高考数学模拟复习试卷试题模拟卷2111 3
高考模拟复习试卷试题模拟卷高三数学数学试卷文科
高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高三数学模拟试题含答案
高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
高三数学试卷模拟十五套
一、选择题(本大题共15小题,每小题5分,共75分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a+b+c的值为()A. 0B. 1C. -1D. 无法确定2. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项的和为()A. 50B. 60C. 70D. 803. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角C的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/44. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = x^35. 已知等比数列{an}的首项为2,公比为1/2,则第n项an的值为()A. 2^nB. 2^(n-1)C. 2^(n+1)D. 2^(1-n)6. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 无法确定7. 下列不等式中,恒成立的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 08. 若函数f(x) = x^3 - 3x在区间[0,3]上的最大值为2,则f(x)在区间[-3,0]上的最小值为()A. -2B. 0C. 2D. 无法确定9. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)10. 若复数z满足z^2 + z + 1 = 0,则复数z的虚部为()A. 1B. -1C. iD. -i11. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, ...B. 1, 3, 9, 27, ...C. 1, -2, 4, -8, ...D. 1, 3, 5, 7, ...12. 若函数f(x) = ax^2 + bx + c在x=2时取得最小值,则a、b、c之间的关系为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D.a < 0,b < 0,c < 013. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 414. 若等差数列{an}的首项为3,公差为2,则第10项与第15项的差的绝对值为()A. 18B. 20C. 22D. 2415. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...二、填空题(本大题共15小题,每小题5分,共75分)16. 已知函数f(x) = 2x - 3,则f(-1)的值为______。
2021年新高考数学模拟试卷全国卷(附参考答案和详解)
绝密★启用前2021年普通高等学校招生模拟考试(3)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数3i1i+=-( )A.12i +B.24i +C.12i --D.2i -2.设常数a ∈R ,集合{|(1)()0}A x x x a =--≥,{|1}B x x a =≥-,若A B =R ,则a 的取值范围为( )A.(,2)-∞B.(,2]-∞C.(2,)+∞D.[2,)+∞3.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=( )A.2B.1C.0D.2-4.设向量=a (1,cos )θ与b (1,2cos )θ=-垂直,则cos2θ等于( )A.2 B.12C.0D.1-5.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则“1k =”是“OAB 的面积为12”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件6.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2πa B.27π3a C.211π3a D.25πa7.已知命题122121:,,(()())()0p x x f x f x x x ∀∈--≥R ,则p ⌝是( ) A.122121,,(()())()0x x f x f x x x ∃∈--≤R B.122121,,(()())()0x x f x f x x x ∀∈--≤R C.122121,,(()())()0x x f x f x x x ∃∈--<RD.122121,,(()())()0x x f x f x x x ∀∈--<R8.函数()2ln f x x =的图像与函数2()45g x x x =-+的图像的交点个数为( ) A.3B.2C.1D.0二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图.根据这两幅图中的信息,下列统计结论中正确的有( )A.样本中的女生数量等于男生数量B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D.