10月13日高炉炼铁基本知识4
高炉炼铁原理课件
高炉内的传热过程
总结词
高炉内的传热过程是炼铁过程中必不可少的环节,它涉及到多种传热方式,如传导、对流和辐射。
详细描述
高炉内的传热过程主要通过焦炭、矿石和铁水等固体物质之间的热传导,以及气体和铁水之间的对流 换热来完成。此外,高炉内的高温环境还使得热量以辐射方式传递。这些传热方式共同作用,使得热 量能够有效地传递到铁水中,完成炼铁过程。
成分监测与控制
生铁的成分直接影响其质量和用途。为确保生铁质量达标,应定期对生铁成分进行监测, 并根据监测结果调整原料配比、焦炭质量和鼓风量等参数。
压力监测与控制
高炉内的压力对气体流量和反应过程有重要影响。压力的波动可能导致炉况不稳和生产事 故。因此,应定期监测高炉内压力,并对其进行控制,确保压力稳定。
,降低能耗。
05 渣铁分离与排放
渣铁的形成与性质
渣铁的形成
在高炉炼铁过程中,矿石、焦炭和熔剂经过一系列化学反应后形成渣铁。
渣铁的性质
渣铁具有不同的物理和化学性质,如密度、黏度、成分等,这些性质对渣铁分 离和排放过程有重要影响。
渣铁的分离过程
自然分离
在高炉中,渣铁由于密度差异自 然分层,上层为铁水,下层为炉
燃料的燃烧过程
燃料燃烧反应
燃烧产物的成分
燃料在高温下与空气中的氧气发生化 学反应,释放出热量,加热高炉内的 气体和原料。
燃烧产物主要是高炉内的气体和炉渣 ,其成分和性质对高炉炼铁的产品质 量和效率有着重要影响。
燃烧效率
燃料燃烧效率的高低直接影响到高炉 炼铁的效率,因此需要控制好燃烧过 程,提高燃烧效率。
高炉炼铁原理课件
• 高炉炼铁概述 • 原料准备与燃料 • 还原过程与化学反应 • 高炉内气体流动与传热 • 渣铁分离与排放 • 高炉操作与控制
高炉炼铁操作教学-高炉四大操作制度及高炉日常操作
高炉炼铁操作教学-高炉四大操作制度及高炉日常操作全文共四篇示例,供读者参考第一篇示例:高炉炼铁是一项重要的冶金工艺,它是将铁矿石和焦炭等原料放入高炉中,通过高温还原反应,将铁矿石中的铁氧化物还原为铁的过程。
高炉的操作技术和管理制度对炼铁过程的质量和效率具有重要影响。
在高炉炼铁操作教学中,高炉四大操作制度和高炉日常操作是至关重要的内容。
高炉四大操作制度包括风力控制制度、炉温控制制度、炉压控制制度和铁水控制制度。
这些操作制度是高炉操作的基础,对于保证炼铁过程的稳定性和安全性具有至关重要的作用。
在实际操作中,操作人员需要严格遵守这些制度,确保高炉生产的顺利进行。
首先是风力控制制度。
高炉炼铁是一个高温高压的反应过程,风力的控制对于反应的进行至关重要。
在高炉操作中,操作人员需要根据炉料的情况和生产需要,合理调节风量和风温,确保炉内气流的正常循环,避免炉料的堵塞或过热现象的发生。
其次是炉温控制制度。
高炉的炉温是炼铁过程中的关键参数之一,过高或过低的炉温都会影响炼铁过程的正常进行。
在高炉操作中,操作人员需要通过监测炉温变化,及时调节焦比和风量,确保炉温的稳定控制在适宜的范围内。
最后是铁水控制制度。
铁水是高炉炼铁的产物,其质量直接影响铁水的成品率和品质。
在高炉操作中,操作人员需要通过监测铁水的流量和温度等参数,及时调节出铁口,确保铁水的质量达到生产要求。
除了以上四大操作制度,高炉日常操作也是高炉炼铁教学中的重要内容。
高炉日常操作包括炉料的装料和排渣、煤气的调节和排放、铁水的流量和温度监测等内容。
在高炉操作中,操作人员需要严格按照操作规程和标准操作流程进行操作,确保炉料的正常装料和排渣,煤气的有效利用和排放,铁水的顺利出铁,保证高炉生产的正常进行。
高炉四大操作制度和高炉日常操作是高炉炼铁教学中至关重要的内容。
只有深入理解这些操作制度和规程,严格按照操作要求进行操作,才能保证高炉生产的安全稳定和高效进行。
希望通过本篇文章的介绍,能够帮助广大炼铁工作者更好地掌握高炉操作技术,提高炼铁生产的质量和效率。
高炉炼铁简易介绍
高炉炼铁简易介绍一、高炉炼铁原理炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。
炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。
生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。
高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。
这种方法是由古代竖炉炼铁发展、改进而成的。
尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。
炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。
原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。
同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
二、高炉冶炼主要工艺设备简介高护炼铁设备组成有:①高炉本体;②供料设备;③送风设备;④喷吹设备;⑤煤气处理设备;⑥渣铁处理设备。
通常,辅助系统的建设投资是高炉本体的4~5倍。
