九年级数学 圆的知识点复习课件
合集下载
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册
学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
冀教版九年级数学 28.1 圆的概念及性质(学习、上课课件)
感悟新知
又∵点 E 为 AB 的中点,∴ OE= 12AB.
知1-练
同理可得
OF=
1 2
BC,
OG=
1 2
CD,
OH=
1 2
DA.
∴ OE= OF= OG= OH.
∴ 点 E, F, G, H 在以点 O 为圆心, OE 的长
为半径的圆上 .
感悟新知
知1-练
2-1.如图, BD, CE是 △ ABC 的高, M是 BC 的 中 点, 试说明 点 B, C, D, E 在以点 M 为圆心的 同一个圆上 .
感悟新知
知1-练
解:连接 ME,MD.∵BD,CE 是△ ABC 的高, ∴∠BEC=∠BDC=90°. 又∵M 是 BC 的中点, ∴ME=12BC,MD=12BC. ∴ME=MB=MD=MC.∴点 B,C,D,E 在以点 M 为圆心的同一个圆上.
感悟新知
知识点 2 圆的性质
知2-讲
名称
内容
圆的中心 对称性
知2-讲
特别提醒 1. 不能说“圆的对称轴是直径”,而应该说
“圆的对称轴是直径所在的直线”.因为直径 是线段,而对称轴是直线. 2. 一个圆绕圆心旋转任意角度后都能与自身重 合,所以圆具有旋转不变性 .
感悟新知
知2-练
例3 如图 28-1-2,⊙ O 的半径为 1,分别以⊙ O 的直径
AB上的两个四等分点 O1, O2 为圆心,
④以点 P 为圆心,3 cm 长为半径的圆有无数个 .
A. 1 个
B. 2 个
C. 3 个 D. 4 个
感悟新知
解题秘方:紧扣圆的定义的“两要素”进行判断 . 知1-练
解:确定一个圆必须有两个条件,即圆心和半径, 只知一个条件或不知任何一个条件的圆都有无数 个,由此可知①②③正确;圆心和半径都确定, 这样的圆有且只有一个(唯一),由此可知④错误 .
人教版数学九年级上册第24课时 圆的基本性质(ppt版)-课件
【温馨提示】1.应用定理时一定注意“在同圆或等圆中” 同时要注意一条弦对着两条弧. 2.弦心距、半径、弦的一半构成的直角三角形,常用 于求未知线段或角,为构造这个直角三角形,常连接半 径或作弦心距,利用勾股定理求未知线段长.
提分必练
2.如图,在⊙O中,若点C是的中点,∠A=50°,则
∠BOC=( A )
提分必练
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°, 则∠AOC的度数为( D ) A.20° B.40° C.60° D.80°
提分必练
5.如图,⊙O中,弦AB、CD相交于点P,若∠A=
30°,∠APD=70°,则∠B等于( C ) A.30° B. 35° C. 40° D. 50°
第一部分 夯实基础 提分多
第六单元 圆
第24课时 圆的基本性质
基础点巧练妙记 基础点 1 圆的相关的概念及性质
1.圆的基本概念(参考图(1)) (1)定义:平面内到定点距离等于定长的所 有点组成的图形叫做圆,这个定点叫做圆 心,定长叫做半径,即O为圆心,OA为半 径.
(2)弧、劣弧、优弧:圆上任意两点间的部分叫做圆弧, 简称弧.其中,小于半圆的部分叫做劣弧,A F 为劣弧; 大于半圆的部分叫做①__优__弧__,A E F 为优弧. (3)圆心角:顶点在圆心,角的两边都与圆相交的角叫做 圆心角,∠AOF叫做A F 所对的圆心角. (4)圆周角:顶点在圆上,角的两边都与圆相交的角叫做 圆周角,∠AEF为A F 所对的圆周角.
2.在遇到与直径有关的问题时,一般要构造直径所对 的圆周角,这样可以由直径转化出直角,从而解决问 题.
