2017-2018学年重庆市涪陵区七年级(下)期末数学试卷

合集下载

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。

5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。

人教版2017-2018学年七年级(下册)期末数学试卷及答案

人教版2017-2018学年七年级(下册)期末数学试卷及答案

2017-2018学年七年级(下册)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.22.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b4.将不等式组的解集表示在数轴上,下面表示正确的是()A.BC.D.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.6.方程组的解是()A.B.C.D.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是.12.方程组的解是.13.用不等式表示:x与5的差不大于x的2倍:.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.16.关于x的不等式组有三个整数解,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).18.(6分)解二元一次方程组:.19.(7分)解不等式组.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.2【分析】根据表示16的算术平方根,需注意的是算术平方根必为非负数求出即可.【解答】解:根据算术平方根的意义,=4.故选A.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.3.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、、是有理数,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.方程组的解是()A.B.C.D.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出答案.【解答】解:∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是﹣0.6.【分析】根据立方根的定义即可求解.【解答】解:﹣的立方根是﹣0.6,故答案为﹣0.6.【点评】本题主要考查了立方根的概念,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,比较简单.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【分析】x与5的差为x﹣5,不大于即小于等于,x的2倍为2x,据此列不等式.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是把文字语言的不等关系转化为用数学符号表示的不等式,注意抓住关键词语,弄清不等关系.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成(4,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:确定平面直角坐标系中x轴为从下数第一条横线,y轴为从左数第一条竖线,小明的位置为原点,从而可以确定小浩位置点的坐标为(4,3).故答案为:(4,3).【点评】此题主要考查了根据坐标确定点的位置,由已知条件正确确定坐标轴的位置是解决本题的关键.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.16.关于x的不等式组有三个整数解,则a的取值范围是﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:∵解不等式①得:x>2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).【分析】(1)根据特殊角的函数值即可求出答案.(2)先化简原方程组,然后根据二元一次方程组的解法即可【解答】解:(1)原式=1﹣+3+4=8﹣=(2)原方程组化为①﹣②得:4x=﹣4x=﹣1将x=﹣1代入①中,y=解得:【点评】本题考查学生的计算能力,解题的关键熟练运用运算法则,本题属于基础题型.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了200名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为126度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人故答案为:(1)200;(3)126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.【分析】根据同旁内角互补,两直线平行由∠1+∠2=180°得AB∥EF,再根据平行线的性质得∠B=∠EFC,而∠B=∠3,所以∠3=∠EFC,然后根据平行线的判定方法即可得到结论.【解答】证明:∵∠1+∠2=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.【解答】解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤,x≤17,答:最多还能买词典17本.【点评】本题是一元一次不等式的应用,列不等式时要先根据“至少”、“最多”、“不超过”、“不低于”等关键词来确定问题中的不等关系,本题要弄清数量、单价、总价和书名,明确数量×单价=总价;在确定最后答案时,要根据实际意义,不能利用四舍五入的原则取整数值.24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.。

2017-2018学年度第二学期期末考试初一数学试题及答案

2017-2018学年度第二学期期末考试初一数学试题及答案

2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。

2、从80减少到50,减少了()%;从50增加到80,增加了()%。

3、某班有60人,缺席6人,出勤率是()%。

4、如果3a=5b(a、b≠0),那么a:b=()。

5、一个圆锥的体积12dm3 ,高3dm,底面积是()。

6、甲、乙两数的比是5:8,甲数是150,乙数是()。

7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。

照这样的折扣,原价800元的西装,现价()元。

9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。

10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。

桶重()千克,油重()千克。

11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。

12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。

如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。

13、找出规律,填一填。

3,11,20,30,(),53,()。

二、判断题:对的在括号打√,错的打×。

(每小题1分共5分)1、0是负数。

()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。

()3、时间一定,路程和速度成正比例。

()4、栽120棵树,都成活了,成活率是120%。

()5、圆柱的体积大于与它等底等高的圆锥的体积。

()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018 学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分) 1.若分式 有意义,则 x 应满足的条件是()A .x ≠0B .x ≥ 3C .x ≠3D .x ≤32.下列各式中① ;② ; ③; ④(x ≥1); ⑤ ;⑥ 一定是二次根式的有()个.A .3B . 4C .5D .63.用科学记数法表示﹣ 0.0000027 记为( )A .﹣ 27×10﹣ 7B .﹣ 0.27×10﹣ 4C .﹣ 2.7×10﹣ 6D .﹣ 270× 10﹣8 4.分式的值为 0,则()A .x=2B . x=﹣2C .x=±2D .x=0 5.下列二次根式中,最简二次根式是( )A .B .C .D .6.如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A .2.5B . 2C .D .7.下列计算正确的是( )A .2a 5 +a 5=2a 10B .3 ] 2(﹣ ) 6 6. 55 5﹣5C .[ (﹣ a )÷a=a =a =0=a =aD a8.如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为 a ,若直吸管在罐外部分还剩余 3,则吸管的总长度 b (罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣11.甲、乙两地之间的高速公路全长200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为.14.若 y=2++2,则 x﹣y=.15.若直角三角形的两边长为 6 和 8,则第三边长为.16.分解因式:﹣ 3x2y+6xy2﹣3y3=.17.若 5x=2,5y=3,则 53x﹣2y的值为.18.已知关于 x 的方程=3 的解是正数,则 m 的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B 的面积分别为 1,2,3,4,则正方形 G 的面积为.20.算++⋯的:.+ +三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2) 6 +2x.22.解方程:(1)=1(2)= 1..已知x=,y=,求x2+xy+y2的.2324.已知 a2+b2+4a 6b+13=0,分解因式: x2+ax b.25.先化,再求:(1)6a2( 2a 1)(3a+2) +( a+2)( a 2),其中 a=(2)÷(x 2),其中 x=3.26.如,小用一方形片 ABCD行折,已知片 AB 8cm, BC 10cm.折叠点 D 落在 BC上的点 F (折痕 AE),求此 EC的度?27.某服装商一种季衫能市,就用8000元一批衫,面市后果然供不求,服装商又用 17600 元了第二批种衫,所数量是第一批数量的 2 倍,但价了8 元.商家售种衫每件定价都是100 元,最后剩下 10 件按 8 折售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥ 3C.x≠3 D.x≤3【考点】 62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵ x﹣3≠0,∴x≠3.故选 C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B. 4 C.5D.6【考点】 71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的 a2≥0,符合二次根式的定义,故正确.④(x≥1)中的 x﹣1≥0,符合二次根式的定义,故正确.⑤是开 3 次方,故错误.⑥中的x2 2x 1=(x 1)2≥0,符合二次根式的定义,故正确.+ ++故选: B.3.用科学记数法表示﹣0.0000027记为()A.﹣ 27×10﹣7 B.﹣ 0.27×10﹣4C.﹣2.7×10﹣6 D.﹣ 270× 10﹣8【考点】 1J:科学记数法—表示较小的数.﹣ n【分析】绝对值小于 1 的负数也可以利用科学记数法表示,一般形式为 a× 10,与较大数的科个数所决定.﹣6【解答】解:﹣ 0.0000027=﹣ 2.7× 10,4.分式的值为0,则()A.x=2 B. x=﹣2 C.x=±2 D.x=0【考点】 63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0 且 x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为 0,∴x2﹣ 4=0 且 x+2≠ 0,解x2﹣4=0 得x=±2,而x≠﹣2,∴x=2.故选 A.5.下列二次根式中,最简二次根式是()A.B.C.D.【考点】 74:最简二次根式.【分析】 D 选项的被开方数中,含有能开得尽方的因数2; B、 C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式; A 它的因式的指数都是1,所以 D 选项符合最简二次根式的要求.【解答】解:∵ B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选 A.6.如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B. 2C.D.【考点】 29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选 D.7.下列计算正确的是()A.2a5 +a5=2a10 B.3]2(﹣) 6 6.5 5 5﹣50C.[ (﹣ a)÷a=a=a =0=a =a D a【考点】 48:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式 =3a5,故 A 错误;(B)原式 =,故B错误;(D)原式 =1,故 D 错误;故选( C)8.如图是一个圆柱形饮料罐,底面半径是5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤16【考点】 KU:勾股定理的应用.【分析】如图,当吸管底部在O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高;当吸管底部在 A 点时吸管在罐内部分 a 最长,此时 a 可以利用勾股定理在Rt△ ABO中即可求出,进而【解答】解:如图,连接BO, AO,当吸管底部在 O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高,即a=12;当吸管底部在 A 点时吸管在罐内部分 a 最长,即线段 AB 的长,在Rt△ABO 中,AB===13,故此时 a=13,所以 12≤ a≤ 13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤ b≤ 16.故选: D.9.下列计算正确的是()A.B.C.D.【考点】 79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解: A、与不能合并,本选项错误;B、=÷=,本选项正确;C、5 与不能合并,本选项错误;D、==,本选项错误;10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣【考点】 74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣ a化成最简二次根式为,故选 A.11.甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了 20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.【考点】 B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据“甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意得=? .故选: D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.【考点】 KV:平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点 A 和 B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB即为最短路线.展开后由勾股定理得: AB2=202+(20+20)2=5×202,故 AB==20cm.故选: C.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为a( a+b)( a﹣ b).【考点】 69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a( a﹣ b),a2+ab=a(a+b),故最简公分母是 a(a+b)(a﹣b).故答案是: a(a+b)(a﹣b).14.若 y=2++2,则 x﹣y=.【考点】 72:二次根式有意义的条件.【分析】根据被开方数大于等于0 列式求出 x 的值,再求出 y 的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且 5﹣x≥ 0,解得 x≥ 5 且 x≤5,∴x=5,y=2,∴x﹣y=5﹣2= .故答案为:.15.若直角三角形的两边长为 6和 8,则第三边长为10 或 2.【考点】 KU:勾股定理的应用.【分析】分情况考虑:当较大的数8 是直角边时,根据勾股定理求得第三边长是10;当较大的数 8 是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当 6 和 8 为直角边时,第三边长为=10;②当 8 为斜边, 6为直角边时,第三边长为=2 .故答案为: 10 或2 .223216.分解因式:﹣ 3x y+6xy ﹣3y =﹣3y(x﹣y).【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣ 3y(x﹣y)217.若 5x=2,5y=3,则 53x﹣2y的值为.【考点】 48:同底数幂的除法; 47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解: 53x=23=8, 52y=32=9,53x﹣2y=53x÷52y=8÷ 9= ,故答案为:.18.已知关于 x 的方程=3 的解是正数,则m 的取值范围是m>﹣ 6 且 m≠﹣ 4.【考点】 B2:分式方程的解.【分析】首先求出关于x 的方程=3 的解,然后根据解是正数,再解不等式求出m 的取值范围.∵方程的解是正数,∴m+6>0 且 m+6≠2,解个不等式得m> 6 且 m≠ 4.故答案: m> 6 且 m≠ 4.19.如所示,所有四形都是正方形,所有的三角形都是直角三角形,其中正方形 D,C,A, B 的面分1,2,3,4,正方形 G 的面 10 .【考点】 KQ:勾股定理.【分析】根据勾股定理可知正方形A、B 的面之和等于正方形E的面,同法可求正方形F、G的面.【解答】解:正方形的面分A、B、C、D、 E、F、G.根据勾股定理可知: E=A+B=7, F=C+D=3,G=E+F=10,故答案 10.20.算+++⋯+的:1.【考点】 79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式 =1+++⋯+=1.故答案1.三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2)﹣6+2x.【考点】 78:二次根式的加减法; 49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式 =5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3 y5=;(2)原式 =×3﹣+2 =(2﹣3+2)=.22.解方程:(1)=1(2)=﹣ 1.【考点】 B3:解分式方程.【分析】(1)分式方程两边同乘( x﹣ 3)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边同乘( x2﹣4)去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可.【解答】(1)解:两边同时乘以( x﹣ 3)得:( 1﹣ x)﹣ 1=x﹣3,整理得, 2x=3,解得: x= ,经检验 x=是原方程的解;2 2 2 (2)解:方程两边同时乘以( x ﹣4)得,﹣( x+2) +16=﹣x +4,整理得, 4x=8,经检验 x=2 是原方程的增根,故原方程无解..已知x=,y=,求x2+xy+y2的值.23【考点】 7A:二次根式的化简求值.【分析】根据题意求出x+y 和 xy 的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵ x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知 a2+b2+4a﹣ 6b+13=0,分解因式: x2+ax﹣b.【考点】 AE:配方法的应用; 1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b 的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解: a2+b2 +4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣ 3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣( 2a﹣1)(3a+2) +( a+2)( a﹣ 2),其中 a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】 6D:分式的化简求值; 4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a 的值计算即可;(2)先算括号里面的,再约分,代入 x 的值计算即可.【解答】接:(1)原式 =6a2﹣ 6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当 a=﹣时,原式=;(2)原式 =÷(﹣),=÷=?=,当 x=﹣3时,原式=.26.如图,小红用一张长方形纸片 ABCD进行折纸,已知该纸片宽 AB 为 8cm,长 BC为 10cm.折叠时顶点 D 落在 BC边上的点 F 处(折痕为 AE),求此时 EC的长度?【考点】 PB:翻折变换(折叠问题).【分析】由折叠的性质得 AF=AD=10cm,DE=EF,先在 Rt△ABF中运用勾股定理求 BF,再求 CF,设 EC=xcm,用含 x 的式子表示 EF,在 Rt△CEF中运用勾股定理列方程求 x 即可.【解答】解:∵四边形 ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知: AD=AF=10cm,DE=EF,设EC=xcm,则 EF=ED=(8﹣x)cm, AF=AD=10cm,在 Rt△ABF中, BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),222在 Rt△CEF中, CF+CE=EF,即 42+x2(﹣)2,= 8 x解得 x=3,即 EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用 17600 元购进了第二批这种衬衫,所购数量是第一批购进数量的 2 倍,但单价贵了8 元.商家销售这种衬衫时每件定价都是100 元,最后剩下 10 件按 8 折销售,很快售完.(2)在这两笔生意中,商家共盈利多少元?【考点】 B7:分式方程的应用.【分析】( 1)设第一批进货的单价为x 元/ 件,根据第二批这种衬衫所购数量是第一批购进数量的 2 倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x 元/ 件,由题意 2×=,解得 x=80,经检验, x=80 是原分式方程的解,且符合题意,答:第一次进货单价为80(元 / 件),第二次进货单价为88(元 / 件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:× 100+×+10=4200(元)答:商家总盈利为4200 元.。