生产中,各个系统互相配合、互相制约,形成一个连续的、大规模的高温生产过程。
高炉开炉之后,整个系统必须日以继夜地连续生产,除了计划检修和特殊事故暂时休风外,一般要到一代寿命终了时才停炉。
高炉炼铁的原理
高炉炼铁的原理
简介
高炉炼铁是一种重要的冶炼工艺,通过高炉将铁矿石和焦炭等原料还原为铁。
高炉通常是一个巨大的金属容器,内部通过高温反应实现铁的冶炼。
原料
铁矿石是高炉炼铁的主要原料之一,常见的铁矿石包括赤铁矿、磷铁矿等。
此外,焦炭、石灰石等原料也是高炉炼铁中必不可少的。
原理
1.燃烧过程: 高炉中焦炭等燃料在燃烧时产生高温,燃气通过矿石料床
加热矿石,并在还原区域发生还原反应。
2.还原反应: 在高炉内,煤气经过还原区域与铁矿石中的氧化铁发生反
应,将氧还原为气态二氧化碳,释放出铁。
3.融化过程: 上述反应产生的铁在高温下融化,并通过热对流从上向下
移动到高炉的熔融区域。
4.炉渣形成: 高炉中产生的碳酸化合物和石灰石在高温下融化形成炉渣,
在铁水表面形成保护膜,防止铁的再氧化。
冶炼过程
高炉炼铁过程通常会经历炉料下料、补料、冶炼、出铁等阶段。
整个过程需要
严格调控高炉的温度、气氛、矿石的质量等参数,以确保炼铁效果。
结论
高炉炼铁是一项复杂的冶炼过程,通过高炉的高温还原反应,将铁矿石转化为铁。
高炉炼铁工艺的改进和提高效率对于保障铁铸造业的发展至关重要,进一步
提高炼铁效率和降低成本是未来的发展方向。
高炉炼铁知识简介
高炉炼铁知识简介
一、炼铁的原理(怎样从铁矿石中炼出铁)用还原剂将铁矿石中的铁氧化物还原成金属铁。
铁氧化物(Fe2O3、Fe3O4、FeO)+还原剂(C、CO、H2)铁(Fe)
二、炼铁的方法
(1)直接还原法(非高炉炼铁法)
(2)高炉炼铁法(主要方法)
三、高炉炼铁的原料及其作用
(1)铁矿石:(烧结矿、球团矿)提供铁元素。
冶炼一吨铁大约需要1.5—2吨矿石。
(2)焦碳:
冶炼一吨铁大约需要500Kg焦炭。
提供热量;提供还原剂;作料柱的骨架。
(3)熔剂:(石灰石、白云石、萤石)
使炉渣熔化为液体;去除有害元素硫(S)。
(4)空气:为焦碳燃烧提供氧。
四、高炉炼铁设备
(1)高炉内型
(2)高炉结构五、高炉炼铁过程
炉喉
1、上料: 高炉储料槽 ─→装料 ─→ 料车 ─→ 炉顶─→布料器布料 ─→炉内炉缸(熔化、还原) 铁水炉渣
2、鼓(送)风空气 风机 热风炉 热风围管 风口 炉缸燃烧区(热量还原剂CO ) 煤气
3、炉内冶炼过程及高炉操作
运 动 :铁矿石下降(炉喉) (炉缸)炉渣、铁水 高炉煤气(炉喉) (炉缸风口) 煤 气上升 4、渣铁处理渣铁处理的任务
渣铁处理的设备渣铁处理处理的设施渣铁处理的过程
六、高炉炼铁的几个名词高炉有效容积:高炉利用系数:焦比:休风: 加 热
还 原
加 热
还 原。
高炉炼铁设计与设备知识点
高炉炼铁设计与设备知识点高炉是一种用于炼铁的设备,它起着至关重要的作用。
在高炉炼铁的过程中,设计和设备的选择十分关键。
本文将介绍一些与高炉炼铁设计和设备相关的知识点。
一、高炉的结构高炉通常由炉身、崩塌室、渣口、风口和煤气出口等部分组成。
炉身是高炉的主体部分,由内、外砌砖层构成。
炉身内部分为上、中、下三段,分别进行还原、融化和收集铁水的过程。
二、高炉的炉料高炉的炉料是指进入高炉的原料,通常包括铁矿石、焦炭和石灰石等。
其中,铁矿石是炉料的主要成分,通常由赤铁矿、磁铁矿和针铁矿组成。
焦炭是炉料的还原剂,而石灰石用于脱硫。
三、高炉的还原还原是高炉炼铁的关键步骤之一。
在高炉内,焦炭的碳与铁矿石中的氧发生化学反应,生成一氧化碳和一氧化碳二氧化碳等还原气体。
这些还原气体与铁矿石中的氧反应,将铁矿石还原成为金属铁。
四、高炉的融化和冶炼在高炉的融化和冶炼过程中,铁矿石被还原成金属铁,然后与渣、石灰石等杂质形成熔融的铁水。
随后,铁水收集在高炉的下部,并通过渣口排出。
五、高炉的煤气排放在高炉炼铁过程中,除了产生铁水外,还会产生大量的高炉煤气。
这些煤气含有一氧化碳、氢气、一氧化碳二氧化碳等成分。
为了充分利用这些煤气,通常会对其进行净化和脱硫处理,然后用于发电或供热等用途。
六、高炉炼铁的控制高炉炼铁的过程需要进行精确的控制。
通过对炉温、煤气成分、料层厚度等参数的监测和调整,可以提高炼铁效率,减少能耗和杂质含量,并延长高炉的使用寿命。
七、高炉炼铁的应用高炉炼铁广泛应用于钢铁行业。
炼铁产出的铁水,经过进一步的炼钢处理,可以制成各种钢材,被用于建筑、制造、交通等领域。
总结:通过了解高炉炼铁的设计和设备知识点,我们可以更好地理解高炉炼铁的工作原理和过程。
高炉的结构、炉料、还原、融化和冶炼、煤气排放、控制等方面都对高炉的炼铁效果和效率有着重要的影响。
只有合理设计和选择设备,并进行科学的操作和控制,才能保证高炉炼铁的顺利进行,提高钢铁生产的效益和质量。
炼铁高炉工艺知识点总结
炼铁高炉工艺知识点总结高炉是用于冶炼铁矿石的重要设备,其结构包括上部料柱、中部燃烧区和下部铁口三个部分。
1. 上部料柱上部料柱主要由料斗、布料装置和煤气分布装置组成。
在高炉冶炼过程中,生铁矿石和还原剂通过料斗和布料装置放入高炉中,并在上部料柱中进行干燥、预热和还原反应。
2. 中部燃烧区中部燃烧区是高炉中最重要的区域,也是冶炼反应最为激烈的地方。