样本中的女生偏爱文科10.已知两定点(1,0)A -,(1,0)B ,若直线l 上存在点M ,使得||||3MA MB +=,则称直线l 为“M 型直线”.则下列给出的直线中,是“M 型直线”的有( )A.2x =B.3y x =+C.21y x =--D.23y x =+11.如图,在正方体1111-ABCD A B C D 中,M ,N 分别是1BC ,1CD 的中点,则下列判断正确的为( )A.MN 与1CC 垂直B.MN 与AC 垂直C.MN 与BD 平行D.MN 与11A B 平行12.下列结论中正确的有( ) A.命题:”(0,2)x ∀∈,33x x >“的否定是“(0,2)x ∃∈,33x x ≤” B.若直线l 上有无数个点不在平面α内,则l αC.若随机变量ξ服从正态分布2(1,)N σ,且(2)0.8P ξ<=,则(01)0.2P ξ<<=D.等差数列{}n a 的前n 项和为n S ,若43a =,则721S =第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
高考数学模拟考试试卷(含有答案)
高考数学模拟考试试卷(含有答案)本试卷共19题。
全卷满分120分。
考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。
高考模拟数学试卷带答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = 2x + 3在区间[1, 4]上单调递增,则下列结论正确的是:A. f(1) > f(2)B. f(2) > f(3)C. f(3) > f(4)D. f(4) > f(1)2. 已知数列{an}的通项公式为an = 3n - 2,则数列的前10项之和S10为:A. 28B. 55C. 82D. 1273. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限4. 下列函数中,在其定义域内是奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^45. 已知等差数列{an}的前n项和为Sn,若a1 = 3,d = 2,则S10等于:A. 50B. 55C. 60D. 656. 若等比数列{bn}的公比为q,且b1 = 1,b3 = 8,则q的值为:A. 2B. 4C. 8D. 167. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为:A. ±1B. ±2C. ±3D. ±48. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则cosB的值为:A. 3/5B. 4/5C. 5/7D. 7/59. 已知函数f(x) = x^2 - 4x + 4,则函数的对称轴为:A. x = 2B. x = 4C. y = 2D. y = 410. 若sinA + sinB = 1,cosA + cosB = 1,则sin(A + B)的值为:A. 0B. 1C. -1D. 211. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = -1,则S10等于:A. -10B. -20C. -30D. -4012. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限二、填空题(本大题共6小题,每小题5分,共30分。
高考数学模拟复习试卷试题模拟卷11113
高考模拟复习试卷试题模拟卷【考情解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【重点知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数 y =sin xy =cos xy =tan x图象定义域RR{x |x ∈R ,且x≠⎭⎬⎫kπ+π2,k ∈Z值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数 奇函数递增 区间 ⎣⎡⎦⎤2kπ-π2,2kπ+π2[2kπ-π,2kπ]⎝⎛⎭⎫kπ-π2,kπ+π2递减 区间 ⎣⎡⎦⎤2kπ+π2,2kπ+3π2 [2kπ,2kπ+π]无对称 中心 (kπ,0) ⎝⎛⎭⎫kπ+π2,0⎝⎛⎭⎫kπ2,0对称轴 方程 x =kπ+π2x =kπ无【高频考点突破】考点一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为() A .2- 3 B .0 C .-1 D .-1-3 【规律方法】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x ,化为关于t 的二次函数求值域(最值).【变式探究】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________. 考点二 三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是() A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 【规律方法】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos(ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【变式探究】 (1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为() A.