4.圆内接四边形的性质
(1)圆内接四边形的对角⑪_互__补_,如图(2),∠A+∠BCD =⑫1_8_0_°_,∠B+∠D=⑬1_8_0_°___;
中考圆知识点总结复习(教学课件)
圆
一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、点在圆外 点 在圆外;
三、直线与圆的位置关系
1、直线与圆相离 无交点;
2、直线与圆相切 有一个交点;
3、直线与圆相交 有两个交点;
四、圆与圆的位置关系
外离(图1) 无交点 ;
外切(图2) 有一个交点 ;
相交(图3) 有两个交点 ;
内切(图4) 有一个交点 ;
内含(图5) 无交点 ;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理
切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵ 、 是的两条切线
∴ ; 平分
十一、圆幂定理
1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙ 中,∵弦 、 相交于点 ,
即:在⊙ 中,∵ 、 是割线
∴
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图: 垂直平分 。
即:∵⊙ 、⊙ 相交于 、 两点
∴ 垂直平分
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长: 中, ;
一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、点在圆外 点 在圆外;
三、直线与圆的位置关系
1、直线与圆相离 无交点;
2、直线与圆相切 有一个交点;
3、直线与圆相交 有两个交点;
四、圆与圆的位置关系
外离(图1) 无交点 ;
外切(图2) 有一个交点 ;
相交(图3) 有两个交点 ;
内切(图4) 有一个交点 ;
内含(图5) 无交点 ;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理
切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵ 、 是的两条切线
∴ ; 平分
十一、圆幂定理
1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙ 中,∵弦 、 相交于点 ,
即:在⊙ 中,∵ 、 是割线
∴
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图: 垂直平分 。
即:∵⊙ 、⊙ 相交于 、 两点
∴ 垂直平分
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长: 中, ;
九年级圆基础知识点培训课件
即:在⊙ O 中,∵直径 AB CD , ∴CE 2 AE BE
C
B
OE
A
D
( 3 )切割线定理 :从圆外一点引圆的切线和割线,切线长是这
点到割线与圆交点的两条线段长的比例中项。
P
即:在⊙ O 中,∵ PA 是切线, PB 是割线 ∴ PA2 PC PB
A
E D
O
C
B
( 4 ) 割线定理 :从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长
即:在⊙ O 中,∵ AB ∥CD ∴弧 AC 弧 BD
C
D
O
A
B
O
E
C
D
B
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对 的弧相等,弦心距相等。 此定理也称 1 推 3 定理,即上述四个结论 中,只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ;
dr
有一个交点;
3 、直线与圆相交
dr
有两个交点;
r d
d=r
rd
四、圆与圆的位置关系
外离(图 1 )
无交点
外切(图 2 ) 有一个交点
d R r; d R r;
相交(图 3 ) 有两个交点
内切(图 4 ) 有一个交点
内含(图 5 )
无交点
R r d R r; d R r; d R r;
d
R
r
图2
一、圆的概念
圆知识点复习
1 、 圆可以看作是到定点的距离等于定长的点的集合;
2 、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(中垂线)
C
B
OE
A
D
( 3 )切割线定理 :从圆外一点引圆的切线和割线,切线长是这
点到割线与圆交点的两条线段长的比例中项。
P
即:在⊙ O 中,∵ PA 是切线, PB 是割线 ∴ PA2 PC PB
A
E D
O
C
B
( 4 ) 割线定理 :从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长
即:在⊙ O 中,∵ AB ∥CD ∴弧 AC 弧 BD
C
D
O
A
B
O
E
C
D
B
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对 的弧相等,弦心距相等。 此定理也称 1 推 3 定理,即上述四个结论 中,只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ;
dr
有一个交点;
3 、直线与圆相交
dr
有两个交点;
r d
d=r
rd
四、圆与圆的位置关系
外离(图 1 )
无交点
外切(图 2 ) 有一个交点
d R r; d R r;
相交(图 3 ) 有两个交点
内切(图 4 ) 有一个交点
内含(图 5 )
无交点
R r d R r; d R r; d R r;
d
R
r
图2
一、圆的概念
圆知识点复习
1 、 圆可以看作是到定点的距离等于定长的点的集合;
2 、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(中垂线)
第24章 圆 初中数学人教版九年级上册小结与复习课件
扇形的半径为 l ,扇形的弧长为 2πr ;
(3) 圆锥的侧面积为 πlr ; (4) 圆锥的全面积为 πlr πr2 .