2017-2018学年度第二学期期末考试.docx

2017-2018学年度第二学期期末考试.docx

2017— 2018 学年度第二学期期末考试七年级数学试题第Ⅰ卷(满分 100 分)一、选择题(共 10 小题,每小题 3 分,共 30 分)1. 下面的四个图形中,∠ 1 与∠ 2 是对顶角的是()2. 1的平方根是()4A.1B.1 C.1 D.1 216223. 点 P 在 y 轴上,位于原点的下方,距离坐标原点5 个单位长度,则点 P 的坐标是()A. ( -5 ,0)B.(0, -5 )C.( 0, 5)D.( 5,0)4.x 4x y3 方程组的解为y,其中一个方程是 ,另一个方程可以是()1A. 3x 4 y 16B.y x 3C.x 3y 8D.2 x y 6 y5. 一个不等式组中两个不等式的解集如图所示,则这个不等式组的解集是()A.0≤ x ﹤ 1B.0﹤ x ﹤ 1C.0≤ x ≤ 1D.0﹤ x ≤ 16. 我市七年级有 10000 名学生参加某项考试,为了了解这些学生的考试成绩,从中抽取了500 名考生的考试成绩进行统计分析 . 下列说法:①这 10000 名学生的考试成绩是总体;②每个学生的考试成绩是个体;③抽取的500 名考生的考试成绩是总体的一个样本;④样本容量是 10000.正确的有()个 .A.4B.3C.2D.1 7. 如图,以下说法错误的是( )A. 若∠ EAD=∠ B ,则 AD ∥ BCB. 若∠ EAD+∠ D=180°,则 AB ∥CDC.若∠ CAD=∠ BCA ,则 AB ∥ CDD.若∠ D=∠EAD ,则 AB ∥ CD 8. 下列说法正确的是()A. 若 ab 0 ,则点 P ( a , b )表示原点B. 点( -1 , a 2 )在第三象限C. 已知点 A ( 3, -3 )与点 B ( 3, 3),则直线 AB ∥ x 轴D. 若 ab 0 ,则点 P b)在第一、三象限( a ,9. 五边形的五个外角的度数之比 1:2:3:4:5 ,那么该五边形的最小的内角的度数是( )A.24 °B.36 °C.48°D.60°点,设车速为 x10. 一辆匀速行驶的汽车在11:20 距离A 地 ,到达A 地时时间已经过了 12(x),50kmkm/h则车速应满足的条件是()A.2 x50B.2x 50C.50 3 D.50 ≥ 333x 2x2二、填空题(共 6 小题,每小题 3 分,共 18 分)11. x 的 2 倍与 5 的和不小于 3,用不等式表示为 .12. 2x 3y 5 y 的值为 .已知 x , y 满足方程组4 y,则 xx 413. 一个长方形在平面直角坐标系中三个顶点的坐标为( -1 , -1 ),( -1 , 3),( -3 , -1 ),则第四个顶点的坐标为 .14. 如果 x 2 2 x ,那么 x 的取值范围是 .15. 某校学生来自甲,乙,丙三个地区,其人数比为2:3:7 ,如图所示的扇形图表示上述分布情况,其中甲所对应扇形的圆心角是° .16. 观察算式:3, 238 , 33 27 , 4364 , 53 125 , 63 216 , 73343 , 83 512 , 93 729 ,1 1103 1000 , 2038000 , 303 27000 , 403 64000 , 503125000 .319683 , 3110592 .三、解答题(共 5 题,共 52 分)17. (本题满分 10 分,每小题 5 分)解下列方程组或不等式组 .x y 35x2 4 x 1( 2)( 1)8 y141 x 1 7 3 x 3x2 218. (本题满分 10 分)某校开设了足球、篮球、乒乓球和羽毛球四个课外体育活动小组,有512 名学生参加,每人只参加一个组.为了了解学生参与的情况,对参加的人员分布情况进行抽样调查,并绘制了下面两幅不完整的统计图,请根据图中提供信息,解答下面问题:( 1)此次共抽查了多少名同学?( 2)将条形统计图补充完整;在扇形统计图中的括号中填写百分数;( 3)请估计该校参加篮球运动小组的学生人数19.(本题满分 10 分)如图 ,BE 平分∠ ABD,DE平分∠ BDC,且 BE⊥ ED,E 为垂足 , 求证 :AB ∥ CD.20.(本题满分 10 分)如图,把△ ABC向上平移 4 个单位长度,再向右平移 3 个单位长度得A1B1C1,其中A(-1,2),B(-3,-2),C( 4, -2 ).(1)在图上画出A1B1C1;(2)写出点A1,B1,C1的坐标;(3)请直接写出线段 AC在两次平移中扫过的总面积 .21.(本分 12 分)小要一种价 5 元的本,学校旁有甲、乙两个文具店正在做促活,甲商店的惠条件是:一次性超10 本,超的部分按价的70%售;乙商店的惠条件是:活期所有文具按价的85%售;(1)小要20 本本,他若甲商店,需花元,他若乙商店,需花元.(2)若小有120 元,他最多可多少本本?(3)分析小如果要 x 本本,到哪个商店省?第Ⅱ卷(满分50 分)四、填空题(共 4 小题,每小题 4 分,共 16 分)22.了解某校九年女生 1 分仰卧起坐的次数 , 从中随机抽了 50 名女生参加 , 并制成数分布直方(如). 如果被抽的女生中有90%的女生 1 分仰卧起坐的次数大于等于30 且小于 50,那么 1分仰卧起坐的次数在40~45 的数是 ______.23.如 , 点 A,B 定点 , 直 l ∥AB, P 是直 l 上一点。

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)

2017——2018学年度下学期期末学业水平检测七 年 级 数 学 试 题一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 .三、解答题(每小题5分,共20分) 15.计算:2393-+-.学校 年 班 姓名: 考号:七年级数学试题 第1页 (共6页)七年级数学试题 第2页 (共6页)21 3 4AB CD E(第6题)(第10题)16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知), 所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的 加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少? (2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售 价至少定为多少,才能避免亏本?五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.七年级数学试题 第3页 (共6页)七年级数学试卷题 第4页 (共6页) 考号:七年级数学试题 第4页 (共6页) 七年级数学试题 第4页 (共6页) 七年级数学试题 第4页 (共6页)HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.一. 单项选择题 (每小题3分,共24分)1. C2. B3. D4. C5. D6. C7. D8. C二. 填空题(每小题3分,共24分)9.答案不唯一,如(1,2) 10. 8 11.±10 12. 同位角相等,两直线平行七年级数学试题 第6页 (共6页)七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay13. 四 14.7,π 15. 1 16. ()7+410-50x x ≤三.解答题(每小题6分,共24分)17. 解:原式=4259-.…………………3分=517453-=-.…………………6分 18. 解:由①,得 x=y+3.③ ………………2分把③代入②,得 3(y+3)-8y=14,解得 y=-1. ……………… 4分 把y=-1代人③,得 x=2.…… 5分,所以这个方程组的解是21x y =⎧⎨=-⎩. ………………6分19. 解:解不等式213x +>-,得2x >-; ………………1分解不等式1x x -≤8-2,得x ≤3.………………2分 所以原不等式组的解集为-2<x ≤3 ………………………4分 解集在数轴上表示略. ………………6分20. 解:∵DE ∥CF , ∠D=30 o.∴∠DCF=∠D=30 o (两直线平行,内错角相等)………………2分 ∴∠BCF=∠DCF+∠BCD=30 o +40o =70o ..………………4分又∵AB ∥CF∴∠B+∠BCF=180 o (两直线平行,同旁内角互补)∴∠B=180 o —70o =110o .………………6分 四.解答题(每小题7分,共28分)21.解:(1)建立直角坐标系略(2分 ) (2)市场(4,3),超市(2,-3)(2分) (3)图略(3分)22. 评分标准:(1)3分,(2)、(3)各2分,满分7分.(1)(2)图②(或扇形统计图)能更好地说明一半以上国家的学生成绩在60≤x <70之间. (3)图①(或频数分布直方图)能更好地说明学生成绩在70≤x <80的国家多于成绩在50≤x <60的国家.23.解:设七年(1)班和七年(2)班分别有x 人、y 人参加“光盘行动”, 根据题意,得⎩⎨⎧=-=++101288y x y x . ……………3分解得⎩⎨⎧==5565y x .……………6分答:七年(1)班、七年(2)班分别有65人、55人参加“光盘行动”. ……………7分 24.评分标准:每个横线1分,满分7分.(1)∠BFD, 两直线平行,内错角相等, ∠BFD, 两直线平行,同位角相等. (2)对顶角相等, ∠D , 内错角相等,两直线平行.五.解答题(每小题10分,共20分)25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要A:26.7%B: 53.3%C:13.3%D: 6.7%频数(国家个数)成绩/分24 6 8 10 BAC40 50 60 70 80 D :40≤x <50 C :50≤x <60 B :60≤x <70 A :70≤x <801D20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