在高炉的中部燃烧区,铁矿石的还原反应和燃料的燃烧反应同时进行,产生的热量和还原气体将铁矿石还原成铁,同时熔化生铁矿石。
3. 下部铁口下部铁口是高炉的出铁口,也是生铁的最终产出地。
铁水从下部铁口流出并通过管道输送至铁水罐或铁水车,最终用于制造钢铁产品。
二、高炉工艺过程高炉冶炼的主要工艺过程包括预处理、还原和熔融三个阶段。
1. 预处理铁矿石在高炉冶炼前需要进行预处理,主要包括干燥、预热和分级。
在高炉上部料柱中,铁矿石经过干燥和预热,使其内部水分挥发、结晶水分析出,并提高其温度,为还原反应和熔融反应提供条件。
此外,铁矿石还需要分级,以确保高炉内部燃料和还原气体的匹配,提高冶炼效率和生铁质量。
2. 还原在高炉的中部燃烧区,煤气和空气混合后燃烧产生的高温燃气对铁矿石进行还原作用。
这一阶段的主要冶炼反应包括颗粒还原和熔融还原两个过程。
颗粒还原是指铁矿石颗粒的直接还原反应,将铁矿石中的氧还原成铁,并生成还原气体。
熔融还原是指生铁矿石在高温条件下熔化,并在熔融状态下进行还原反应,产生液态生铁。
3. 熔融在高炉下部,液态生铁通过铁口流出,并通过管道输送至后续的冶炼工艺中。
在熔融过程中,熔融生铁的温度、成分和质量需要得到控制,以确保后续的钢铁生产工艺顺利进行。
三、高炉冶炼的关键技术1. 燃料配比高炉冶炼所需的燃料包括焦炭、焦炉煤气和其他燃料。
为了提高冶炼效率和生铁质量,需要合理确定燃料的配比,保证还原气体的成分和温度符合冶炼工艺的要求。
2. 熔炼温度在高炉冶炼过程中,熔炼温度对生铁的成分和质量具有重要影响。
高炉炼铁知识培训课件
冶炼1t生铁大约需要1.6~2.0t矿石,0.4~0.6t焦炭 (coke)。
高炉冶炼是连续生产过程,必须尽可能为其提供数量 充足、品位高、强度好、粒度均匀粉末少、有害杂质少及 性能稳定的原料。
2.铁矿石种类:
磁铁矿(Fe3O4)
赤铁矿
褐铁矿(mFe2O3·nH2O)
◆块矿和粉矿
破碎、筛分
Байду номын сангаас富矿
粉矿(<5mm)供烧结厂生产烧结矿 大中型高炉<45mm
块矿(>5~10mm),上限 中小型高炉<20~25mm
2、高炉冶炼用原料
原料是高炉冶炼的物质基础,精料是使高炉操作稳 定顺行,获得高产、优质、低耗及长寿的基本保证。
高炉冶炼用的原料主要包括铁矿石、燃料和熔剂。 对于一些不能满足要求的原料,要进行一系列准备处理, 例如造块。 高炉冶炼用的原料主要有铁矿石(天然富矿(天然块矿)和 人造富矿(烧结矿、球团矿))、燃料(焦炭和喷吹煤) 和熔剂。
生铁一般可分为三大类:即供炼钢使用的炼钢生铁,供 铸造机件和工具用的铸造生铁和高炉锰铁、硅铁等铁合金三 种。
◆矿物:地壳中具有均一内部结构、化学组成及一定物理、 化学性质的天然化合物或自然元素称为矿物。其中能够为 人类利用的称为有用矿物。
◆矿石:在现代的技术经济条件下,能以工业规模从中提取 金属、金属化合物或其它产品的矿物称为矿石。
4.2高炉辅助设备
4.2.1供料系统
◆高炉炉顶装料设备的作用是按冶炼要求,向 炉内合理布料,同时要严密封住炉内荒煤气不 逸出炉外。 ◆常用的炉顶装料设备主要有钟式炉顶和溜槽 式(亦称无钟式)炉顶。 ◆我厂为料车上料。
高炉炼铁原理
高炉炼铁原理
高炉炼铁原理是利用高炉内部的化学反应来将铁矿石中的
铁氧化物还原为金属铁的过程。
具体原理如下:
1. 原料准备:将铁矿石、焦炭和石灰石按一定比例混合,
形成炉料。
铁矿石是主要原料,其中含有铁的氧化物,如
赤铁矿(Fe2O3)和磁铁矿(Fe3O4)。
2. 燃烧反应:焦炭在高温下与空气中的氧气发生燃烧反应,生成高温燃烧产物,如一氧化碳(CO)和二氧化碳
(CO2)。
这一反应提供了高炉内部的热能。
3. 还原反应:高温下,一氧化碳与铁矿石中的铁氧化物反应,将其还原为金属铁。
主要反应有以下几个步骤:
- Fe2O3 + 3CO → 2Fe + 3CO2
- Fe3O4 + 4CO → 3Fe + 4CO2
- FeO + CO → Fe + CO2
这些反应分别将铁氧化物(Fe2O3、Fe3O4和FeO)还
原为金属铁(Fe),同时产生二氧化碳(CO2)等副产物。
4. 渣化反应:石灰石(CaCO3)在高温下分解成氧化钙(CaO),与形成的矿渣反应,形成熔融的钙硅酸盐渣。
总结来说,高炉炼铁原理是将铁矿石中的铁氧化物通过燃
烧制造的高温和一氧化碳的还原作用转化为金属铁,同时
形成矿渣。
这个过程需要高炉内部的高温和复杂的化学反应,以及合理的炉料配比和操作控制。
高炉炼铁操作教学-高炉四大操作制度及高炉日常操作
高炉炼铁操作教学-高炉四大操作制度及高炉
日常操作
《高炉炼铁操作教学-高炉四大操作制度及高炉日常操作》
高炉作为炼铁的重要设备,其操作对于铁水的质量和产量有着至关重要的影响。
为了保证高炉
炼铁操作的安全和高效,需要进行严格的教学和培训。
下面将介绍高炉的四大操作制度以及高
炉的日常操作。
一、高炉的四大操作制度:
1. 开炉操作制度:包括高炉的点火、通风、点火验证等操作,确保高炉的正常启动。
2. 上料操作制度:包括铁矿、焦炭、石灰石等原料的装料和配料操作,确保高炉炼铁过程中原
料的均匀投放。
3. 吹风操作制度:包括鼓风机的开启、鼓风量的调节等操作,确保高炉内部的氧气供应和温度