5. 圆内接正多边形的计算
(1)
正
n
边形的中心角为
360° n
.
(2) 正 n 边形的边长 a,半径 R,边心距 r 之间的关系为
R2 r2 (a)2. 2
(3) 边长为 a,边心距 r 的正 n 边形的面积为
半径决定大小;(2) 不在同一条直线上的
三个点确定一个圆.
·
9. 圆内接正多边形、外接圆:将一个圆 n (n≥3) 等分, 依次连接各等分点所得到的多边形叫做这个圆的内接 正多边形,这个圆是这个正多边形的外接圆.
10. 三角形的外接圆 外心:三角形的外接圆的圆心叫做这个三角形的外心. [注意] (1) 三角形的外心是三角形三条边的垂直平分 线的交点;(2) 一个三角形的外接圆是唯一的.
针对训练
2.如图 ,四边形 ABCD 为 ☉O 的内接正方形,点 P 为
劣弧 BC 上的任意一点 (不与 B,C 重合),则∠BPC 的
度数是 135° .
A
D
O
B
C
P
例2 如图,已知 A、B、C、D四点都在⊙O上,OB⊥AC,
BC = CD,在下列四个说法中:① AC 2CD ;② AC =
平分弦所对的 两条弧 .
[注意] ①条件中的“弦”可以是直径;②结论中的 “平分弧”指平分弦所对的劣弧、优弧.
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于 这条弦,并且平分这条弦所对的两条弧;
平分弧的直径垂直平分这条弧所对的弦.
2. 圆周角定理及其推论 (1) 圆周角定理:圆周角的度数等于它所对弧上的 圆心角度数的一半. (2) 推论1:在同圆或等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对弧相等. [注意] “同弧”指“在一个圆中的同一段弧”; “等弧”指“在同圆或等圆中相等的弧”;“同弧 或等弧”不能改为“同弦或等弦”. (3) 推论2:90° 的圆周角所对的弦是直径. (4) 推论3:圆的内接四边形的对角互补.
(3) 圆锥的侧面积为 πlr ; (4) 圆锥的全面积为 πlr πr2 .
5. 圆内接正多边形的计算
(1)
正
n
边形的中心角为
360° n
.
(2) 正 n 边形的边长 a,半径 R,边心距 r 之间的关系为
R2 r2 (a)2. 2
(3) 边长为 a,边心距 r 的正 n 边形的面积为
半径决定大小;(2) 不在同一条直线上的
三个点确定一个圆.
·
9. 圆内接正多边形、外接圆:将一个圆 n (n≥3) 等分, 依次连接各等分点所得到的多边形叫做这个圆的内接 正多边形,这个圆是这个正多边形的外接圆.
10. 三角形的外接圆 外心:三角形的外接圆的圆心叫做这个三角形的外心. [注意] (1) 三角形的外心是三角形三条边的垂直平分 线的交点;(2) 一个三角形的外接圆是唯一的.
针对训练
2.如图 ,四边形 ABCD 为 ☉O 的内接正方形,点 P 为
劣弧 BC 上的任意一点 (不与 B,C 重合),则∠BPC 的
度数是 135° .
A
D
O
B
C
P
例2 如图,已知 A、B、C、D四点都在⊙O上,OB⊥AC,
BC = CD,在下列四个说法中:① AC 2CD ;② AC =
平分弦所对的 两条弧 .
[注意] ①条件中的“弦”可以是直径;②结论中的 “平分弧”指平分弦所对的劣弧、优弧.
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于 这条弦,并且平分这条弦所对的两条弧;
平分弧的直径垂直平分这条弧所对的弦.
2. 圆周角定理及其推论 (1) 圆周角定理:圆周角的度数等于它所对弧上的 圆心角度数的一半. (2) 推论1:在同圆或等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对弧相等. [注意] “同弧”指“在一个圆中的同一段弧”; “等弧”指“在同圆或等圆中相等的弧”;“同弧 或等弧”不能改为“同弦或等弦”. (3) 推论2:90° 的圆周角所对的弦是直径. (4) 推论3:圆的内接四边形的对角互补.