2017—2018学年度第二学期期末试卷含解析与答案2

2017—2018学年度第二学期期末试卷含解析与答案2

此文档为word 格式,可以任意修改编辑2017-2018学年度第二学期期末质量监测七年级数学试卷注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟。

2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,务必在答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本人姓名、准考证号是否一致。

3.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。

写在本试卷上无效。

一、精心选一选,慧眼识金(本大题共16个小题:每小题3分,共48分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1.计算23a a ⋅正确的是A.aB.5aC.6aD.9a2.某种细菌直径约为0.00000067mm ,若将0.00000067mm 用科学记数法表示为n 107.6⨯mm (n 为负整数),则n 的值为A.-5B.-6C.-7D.-83.下列三天线段不能构成三角形的三边的是A.3cm ,4cm ,5cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.2cm ,3cm ,4cm4.如图,直线a ,b 被直线c 所截,若a ∥b ,=∠︒=∠︒=∠3702401,则,A.70°B.100°C.110°D.120°5.当x <a <0时,2x 与ax 的大小关系是A.2x >axB.2x ≥axC.2x <axD.2x ≤ax6.不等式组⎩⎨⎧≤+x4-168-x 213x 4>的最小整数解是A.0B.-1C.1D.27.如图,下列能判定AB ∥EF 的条件有①︒=∠+∠180BFE B ②21∠=∠③43∠=∠ ④5∠=∠BA.1个B.2个C.3个D.4个8.当a ,b 互为相反数时,代数式2a +ab-4的值为A.4B.0C.-3D.-49.下列运算正确的是A.222b a b a +=+)(B.(-2ab 3)622b a 4-= C.3a 632a a 2-= D.a 3-a=a (a+1)(a-1)10.(-8)201320148-)(+能被下列整数除的是 A.3 B.5 C.7 D.911.若不等式组⎩⎨⎧-a x <<x 312的解集是x <2,则a 的取值范围是 A.a <2 B.a ≤2 C.a ≥2 D.无法确定12.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,则321∠+∠+∠等于A.90°B.120°C.150°D.180°13.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1和S 2的大小关系是A.S 1>S 2B.S 1<S 2C.S 1=S 2D.无法确定14.已知的结果为,则计算:2m -m -m 01-m -m 342+= A.3 B.-3 C.5 D.-515.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙得速度的两倍,要保证在2小时以内相遇,则甲的速度A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h16.如图,E 是△ABC 中BC 边上的一点,且BE=31BC ;点D 是AC 上一点,且AD=41AC ,S=-=∆∆∆AD F EF ABC S S ,则24A.1B.2C.3D.4第Ⅱ (非选择题,共72分)二、细心填一填,一锤定音(每小题3分,共12分)17.分解因式:2-x 22= 。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017—2018七年级数学下册期末测试题及答案(共3套)

2017—2018七年级数学下册期末测试题及答案(共3套)

2017—2018年度第二学期七年级数学期末试卷班级: 姓名: 得分:一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( ) (A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘C 1A 1好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2017-2018学年七年级(下)期末数学试卷

