AE,DG⊥CE,垂足分别是F、G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.【解答】证明:(1)∵BD是∠ABC的平分线,∴∠ABE=∠CBE,在△ABE和△CBE中,∴△ABE≌△CBE(SAS);(2)∵△ABE≌△CBE,∴∠AEB=∠CEB,∴∠AED=∠CED,∵DF⊥AE,DG⊥CE,∴FD=DG.四、(本大题共3小题,每小题8分,共24分).18.(8分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.试判断线段AE与CD的关系,并说明理由.【解答】解:AE=CD,AE⊥CD,理由:延长AE交CD于M,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠AEB=∠BDC,∵∠ABC=90°,∴∠DAE+∠AEB=90°,∴∠DAE+∠BDC=90°,∴∠AMD=90°,∴AM⊥CD.20.(8分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②③,点D在线段BC(或CB)的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.【解答】解:(1)∠BAD=∠CAE;理由:∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD=∠CAE;(2)∠DCE=60°,不发生变化;理由如下:∵△ABC是等边三角形,△ADE是等边三角形,∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE.∴∠ABD=120°,∠BAC﹣∠BAE=∠DAE﹣∠BAE∴∠DAB=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=120°.∴∠DCE=∠ACE﹣∠ACB=120°﹣60°=60°.五、(本大题共2小题,每小题9分,共18分.)21.(9分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.【解答】解:(1)连接EM.∵AE⊥AB,∴∠EAM=∠B=90°.在△AEM与△BMC中,,∴△AEM≌△BMC(SAS).∴∠AEM=∠BMC,EM=MC.∵∠AEM+∠AME=90°,∴∠BMC+∠AME=90.∴∠EMC=90°.∴△EMC是等腰直角三角形.∴∠MCE=45°∵AN∥CE,∴∠AFM=∠MCE=45°;解:(2)如图2,连接ME.同(1)△AEM≌△BMC(SAS),则EM=MC,∠MEA=∠CMB=15°.又∵∠MEA+∠EMA=90°,∴∠EMC=60°,∴△EMC是等边三角形,∴∠ECM=60°,∵AN∥CE∴∠AFM+∠ECM=180°,∴∠AFM=120°.22.(9分)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA 的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;【解答】解:(1)如图1,∵∠EAB=90°,EP⊥AG,AG⊥BC,∴∠EPA=∠EAB=∠AGB=90°,∴∠PEA+∠EAP=90°,∠EAP+∠BAG=90°,∴∠PEA=∠BAG,在△EPA和△AGB中,,∴△EPA≌△AGB(AAS),(2)EP=FQ,证明:由(1)可得,△EPA≌△AGB,∴EP=AG,同理可得,△FQA≌△AGC,∴AG=FQ,∴EP=FQ;(3)EH=FH,理由:如图,∵EP⊥AG,FQ⊥AG,∴∠EPH=∠FQH=90°,在△EPH和△FQH中,,∴△EPH≌△FQH(AAS),∴EH=FH.六、(本大题1小题,满分12分.)23.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB ≌△CEA (AAS ), ∴AE=BD ,AD=CE , ∴DE=AE +AD=BD +CE ;(3)△DEF 是等边三角形. 由(2)知,△ADB ≌△CEA , BD=AE ,∠DBA=∠CAE ,∵△ABF 和△ACF 均为等边三角形, ∴∠ABF=∠CAF=60°,∴∠DBA +∠ABF=∠CAE +∠CAF , ∴∠DBF=∠FAE , ∵BF=AF在△DBF 和△EAF 中,∴△DBF ≌△EAF (SAS ), ∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA +∠AFE=∠DFA +∠BFD=60°, ∴△DEF 为等边三角形.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第5题图第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A.8个 B.6个 C.4个 D.12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图第9题图第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。

天津市武清区2017-2018学年度第一学期期中质量调查 八年级数学试题

天津市武清区2017-2018学年度第一学期期中质量调查 八年级数学试题

武清区2017~2018学年度第一学期期中质量调查八年级数学第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合要求的。