人教版九年级上册数学课件:2圆的基本性质复习课
O
DB看图辨定理三CDO
在同圆(或等圆)中,同弧或等弧
所对的圆周角相等,都等于该弧所
A
B
对的圆心角的一半;相等的圆周角
所对的弧相等。
补充圆心角定理的推论:
同圆或等圆中,两个圆心角、两条 弦、两条弧中有一组量相等,它们所对 应的其余各组量也相等.
看图辨定理四
C
D
推论:半圆(或直径)所
对的圆周角是直角;90° 的圆周角所对弦(弧)是直
O
BD
C
把一个圆绕圆心旋转多少度,可以和它本 身完全重合?
圆的性质2: 圆具有旋转不变性
看图辨定理二
B′
在同圆或等圆中,相等的 圆心角所对的弧相等,所 对的弦也相等。
A′ B
·
O
A
圆心角定理推论:
A
C
同圆或等圆中,两个圆__心___角、两条
弦___、两条_弧__中有一组量相等,它们所对
应的其余各组量也相等.
C
O
3、在⊙O中,∠CBD=30° ,
∠BDC=20°,∠A=_5_0__°_
AA
B
注意利用弧把角进行转化
D
B
D
C
例题精析,巩固深化
如图,以平行四边形ABCD的顶点 A为圆心,AB为半径作⊙A,⊙A交 AD、BC于E、F,延长BA交⊙A于 G,求证:G⌒E=E⌒F.
周密思考思维提升
已知, ⊙O的弦AB长等于圆的半径,
1、高速公路的隧道很多,如图是一个 隧道的横截面,若它的形状是以O为 圆心的圆的一部分,路面AB=8米, 净高CD=8米,则半径OA=___5_米___
2、如图,直线AC交圆O于点B、C, ∠A=30°,OA=6,OC=5,则弦
北师大版九年级下册数学《确定圆的条件》圆培优说课教学复习课件
(1)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
注 意
1、某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?
探究新知
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.
三角形外接圆的圆心叫做三角形的外心,
它是三角形三条边垂直平分线的交点..
画一画
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
●O
●O
●O
总结
锐角三角形的外心位于三角形内;直角三角形的外心位于直角三角形斜边的中点;钝角三角形的外心位于三角形外.
B
4.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.
70°
课堂练习
5.如图,△ABC的高AD、BE相交于点H,延长AD交△ABC的外接圆于点G,连接BG.求证:HD=GD.
证明:∵∠C=∠G,△ABC的高AD、BE,
∴∠C+∠DAC=90°,∠AHE+∠DAC=90°,
3.5 确定圆的条件
课件
复习旧知
线段垂直平分线上的点有怎样的性质?
线段垂直平分线上的点和线段的两个端点的距离相等
2.怎样用尺规作一条线段的垂直平分线?
复习旧知
A
B
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
注 意
1、某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?
探究新知
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.
三角形外接圆的圆心叫做三角形的外心,
它是三角形三条边垂直平分线的交点..
画一画
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
●O
●O
●O
总结
锐角三角形的外心位于三角形内;直角三角形的外心位于直角三角形斜边的中点;钝角三角形的外心位于三角形外.
B
4.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.
70°
课堂练习
5.如图,△ABC的高AD、BE相交于点H,延长AD交△ABC的外接圆于点G,连接BG.求证:HD=GD.
证明:∵∠C=∠G,△ABC的高AD、BE,
∴∠C+∠DAC=90°,∠AHE+∠DAC=90°,
3.5 确定圆的条件
课件
复习旧知
线段垂直平分线上的点有怎样的性质?
线段垂直平分线上的点和线段的两个端点的距离相等
2.怎样用尺规作一条线段的垂直平分线?
复习旧知
A
B
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
解:每个小圆的面积为 π12a·n12=π4na22,而大圆的面积为 π12a2=14πa2,即每个小 圆的面积是大圆的面积的n12.
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质
圆
第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质
圆
第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.
初中数学人教九年级上册第二十四章 圆 圆周角定理PPT
(2)∵BA=BC,∴∠A=∠C. 由圆周角定理得∠A=∠E, ∴∠C=∠E,∴DC=DE.