2017-2018学年七年级(下)期末数学试卷

2017-2018 学年七年级(下)期末数学试卷一、选择题(本大题共12 小题,每小题 3 分,共 36 分) 1 . 36 的平方根是( )A .﹣ 6B . 36C .±D .± 62.在平面直角坐标系中,点 M (﹣ 6, 4)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列调查中,调查方式选择合理的是( )A .为了了解全国中学生的视力情况,选择全面调查B .为了了解一批袋装食品是否含有防腐剂,选择全面调查C .为了检测某城市的空气质量,选择抽样调查5.若 x> y ,则下列式子中错误的是(A . x+ > y+B . x ﹣ 3> y ﹣ 3 6.如图,在数轴上标有字母的各点中,与实数 对应的点是(A . AB . BC . CD . D7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋 A 所在点的坐标是(﹣ 2,2) ,黑棋 B 所在点的坐标是( 0, 4) ,D .为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查D .﹣ 3x>﹣ 3y10. 甲仓库乙仓库共存粮 450 吨, 现从甲仓库运出存粮的 60%, 从乙仓库运出存粮的 40%. 结果乙仓库所余的粮食比甲仓库所余的粮食多存粮 y 吨,则有( )D . 30 吨.若设甲仓库原来存粮 x 吨,乙仓库原来 A .B .C .D .3x+4y=5 的解的是(无解,则实数 a 的取值范围是(A . a ≥﹣ 1B . a<﹣ 1C . a ≤ 1D . a ≤﹣ 1 12.如图 1 是长方形纸带,∠ DEF=10°,将纸带沿EF 折叠成图 2,再沿 BF 折叠成图 3,则图 3 中∠ CFE 度数是多少(13.14.写出一个第四象限的点的坐标 .15.不等式﹣ 3x+6> 0 的正整数解有 .16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值) ,则职工人数最多年龄段的职工人数占总人数的百分比为 . 11.若不等式组120° D . 110°二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)A . 160°B . 150°C .三、解答题(本大题共 6 小题,共 46 分)19.解方程组:20.如图,已知∠ DAB+∠ D=180°, AC 平分∠DAB ,且∠ CAD=25°,∠B=95° .求:∠∠ DCA 的度数.请将以下解答补充完整,解:因为∠ DAB+∠ D=180°所以 DC ∥ AB ( )所以∠ DCE=∠ B ( )又因为∠ B=95°,所以∠ DCE= °;因为 AC 平分∠ DAB ,∠ CAD=2°5 ,根据角平分线定义,所以∠ CAB= = °,因为 DC ∥ AB所以∠ DCA=∠ CAB , ( )所以∠ DCA= °.17.关于 x , y 的方程组 的解满足 x+y=6,则m的值DCE 和18.小林、小芳和小亮三人玩飞镖游戏,各投 5 支飞镖,规定在同一圆环内得分相同,中靶22.如图,∠1+∠ 2=180 °,∠3=∠ B.(Ⅰ)求证: AB∥ EF;DE与 BC的位置关系,并证明你的结论.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:1 )这次被调查的学生共有人.2)请将统计图 2 补充完整.3)统计图 1 中 B 项目对应的扇形的圆心角是度.4)已知该校共有学生 3600 人,请根据调查结果估计该校喜欢健美操的学生人数.24.某商场投入13800 元资金购进甲、乙两种矿泉水共500 箱,矿泉水的成本价和销售价如表所示:1 )该商场购进甲、乙两种矿泉水各多少箱?2)全部售完 500 箱矿泉水,该商场共获得利润多少元?2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12 小题,每小题3 分,共 36 分)1 . 36 的平方根是()A.﹣ 6 B. 36 C.±D.± 6【考点】21:平方根.【分析】依据平方根的定义求解即可.【解答】解:∵(±6) 2=36,∴ 36 的平方根是±6.故选: D.2.在平面直角坐标系中,点M(﹣6, 4)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据点M 的坐标确定出所在的象限即可.【解答】解:在平面直角坐标系中,点M(﹣6, 4)在第二象限,故选 B3.下列调查中,调查方式选择合理的是()A.为了了解全国中学生的视力情况,选择全面调查B.为了了解一批袋装食品是否含有防腐剂,选择全面调查C.为了检测某城市的空气质量,选择抽样调查D.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、为了了解全国中学生的视力情况,人数较多,应选择抽样调查,故错误;B、为了了解一批袋装食品是否含有防腐剂,食品数量较大,应选择抽样调查,故错误;C、为了检测某城市的空气质量,选择抽样调查,正确;D、为了检测乘坐飞机的旅客是否携带违禁物品,事关重大,应选择全面调查,故错误;故选: C.4.不等式x+5< 2 的解在数轴上表示为()C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得, x< 2﹣ 5,合并同类项得,x<﹣3,在数轴上表示为;故选 D.5.若x> y,则下列式子中错误的是()A. x+ > y+ B.x﹣3> y﹣ 3 C.> D.﹣3x>﹣3y【考点】C2:不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1 ,可得x+ > y+ ,故 A 选项正确;B、根据不等式的性质1,可得x﹣ 3> y﹣ 3,故 B 选项正确;C、根据不等式的性质2,可得 > ,故 C选项正确;D、根据不等式的性质3,可得﹣3x<﹣ 3y,故 D 选项错误;故选: D.6.如图,在数轴上标有字母的各点中,与实数对应的点是()A. A B. B C. C D. D【考点】29:实数与数轴.【分析】先估算出的取值范围,进而可得出结论.【解答】解:∵4< 5< 9,∴ 2< < 3.故选C.7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋 A 所在点的坐标是(﹣2,2),黑棋 B 所在点的坐标是(0, 4),现在轮到黑棋走,黑棋放到点 C 的位置就获得胜利,点 C 的坐标是()【考点】D3:坐标确定位置.【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C 的坐标.【解答】解:由题意可得,如图所示的平面直角坐标系,故点 C的坐标为(3, 3),8.如图,直线a∥ b, c 是截线.若∠ 2=4∠ 1 ,则∠ 1 的度数为(JA:平行线的性质.【分析】根据两直线平行,同旁内角互补可得∠1+∠ 2=180°,然后把∠ 2 换成∠ 1 列出方程求解即可.【解答】解:∵a∥ b,∴∠1+∠ 2=180°,【分析】将各对 x 与 y 的值代入方程检验即可得到结果.【解答】解: A 、将x=1, y= 代入 3x+4y=5 的左边得: 3× 1+4×=5,右边为 5,左边 =右边,不合题意;B 、将 x=﹣1, y=2 代入 3x+4y=5 的左边得: 3×(﹣ 1) +4×2=5,右边为 5,左边 =右边,不合题意; C 、 将 x=0, y= 代入 3x+4y=5 的左边得:3× 0+4 × =5, 右边为 5, 左边 =右边, 不合题意;D 、将x= , y=0 代入 3x+4y=5 的左边得: 3 × +4× 0= ,右边为5,左边≠右边,符合题意,故选 D . 10. 甲仓库乙仓库共存粮 450 吨, 现从甲仓库运出存粮的 60%, 从乙仓库运出存粮的 40%. 结果乙仓库所余的粮食比甲仓库所余的粮食多 30 吨.若设甲仓库原来存粮 x 吨,乙仓库原来存粮 y 吨,则有( )A . C . D .【考点】 9A :二元一次方程组的应用.【分析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的 60%,从乙仓库运出存粮的 40%.结果乙仓库所余的粮食比甲仓库所余的粮食多 30 吨,甲仓∵∠ 2=4∠1 ,∴∠ 1+4∠1=180°, 解得∠3x+4y=5 的解的是()B .库、乙仓库共存粮450 吨.【解答】解:设甲仓库原来存粮x 吨,乙仓库原来存粮y吨.根据题意得:.故选C.无解,则实数a 的取值范围是(11.若不等式组A . a ≥﹣ 1B . a<﹣ 1C . a ≤ 1D . a ≤﹣ 1【考点】 CB :解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 【解答】解:, 由①得, x ≥﹣ a ,由②得, x< 1,∵不等式组无解,∴﹣ a ≥ 1 ,解得: a ≤﹣ 1.故选: D .12.如图1 是长方形纸带,∠ DEF=10°,将纸带沿 EF 折叠成图2,再沿 BF 折叠成图 3,则图 3 中∠ CFE 度数是多少( )A . 160°B . 150°C . 120°D . 110°【考点】 PB :翻折变换(折叠问题) ; LB :矩形的性质.【分析】 由矩形的性质可知 AD ∥ BC , 由此可得出∠ BFE=∠ DEF=10°, 再根据翻折的性质可知每翻折一次减少一个∠ BFE 的度数,由此即可算出∠ CFE 度数.ABCD 为长方形,∴ AD ∥ BC ,∴∠ BFE=∠ DEF=10° .由翻折的性质可知:∠ EFC=180° ﹣∠ BFE=170° ,∠ BFC=∠ EFC ﹣∠BFE=160°,∠ CFE=∠ BFC ﹣∠ BFE=150° . 故选 B .二、填空题(本大题共6 小题,每小题 3 分,共 18 分)13. = ﹣ 2 . 【考点】 24:立方根.【分析】因为﹣2 的立方是﹣ 8,所以 的值为﹣ 2.【解答】解: =﹣ 2. a 的取值范围.故答案为:﹣ 2.14.写出一个第四象限的点的坐标 【考点】 D1:点的坐标.【分析】根据第四项限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:写出一个第四象限的点的坐标( 1 ,﹣ 1 ) ,故答案为: ( 1,﹣ 1) .15.不等式﹣ 3x+6> 0 的正整数解有 1 .【考点】 C7:一元一次不等式的整数解.【分析】 首先利用不等式的基本性质解不等式, 再从不等式的解集中找出适合条件的正整数即可.【解答】解:移项得:﹣ 3x>﹣ 6,系数化为 1 得: x< 2,则正整数解为: 1 .故答案为: 1 .16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值) ,则职工人数最多年龄段的职工人数占总人数的百分比为 28% .【考点】 V8:频数(率)分布直方图.【分析】用 40~ 42 的人数除以总人数即可得.【解答】解:由图可知,职工人数最多年龄段的职工人数占总人数的百分比为× 100%=28%,故答案为: 28%.17.关于x , y 的方程组 的解满足 x+y=6,则 m 的值为 ﹣ 1 .1,﹣ 1) (答案不唯一)【分析】首先应用代入法,求出关于x, y 的方程组的解,然后根据x+y=6,求出m 的值为多少即可.【解答】解:由②,可得:x=5m﹣ 2③,把③代入①,解得y=4﹣ 9m,∵ x+y=6,∴ 5m ﹣ 2+4﹣ 9m=6,解得 m=﹣ 1 .故答案为:﹣ 1 .18.小林、小芳和小亮三人玩飞镖游戏,各投 5 支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是21 .【考点】9A:二元一次方程组的应用.【分析】设掷中外环区、内区一次的得分分别为x, y 分,根据等量关系列出方程组,再解方程组即可.【解答】解:设掷中 A 区、 B 区一次的得分分别为x,y 分,依题意得:解这个方程组得:,则小亮的得分是2x+3y=6+15=21 分.故答案为21 ;三、解答题(本大题共 6 小题,共 46 分)19.解方程组:【分析】先把原方程组化为一般方程的形式,再消元求解即可.【解答】解:原方程组可化为,① +②得:y= ,把 y 的值代入①得:x= .所以此方程组的解是20.如图,已知∠DAB+∠ D=180°, AC 平分∠DAB,且∠CAD=25°,∠B=95° .求:∠DCE 和∠ DCA的度数.请将以下解答补充完整,解:因为∠DAB+∠ D=180°所以DC∥ AB(同旁内角互补,两直线平行)所以∠DCE=∠ B(两直线平行,同位角相等)又因为∠B=95°,所以∠ DCE= 95AC平分∠DAB,∠CAD=2°5 ,根据角平分线定义,所以∠ CAB= ∠ CAD= 25因为DC∥ AB所以∠DCA=∠ CAB,(两直线平行,内错角相等)所以∠ DCA=25CAB=∠ CAD.再由DC∥ AB 得出∠DCA=∠ CAB,进而JB:平行线的判定与性质.DAB+∠ D=180°得出95;∠ CAD, 25;两直DC∥ AB,故可得出∠DCE=∠ B.再由∠B=95°可得出∠DCE的度数,由角平分线的定义可知∠可得出结论.【解答】解:∵∠DAB+∠ D=180° ,∴ DC∥ AB(同旁内角互补,两直线平行)∴∠DCE=∠ B(两直线平行,同位角相等)又∵∠ B=95°,∴∠DCE=9°5;∵ AC 平分∠DAB,∠CAD=2°5,∴∠CAB=∠ CAD=2°5,∵ DC∥ AB∴∠ DCA=∠ CAB , (两直线平行,内错角相等)∴∠ DCA=2°5 .故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;线平行,内错角相等; 25.21 .解不等式组: ,并在数轴上表示它的解集.【考点】 CB :解一元一次不等式组; C4:在数轴上表示不等式的解集.故不等式组的解集为;﹣ 1 < x ≤ 1 .在数轴上表示为:.22.如图,∠ 1+∠ 2=180 °,∠ 3=∠ B .(Ⅰ)求证: AB ∥ EF ;(Ⅱ)试判断 DE 与 BC 的位置关系,并证明你的结论.【考点】 JB :平行线的判定与性质.【分析】 ( 1 )要证明∠ AED=∠ C ,则需证明 DE ∥ BC .根据等角的补角相等,得∠ DFE=∠ 2,根据内错角相等,得直线 EF ∥ AB ;( 2)由 EF ∥ AB ,得到∠ 3=∠ ADE ,从而∠ ADE=∠ B ,即可证明结论.【解答】证明: ( 1 )∵∠ 1+∠ 2=180°,∠ 1+∠ DFE=180° , ∴∠ DFE=∠ 2,∴ EF ∥ AB ;( 2) DE ∥ BC ,理由如下:由( 1)知 EF ∥ AB ,∴∠ 3=∠ ADE .又∠ 3=∠ B ,∴∠ ADE=∠ B ,x>﹣ 1,由②得,x ≤ 1,∴ DE∥ BC,∴∠AED=∠ C,∴ DE∥ BC.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:1 )这次被调查的学生共有500 人.2)请将统计图 2 补充完整.3)统计图 1 中 B 项目对应的扇形的圆心角是54 度.4)已知该校共有学生 3600 人,请根据调查结果估计该校喜欢健美操的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】( 1 )利用 C的人数÷所占百分比可得被调查的学生总数;( 2)利用总人数减去其它各项的人数 =A的人数,再补图即可;( 3)计算出 B 所占百分比,再用 360° × B所占百分比可得答案;( 4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.【解答】解:( 1) 140÷ 28%=500(人),故答案为:500;( 2)A的人数:500﹣ 75﹣ 140﹣ 245=40(人);补全条形图如图:( 3)75÷ 500× 100%=15%,360 °× 15%=54°,故答案为:54;( 4)245÷ 500× 100%=49%,3600 × 49%=1764(人).24.某商场投入13800 元资金购进甲、乙两种矿泉水共500 箱,矿泉水的成本价和销售价( 1 )该商场购进甲、乙两种矿泉水各多少箱?( 2)全部售完500 箱矿泉水,该商场共获得利润多少元?【考点】9A:二元一次方程组的应用.【分析】( 1 )设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800 元资金购进甲、乙两种矿泉水共500 箱,列出方程组解答即可;( 2)总利润=甲的利润+乙的利润.【解答】解:( 1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水 y 箱,由题意得解得:答:商场购进甲种矿泉水300 箱,购进乙种矿泉水200 箱.( 2) 300 ×(36﹣ 24) +200×(48﹣ 33)=3600+3000=6600(元).答:该商场共获得利润6600 元.。