π6 B.π4 C.π3 D.π2(2)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=() A.π2 B.2π3 C.3π2 D.5π3 考点三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是() A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 【规律方法】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【变式探究】 (1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于()A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______. 【真题感悟】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为23,则ω =_____.【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【高考福建,文21】已知函数()2103sin cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【高考重庆,文18】已知函数f(x)=12sin2x 32cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. (·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 (·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【押题专练】1.函数y =|2sin x|的最小正周期为( ) A .π B .2π C.π2D.π42.已知f(x)=cos 2x -1,g(x)=f(x +m)+n ,则使g(x)为奇函数的实数m ,n 的可能取值为( ) A .m =π2,n =-1 B .m =π2,n =1 C .m =-π4,n =-1D .m =-π4,n =13.已知函数y =sin x 的定义域为[a ,b],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( )A.π3B.2π3 C .π D.4π34.已知函数f(x)=sin πx 的部分图象如图1所示,则图2所示的函数的部分图象对应的函数解析式可以是( )A .y =f ⎝⎛⎭⎫2x -12B .y =f ⎝⎛⎭⎫x 2-12C .y =f(2x -1)D .y =f ⎝⎛⎭⎫x 2-1 5.定义行列式运算:⎪⎪⎪⎪⎪⎪a1a2a3a4=a1a4-a2a3,将函数f(x)=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m>0),若所得图象对应的函数为偶函数,则m 的最小值为( )A.π8B.π3C.56πD.2π36.已知f(x)=sin x ,x ∈R ,g(x)的图象与f(x)的图象关于点⎝⎛⎭⎫π4,0对称,则在区间[0,2π]上满足f(x)≤g(x)的x 的取值范围是( )A.⎣⎡⎦⎤π4,3π4 B .⎣⎡⎦⎤3π4,7π4C.⎣⎡⎦⎤π2,3π2D.⎣⎡⎦⎤3π4,3π2 7.若函数f(x)=sin(2x +φ)(φ∈[0,π])是偶函数,则φ=________. 8.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________.9.函数f(x)=2sin ωx(ω>0)在⎣⎡⎦⎤0,π4上单调递增,且在这个区间上的最大值是3,那么ω等于________.10.已知函数y =sin ⎝⎛⎭⎫π3-2x ,求:(1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.11.已知函数f(x)=2sin2⎝⎛⎭⎫π4x +9π4. (1)求函数f(x)的最小正周期; (2)计算f(1)+f(2)+…+f(2 013)的值.12.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f(x)的单调递增区间.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
数学高考模拟考试试题.doc
数学高考模拟考试试题第I 卷(共60分)参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=一.选择题:本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项.(1)如果}12|{Z n n x x S ∈+==,,}14|{Z k k x x T ∈±==,,那么( )(A )S T (B )T S (C )T S = (D )T S ≠ (2)已知)(x f y =是偶函数,当0>x 时,)1()(x x x f +=;当0<x 时,=)(x f ( ) (A ))1(x x -- (B ))1(x x -(C ))1(x x +- (D ))1(x x +(3)a 、b 、c 成等比数列,关于x 的方程02=++c bx ax ( )(A )一定有两个不相等的实数根 (B )一定有两个相等的实数根 (C )一定没有实数根 (D )以上三种情况均可能出现 (4)要得到)42sin(π+-=x y 的图象,只需将)2sin(x y -=的图象( )(A )向左平移4π个单位 (B )向右平移4π个单位 (C )向左平移8π个单位(D )向右平移8π个单位(5)已知A(2,1),B(3,5)把按向量(3,2)平移后得到一个新向量.