27
28
知识点三:圆周角定理的推论
合作探究
先独立完成导学案互动探究1、3, 再同桌相互交流,最后小组交流;
1.如图,在⊙O中,弦AB=3cm,点C在 ⊙O上,∠ACB=30°.求⊙O直径. 2.如图,AB是⊙O的直径,BD是⊙O的弦 ,延长BD到点C,使AC=AB,BD与CD的 大小有什么关系?为什么?
B A
O A
O B
知识点三:圆周角定理的推论
学以致用
1、如图,AB是半圆的直径,点D是AC的中
点,∠ABC=50°,则∠DAB等于( ) C
A.55°B.60°C.65°D.70°
B
A
O
2.如图,⊙O的半径为1,AB是⊙O的一条
弦,且AB= 3,则弦AB所对的圆周角的度 A
数为( )D A.30º B.60º C.30º或150 º D.60º或120º
如果AB=CD,那么∠E和∠F是什么关系? O1 D
反过来呢?
C
A
F
结合⑴、⑵你能得到什么结论?
O2
B
21
知识点三:圆周角定理的推论
归纳总结
圆周角定理推理1
同弧或等弧所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等.
∵ AB=CD ∴∠E=∠F
在⊙O中∵∠E=∠F ∴AB=CD
E
A
F
O D
对的弧也相等;②两条弦相等,弦所对的弧也相等;③弦
心距弦心距所对的弦相等;④两个圆周角相等,圆周角所
对的弧相等;⑤弧相等弧所对的弦相等;
C
⑥弧相等弧所对的圆周角也相等。
最新人教版初中数学九年级上册《24.1.1 圆》精品教学课件
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知
(
(
( (
( ( (( ((
素养考点 1 圆的有关概念的识别 例1 如图. (1)请写出以点A为端点的优弧及劣弧;
劣弧:AF, AD, AC, AE.
D
B
优弧:AFE,AFC, ADE, ADC.
F
O
E
(2)请写出以点A为端点的弦及直径;
分析:作辅助线构造△OCE和△ODF,然后证明两 三角形全等,最后根据全等的性质得出结论. 解:连接OC,OD,∵OC=OD,∴∠C=∠D,
∵CE=DF. ∴△OCE≌△ODF(SAS), ∴OE=OF, ∴△OEF是等腰三角形.
探究新知
知识点 2 圆的有关概念
弦:
A
连接圆上任意两点的线段(如图中的AC)叫做弦.
探究新知
素养考点 2 圆的有关概念的应用
例2 如图,MN是半圆O的直径,正方形ABCD的顶点A、D
在半圆上,顶点B、C在直径MN上.(1)求证:OB=OC.
(2)设⊙O的半径为10,则正方形ABCD的边长为 4 5 .
A
D
Ⅱ
2x 10 ?
M
xB O
C
N
图4
连OA,OD即可,
同圆的半径相等.
解:(1)连接OA,OD, 证明Rt∆ABO≌Rt∆DCO.
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知
(
(
( (
( ( (( ((
素养考点 1 圆的有关概念的识别 例1 如图. (1)请写出以点A为端点的优弧及劣弧;
劣弧:AF, AD, AC, AE.
D
B
优弧:AFE,AFC, ADE, ADC.
F
O
E
(2)请写出以点A为端点的弦及直径;
分析:作辅助线构造△OCE和△ODF,然后证明两 三角形全等,最后根据全等的性质得出结论. 解:连接OC,OD,∵OC=OD,∴∠C=∠D,
∵CE=DF. ∴△OCE≌△ODF(SAS), ∴OE=OF, ∴△OEF是等腰三角形.
探究新知
知识点 2 圆的有关概念
弦:
A
连接圆上任意两点的线段(如图中的AC)叫做弦.
探究新知
素养考点 2 圆的有关概念的应用
例2 如图,MN是半圆O的直径,正方形ABCD的顶点A、D
在半圆上,顶点B、C在直径MN上.(1)求证:OB=OC.
(2)设⊙O的半径为10,则正方形ABCD的边长为 4 5 .
A
D
Ⅱ
2x 10 ?
M
xB O
C
N
图4
连OA,OD即可,
同圆的半径相等.
解:(1)连接OA,OD, 证明Rt∆ABO≌Rt∆DCO.