重庆2017-2018学年七年级下学期期末质量检测数学试题

重庆2017-2018学年七年级下学期期末质量检测数学试题

2017—2018学年度下期末七年级质量监测数学试题(考试时间:120分钟 考试形式:闭卷 分值:150分)注意事项:1.试题卷上各题的答案用黑色签字笔或钢笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..的签字笔完成; 4. 考试结束,由监考人员将试题卷和答题卡...一并收回. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.计算25a a ⋅的结果是( )A .3aB .10aC .3a -D .7a 2.下列世界博览会会徽图案中是轴对称图形的是( )3.下列计算正确的是( )A .5510a a a +=B .22(3)6a a = C .76a a a ÷= D .325()a a = 4.下列事件为必然事件的是( ) A .任意买一张电影票,座位号是奇数B .打开电视机,CCTV 第一套节目正在播放新闻联播C .从一个只装有红色小球的不透明袋中,任意摸出一球是红球D .经过某一有交通信号灯的路口,恰好遇到绿灯5.生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为( ) A .64.310⨯米B .54.310-⨯米C .64.310-⨯米D .74310⨯米6.一个缺角的三角形ABC 残片如图所示,量得∠A =45°,∠B =60°,则这个三角形残缺前的∠C 的度数为( )A .75°B .65°C .55°D .45°7.某市对一道路进行拓宽改造.工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y (米)与时间x (天)的关系的大致图象是( )A .B .C .D .8.如图,长方形纸片ABCD 的边长23AB =,2AD =,将长方形纸片沿EF 折叠,使点A 与点C 重合,如果30BCE ∠=o ,则DFE ∠的大小是( ) A .120° B .110° C .115° D .105°9.将图甲中阴影部分的小长方形变换到图乙位置,根据甲、乙两个图形的面积关系可以得到一个关于,a b 的恒等式为( )A .222()2a b a ab b -=-+B .22()()a b a b a b +-=-C .222()2a b a ab b +=++D . 2()a a b a ab -=- 10.如图,下列条件中一定能判断AB ∥CD 的是( )A .∠2=∠3B .∠3=∠4C .∠4=∠5D .∠1=∠211.如图,//AB DE ,//AC DF ,AC DF =,下列条件中不能判断△ABC ≌△DEF 的是( ) A .AB DE = B . EF BC = C .B E ∠=∠ D .//EF BC12.如图,AD 为CAF ∠的角平分线,BD CD =,DBC DCB ∠=∠,DCA ABD ∠=∠,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论: ①△CDE ≌△BDF ;②CE=AB+AE ;③∠BDC=∠BAC ; ④∠DAF=∠CBD .其中正确的结论有( ) A .4 B .3C.2D .1二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.比较大小:2________5(填“>,<,=’’)14.一只小狗跳来跳去,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则小狗停留在黑色方格中的概率是 .15.已知等腰三角形的两边长是3cm 和6cm ,则这个等腰三角形的周长是 cm . 16.若21464x mx -+是一个完全平方式,则实数m 的值应为 . 17.如图,△ABE 和△ACD 是△ABC 分别以AB AC 、为对称轴翻折180°形成的,若∠1︰∠2︰∠3=29︰4︰3,则∠α的度数为 .18.如图,Rt △ABC 中,90BAC ∠=o,2AB AC ==,22BC =.点D 从B 点开始运动到C 点结束(点D 和B 、C 均不重合),DE 交AC 于E ,45ADE ∠=o,当△ADE 是等腰三角形时,AE 的长度为 .717题图ADECB18题图ABCDEF12题图三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19. 如图,点B F C E 、、、在同一条直线上,FB CE =,//AC DF ,AC DF =.求证:AB DE =.20.如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份).(1)小华购物450元,他获得购物券的概率是多少?(2)小丽购物600元,那么她获得100元以上(包括100元)购物券的概率是多少?四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答过程书写在答题卡...中对应的位置上. 21.计算:(1)(3)(3)a b a b ---+; (2)[(1)(2)2]a a a ++-÷.80BAC ∠=o ,求22.如图,//EF AD ,BEF ADG ∠=∠,AGD ∠的度数.23.如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态. (1)填表: 铁环个数 1 2 3 4 链条长(cm )4.68.2(2)设n 个铁环长为y 厘米,请用含n 的式子表示y ; (3)若要组成2.17米长的链条,至少需要多少个铁环?FDBEA C19题图20题图22题图ABCDEFG24. 先仔细阅读材料,再尝试解决问题:通过对有理数的学习,我们知道20x ≥,本学期学习了完全平方公式后,我们知道2222()a ab b a b ±+=±.所以完全平方式2()a b ±的值为非负数,这一性质在数学中有着广泛的应用.比如探求多项式2245x x +-的最大(小)值时,我们可以这样处理:解:原式=22(2)5x x +-=2222(211)5x x ++-- =222[(1)1)5x +-- =22(1)7x +-.因为2(1)0x +≥,所以22(1)707x +-≥-. 当1x =-时,22(1)7x +- 取得最小值,最小值是7-.请根据上面的解题思路,解答下列问题:(1)求多项式23122x x -+的最小值是多少,并写出对应的x 的取值; (2)求多项式22428x x y y ++-+的最小值.25. 著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即22222222()()a b c d e f g h ++++++=2222A B C D +++,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.【动手一试】 试将2222(15)(27)++改成两个整数平方之和的形式.2222(15)(27)_______________++=;【阅读思考】 在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式222211x y x y-+-改成两个平方之差的形式.解:原式222222111111(2)(2)()()x x y y x y x x y y x y=++⋅⋅-++⋅⋅=+-+﹒ 【解决问题】 请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式2222()()a b c d ++改成两个整数平方之和的形式(其中a 、b 、c 、d 均为 整数),并给出详细的推导过程﹒五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 26. 直角三角形有一个非常重要的性质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt △ABC 中,90C ∠=o ,D 为斜边AB 中点,则12CD AD BD AB ===.请你利用该定理和以前学过的知识解决下列问题: 在△ABC 中,直线a 绕顶点A 旋转.(1)如图2,若点P 为BC 边的中点,点B P 、在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM PN 、.求证:=PM PN ;(2)如图3,若点B P 、在直线a 的同侧,其它条件不变,此时=PM PN 还成立吗?若成立,请给予证明:若不成立,请说明理由;(3)如图4,90BAC ∠=o ,直线a 旋转到与BC 垂直的位置,E 为AB 上一点且AE AC =,EN a ⊥于N ,连接EC ,取EC 中点P ,连接,PM PN ,求证:PM PN ⊥.2017—2018学年度下期末七年级质量监测数学试题参考答案与评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBCCCADABDBA二、填空题 13.> 14.1315.1516. 12±17. 70°18.1或422- 三 、解答题19.证明:∵AC ∥DF (已知).∴∠ACB =∠DFE (两直线平行,内错角相等) 又∵FB =CE (已知)∴FB+FC =CE+FC (等式性质).即BC =EF .….…………………………………………………………………………(4分) 在△ABC 与△DEF 中,∵⎪⎩⎪⎨⎧=∠=∠=.(已知),,DF AC DFE ACB EF BC ∴△ABC ≌△DEF (SAS). . .…………………………………………………………(7分) ∴AB =DE (全等三角形对应边相等). ………………………………………………(8分) 20.解:(1)∵450<500,∴小华购物450元,不能获得转动转盘的机会,∴小华获得购物券的概率为0;.………….…………………………………………(4分) (2)小丽购物600元,能获得一次转动转盘的机会. ∴她获得100元以上(包括100元)购物券的概率是720..………………………(8分) 四、解答题21.解:(1)原式=2()9a b --…………………………………………………………(3分)=2229a ab b -+-.………………………………………………………(5分)(2)原式=2(322)a a a +-+÷……………………………………………………(7分)FD BEA C19题图= 2(3)a a a +÷ ……………………………………………………………(9分) =3a +. ……………………………………………………………………(10分) 22. 解:∵EF ∥AD (已知)∴∠2=∠3 …………………… (2)分 又∵∠1=∠2(已知)∴∠1=∠3 …………………… (4)分 ∴AB ∥DG …………………… (6)分 ∴∠BAC+∠AGD=180°………………(8)分 ∵∠BAC=80°(已知)∴∠AGD= 110°.……………………(10)分23. 解:(1)由题意可得:3×4.6﹣4×0.5=11.8(cm ),故3个铁环组成的链条长为11.8cm .………………………………………………… (2)分 4×4.6﹣6×0.5=15.4(cm ), 故4个铁环组成的链条长为15.4cm .故答案为:11.8;15.4;……………………………………………………………… (4)分 (2)由题意得:y=4.6n ﹣2(n ﹣1)×0.5,即y=3.6n+1;…………………………………………………………………………… (7)分 (3)据题意有:3.6n+1=217,解得:n=60,所以至少需要60个铁环. …………………………………………… (10)分 24. 解:(1)原式=23(4)2x x -+=2223(422)2x x -+-+ =2223[(2)2)]2x --+=23(2)10x --∵2(2)0x -≥, ∴ 23(2)1010x --≥-.∴ 当2x =时,23(2)10x -- 取得最小值,最小值是10-.………………… (5)分(2)原式=222242213x x y y +++-++ =22(2)(1)3x y ++-+132FGACD E22题图∵22(2)0,(1)0x y +≥-≥, ∴22(2)(1)33x y ++-+≥∴当2,1x y =-=时,22(2)(1)3x y ++-+的最小值是3 .………………… (10)分25.(1)222222(15)(27)337++=+;……………………………………………… (4)分 (2).………………………………… (5)分 证明:………………………………… (8)分=22()()ac bd ad bc ++-.…………………………………………………………… (10)分 五、解答题26.证明:(1)如图2中,延长NP 交BM 的延长线于G . ∵BM ⊥AM ,CN ⊥AM ,∴BG ∥CN ,∴∠PCN=∠PBG , 在△PNC 和△PGB 中,,∴△PNC ≌△PGB ,∴PN=PG ,∵∠NMG=90°,∴PM=PN=PG .………………………………………………………… (4)分 (2)解:结论:PM=PN . 如图3中,延长NP 交BM 于G .∵BM ⊥AM ,CN ⊥AM ,∴BM ∥CN ,∴∠PCN=∠PBG , 在△PNC 和△PGB 中,,∴△PNC ≌△PGB ,∴PN=PG ,∵∠NMG=90°,∴PM=PN=PG .………………………………………………………… (7)分 (3)如图4中,延长NP 交BM 于G . ∵∠EAN+∠CAM=90°,∠CAM+∠ACM=90°, ∴∠EAN=∠ACM ,222222()()()()a b c d ac bd ad bc ++=++-2222()()a b c d ++22222222()()a c b d a d b c =+++22222222(2)(2)a c b d abcd a d b c abcd =++++-在△EAN和△CAM中,,∴△EAN≌△CAM,∴EN=AM,AN=CM,∵EN∥CG,∴∠ENP=∠CGP,在△ENP和△CGP中,,∴△ENP≌△CGP,∴EN=CG=AM,PN=PG,∵AN=CM,∴MG=MN,∴PM⊥PN.……………………………………………………(12)分。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017—2018 学年度第二学期期末考试 七 年 级 数 学 试 卷