那么下列各向量中能与垂直的是( )(A )(– 4,1) (B )(21,31-) (C )(– 4,6) (D )(0,– 2) (6)设α、β是二次方程0622=++-k kx x 的两实根,则22)1()1(-+-βα有( )(A )最小值为449- (B )最小值为8(C )最小值为449-最大值为8 (D )无最值(7)不论m 为何实数,直线012)1(=++--m y x m 恒过一定点.此点是( )(A )(2,3) (B )(– 2,3) (C )(0,21-) (D )(– 2,0)(8)已知直线经过点(– 1,2)且方向向量为(2,3),则直线方程为( ) (A )073=+-y x (B )0723=+-y x(C )0432=-+y x(D )0832=+-y x(9)抛物线2ax y =的准线方程为2=y ,则a 的值为( )(A )81(B )81-(C )8 (D )– 8(10)对于空间任意一点O 和不共线的三点A 、B 、C ,且有OC z OB y OA x OP ++=(x 、y 、z ∈R ),则1=++z y x 是四点P 、A 、B 、C 共面的( ) (A )必要条件 (B )充分条件 (C )充要条件 (D )既不充分又不必要条件 nx )21(-⊂ ≠⊂ ≠(A )1或 – 1 (B )1(C )n 2(D )– 1(12)一个学生通过某种英语测试的概率是21,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( ) (A )3 (B )4 (C )5 (D )6二.填空题:本大题共4小题,每小题4分,共16分.答案须填在题中横线上.(13)将一组数据1x ,2x ,…,n x 改变为c x -1,c x -2,…,c x n -,则前后方差的关系为 .(14)1)1(2++=x x y 在点P( – 1,1)处的切线方程为 .(15)一动圆与圆05622=+++x y x 外切,同时与圆091622=--+x y x 内切,则动圆圆心的轨迹是 .(16)5张票中有两张奖票(后抽的人不知道先抽的人抽出的结果),则第4人抽到奖票的概率为 .高考模拟考试试题数 学第I 卷(共60分)一.选择题:本大题共12小题,每题5分,共60分.1~5. 5~10. 11~12.第II 卷(共90分)二.填空题:本大题共4小题,每小题4分,共16分.13. 14.15. 16. 三.解答题:本大题共6小题,共74分.解答写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知函数) sin(ϕω+=x A y R x ∈(其中0>A ,0>ω)的图象在y 轴右侧的第一个最高点(函数取最大值的点)为M (2,22),与x 轴在原点右侧的第一个交点为N (6,0).求这个函数的解析式.这个函数的图象怎样变换就得到函数x y sin =的图象?姓 名 班 级某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).⑴求至少3人同时上网的概率;⑵至少几人同时上网的概率小于0.3?(19)(本小题满分12分)设A、B为球面上两点,它们分别在北纬60º和30º的纬线圈上,且经度差为90º,设地球半径为R,求A、B两点的球面距离.已知:m 、n 是平面α内的两条相交直线,直线l 与α的交点为B ,且m l ⊥,n l ⊥. 求证:α⊥l . (21)(本小题满分12分)讨论直线1-=kx y 与双曲线122=-y x 的公共点个数.设矩形ABCD (AB>CD )的周长为24,把它关于AC 折起来,AB 折过去后交DC 于P .设AB = x .求△ADP 的最大面积及相应的x 值. ABCB ′PD。
高三数学高考模拟试卷
高三数学高考模拟试卷以下是一份高三数学高考模拟试卷。
请注意,试题内容并非绝对标准,并且可能涵盖了多种题型。
一、选择题1. 已知集合 A = { x x^2 - 5x + 4 > 0 }, B = { x x^2 - 2ax + a + 2 < 0 }, 若 B ⊆ A,则实数 a 的取值范围是 ( )A. (-∞, -1] ∪ [5, +∞)B. (-∞, -1) ∪ (5, +∞)C. (-1, 5)D. [-1, 5]2. 若α 是锐角,且cos(α + π/4) = √3/2,则α = _______.A. π/6B. π/4C. π/3D. 5π/63. 设 x > 0, y > 1,且 1/x + 1/y = 2,则 (x + 2)/(x + y) 的最小值为 ( )A. 3B. 4C. 5D. 64. 下列函数中,最小值为4的是( )A. y = x + 4/xB. y = sin x + 4/sin x (0 < x < π)C. y = e^x + 4/e^xD. y = log3x + 4/log3x5. 下列说法中正确的是( )A.命题 "若 x^2 = 1,则 x = 1" 的否命题为 "若 x^2 = 1,则x ≠ 1"B.命题 "若 x = y,则 sin x = sin y" 的逆命题为假命题C.命题 "若 x > y,则 x^2 > y^2" 的逆命题为真命题D.命题 "若 x = -1,则 x^2 + x - 2 > 0" 的否命题为真命题二、填空题6. 若直线 l₁:x - my - 1 = 0 与直线 l₂:mx - 3y - 2m = 0 (m≠0) 的夹角为α,则tan α 的最大值为 _______.7. 若函数 f(x) = x - a + a 在[0, +∞) 上是增函数,则实数 a 的取值范围是_______.8. 下列结论中正确的是(填序号) _______.① "x > 2" 是 "x^2 - 3x + 2 > 0" 的充分条件;② "x < -1" 是 "x^3 + x^2 - x < 0" 的必要条件;③ "a > b" 是 "a^3 > b^3" 的充要条件;④ "ab > c" 是 "a > c/b" 的充分条件.9. 若 f(x) = (1/3)x^3 - (1/2)ax^2 + bx 在区间 [-1,1] 上是单调减函数,则a +b 的最大值为 _______.10. 一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可以是_______.。