请把每小题的答案填写在下表中。

(1)下列各图中,正确画出AC边上高的是(A)(B)(C)(D)(2)下列长度的三条线段,可以组成三角形的是(A)10,5,4 (B)3,4,2(C)1,11,8 (D)5,3,8(3)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是(A)(B)(C)(D)(4)下列说法一定正确的是(A)形状相同的两个三角形全等(B)面积相等的两个三角形全(C)完全重合的两个三角形全等(D)所有的等边三角形全等(5)已知一个多边形的内角和是900°,则这个多边形(A)五边形(B)六边形(C)七边形(D)八边形(6)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是(A)∠A(B)∠B(C)∠C(D)∠B或∠C(7)如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A’处,折痕为CD,则∠A’DB的度数是(A)40°(B)30°(C)20°(D)10°(8)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(A)∠M=∠N(B)AM=CN(C)AM∥CN(D)AB=CD(9)在直角坐标系中,点A,点B关于y轴对称,点A的坐标(2,-8),则点B的坐标是(A)(2,8) (B)(-2,-8) (C)(-2,8) (D)(8,2) (10)在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是(A)4个(B)3个(C)2个(D)1个(11)如图,在△ABC中,以B为圆心,BA长为半径画弧交边BC于点D,连接AD,若∠B=40°,∠C=36°,则∠DAC的度数是(A)34°(B)44°(C)54°(D)64°(12)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α的大小为(A)30°(B)45°(C)60°(D)90°第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,每小题3分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第一学期期中考试
八年级(上)数学试卷
分值:120分 时量:100分钟
班次: 姓名: 学号: 记分:
一、选择题(每小题3分,共36分)
1. ( )
A .4
B .±4
C .±2
D .2
2.在,0.121 121 1122
π这4个实数中,是无理数的有( ) A .1个 B .2个 C .3个 D .4个
3.计算422()a a ÷的结果是( )
A .2a
B .5a
C .6a
D .7a
4.下列等式不成立的是( )
A .216(2)(2)m m m -=+-
B .24(4)m m m m +=+
C .22816(4)m m m -+=-
D .2239(3)m m m ++=+
5.下列运算正确的是( )
A .3362x x x +=
B .824x x x ÷=
C .m n mn x x x ⋅=
D .5420()x x -=
6.下列多项式的乘法中,可以用平方差公式计算的是( )
A .(1)(1)x x ++
B .()()x y x y -+--
C .()()a b a b -+-
D .22()()x y x y -+
7.若43=x ,79=y ,则y x 23-的值为( )
A .74
B .47
C .3-
D .72
8.因式分解24x y y -的正确结果是( )
A .y (x+2)(x ﹣2)
B .y (x+4)(x ﹣4)
C .2(4)y x -
D .2(2)y x -
9.下列计算正确的是( )
A .222()x y x y +=+
B .222()2x y x xy y -=--
C .22(2)(2)2x y x y x y +-=-
D .222()2x y x xy y -+=-+
10.若实数,,x y z 满足2()4()()0x z x y y z ----=,则下列式子一定成立的是( )
A .0x y z ++=
B .20x y z +-=
C .20y z x +-=
D .20x z y +-=
11、如图所示,将两根钢条AA′,BB′的中点O 连结在一起,使AA′,BB′可以绕着O 自由
转动,就做成一个测量工件,则A′B′的长等于内槽宽AB ,那么判定△OAB ≌△OA′B′的理由是( )
A .边角边
B .角边角
C .边边边
D .角角边
12、如图所示,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充一个条件后,仍无法判断
△ABE ≌△ACD 的是( )
A .AD=AE
B .∠AEB=∠AD
C C .BE=C
D D .AB=AC
(11小题) (12小题) 二、填空题(每小题3分,共18分)
133y =成立,则y x = .
14、若14a a +=,则221a a
+= . 15、若216x mx ++是一个完全平方式,那么m 的值是 .
16、若21x y +=,则代数式22(1)(4)y y x +--的值为 .
17、如图所示,AB=CD ,AD 、BC 相交于点O ,要使△ABO ≌△DCO ,应添加条件为_______(添加一个即可).
18、如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;
③△ACN ≌△ABM ;④CD=DN ,其中正确的结论是______.(填序号)
(17小题) (18小题)
三、解答题(共66分)
19.(6分)计算:
(1)23322(3)(4)(6)a b ab ⋅÷; (2)2(2)2(2)(2)a b a b b a -+-+-;
20.( 6分)把下列各式分解因式:
(1)22233468x y x y x y -+-; (2)2249()16()m n m n +--;
21.( 6分)先化简,再求值:322(48)4(2)(2)ab a b ab a b a b -÷++-,其中a =2,b =1.
22.( 8分)在一块边长为a 的正方形纸板的四个角上各剪去一个边长为b (2
a b <
)的小正方形.
(1)做一个无盖长方形,长方形所用的纸板的面积(图中阴影部分)是多少?
(2)当a =22.4,b =7.6时,这个面积的值又是多少?请利用分解因式的方法计算.
23.(8分)如图:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D 。

求证:OC=OD 。

24.(10分)如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,
在CF 的延长线上截取CG=AB ,连结AD 、AG 。

求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。

25.(10分)请阅读下面解题过程:
已知实数a 、b 满足8,15a b ab +==,且a >b ,求a b -的值.
解:因为8,15a b ab +==,
所以:2222222()224()484154a b a ab b a ab b ab a b ab -=-+=++-=+-=-⨯=
因为a >b ,所以a b ->0,所以a b -=2.
请利用上面的解法,解答下面的问题.
已知实数x 满足1x x -
=,且x <0,求1x x
+的值.
26.(12分)阅读下文,寻找规律:
已知1
x≠,计算:2
(1)(1)1
x x x x
-++=-,
+-=-,23
x x x
(1)(1)1
234
-+++=-,……
x x x x x
(1)(1)1
(1)观察上式,猜想:2
-++++=__________.
(1)(1...)n
x x x x
(2)根据你的猜想,计算:
①22014
-++++;
(12)(122...2)
②23
++++.
222...2n。

相关文档
最新文档