2017—2018 学年度第二学期期末考试 七 年 级 数 学 试 卷

2017—2018 学年度第二学期期末考试七 年 级 数 学 试 卷注意事项:1.本卷共4页,共有25小题,满分120分,考试时限120分钟。

2.答题前,考生要将自己的姓名、考号、学校和班级写在答题卡指定的位置,并在答题卡所规定的方框内答题。

3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡。

一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.9的算术平方根是( )A .3±B .3C .3±D .32.如图,AB ∥CD ,那么( )A .∠1=∠4B .∠1=∠3C .∠2=∠3D .∠1=∠53.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .30°B .35°C .45°D .50° 4.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,-1)C .(4,1)D .(0,1)5.若代数式237x +的值是非负数,则x 的取值范围是( ) A .x ≥23 B .x ≥-32 C .x >23 D .x >-326.张老师对本班50名学生的血型作了统计,列出如下的统计表,则本班A 组别 A 型 B 型 AB 型 O 型频率 0.3 0.2 0.1 0.4A .20人B . 15人C .10人D .5人7.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?若设生产螺栓x 人,生产螺帽y 人,则列方程组( )A .901524x y x y +=⎧⎨=⎩B .901548x y x y +=⎧⎨=⎩C .903024x y x y +=⎧⎨=⎩D .902(15)24x y x y +=⎧⎨-=⎩ 8.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( ) A .4 B .-4 C .8 D .-8(第3题图)(第2题图)9.如果不等式组213(23)x x x m ->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m ≥210.某种商品价格为33元/件,某人只带有2元和5元两种面值人民币足够多张数,买了一件这种商品,若不找零钱,则付款方式中两种面值人民币张数之和最少与张数之和最多的方式分别是( )A .8张和16张B .8张和15张C .9张和15张D .9张和16张二、填空题:(本题有6个小题,每小题3分,共18分)11.若x ,y 为实数,且|x +2|+2y -=0,则2x +y 的值为 .12.若xy >0,且x +y <0,则点M (x ,y )在第________象限.13.已知21x y =⎧⎨=-⎩是方程ax +5y =15的一个解,则a 的平方根为________. 14.已知:点A (m ,2)到y 轴的距离为3,则m =________.15.我们定义 a b ad bc c d =-.如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2.则不等式1<1 3 4x <3 的解集为__________.16.如图,所有正方形的中心均在坐标原点,且各边与坐标轴平行,从内到外,它们的边长依次为3,5,7,9,…,顶点依次为1A ,2A ,3A ,4A ,…,则顶点2018A 的坐标是__________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 计算:23|3|2716(2)---+--.18.(本题满分6分) 解方程组3262317x y x y -=⎧⎨+=⎩.(第16题图)19.(本题满分7分)有这样一道不等式的题目21532x x ++-≥□. 学生:老师,小明把这道题后面的部分擦掉了.老师:哦,如果我告诉你这道题的正确答案是x ≥7,且□是一个常数,你能把这个常数补上吗?学生:我知道了.根据以上信息,请你求出□中的数.20.(本题满分7分) 解不等式组4332(4)1372(2)5x x x -⎧--<-⎪⎨⎪-+<⎩ ,并把解集表示在数轴上.21.(本题满分8分) 如图,∠A =∠ADE ,∠C =∠E .(1)若∠EDC =3∠C ,求∠C 的度数;(2)求证:BE ∥CD .22.(本题满分8分)某中学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)若该中学有2400名学生,请估计其中有多少名学生能在1.5 h 内完成家庭作业?.(第22题图)(第21题图)(第20题图)23.(本题满分8分)为了更好地引导在校学生知善、行善、扬善、乐善,并逐步实现“日行一善”到“善行一生”,某校计划组织师生共368人参加“日行一善”活动.若租用7辆大型客车和5辆中型客车恰好全部坐满,已知每辆大型客车座位数比中型客车座位数多20个.(1)求每辆大型客车和每辆中型客车座位数;(2)由于参加活动的人数增加了50人,学校决定调整租车方案,在租用车辆总数不变的情况下,为了保证每一位参加活动的师生都有坐位,求租用中型客车的最大值.24.(本题满分10分)阅读材料:对x ,y 定义一种新运算“T ”,规定:T(x ,y )=2ax by x y-+(其中a ,b 均为非0常数,且x +y ≠0). 如T(1,0)=12010a b a -=+,若T(2,1)=43,T(1,-2)=-7. (1)求T(2,3)的值;(2)若关于c 的不等式组T(-3,5+3)T(,2)2c c m c c <⎧⎨-<⎩恰好有3个整数解,求实数m 的取值范围.25.(本题满分12分)在平面直角坐标系中,点A ,B 分别是x 轴,y 轴上的点,且OA =a ,OB =b ,其中a ,b 满足(a +b -32)2+16b a -+=0,将点B 向左平移18个单位长度得到点C .(1)求点A ,B ,C 的坐标.(2)点M ,N 分别为线段BC ,OA 上的两个动点,点M 从点B 以1个单位长度/秒的速度向左运动,同时点N 从点A 以2个单位长度/秒的速度向右运动,设运动时间为t 秒(0≤t ≤12).①当BM =ON 时,求t 的值;②是否存在一段时间,使得S四边形NACM <12S 四边形BOAC ?若存在,求出t 的取值范围;若不存在,请说明理由.(第25题图)。

重庆市2017-2018学年七年级数学下册期末试卷含答案解析

重庆市2017-2018学年七年级数学下册期末试卷含答案解析

重庆市2017-2018学年七年级数学下册期末试卷含答案解析2017-2018学年七年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.9的平方根为()A。