控制。
4. 喷煤操作制度:包括喷煤的时间、量、位置等操作,确保高炉内部的还原条件和铁水的品质。
二、高炉的日常操作:
1. 高炉检查:对高炉设备的磨损、漏水、渗油等情况进行检查,确保设备的安全运行。
2. 原料装料:按照配料单要求,将铁矿、焦炭、石灰石等原料装入高炉料斗。
3. 鼓风调节:根据高炉热积料变化,调节鼓风阀的开度,控制高炉内的氧气供应。
4. 喷煤操作:根据高炉炼铁的需要,调节喷煤系统的压力和喷吹量。
5. 温度监测:通过高炉内部的温度监测系统,掌握高炉内部的温度情况,及时调整操作参数。
通过严格的教学和培训,操作人员能够正确、熟练地掌握高炉的四大操作制度和日常操作,保
证高炉炼铁工作的顺利进行,提高铁水的质量和产量。
炼铁厂高炉冶炼知识讲解
炼铁厂高炉冶炼知识讲解一、什么叫炉况判断?通过那些手段判断炉况?答案:高炉顺行是达到高产、优质、低耗、长寿的必要条件。
为此不是选择好了操作制度就能一劳永逸的。
在实际实际生产中原燃料的物理性能、化学成分经常会产生波动,气候条件的不断变化,入炉料的称量可能发生误差,操作失误与设备故障也不可完全杜绝,这些都会影响炉内热状态和顺行,判断炉况就是判断这种影响的程度及顺行的趋向。
即炉况是向凉还是向热,是否会影响顺行,影响程度如何等等。
判断炉况的手段基本是两种,一是直接观察,如看入炉原料外貌,看出铁、出渣、料速、风口情况;二是利用计器仪表,如指示风压、风量、料尺、各部位温度及透气性指数等的仪表。
必须两种手段结合,连续综合观察一段时间的各种反映,进行综合分析,才能正确判断炉况。
二、为什么力求稳定前四小时和后四小时、班与班之间的下料批数?答案:稳定下料批数是高炉进程均匀稳定的重要因素之一,稳定下料批数的作用是稳定本班和班与班之间各次铁的炉温,如果料批相差悬殊则会带来炉温大幅度的波动和影响生铁的质量,即使在轻负荷条件下也是如此。
三、工长的技术操作水平应该表现在哪几个方面?答案:⑴能及时掌握炉况波动的因素;⑵能尽早知道炉况不稳定的原因;⑶具有对待炉况波动的方法和手段;⑷能掌握炉况变化的规律。
四、高炉炼铁工(高级)综合实作题8小时模拟高炉操作。
1、对上班进行分析(8分)2、制定本班操作方针(包括采取必要措施)预测本班料批总数及炉温会在什么范围([SI]及铁水温度平均值)。
(12分)3、每小时对路况分析、判断,采取相应手段,写出依据或简易计算过程。
(21分)4、班中检测操作方针与炉况走向是否一致,若偏离并进行修正。
(6分)5、对本班的操作进行总结。
(6分)6、预测下班;料批总数及炉温会在什么水平([SI]及铁水温度平均值),对下班操作提出建议。
(11分)7、铁前、铁后对[SI]、[S]、R2及铁水温度的判断。
(36分)平分标准1、共8分(1)炉温水平趋势、原因分析(2分)(2)炉况顺行状态及分析(2分)(3)各部炉体温度分析(2分)(4)上班调剂分析(2分)2、共12分(1)制定本班操作方针(6分)(2)预测本班料批总数(3分)±1批,扣0.5分(3)预测本班炉温平均值(3分)[SI]±0.05%,扣0.5分3、共21分每小时对路况分析、判断,采取相应手段,写出依据或简易计算过程。
高炉炼铁的所有知识点总结
高炉炼铁的所有知识点总结一、高炉炼铁的工艺过程高炉炼铁的主要工艺过程包括铁矿石的预处理、还原反应、炼铁反应和产物的分离和收集等步骤。
1. 预处理铁矿石通常是氧化铁矿石,例如赤铁矿、磁铁矿、褐铁矿等。
在高炉炼铁之前,需要对铁矿石进行预处理,主要包括破碎、煅烧和粉碎等步骤。
首先,铁矿石需要经过破碎设备进行破碎,将其破碎成较小的颗粒。
然后,将破碎后的铁矿石进行煅烧,通常是在煤气或焦炉中进行,将氧化铁矿石还原成较高的还原度。
最后,将煅烧后的铁矿石进行粉碎,使其达到适当的颗粒度,以便于高炉内的还原反应。
2. 还原反应高炉炼铁的核心工艺是还原反应。
在高炉内,煅烧后的铁矿石与焦炭共同投入高炉,并通过热炭气、空气和热风等途径,使焦炭在高炉内发生燃烧,产生大量的一氧化碳和二氧化碳等气体。
这些气体与煅烧后的铁矿石发生还原反应,使氧化铁矿石还原成金属铁。
还原反应的主要化学反应式为Fe2O3 + 3CO = 2Fe + 3CO2。
在此过程中,还将生成一些硅、锰等元素的还原物金属。
3. 炼铁反应在还原反应之后,得到的金属铁流向高炉底部,与炉渣和热铁水的反应产生炼铁反应。
炼铁反应的目的是提高生铁的品质,并去除炉渣中的杂质。
在炼铁反应中,金属铁与炉渣中的碱金属、碳酸盐等发生反应,使炉渣脱碱和夺碳,并将少量的氧、碳等被夹杂在金属铁中的杂质除去。
4. 产物的分离和收集最后,通过高炉的底部出口,生铁和炉渣被分离出来。
生铁被收集起来,经过冷却、成型和质量检验等步骤,最终被用于钢铁冶炼。
炉渣则被收集起来,并用于建筑材料、道路铺设等领域。
以上就是高炉炼铁的工艺过程,我们可以看到,高炉炼铁的工艺过程是一个复杂的化学反应过程,需要严格控制反应条件和工艺参数,以确保生铁的品质和产量。
二、高炉炼铁的原料高炉炼铁的主要原料包括铁矿石、焦炭和石灰石等。
1. 铁矿石铁矿石是高炉炼铁的主要原料,通常是氧化铁矿石。
常见的铁矿石有赤铁矿、磁铁矿、褐铁矿等。
高炉炼铁有关知识点总结