例 矩形ABCD的对角线AC,BD相交于点O. 求证:A,B,C,D四个点在以点O为圆心的同一个圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
最新人教版初中九年级上册数学【圆全章复习】教学课件
请补全解答过程.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
九年级数学圆的复习课件
第二页,共54页。
与圆有关的概念
弦 连接圆上任意两点的线段(如图AC)叫
做弦,
经过圆心的弦(如图中的AB)叫做直径.
08.08.2023
B
O·
C
A
第三页,共54页。
弧
圆端上点任的意弧两记点作间A的B⌒部,分读作叫“做圆圆弧弧A,B简”或称“弧弧.A以BA”.、B为
圆的任意一条直径的两个端点把圆分成两条弧,每一
想一想
08.08.2023
一个三角形的外接圆有几个?
一个圆的内接三角形有几个?
第二十三页,共54页。
做一做
分别画一个锐角三角形、直角三角形和钝角三角形, 再画出它们的外接圆,观察并叙述各三角形与它的外心的 位置关系.
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 08.08钝.20角23 三角形的外心位于三角形外.
2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间 的关系为( );
A.AB=2CD
B.AB<2CD C.AB>2CD D.不能确定
3、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,则∠BOC等 于 ( );
A.150° B.130° C.120° D.60°
4、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC=
条弧都叫做半圆.
08.08.2023
B
O·
C A
第四页,共54页。
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的AC⌒) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的ACB⌒)
与圆有关的概念
弦 连接圆上任意两点的线段(如图AC)叫
做弦,
经过圆心的弦(如图中的AB)叫做直径.
08.08.2023
B
O·
C
A
第三页,共54页。
弧
圆端上点任的意弧两记点作间A的B⌒部,分读作叫“做圆圆弧弧A,B简”或称“弧弧.A以BA”.、B为
圆的任意一条直径的两个端点把圆分成两条弧,每一
想一想
08.08.2023
一个三角形的外接圆有几个?
一个圆的内接三角形有几个?
第二十三页,共54页。
做一做
分别画一个锐角三角形、直角三角形和钝角三角形, 再画出它们的外接圆,观察并叙述各三角形与它的外心的 位置关系.
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 08.08钝.20角23 三角形的外心位于三角形外.
2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间 的关系为( );
A.AB=2CD
B.AB<2CD C.AB>2CD D.不能确定
3、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,则∠BOC等 于 ( );
A.150° B.130° C.120° D.60°
4、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC=
条弧都叫做半圆.
08.08.2023
B
O·
C A
第四页,共54页。
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的AC⌒) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的ACB⌒)
人教版九年级上册数学《圆周角》圆说课复习(第2课时圆内接四边形的性质)
于 AC 的对称点 E 在边 BC 上,连接 AE.若∠ABC=64°,则∠BAE 的度数为
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
_____5_2_°___. 手抄报:课件/shouchaobao/
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
第二十四章 圆
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
=8,∴AC=12AB=4,∴⊙C 课件
课件
的半径为
4.∵CE⊥OA,∴OE=12OA=2.在
Rt△CEO
中,CE= OC2-OE2= 42-22=2 3.又∵点 C 在第二象限,∴点 C 的坐标为(-2 3,
2).