高考数学模拟试题及答案
高考数学模拟试题及答案[说明:以下是一份数学模拟试卷,包含20道题目和对应的答案解析。
请按照试题进行答题,并在答案解析中查看详细的解题过程。
希望对您的备考有所帮助。
]Part I 选择题(共10题,每题4分,共40分)1. 若集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},则A∩B = ( )。
A. {1, 2, 3, 4}B. {3, 4}C. {3, 4, 5, 6}D. {}2. 函数 y = 2^(x-1) 的图像是一条( )。
A. 直线B. 双曲线C. 抛物线D. 指数曲线3. 已知函数 f(x) = x^2 - 3x + 2,则 f(3) = ( )。
A. -2B. 0C. 2D. 44. 若sinθ = 0.8,0<θ<π/2,则cosθ = ( )。
A. 0.2B. 0.4C. 0.6D. 0.85. 已知一边长度为 a 的正方形的对角线长为 d,则 a/d = ( )。
A. √2B. 1C. 1/√2D. √2/26. 若函数 f(x) 为奇函数,则 f(-2) = ( )。
A. -f(2)B. f(2)C. 0D. -f(-2)7. 一枚硬币正面向上的概率为 0.6,抛掷该枚硬币10次,正面向上次数是 4 的概率是 ( )。
A. 0.2508B. 0.3024C. 0.2016D. 0.40328. 空间直角坐标系中,已知直线L1: 3x + 4y + λ = 0,L2: 2x + 5y - 1 = 0 相交于点 P(1, -1),则λ = ( )。
A. 3B. 4C. -3D. -49. 设复数 z 满足 |z-1| = |z-2|,则 z 等于 ( )。
A. 1B. 2C. 3D. 410. 已知对数函数y = logₐx 的图像经过点 (2, 1/3),则 a 的值为 ( )。
A. 2B. 1/2C. 1/3D. 3Part II 解答题(共10题,每题6分,共60分)11. 已知三角形 ABC,其中∠B = 100°,∠C = 25°,AD 为高,垂足为 D。
高考模拟卷数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,是奇函数的是:A. \( f(x) = x^2 + 1 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = |x| \)D. \( f(x) = x^3 \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,4)关于直线y=x的对称点是:A. (3,4)B. (4,3)C. (3,-4)D. (-4,3)4. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( ab \)的最大值为:A. 12B. 15C. 18D. 205. 在三角形ABC中,若\( \angle A = 30^\circ \),\( \angle B = 45^\circ \),则\( \angle C \)的度数是:A. 105°B. 120°C. 135°D. 150°6. 已知函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(2) \)的值为:A. 3B. 5C. 7D. 97. 在等比数列中,若前三项分别为2,6,18,则该数列的公比是:A. 2B. 3C. 6D. 98. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = \frac{\sqrt{3}}{2} \),则\( \tan(\alpha + \beta) \)的值为:A. 1B. -1C. 0D. 无解9. 已知圆的方程为\( x^2 + y^2 - 4x + 6y - 12 = 0 \),则该圆的半径是:A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3)到直线\( 2x - y + 1 = 0 \)的距离是:A. 1B. 2C. 3D. 411. 若\( \log_2(x - 1) = 3 \),则\( x \)的值为:A. 3B. 4C. 5D. 612. 若\( \frac{a}{b} = \frac{c}{d} \),且\( a \neq 0 \),\( b \neq 0 \),\( c \neq 0 \),\( d \neq 0 \),则\( \frac{a + c}{b + d} \)的值为:A. 1B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)13. 函数\( f(x) = x^3 - 3x \)的极值点是______。