3B。

-3C。

±3D。

不存在2.若是关于x、y的方程ax-y=3的解,则a=()A。

1B。

2C。

3D。

43.如果a<b,那么下列不等式中一定成立的是()A。

a2<abB。

ab<b2XXX<b2D。

a-2b<-b4.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A。

(-3,2)B。

(2,-1)C。

(4,-1)D。

(-3,-1)5.在下列实数。

-1.xxxxxxxx1…中,无理数有()A。

1个B。

2个C。

3个D。

4个6.在平面直角坐标系中,点A的坐标为(1,2),将点A 向右平移3个单位长度后得到A′,则点A′的坐标是()A。

(-2,2)B。

(4,2)C。

(1,-1)D。

(1,5)7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A。

134石B。

169石C。

338石D。

1365石8.下列调查中,适宜采用普查方式的是()A。

调查XXX节目《晚间播报》的收视率B。

调查涪陵市民对皮影表演艺术的喜爱程度C。

调查涪陵城区居民对“武陵山大裂谷”的知晓率D。

调查我国首艘宇宙飞船“天舟一号”的零部件质量9.不等式组的解集在数轴上表示为()A。

B。

C。

D。

10.XXX解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A。

-3.4B。

-4.3C。

3.4D。

4.311.如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()度.A。

12B。

18C。

22D。

2812.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是()A。

2017-2018七年级数学下册期末试卷(有答案)(1).docx

2017-2018七年级数学下册期末试卷(有答案)(1).docx

七年级(下)期末数学试卷一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.的平方根是()A.2 B.± 2 C.D.±3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 17.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成组.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=,◆ =.13.若x﹣y|+=0,则 xy 1的值为.|+14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为(只填序号)三、(本大题共两小题,每小题8 分,共 16 分)22﹣|﹣2)15.化简:()+ ﹣( +|16.解不等式组,把不等式组的解集在数轴上表示出来,并求出不等式组的整数解的和.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.18.如,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并明理由.五、(本大共两小,每小10 分,共 20 分)19.根据要求,解答下列(1)解下列方程(直接写出方程的解即可)①的解②的解③的解(2)以上每个方程的解中,x 与 y 的大小关系.(3)你构造一个具有以上外形特征的方程,并直接写出它的解.20.操作与探究:(1)数上的点 P 行如下操作:先把点P 表示的数乘以,再把所得数的点向右平移1 个位,得到点 P 的点 P′.点 A,B 在数上,段 AB 上的每个点行上述操作后得到段A′B,′其中点 A,B 的点分 A′, B′.如 1,若点 A 表示的数是 3,点 A′表示的数是;若点B′表示的数是 2,点 B 表示的数是;已知段AB上的点E上述操作后得到的点E′与点 E 重合,点 E 表示的数是.(2)如 2,在平面直角坐系xOy 中,正方形ABCD及其内部的每个点行如下操作:把每个点的横、坐都乘以同一个数 a,将得到的点先向右平移 m 个位,再向上平移 n 个位( m>0,n >0),得到正方形A′B′C及′其D′内部的点,其中点A,B 的点分A′,B′.已知正方形ABCD内部的一个点 F 上述操作后得到的点 F′与点 F 重合,求点 F 的坐.六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生6000 人,请你估计“活动时间不小于4 天”的大约有多少人?22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案与试题解析一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】 D1:点的坐标.【分析】根据点在第一象限的坐标特点解答即可.【解答】解:因为点P(4,3)的横坐标是正数,纵坐标是正数,所以点P 在平面直角坐标系的第一象限.故选: A.2.的平方根是()A.2 B.± 2 C.D.±【考点】 22:算术平方根; 21:平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选 D.3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】 V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解: A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选: D.4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.【考点】 26:无理数.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解: 3.1415926 是有理数,是有理数,π是无理数,=6 是有理数.故选 C.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°【考点】 JA:平行线的性质; KN:直角三角形的性质.【分析】利用“直角三角形的两个锐角互余”的性质求得∠ A=35°,然后利用平行线的性质得到∠1=∠ B=35°.【解答】解:如图,∵ BC⊥ AE,∴∠ ACB=90°.∴∠ A+∠B=90°.又∵∠ B=55°,∴∠ A=35°.又CD∥AB,∴∠1=∠A=35°.6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 1【考点】 92:二元一次方程的解.【分析】把 x 与 y 的值代入方程计算即可求出k 的值.【解答】解:把代入方程得: 2k﹣ 1=3,解得: k=2,故选 A7.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.【考点】 C6:解一元一次不等式; C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:移项,得: 2x﹣x≥﹣ 1,合并同类项,得: x≥﹣1,故选: A.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()A.6 B. 8 C.10D.12【考点】 Q2:平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为8 个单位的△ ABC沿边 BC向右平移 1 个单位得到△ DEF,又∵ AB+BC+AC=8,8∴四边形 ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC=10.故选: C.9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.【考点】 99:由实际问题抽象出二元一次方程组.【分析】设男生有x 人,女生有 y 人,根据男女生人数为20,共种了 52 棵树苗,列出方程组成方程组即可.【解答】解:设男生有x 人,女生有 y 人,根据题意得,.故选: D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1【考点】 CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 a 的取值范围.【解答】解:,由①得, x≥﹣ a,由②得, x<1,∵不等式组无解,∴﹣ a≥ 1,解得: a≤﹣ 1.故选: D.二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成 6 组.【考点】 V7:频数(率)分布表.【分析】根据组数 =(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:∵在样本数据中最大值与最小值的差为40﹣19=21,又∵组距为 4,∴组数 =21÷4=5.25,∴应该分成 6 组.故答案为: 6.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=17,◆ =9.【考点】 98:解二元一次方程组.【分析】根据二元一次方程组的解法即可求答案.【解答】解:将x=4 代入 3x﹣y=3∴12﹣y=3∴y=9将x=4,y=9 代入 2x+y∴2x+y=8+9=17故答案为: 17;913.若 | x﹣y|+=0,则 xy+1 的值为5.【考点】 23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】依据非负数的性质可求得x、 y 的值,然后代入计算即可.【解答】解:∵|x﹣ y=0,|+∴x﹣y=0,y﹣2=0,解得: x=2,y=2.∴x y+1=4+1=5.故答案为: 5.14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为①②④(只填序号)【考点】 O1:命题与定理.【分析】①根据新定义的运算法则,可计算出A⊕ B=(3,1),A?B=0;②设 C(x3,y3),根据新定义得 A⊕B=(x1+x2,y1+y2),B⊕C=( x2+x3, y2+y3),则x1+x2=x2+x3, y1+y2 =y2+y3,于是得到 x1=x3,y1=y3,然后根据新定义即可得到 A=C;③由于 A⊙B=x1x2+y1y2, B⊙C=x2x3+y2y3,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1=y3,所以 A ≠C;④根据新定义的运算法则,可得(A⊕ B)⊕ C=A⊕( B⊕ C)=( x1+x2+x3,y1+y2+y3).【解答】解:①∵ A( 1, 2),B(2,﹣ 1),∴A⊕B=(1+2,2﹣1),A⊙B=1×2+2×(﹣ 1),即 A⊕ B=(3,1),A⊙B=0,故①正确;②设 C(x3,y3),则 A⊕B=( x1+x2, y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕ B=B⊕C,所以 x1+x2=x2+x3,y1+y2 =y2+y3,则 x1=x3,y1=y3,所以 A=C,故②正确;③A⊙B=x1x2+y1y2, B⊙ C=x2x3+y2y3,而A⊙ B=B⊙C,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1 =y3,所以 A≠C,故③不正确;④因为( A⊕B)⊕ C=(x1+x2 +x3,y1+y2+y3),A⊕( B⊕ C) =( x1+x2+x3,y1+y2+y3),所以( A⊕B)⊕ C=A⊕( B⊕C),故④正确.综上所述,正确的命题为①②④.故答案为:①②④.三、(本大题共两小题,每小题8 分,共 16 分).化:()2+ ( 2+|2| )15【考点】 2C:数的运算.【分析】原式利用乘方的意,的代数意化,算即可得到果.【解答】解:原式 = +2+2=1 2.16.解不等式,把不等式的解集在数上表示出来,并求出不等式的整数解的和.【考点】 CB:解一元一次不等式;C4:在数上表示不等式的解集.【分析】先求出不等式的解集,在数上表示不等式的解集,求出整数解,即可得出答案.【解答】解:∵解不等式①得:x≤1,解不等式②,得x> 1,∴原不等式的解集是:1< x≤ 1,其解集在数上表示如所示:,∴不等式的整数解有1,0,1,2,∴原不等式的所有整数解的和是1+0+1+2=2.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.【考点】 22:算平方根.【分析】(1)根据前面的等式得出律解答即可;(2)利用数字之化:22+1=5,32+1=10,⋯而得出律求出即可.【解答】解:(1)①;②;③;④,所以第⑤个等式应为,故答案为:;(2)用含自然数 n(n>1)的式子表达以上各式所反映的规律为:.18.如图,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并说明理由.【考点】 JB:平行线的判定与性质.【分析】首先根据平行线的性质得到∠1=∠ 3,再根据等量关系得到∠3=∠ 2,再根据平行线的判定得到 DE∥FG,从而得到 DE与 FG的位置关系.【解答】解: DE 与 FG是平行的,理由如下:∵AC∥FG,∴∠ 1=∠3.又∵∠ 1=∠ 2,∴∠ 3=∠2.∴DE∥FG.五、(本大题共两小题,每小题10 分,共 20 分)19.根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为②的解为③的解为(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y.(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【考点】 97:二元一次方程组的解.【分析】( 1)观察方程组发现第一个方程的x 系数与第二个方程y 系数相等, y 系数与第二个方程 x 系数相等,分别求出解即可;(2)根据每个方程组的解,得到x 与 y 的关系;(3)根据得出的规律写出方程组,并写出解即可.【解答】解:(1)①的解为;②的解为;③的解为;(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y;(3),解为,故答案为:(1)①;②;③;(2)x=y20.操作与探究:(1)对数轴上的点 P 进行如下操作:先把点P 表示的数乘以,再把所得数对应的点向右平移1 个单位,得到点 P 的对应点 P′.点 A,B 在数轴上,对线段 AB 上的每个点进行上述操作后得到线段A′B,′其中点 A,B 的对应点分别为 A′,B′.如图 1,若点 A 表示的数是﹣ 3,则点 A′表示的数是0;若点B′表示的数是2,则点 B 表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E′与点 E 重合,则点 E 表示的数是.(2)如图 2,在平面直角坐标系xOy 中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数 a,将得到的点先向右平移 m 个单位,再向上平移 n 个单位( m>0,n> 0),得到正方形 A′B′C及′其D′内部的点,其中点 A,B 的对应点分别为 A′,B′.已知正方形 ABCD内部的一个点 F 经过上述操作后得到的对应点 F′与点 F 重合,求点 F 的坐标.【考点】 Q3:坐标与图形变化﹣平移;13:数轴; LE:正方形的性质; Q2:平移的性质.【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点 B 表示的数为 a,根据题意列出方程求解即可得到点 B 表示的数,设点 E 表示的数为 b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点 F的坐标为( x,y),根据平移规律列出方程组求解即可.【解答】解:(1)点 A′:﹣ 3×+1=﹣1+1=0,设点 B 表示的数为 a,则a+1=2,解得 a=3,设点 E 表示的数为 b,则b+1=b,解得 b= ;故答案为: 0,3,;(2)根据题意得,,解得,设点 F 的坐标为( x,y),∵对应点 F′与点 F 重合,∴x+ =x, y+2=y,解得 x=1,y=4,所以,点 F的坐标为( 1,4).六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生 6000 人,请你估计“活动时间不小于 4 天”的大约有多少人?【考点】 V8:频数(率)分布直方图; V5:用样本估计总体; VB:扇形统计图.【分析】(1)根据扇形统计图各部分所占百分比之和为1 解答;(2)活动时问为 5 天、 7 天的学生人数,用总人数乘以百分比即可;(3)用 360°乘以活动时间为 4 天的百分比即可;(4)用样本估计总体,即可计算.【解答】解:(1)a=1﹣( 10%+15%+30%+15%+5%) =25%,七年级学生总数: 20÷10%=200(人).(2)活动时问为 5 天的学生数: 200×25%=50(人);活动时问为 7 天的学生数: 200×5%=10(人);补全频数分布直方图如图所示.(3)活动时间为 4 天的扇形所对的圆心角的度数是360°× 30%=108°.(4)该市七年级学生活动时间不小于 4 天的人数是 6000×(30%+25%+15%+5%) =4500(人).22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?【考点】 CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据题意可以得到相应的二元一次方程,从而可以求得一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨;(2)根据题意可以列出相应的关系式,从而可以求得有几种方案.【解答】解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨,,解得.即一辆大型渣土运输车一次运输8 吨,一辆小型渣土运输车一次运输 5 吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x 辆、 y 辆,,解得或或,故有三种派车方案,第一种方案:大型运输车18 辆,小型运输车 2 辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接 PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】 JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠ CFE 互补,所以易证AB∥CD;(2)利用( 1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即 EG⊥PF,故结合已知条件GH⊥EG,易证 PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠ 3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠ HPQ的大小不变,是定值45°.【解答】解:(1)如图 1,∵∠ 1 与∠ 2 互补,∴∠ 1+∠2=180°.又∵∠ 1=∠ AEF,∠ 2=∠ CFE,∴∠ AEF+∠ CFE=180°,∴AB∥CD;(2)如图 2,由( 1)知, AB∥CD,∴∠ BEF+∠ EFD=180°.又∵∠ BEF与∠ EFD的角平分线交于点P,∴∠ FEP+∠ EFP= (∠ BEF+∠ EFD)=90°,∴∠ EPF=90°,即 EG⊥ PF.∵GH⊥EG,∴PF∥GH;(3)∠ HPQ的大小不发生变化,理由如下:如图 3,∵∠ 1=∠2,∴∠ 3=2∠2.又∵ GH⊥ EG,∴∠ 4=90°﹣∠ 3=90°﹣ 2∠ 2.∴∠ EPK=180°﹣∠ 4=90°+2∠2.∵PQ 平分∠ EPK,∴∠ QPK= ∠EPK=45°+∠2.∴∠ HPQ=∠QPK﹣∠ 2=45°,∴∠ HPQ的大小不发生变化,一直是45°.20。

2017-2018学年七年级下期末数学试卷(有答案)

2017-2018学年七年级下期末数学试卷(有答案)

2017-208学年七年级(下)期末数学试卷一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<15.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A. B.C.D.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.149.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤910.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(3分/题,共24分)11.(3分)4是的算术平方根.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有人.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m 的取值范围是.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是.18.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.20.(6分)解方程组.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=c=;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.08123.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△ABO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.参考答案与试题解析一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.【解答】解:1.414,0,是有理数,π是无理数,故选:A.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查【解答】解:A、对玉坎河水质情况的调查适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查无法进行全面调查,适合抽样调查,故B错误;C、某班50名同学体重情况适用于全面调查,故C正确;D、对于某类烟花爆竹燃放安全情况的调查,无法进行全面调查,故D错误;故选:C.3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°【解答】解:∵AB∥ED,∴∠BAC=∠ECF=65°,∴∠BAF=180°﹣∠BAC=180°﹣65°=115°;故选:A.4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<1【解答】解:根据题意,得:,解得:m<﹣3,故选:A.5.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根【解答】解:A、0是绝对值最小的有理数,故本选项错误;B、=,故本选项错误;C、正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.故本选项正确;D、因为(±3)2=9,所以±3是9的平方根,故本选项错误;故选:C.6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A.B.C.D.【解答】解:,①+②得:2x=12k,即x=6k,把①﹣②得:2y=﹣2k,即y=﹣k,把x=6k,y=﹣k代入2x+3y=6得:12k﹣3k=6,解得:k=,故选:B.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【解答】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+2+2=12.故选:C.9.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤9【解答】解:设购买的种子数量为x千克,根据题意列出不等式可得:4x>3×5+(x﹣3)×4×0.7,解得:x>9,故选:A.10.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当a=0时,原方程组为,解得,②把代入方程组的是方程组的解;③当a=﹣1时,原方程组为,解得,当时,代入方程组可求得a=2,把与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①②③.故选:D.二、填空题(3分/题,共24分)11.(3分)4是16的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为(﹣2,1).【解答】解:P到x轴的距离是1,到y轴的距离是2,得|y|=1,|x|=2.由点P在第二象限内,得P(﹣2,1),故答案为:(﹣2,1).13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.【解答】解:∵CD平分∠ACB,∠1=30°,∴∠ACB=2∠1=60°.∵DE∥AC,∴∠DEB=∠ACB=60°.故答案为:60°.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有1200人.【解答】解:300÷25%=1200(人).故答案为:1200.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是m≥﹣4.【解答】解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是﹣3.【解答】解:∵不等式(a+1)x>2的解集是x<﹣1,∴=﹣1,解得:a=﹣3,故答案为:﹣318.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.【解答】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.【解答】解:﹣(1﹣)+|﹣|=﹣1+﹣=﹣120.(6分)解方程组.【解答】解:,①×2+②得:7x=21,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.【解答】解:去括号得,7+x≥4x﹣2,移项得,x﹣4x≥﹣7﹣2,合并同类项得,﹣3x≥﹣9,系数化为1得,x≤3,在数轴上表示如下:.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=16,b=0.16c=50;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是144°(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.081【解答】解:(1)∵调查的总人数c=20÷0.4=50,∴a=50×0.32=16,b=8÷50=0.16,故答案为:16、0.16、50;(2)补全直方图如下:(3)分数在69.5﹣79.5之间的扇形圆心角的度数是360°×0.4=144°,故答案为:144°;(4)正确,由表可知,比79分高的人数占总人数的比例为0.32+0.08=0.4=,∴他的说法正确.23.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△A BO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.【解答】解:(1)∵B (﹣3,0),∴OB=3,∵A (﹣1,),∴点A到OB的距离为,∴△ABO的面积=×3×=;故答案为:;(2)A1(2,0)、B1(﹣1,﹣)、O1(3,﹣),△A1B1O1的面积=.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?【解答】解:(1)设独立商户店面的数量为x间,则棚台交易摊位的为(90﹣x)间,由题意得:4500×80%≤45x+31(90﹣x),即1920≤8x+1600,∴40≤x≤55,(2)设月租金收入为W元,则W=400x×75%+360(80﹣x)×90%=﹣24x+25920,∵40≤x≤55,∵﹣24<0∴W随x的增大而减小,当x=40时,Wmax=24960元,∴最高月租金为24960元.25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.【解答】解:(1)∵CB∥OA,∠C=∠OAB=110°,∴∠COA=180°﹣∠C=180°﹣110°=70°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×70°=35°;(2)不变,∵CB∥OA,∴∠OBC=∠B OA,∠OFC=∠FOA,∴∠OBC:∠OFC=∠AOB:∠FOA,又∵∠FOA=∠FOB+∠AOB=2∠AOB,∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.【解答】解:(1)设笔记本的单价为m元/本,钢笔的单价为n元/支,根据题意得:,解得:.答:笔记本的单价为16元/本,钢笔的单价为18元/个.(2)①当0<x≤10时,y1=18x;当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.。