第二十四章 圆
上一页 返回导航 下一页
数学·九年级(上)·配人教
思维训练
14.【核心素养题】如图,⊙O的内接四边形ABCD两组对边的延长线分别交于
点E、F.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(1)当∠E=∠F时,则∠ADC=_______9_0_°_;
圆的知识点复习 课件(湘教版九年级全)
B
B A
C
O A
D
C O D
E
O
B A
弧长、扇形面积公式
(1)弧长公式: n R l 180
O S
A
l
(2)扇形面积公式:
n R 2 1 S lR 360 2
B
侧面展开图
(1)圆柱侧面展开图
S表 S侧 2S底= 2 rh 2 r
2
A D D1 母线长 底面圆周长 B C C1
A
C
O A
C
A
弦切角定理
弦切角定理:弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么 这两个弦切角也相等。 即:∵MN是切线,AB是弦 C ∴∠BAM=∠BCA
O B N A M
圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互 补,外角等于它的内对角。 即:在⊙O中, ∵四边形ABCD是内接四边形 ∴∠C+∠BAD=180° B+∠D=180° ∠DAE=∠C
E
C O A B D
C B
D
圆心角定理
• 圆心角定理:同圆或等圆中,相等的圆心角所对的 弦相等,所对的弧相等,弦心距相等 此定理也称1推3定理,即上述四个结论中,只 要知道其中的1个相等,则可以推出其它的3个结论 也即:①∠AOB=∠DOE ②AB=DE OC=OF ④ BA ED ① ②③④或② ①③④……
A
③
E F O D C
B
圆周角定理
C
圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半 即:∵∠AOB和∠ACB是 AB 所对的圆心角和圆周角 O B ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D 对的弧是等弧 B 即:在⊙O中,∵∠C、∠D都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆, 所对的弦是直径 B 即:在⊙O中,∵AB是直径 或∵∠C=90° O ∴∠C=90° ∴AB是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三 C 角形 即:在△ABC中,∵OC=OA=OB B A ∴△ABC是直角三角形或∠C=90° O 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的 中线等于斜边的一半的逆定理。
B A
C
O A
D
C O D
E
O
B A
弧长、扇形面积公式
(1)弧长公式: n R l 180
O S
A
l
(2)扇形面积公式:
n R 2 1 S lR 360 2
B
侧面展开图
(1)圆柱侧面展开图
S表 S侧 2S底= 2 rh 2 r
2
A D D1 母线长 底面圆周长 B C C1
A
C
O A
C
A
弦切角定理
弦切角定理:弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么 这两个弦切角也相等。 即:∵MN是切线,AB是弦 C ∴∠BAM=∠BCA
O B N A M
圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互 补,外角等于它的内对角。 即:在⊙O中, ∵四边形ABCD是内接四边形 ∴∠C+∠BAD=180° B+∠D=180° ∠DAE=∠C
E
C O A B D
C B
D
圆心角定理
• 圆心角定理:同圆或等圆中,相等的圆心角所对的 弦相等,所对的弧相等,弦心距相等 此定理也称1推3定理,即上述四个结论中,只 要知道其中的1个相等,则可以推出其它的3个结论 也即:①∠AOB=∠DOE ②AB=DE OC=OF ④ BA ED ① ②③④或② ①③④……
A
③
E F O D C
B
圆周角定理
C
圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半 即:∵∠AOB和∠ACB是 AB 所对的圆心角和圆周角 O B ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D 对的弧是等弧 B 即:在⊙O中,∵∠C、∠D都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆, 所对的弦是直径 B 即:在⊙O中,∵AB是直径 或∵∠C=90° O ∴∠C=90° ∴AB是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三 C 角形 即:在△ABC中,∵OC=OA=OB B A ∴△ABC是直角三角形或∠C=90° O 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的 中线等于斜边的一半的逆定理。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
A
N
切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切
线长相等,这点和圆心的连线平分两条切线
的夹角。
即:∵PA、PB是的两条切线
∴PA=PB
PO平分∠BPA
B
O P
A
1.如图1,△ABC中,AB=AC, O圆是与BACB的相中切点于,点以D,O为圆心的(距离法) 求证:AC是圆的切线
2.如图,AB是圆O的直径,圆O过AC 的中点D,DE⊥BC于E. 证明:DE是圆O的切线. (判定定理)
A
即:在⊙O中,∵AB∥CD
∴ AC BD
O
C
D
O
E
C
D
B
A
B
圆心角定理
• 圆心角定理:同圆或等圆中,相等的圆心角所对的 弦相等,所对的弧相等,弦心距相等