高炉炼铁有关知识点总结高炉的结构高炉通常由筒体、风口、鼓风系统、炉缸、矿铁料装料系统、取料系统、炉喉、排放系统、炉内煤气系统等部分组成,结构比较复杂。
其中,筒体是整个高炉的主体,可分为炉围、炉缸、熔铁坑等部分。
炉围是高炉的外壁,由耐火砖及助熔材料构成,用于承受高炉温度和循环水冷却的冷却水。
炉缸和熔铁坑是高炉内部主要部分,用于反应炼铁矿石和还原剂,产生铁水及炉渣。
高炉的操作过程1. 上料:矿石、焦炭、燃料和熔剂(通常是石灰石)按照一定的配比通过上料装置(如料斗、皮带等)连续地进入高炉。
2. 加热还原:上料后,高炉内的还原剂引起矿石中的氧逐渐被还原为金属铁。
3. 熔融:当高炉内的温度达到一定程度时,产生的铁和炉渣开始融化,形成铁水和炉渣。
4. 放料:铁水在高炉熔铁坑中逐渐积聚,当积聚到一定程度后,通过取料装置将铁水、炉渣和炉渣渣共同取出。
5. 炉缸清理:定期清理高炉炉缸内的残留物,保持高炉的正常运行。
高炉炼铁的原理高炉的炼铁过程主要包括矿石还原、熔融和分离矿铁料的三个基本过程。
矿石还原是矿石中的氧被还原剂(焦炭等)还原成金属铁的过程;熔融是指矿石和还原剂在高温下熔化并分离成铁水和炉渣的过程;分离是指通过物理和化学手段将铁水和炉渣分离的过程。
这些过程需要在高炉内同时进行,通过严格控制温度、气氛和原料成分等参数,才能保证最终产生高品质的铁水。
高炉炼铁的控制技术1. 鼓风系统:鼓风系统是高炉炼铁的核心部分,通过鼓风系统将空气送入高炉内,提供氧气用于矿石还原和燃烧还原剂。
控制鼓风系统的鼓风量和温度是保证高炉正常运行的重要手段。
2. 燃烧系统:燃烧系统主要指高炉内焦炭的燃烧过程,提供热量用于矿石还原和炉渣熔化。
控制燃烧系统的燃烧效率和热量平衡是保证高炉正常运行的关键。
3. 温度控制:高炉内部有多个测温点,通过测温点采集到的数据,可以对高炉内部的温度进行实时监控和控制,保证高炉操作在安全稳定的温度范围内。
4. 负压控制:通过调节高炉的负压,可以影响高炉内气氛的组成和流动状况,保证高炉内的气氛对炼铁有利。
高炉炼铁的基本原理与工艺流程
高炉炼铁的基本原理与工艺流程高炉炼铁是指通过高炉设备将铁矿石转化为铁的过程。
它是现代工业生产中铁制品的主要来源之一,具有重要的经济意义。
本文将介绍高炉炼铁的基本原理与工艺流程。
一、高炉炼铁的基本原理高炉炼铁的基本原理是利用高温下的化学反应将铁矿石还原成金属铁。
在高炉中,铁矿石经过冶炼过程,通过高温和还原剂的作用,使得其中的铁氧化物被还原为金属铁,并与其他元素形成铁合金。
高炉炼铁的还原反应是一个复杂的过程,包括多个步骤。
首先,铁矿石与还原剂(一般为焦炭)在高温下发生氧化还原反应,将铁矿石中的氧气与还原剂中的碳发生反应生成一氧化碳和二氧化碳。
然后,一氧化碳与铁矿石中的铁氧化物发生反应,使其还原为金属铁。
最后,金属铁与其他元素形成铁合金。
二、高炉炼铁的工艺流程高炉炼铁的工艺流程一般包括铁矿石的预处理、炉料配制、高炉内的冶炼过程和铁水的处理等步骤。
1. 铁矿石的预处理铁矿石通常经过矿石选矿、破碎、磁选等步骤的预处理。
选矿是将原始铁矿石中的有用矿物与杂质进行分离的过程,以提高铁的品位。
破碎过程将大块的铁矿石破碎成为适合冶炼的小颗粒。
磁选则是利用磁力将磁性矿物与非磁性矿物分离。
2. 炉料配制炉料配制是将预处理后的铁矿石与还原剂(焦炭)、矿石烧结等辅助原料按照一定比例配制成为高炉的进料。
配制过程中需要根据铁矿石的品位、还原剂的质量等因素进行合理的配比,以保证炼铁过程的效果。
3. 高炉内的冶炼过程高炉内的冶炼过程是高炉炼铁的核心环节。
在高炉内,炉料由上部的料槽加入,并由炉底的鼓风口进入。
在高炉内,料层中的铁矿石与还原剂经过一系列的燃烧和还原反应,发生冶炼和还原,最终生成铁水和炉渣。
炉渣由高炉底部排出,而铁水则从高炉的铁口流出,进入下一步的处理。
4. 铁水的处理铁水是高炉炼铁的产物之一,但其中含有一定的杂质,需要进行进一步的处理。
首先,通过除渣工艺将铁水中的炉渣分离出去,得到较为纯净的铁水。
然后,将铁水进行调质处理,加入适量的合金等元素,以调整铁的成分和性能,得到所需的铁产品。
化学炼铁的知识点总结
化学炼铁的知识点总结1. 炼铁工艺炼铁工艺主要包括高炉法和直接还原法两种主要方法。
(1)高炉法高炉法是一种以焦炭为还原剂,热量和炭素源的炼铁方法。
其主要工艺过程包括炉料装填、预热、还原、熔融和排渣等阶段。
在高炉内,矿石和焦炭在高温条件下反应生成熔融铁和炉渣,通过不同密度的分层,完成铁和炉渣的分离。
(2)直接还原法直接还原法是指利用气体还原剂(如CO和H2)直接将铁矿石中的氧化铁还原成金属铁的方法。
这种方法可分为煅烧法和气相还原法两种。
在煅烧法中,将粉末状的铁矿石在高温下加热,使氧化铁被还原为金属铁。
而气相还原法则是通过气体还原剂直接将氧化铁还原为金属铁,常见的设备有旋转窑等。
2. 反应原理炼铁过程中涉及的主要反应包括还原反应、煅烧反应和熔融反应等。
(1)还原反应还原反应是指将金属氧化物还原为金属的反应。
在炼铁过程中,主要的还原反应包括Fe2O3 + 3CO → 2Fe + 3CO2和Fe3O4 + 4CO → 3Fe + 4CO2等。
这些反应是高炉法和煅烧法中最主要的反应过程,通过这些反应,使氧化铁逐步还原为金属铁。
(2)煅烧反应煅烧反应是指在高温下,金属氧化物发生分解或变化的反应。