《试卷3份集锦》重庆市2017-2018年七年级下学期数学期末综合测试试题

《试卷3份集锦》重庆市2017-2018年七年级下学期数学期末综合测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.关于x ,y 的方程组321x y m x y m -=⎧⎨+=+⎩的解满足x y >,则m 的取值范围是( ) A .2m <B .2m >C .1m <D .1m【答案】D【解析】先把m 当做已知数,求出x 、y 的值,再根据x >y 列出关于m 的不等式,求出m 的取值范围即可. 【详解】解方程组得314{34m x m y +=+=, ∵x >y , ∴31344m m ++>, 解得m 的取值范围为m >1,故选D .【点睛】此题考查的是二元一次方程组和不等式的性质,解出x ,y 关于m 的式子,再根据x >y 列出关于m 的不等式,即可求出m 的取值范围.2.下列式子正确的是( )AB13=- C=2 D﹣3 【答案】C【解析】因为一个数的平方是a,,,因为一个数的立方是a,表示这个数的立方根.【详解】A 选项,根据算术平方根的意义可得: ,故A 选项不正确,B 选项,根据算术平方根的意义,19-没有算术平方根,故不正确, C 选项,根据算术平方根的意义,=2,故C 选项正确,D 选项,根据立方根的意义,因为-3的立方是-27,故是错误的,故选C.【点睛】 本题主要考查算术平方根和立方根的意义,解决本题的关键是要熟练掌握算术平方根和立方根的意义.3.如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′=( )A .30°B .35°C .40°D .50°【答案】A 【解析】首先证明∠ACC′=∠AC′C ;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【详解】∵AC=AC′,∴∠ACC′=∠AC′C ;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°−2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故答案为:A.【点睛】本题主要考查旋转的性质以及平行线的性质,正确理解是解题的关键.4.如果点M 在y 轴的左侧,且在x 轴的上侧,到两坐标轴的距离都是1,则点M 的坐标为( ) A .(-1,2)B .(-1,-1)C .(-1,1)D .(1,1)【答案】C【解析】点M 在y 轴的左侧,且在x 轴的上侧,所以点M 在第二象限,再根据到两坐标轴的距离都是1即可写出坐标.【详解】因为点M 在y 轴的左侧,且在x 轴的上侧,所以点M 在第二象限,因为点M 到两坐标轴的距离都是1,所以点M 的横坐标为-1,纵坐标为1,所以点M 的坐标为(-1,1).故答案为C【点睛】此题主要考查直角坐标系的点,解题的关键是确定点所在的象限.5.已知点(1,4)A m m -+在x 轴上,则点A 的坐标是( )A .(0,5)B .(5,0)-C .(0,3)D .(3,0)- 【答案】B【解析】根据在x 轴上的点的性质求出m 的值,即可求出点A 的坐标.【详解】∵点(1,4)A m m -+在x 轴上∴40m +=解得4m =-即1415m -=--=-∴点(5,0)A -故答案为:B .【点睛】本题考查了点坐标的问题,掌握在x 轴上的点的性质是解题的关键.6.关于x 的不等式组0312(1)x m x x -<⎧⎨->+⎩无解,那么m 的取值范围为 A .34m ≤<B .34m <≤C .3m <D .3m ≤【答案】D【解析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【详解】解不等式x−m<0,得:x<m ,解不等式3x−1>2(x+1),得:x>3,∵不等式组无解,∴m ⩽3,故选:D【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键7.为了解本校学生课外使用网络情况,学校采用抽样问卷调查,下面的抽样方法最恰当的是( ) A .随机抽取七年级5位同学B .随机抽取七年级每班各5位同学C .随机抽取全校5位同学D .随机抽取全校每班各5位同学【答案】D【解析】根据抽样调查要反映总体情况选择最合适的选项即可.【详解】解:为了解本校学生课外使用网络情况,抽样方法最恰当的是:随机抽取全校每班各5位同学. 故选D.【点睛】本题主要考查抽样调查,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用.8.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+【答案】B【解析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.9.下列事件中,属于必然事件的是( )A .391人中至少有两人的生日在同一天B .抛掷一次硬币反面一定朝上C .任意买一张“周杰伦”的演唱会门票,座位号都会是2的倍数D .某种彩票的中奖率为0.1%,购买1000张彩票一定能中奖【答案】A【解析】必然事件就是一定发生的事件,根据定义即可作出判断.【详解】解:A 、是必然事件,故本选项正确,B 、不一定发生,是随机事件,故本选项错误;C 、不一定发生,是随机事件,故本选项错误;D 、不一定发生,是随机事件,故本选项错误,故选:A.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,用到的知识点为:确定事件包括必然事件和不可能事件,必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.如图,将△ABC 绕点C 按顺时针方向旋转90°得到△EDC .若点A 、D 、E 在同一条直线上,,则ADC 的大小为( )A .60°B .5°C .70°D .75°【答案】C 【解析】由旋转的性质可得AC=CE ,∠ACE=90°,∠ACB=∠DCE=25°,由等腰三角形的性质可得∠E=∠CAE=45°,由三角形的外角性质可求∠ADC 的大小.【详解】∵将△ABC 绕点C 按顺时针旋转90°得到△EDC ,∴AC=CE ,∠ACE=90°,∠ACB=∠DCE=25°∴∠E=∠CAE=45°∴∠ADC=∠E+∠DCE=70°故选C .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题题11.某班级为了奖励在期中考试中取得好成绩的同学,花了900元钱购买甲、乙两种奖品共50件其中甲种奖品每件15元,乙种奖品每件20元,则乙种奖品比甲种奖品多__________件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年重庆市涪陵区七年级(下)期末数学试卷
一、选择题(每小题3分,共36分)
1.9的平方根为()
A.3 B.﹣3 C.±3 D.
2.若是关于x、y的方程ax﹣y=3的解,则a=()
A.1 B.2 C.3 D.4
3.如果a<b,那么下列不等式中一定成立的是()
A.a2<ab B.ab<b2 C.a2<b2 D.a﹣2b<﹣b 4.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0) C.(4,0) D.(0,﹣4)
5.在下列实数:、、、、﹣1.010010001…中,无理数有
()
A.1个 B.2个 C.3个D.4个
6.下面四个图形中,∠1和∠2不是同位角的是()
7.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE 且∠D=∠B,其中,能推出AB∥DC的条件有()个
A.0 B.1
C.2 D.3
8.下列各组数中,不是二元一次方程3x+y=10的解的是()
A .⎩
⎨⎧=-=162
y x
B .⎩
⎨⎧-==34
y x
C .⎩
⎨⎧==42
y x
D .⎩
⎨⎧=-=131
y x
9.在关于x 、y
的方程组⎩
⎨⎧-=++=+m y x m y x 827
2中,未知数满足
x ≥0,y >0,那
么m 的取值范围在数轴上应表示为( )
10.开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A 种货物和396件B 种货物.已知甲种物流货车每辆最多能载30件A 种货物和24件B 种货物,乙种物流货车每辆最多能载20件A 种货物和30件B 种货物.设安排甲种物流货车x 辆,你认为下列符合题意的不等式组是( ) A .⎩
⎨⎧≥-+≥-+396)15(3024360
)15(2030x x x x
B .⎩
⎨⎧>-+>-+396)15(3024360
)15(2030x x x x
C .⎩
⎨⎧≤-+≤-+396)15(3024360)15(2030x x x x
D .⎩
⎨⎧<-+<-+396)15(3024360)15(2030x x x x
二、填空题(本大题共7小题,每小题3分,共21分) 11.已知方程5x ﹣y=7,用含x 的代数式表示y ,y= . 12.如图,∵∠1=∠2(已知),∴ ,( ).
13.已知a 、b 满足方程组,则3a+b 的值为 .
14.某中学要了解八年级学生的视力情况,在全校八年级240名学生中随机抽取了25名学生进行检测,在这个问题中,样本容量是 . 15.关于x
的不等式组⎩
⎨⎧<<+<<-532
1x a x a 的解集为
3<x <a +2,则a 的取
值范围是___________
16.已知如图,在频率分布直方图中,各小长方形的高之比AE ∶BF ∶CG ∶DH =2∶4∶3∶1,则第3组的频率为___________
三、解答题(本题共7小题,共62分,解答要求写出文字说明、证明过程或演算步骤) 17.(本题满分6分) 解方程:26
322x y x y +=⎧⎨
-=⎩

18.(本题满分8分)
如图,平面直角坐标系中,ABC △的顶点都在网格上,平移ABC △,使点C 与坐标原点O 重合.
(1)请写出图中点A 、B 、C 的坐标. (2)画出平移后的11OA B △. (3)求1OA A △的面积.
19.(本题满分9分)
如图,已知CD BF ∥,180B D ∠+∠=︒,求证:AB DE ∥.
O
F
A
E
C D
B
20.(本题满分9分) 若不等式组10(2)
321x a b x -<--⎧⎨
->⎩
的解集为24x -<<,求出a 、b 的值.
21.(9分)若是二元一次方程ax ﹣by=8和ax+2by=﹣4的公共
解,求2a ﹣b 的值.
22.(9分)解不等式组:.
23.(9分)如图,在正方形网格中,每个小正方形的边长为1个单位长度,格点三角形ABC (顶点是网格的交点的三角形)的顶点A ,C 坐标分别为(﹣4,5),(0,3).
(1)请在如图所示的网格内画出平面直角坐标系;
(2)把三角形ABC 先向右平移5个单位长度,再向下平移3个单位长度得到三角形A′B′C′,且点A ,B ,C 的对应点分别为A′,B′,
C′,请你在图中画出三角形A′B′C′,并写出点A′,B′,C′的坐标;
(3)求三角形ABC的面积.
24.(9分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”的三种评价.小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
(1)小明一共统计了多少个评价?
(2)请将条形统计图补充完整;
(3)计算扇形统计图中“差评”所在扇形的圆心角度数.
25.(9分)某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.。

相关文档
最新文档