此定理也称1推3定理,即上述四个结论中,只 要知道其中的1个相等,则可以推出其它的3个结论
也即:①∠AOB=∠DOE ②AB=DE OC=OF ④ BAED
《圆》知识点复习
点与圆的位置关系
点在圆内 点在圆上 点在圆外
d<r 点C在圆内 d=r 点B在圆上 d>r 点A在圆外
A
d
r B
O d
C
直线与圆的位置关系
• 直线与圆相离 d>r 无交点 • 直线与圆相切 d=r 有一个交点 • 直线与圆相交 d<r 有两个交点
rd
d=r
rd
圆与圆的位置关系
• 外离(图1) • 外切(图2) • 相交(图3) • 内切(图4) • 内含(图5)
D
E
∴ PA2PCPB
P C
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的
O B
交点的两条线段长的积相等(如上图)
即:在⊙O中,∵PB、PE是割线
∴ P CP B P D P E
两圆公共弦定理
圆公共弦定理:连心线垂直平分公共弦 即:∵⊙O1、⊙O2相交于A、B两点 ∴O1O2垂直平分AB
无交点
d>R+r
有一个交点 d=R+r
有两个交点 R-r<d<R+r
有一个交点 d=R-r
无交点
0≤ d<R-r
d
R
r
图1
d
R
r
图2
d
R
r
图3
d Rr
图4
dr R
图5
垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦 所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条 弧;
A
O1
O2
B
圆的公切线
两圆公切线长的计算公式: (1)公切线长:在Rt△O1O2C中,
AB2C O 12O 1O 22C O 22
(2)外公切线长:CO2是半径之差;
A
内公切线长:CO2是半径之和
C
B
O1
O2
圆内接正多边形的计算
(1)正三角形
C
在⊙O中 △ABC是正三角形,有关计算在 O
Rt△BOD中进行,OD:BD:OB= 1 : 3 : 2
3+ 2 4= =9 05
3= 5
DO BC 又 DE BC
DE DO
(判定定理)
C
D
E 1 5 4
A
. O
3
2B
相交弦定理
圆内相交弦定理及其推论:
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等
D
即:在⊙O中,∵弦AB、CD相交于点P
B
O
∴PA·PB=PC·PA
即:∵MN⊥OA且MN过半径OA外端
∴MN是⊙O的切线
(2)性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点
推论2:过切点垂直于切线的直线必过圆心
以上三个定理及推论也称二推一定理:
即:过圆心 过切点 垂直切线中知道其中两个条件推出最后
一个条件
∵MN是切线
O
∴M对的圆周角
B
O
∴∠C=∠D
A
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆, C
所对的弦是直径
即:在⊙O中,∵AB是直径 或∵∠C=90°
∴∠C=90°
∴AB是直径
B
A
O
推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三
角形
C
即:在△ABC中,∵OC=OA=OB
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平 分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知 道其中2个即可推出其它3个结论,即:
①AB是直径 ②AB⊥CD ③CE=DE ④ BC BD⑤ AC AD
①② ③④⑤或①③ ②④⑤或……
推论2:圆的两条平行弦所夹的弧相等。
B
A D
(2)正四边形
同理,四边形的有关计算在Rt△OAE中进行,B
圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互
补,外角等于它的内对角。
即:在⊙O中,
∵四边形ABCD是内接四边形
∴∠C+∠BAD=180° B+∠D=180°
∠DAE=∠C
C
D
B
A
E
切线的性质与判定定理
(1)判定定理:过半径外端且垂直于半径的直线是切线
两个条件:过半径外端且垂直半径,二者缺一不可
① ②③④或② ①③④……
A
③
E F
O D
C B
圆周角定理
C
圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半
即:∵∠AOB和∠ACB是 A B 所对的圆心角和圆周角 ∴∠AOB=2∠ACB
B
O
A
圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D C
对的弧是等弧
P
C
A
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两
条线段的比例中项。
C
即:在⊙O中,∵直径AB⊥CD
B
∴ C E 2D E 2E AE B
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线
OE A D
与圆交点的两条线段长的比例中项
A
即:在⊙O中,∵PA是切线,PB是割线
∴△ABC是直角三角形或∠C=90°
B
A
O
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的
中线等于斜边的一半的逆定理。
弦切角定理
弦切角定理:弦切角等于所夹弧所对的圆周角
推论:如果两个弦切角所夹的弧相等,那么
这两个弦切角也相等。
即:∵MN是切线,AB是弦
∴∠BAM=∠BCA
C
O
B
N
A
M
A
A
D
E
B
• (图1) (图2)
·O
C
C
D
E 1 5 4
. O
3
2B
2.如图,AB是圆O的直径,圆O过AC 的中点D,DE⊥BC于E. 证明:DE是圆O的切线.
DB AC, 且 D是 AC的 中 点 , 可 证 得 1= A= C= 4 2= 3 1 + 2 = 90 1 + 5= 90