在炼铁过程中,铁矿石的煅烧反应主要包括FeCO3 → FeO + CO2和Fe3O4 → Fe2O3 + O2等。
这些反应主要发生在高温条件下,为后续的还原反应提供条件。
(3)熔融反应熔融反应是指物质在高温下融化的反应过程。
在高炉法中,熔融反应主要发生在铁和炉渣之间,形成两相分离的现象。
而在直接还原法中,熔融反应则是指将金属铁从矿石中提取出来,并形成合金的过程。
3. 设备及其应用炼铁过程涉及的设备主要包括高炉、煅烧炉、还原炉等。
(1)高炉高炉是用于进行高炉法炼铁的主要设备。
它由炉体、风口、出铁口、出渣口等部分组成,通过炉料装填、炉料预热、还原和熔融等过程,从铁矿石中提取出高品质的铁。
高炉的主要应用领域包括冶金工业和金属加工工业等。
炼铁基础知识点总结
炼铁基础知识点总结
炼铁的基本流程可以分为矿石选矿、烧结、炼铁和精炼四个阶段。
首先,通过选矿厂将矿石中的杂质和有用的矿石分离出来;然后,采用烧结工艺将矿石进行烧结,使其成为适合高炉使用的团矿;接着,在高炉中进行还原反应,将铁矿石中的铁氧化物还原成金属铁;最后,对冶炼后得到的生铁进行精炼,去除杂质,制成合格产品。
具体来说,炼铁的主要过程包括矿石的破碎、除尘、选矿、热风炉煤气的预处理、烧结、高炉冶炼等。
在这些过程中,需要用到很多设备和材料,例如高炉炉料、石灰石、焦炭、风口、鼓风机、炉渣、渣铁、矿尘等。
炼铁工艺的发展经历了漫长的历史,现代炼铁工艺已经非常成熟,可以达到高效、低能耗和环保的要求。
随着科技的发展和材料的进步,炼铁工艺将不断地得到改进和完善。
总的来说,炼铁是冶金工业中的一个重要环节,其工艺水平将直接影响到冶金产品的质量和产量。
因此,炼铁工艺的研究和应用是冶金领域的一个重要课题,对于提高工业生产效率,节约能源,减少污染具有重要的意义。
高炉炼铁工艺基础知识
高炉炼铁工艺基础知识目前国内外成熟、常规高炉炼铁系统项目冶金高炉炼铁系统主要由:原料、上料、高炉、出铁场、除尘设施(粗煤气、布袋、重力除尘等)、热风炉、渣处理、喷煤、TRT(可选择使用)、鼓风机站(或空压站)、高炉给排水、高低压供配电设施以及区域管线管网等相对独立又互为一体的系统共同构成,其功能就是完成一个原料矿石到高炉产出铁水的生产过程。
高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。
付产品有:水渣、瓦斯灰和高炉煤气等。
高炉冶炼原理简介:高炉冶炼用的原料高炉冶炼用的原料主要由铁矿石、燃料(焦炭)和熔剂(石灰石)三部分组成。
通常,冶炼1吨生铁需要1.5-2.0吨铁矿石,0.4-0.6吨焦炭,0.2-0.4吨熔剂,总计需要2-3吨原料。
为了保证高炉生产的连续性,要求有足够数量的原料供应。
因此,无论是生铁厂家还是钢厂采购原料的工作是尤其重要。
冶炼原理生铁的冶炼虽原理相同,但由于方法不同、冶炼设备不同,所以工艺流程也不同。
下面分别简单予以介绍。
高炉生产是连续进行的。
一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。
生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。
装入高炉中的铁矿石,主要是铁和氧的化合物。
在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。
铁矿石通过还原反应炼出生铁,铁水从出铁口放出。
铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。
煤气从炉顶导出,经除尘后,作为工业用煤气。
现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。
高炉生产工艺流程包括以下几个系统:(1)高炉本体。
高炉本体是炼铁生产的核心部分,它是一个近似于竖直的圆筒形设备。
高炉炼铁基础理论剖析课件
高炉炼铁的工艺流程
矿石准备
将铁矿石破碎、筛分、磨细,以供高 炉使用。
02
烧结
将铁矿粉与其他添加剂混合,在烧结 机上高温烧结成块,以提高其强度和 还原性。
01
生铁处理
将液态生铁进行铸造成不同规格的钢 锭或直接炼制成钢材。
05
03
炼铁
将烧结矿和焦炭等原料加入高炉中, 通过高温还原反应将铁从铁矿石中分 离出来,生成液态生铁。
炉渣的形成与作用
炉渣的形成
高炉炼铁过程中,矿石中的脉石、焦炭中的灰分以及加入的溶剂等与熔融的铁氧 化物、硅酸盐等相互作用形成炉渣。
炉渣的作用
炉渣的主要作用是去除矿石中的杂质,并保持高炉内酸碱平衡,同时还能保护炉 衬不被侵蚀。
03
高炉操作与控制
风口前燃料燃烧与煤气形成
燃料燃烧
燃烧带形成
高炉炼铁过程中,焦炭和煤粉在风口 前与鼓入的高温空气进行燃烧反应, 释放热量并生成煤气。
和节能减排。
国外先进高炉炼铁技术与实践
1 2 3
米塔尔钢铁公司高炉炼铁工艺
米塔尔钢铁公司作为全球最大的钢铁企业之一, 其高炉炼铁工艺具有高效、低耗、环保的特点。
浦项钢铁公司高炉炼铁工艺
浦项钢铁公司作为韩国最大的钢铁企业,其高炉 炼铁工艺技术先进,具有高效率、低成本的优势 。
新日铁住金公司高炉炼铁工艺
物的排放。
高炉炼铁的未来发展方向
01
02
03
04
低碳化
高炉炼铁应向低碳化方向发展 ,降低碳排放强度,实现绿色
发展。
智能化
利用信息技术和自动化技术, 提高高炉炼铁的生产效率和能
源利用效率。
循环经济
构建循环经济体系,实现高炉 炼铁废弃物资源化利用和能源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要求灰分含量要低,是因为灰分使焦炭中的固 定碳含量降低,其次,焦炭中的灰分使焦炭强 度降低,因炭素和灰分的膨胀系数不同,在高 温作用下产生内应力,使焦炭碎裂。尤其是灰 分分布不均时,其影响更突出。第三,焦炭灰 分大部分是SiO2( 50%左右)和 Al2O3( 30% 左右)等酸性氧化物,因此焦炭灰分增加必须 增加碱性熔剂用量,从而使渣量增加,焦比升 高。一般生产经验是,焦炭灰分增加1%,焦比 升高2%,产量降低 3%。焦炭灰分是焦炭等级区 分的依据之一,国际上要求一级焦的灰分含量 低于10% 我国焦炭中固定碳含量一般为82%-84% ,灰 分含量为11%-15%
5、煤粉的胶质层厚度(Y值) 煤的胶质层厚度适 宜,以免在喷吹过程中风口结焦和堵塞喷枪,一般 要求Y值小于10mm。 6、煤的可磨性 煤的可磨性好,磨煤机台时产量高, 电耗低,可降低喷吹成本。要求煤的哈氏可磨系数 HGI大于30。 7、煤的灰份熔点温度 煤的灰熔点要求高些为好。 灰的熔点主要取决于灰分中Al2O3的含量。当Al2O3大 于40%时,煤灰的温度都会超过1500℃。 8、配煤 配煤即两种或三种煤,根据高炉喷煤质量 要求,按不同比例混合在一起,磨到一定粒度向高 炉喷吹。 通常采用含碳量高和发热值高的无烟煤同挥发份高 和燃烧性好的烟煤配合,使配煤的平均按发分控制 在20%左右,灰分小于15%,充分发挥两种煤的优 点,可获得良好的喷吹效益。
3、焦炭的机械强度要好。焦炭在高炉下部高 温区作为支撑料柱的骨架承受着上部料柱的巨 大压力,如果焦炭的机械强度不高,则形成大 量碎焦,恶化炉缸透气性,破坏高炉顺行,严 重时无法进行正常生产。另外,机械强度不好 的焦炭,在运输过程中产生大量的粉末,造成 损失。因此,要求焦炭必须具有一定的机械强 度。焦炭的机械强度是评价焦炭质量的主要指 标之一。焦炭的机械强度通常用抗碎强度M40 和搞磨强度M10表示。M40提高1%,高炉利 用系统增加0.04, 综合焦比下降5.6kg;M10改善 0.2%,利用系体力学研究表明, 大小粒度不均匀的散料,空隙度最小,透气性差。 而粒度均匀的散料,空隙度大,煤气阻力小。因此, 为了改善高炉透气性保证煤气流分布合理和高炉顺 行,不仅要求焦炭粒度合适,而且要求粒度均匀, 粉末少。一般大型高炉使用40~60mm大块焦,中 小型高炉使用 25~40中块焦。但目前随着矿石粒度 的不断降低,为了缩小焦炭粒度和矿石粒度的差别, 以改善整个料柱的透气性,焦炭粒度也有随着降低 的趋势。不少高炉已把焦炭粒度下限降到15~20 5、水分要稳定。焦炭中的水分是湿法熄焦时渗入 的,通常达 2%~6%。焦炭中的水分在高炉上部即可 蒸发完毕,对高炉冶炼没有影响。但由于焦炭是按 重量入炉的,水分波动必然要引起干焦量的波动, 从而引起炉况波动。因此,要求水分稳定,以便配 料准确,稳定炉况。
二、焦炭的作用
焦炭在高炉生产中起以下 方面的作用: 1、提供高炉冶炼所需要的大部分热量。焦炭 在风口前被鼓风中的氧燃烧,放出热量,这是 高炉冶炼所需要热量的主要来源(高炉冶炼所 消耗热量的 70%~80%来自燃料燃烧)。 2、提供高炉冶炼所需的还原剂。高炉冶炼主 要是生铁中的铁和其他合金元素的还原及渗碳 过程,而焦炭中所含的固定碳(C)以及焦炭 燃烧产生的一氧化碳(CO )都是铁及其他氧 化物进行还原的还原剂。
三、高炉对焦炭的质量要求
为了保证高炉冶炼过程的顺利和获得良好的生 产指标,焦炭质量必须满足以下几方面的要求: 1、固定碳含量要高,灰分要低。工业分析中, 焦炭固定碳是按下式计算的: ωC固×100=100-(灰分 +挥发分 +有机物) ×100要求固定碳含量尽量高,是因为固定碳 含量高,其发热值高,单位重量焦炭所提供的 还原剂数量也多,有利于降低焦比。实践证明, 焦炭中的固定碳含量提高1% ,可降低焦比 2%。
介绍完毕
谢谢大家
4、喷吹用燃料。为了降低焦比,目前世界各 国普遍采用从高炉风口喷入部分燃料以代替部 分焦炭。喷吹用燃料有煤粉、重油和天然气。 至于选用何种燃料为宜,一般根据各国资源条 件而定,我国主要是喷吹煤粉。 6、型焦。作为代用燃料,目前国内外都在研 究用无烟煤、贫煤、褐煤等非结焦煤的成型技 术,按工艺生产流程可分为热压成型和冷压成 型两类。在高炉上使用型焦目前尚处于冶炼试 验阶段,根据国外大多数高炉型焦冶炼试验表 明,在炉况稳定顺行条件下,型焦是可以代替 焦炭作为高炉燃料的。但型焦的强度(尤其是 热强度)比冶金焦差,有待进一步研究解决。
五、煤粉
高炉对喷吹煤的质量要求: 1、煤的灰分 煤的灰分越低越好,一般要求 煤的灰分公共开支或低于接近焦炭灰分,最高 不大于15%。 2、煤的硫分 为发送生铁质量煤的硫分越低越 好,一般要求小于0.7%,最高不大于0.8%。 0.7%, 0.8% 3、煤的发热量 煤粉中含碳量越高,发热量 越高,而含氢量越高,发热量越低。 4、煤粉的燃烧性 煤的燃烧性能好,其着火 温度低,反应性强,有利于提高煤粉的利用率 和高炉的顺行。
高炉炼铁基本知识(四)
炼铁用燃料(焦炭和煤)
一、高炉用燃料的种类
根据高炉对燃料的要求,高炉的燃料有以下几种: 1、木炭)木炭。木炭由木材在足够温度下干馏而成,是最早 使用的高炉燃料。它固定碳含量高,灰分低(一般在0.5 %2.5%之间);几乎不含硫;气孔度高,堆密度只有115250kg/m3。但木炭机械强度差,价格昂贵,特别是随着钢铁 工业的发展,高炉容积不断扩大,如继续使用木炭,不仅机械 强度满足不了要求,还会大量破坏森林。因此作为高炉燃料已 被淘汰。 2、无烟煤(或称白煤)。它的化学成分能基本满足炼铁的要 求;低温强度好,可远距离运输;特别是我国无烟煤储量丰富 的山西、河北的一些高炉曾使用过。但它的气孔度很底,热稳 定性差,在高炉内受热后碎裂成粉末,而且含硫一般也较高。 现在已不再使用,个别小型高炉上,还有用作焦炭替代品的, 用量在50kg/t左右,效果不错,置换比在0.8-1之间
2、含S 、 P杂质要少。高炉冶炼过程中的 S, 80%以上来自焦炭,因此,降低焦炭含S量对 降低生铁含 S量具有重大意义。焦炭中的含 S 升高,必须相应提高炉渣碱度以改善炉渣脱硫 能力,从而使石灰石用量增加,渣量增加,焦 比升高,产量降低。焦炭含S升高 0.1%,焦比 升高 1.5%左右,产量降低约2% 。焦炭中的S 来自煤,炼焦过程中只能除去一少部分S, 80%的S 留在焦炭中,因此,控制煤的含 量和 选择合适的配煤比,是控制焦炭含量的基本途 径。我国焦炭含硫比较低,一般在 0.5%~1% 之间。 焦炭中含 P较少,对生铁质量无大影响。我国 焦炭含 一般都低于 0.05%。
6、焦炭的反应性要低,抗碱性要强。 焦炭反应性指的是焦炭在高温下与 CO2反应形成 CO的能 力(C焦+CO2=2CO) 。焦炭在与 反应过程中会使焦炭内 部的气孔壁变薄,从而降低焦炭的强度,加快焦炭破损, 对高炉冶炼过程产生如下不利影响:铁的直接还原发展, 煤气利用变坏,焦比升高;同时焦炭破损产生的焦粉恶 化了高炉料柱的透气性,影响高炉顺行。在炼焦生产中 降低焦炭反应性的措施是:炼焦配煤时适当多用低、中 挥发性煤;提高炼焦的终了温度;闷炉操作;采用干熄 焦;降低焦炭灰分等。 焦炭抗碱性是焦炭在高炉内抵抗碱金属钾、钠及其盐类 作用的能力。钾、钠是C焦+CO2=2CO反应的催化剂,还 能与焦炭反应生成 C8K、C36K 等。所以碱侵蚀会降低 焦炭强度,给高炉生产造成危害。生产上提高焦炭抗碱 能力的措施有:配煤中适当配用低变质程度弱黏结性气 煤,采取措施降低焦炭的反应性等。
四、焦炭的机械强度及测定
1、焦炭机械强度的定义 焦炭的机械强度是指成品焦炭的耐磨性、抗 压强度和抗冲击的能力。测定焦炭机械强 度的方法是转鼓试验。目前使用的转鼓有 两种,即大转鼓(松格林转鼓)和小转鼓 (米库姆转鼓)。
2、焦炭机械强度的测定 大转鼓直径2000mm ,宽 800mm,转鼓两端 用直径2000mm 的两块钢板,其间以127 根长 800mm ,直径25mm 的圆钢沿圆周焊接,圆 钢间隙为25mm ,转鼓中心有轴,由电动机带 动。试验时,取 410kg粒度大于 25mm的焦炭 装入鼓内,以10r/min 的速度旋转 15min,用 鼓内残留的焦炭公斤为焦炭转鼓指标,以鼓外 焦块中小于10mm的碎焦公斤数为焦炭耐磨指 数。一般中型高炉用的焦炭的大转鼓指数应在 295~315kg之间,大型高炉应在315kg以上, 鼓外小于 的应低于45kg 。
3、焦炭。由煤在高温下( 900~1000℃) 干馏而成。它的化学成分完全能满足高炉 炼铁的要求;机械强度大大高于木炭;热 稳定性比白煤好;气孔度虽不如木炭,但 比白煤大得多。焦炭是现代高炉理想的燃 料,也是目前高炉的主要燃料,但由于炼 焦过程中必须配入足够数量的结焦性能良 好的焦煤才能获得优质焦炭,而除少数国 家外,我国和世界各国焦煤资源均不足。 因此,各国都尽力采取各种措施降低高炉 焦炭消耗,同时寻找合适的代用燃料。
小转鼓是由钢板制成的无穿心轴的密封圆筒, 钢板厚 6~8mm,鼓内径和内宽均为1000mm, 内壁每隔 90°焊角钢 (100mm*50mm*10mm )一块,共计4 块。 试验时,取 50kg大于 60mm的试样装入鼓内, 以 25r/min的速度旋转 。试验后用直径 40mm 和直径10mm的圆孔筛筛分,以大于40mm 的 焦炭占试样总质量的百分数为抗碎强度指标, 用 M40表示;小于10mm 的焦炭占试样总重 量的百分数为耐磨强度指标,用M10 表示。中 型高炉M40 在60%~70%之间,大型高炉 在 80%以上, 都应在 8%以下。 焦炭的机械强度通常用小转鼓来测定。
3、焦炭是高炉料柱的骨架。由于焦炭在高 炉料柱中约占 的体积,而且焦炭在高炉冶 炼条件下既不熔融也不软化,它在高炉中 能起支持料柱、维持炉内透气性的骨架作 用。特别是在高炉下部,矿和熔剂已全部 软化造渣并熔化为液体,只有焦炭仍以固 体状态存在,这就保证了高炉下部料柱的 透气性,使从风口鼓入的风能向高炉中心 渗透,并使炉缸煤气能有一个良好的初始 分布。 4、生铁形成过程中渗碳的碳源。每吨炼钢 铁渗碳消耗的焦炭在 50kg左右。