高三数学模拟试卷含答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4x + 1$,则$f(x)$的对称中心为()A. $(0, 1)$B. $(1, 2)$C. $(1, 1)$D. $(1, 0)$2. 若$a, b, c$是等差数列,且$a + b + c = 9$,$ab + bc + ca = 15$,则$abc$的值为()A. 9B. 12C. 18D. 243. 已知圆的方程为$x^2 + y^2 - 4x - 6y + 9 = 0$,则该圆的半径为()A. 1B. 2C. 3D. 44. 函数$f(x) = \frac{x^2 - 4x + 3}{x - 1}$的图像与直线$y = x$的交点个数是()A. 1B. 2C. 3D. 45. 在直角坐标系中,若点$A(2, 3)$关于直线$y = x$的对称点为$B$,则点$B$的坐标为()A. $(3, 2)$B. $(2, 3)$C. $(3, 3)$D. $(2, 2)$6. 已知函数$f(x) = \log_2(x + 1)$,若$f(3) = f(x)$,则$x$的值为()A. 2B. 3C. 4D. 57. 若$\sin\alpha + \cos\alpha = \sqrt{2}$,则$\sin\alpha\cos\alpha$的值为()A. $\frac{1}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{1}{\sqrt{2}}$D. 08. 在三角形ABC中,$AB = 3$,$AC = 4$,$BC = 5$,则$\cos B$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$9. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_3 = 18$,$S_6 = 54$,则数列的公差为()A. 2B. 3C. 4D. 510. 若函数$f(x) = x^3 - 6x^2 + 9x$在区间$[1, 3]$上单调递增,则$f(2)$的值为()A. 1B. 3C. 5D. 7二、填空题(本大题共5小题,每小题10分,共50分)11. 函数$f(x) = x^2 - 2x + 1$的图像的对称轴为______。
高三数学高考模拟试题及答案
高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。
则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。
则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。
2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。
3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。
2021年高考数学模拟训练卷 (123)(含答案解析)
2021年高考数学模拟训练卷 (123)一、单项选择题(本大题共12小题,共60.0分)1.设集合P={1,2,3,4,5},Q={3,4,5,6,7}.则P∩Q=()A. {1,2}B. {3,4,5}C. {1,2,6,7}D. {1,2,3,4,5}2.若z是复数,且(3+z)i=1(i为虚数单位),则z为()A. −3+iB. 3+iC. −3−ID. 3−i3.经过A(4,0),B(2,0)两点,且圆心在直线x−y+1=0上的圆的方程为()A. (x−3)2+(y−4)2=17B. (x−4)2+(y−5)2=25C. (x−3)2+(y+4)2=17D. (x+4)2+(y+5)2=254.若α∈(−π2,0),且sin(−α)=35,则sin2α=()A. 1225B. 2425C. −2425D. −12255.函数y=e x(x2−3)的大致图象是()A. B.C. D.6.已知球O是直三棱柱ABC−A1B1C1的外接球,若AA1=AC=√2BC,BA=BC=1,则球O的体积为()A. 43π B. 323π C. 4π D. 9π27.将f(x)=cosx向右平移π6个单位,得到函数y=g(x)的图象,则g(π2)=()A. √32B. −√32C. 12D. −128. 矩形ABCD 中,BC =√2AB ,E 为BC 中点,将△ABD 沿BD 所在直线翻折,在翻折过程中,给出下列结论:①存在某个位置,BD ⊥AE ;②存在某个位置,BC ⊥AD ;③存在某个位置,AB ⊥CD ;④存在某个位置,BD ⊥AC .其中正确的是( )A. ①②B. ③④C. ①③D. ②④9. 某程序框图如图所示,则输出的S 等于( )A. 6B. 14C. 30D. 3210. 设抛物线y =14x 2的焦点为F ,直线l 交抛物线于A ,B 两点,|AF|=3,线段AB 的中点到抛物线的准线的距离为4,则|BF|=( ) A. 72 B. 5 C. 4 D. 311. 在△ABC 中,若sin(A −B)=1−2cosAsin(A +C),则△ABC 的形状为( )A. 等边三角形B. 直角三角形C. 钝角三角形D. 不含60°角的等腰三角形 12. 曲线上的点到直线y =x +1的最短距离是( )A. √2B. 2C. √22 D. 1二、填空题(本大题共3小题,共15.0分)13. 某企业甲、乙、丙三个生产车间的职工人数分别为120人,150人,180人,现用分层抽样的方法抽出一个容量为n 的样本,样本中甲车间有4人,那么此样本的容量n =______.14. 已知实数x ,y 满足约束条件{y ≤xx +y ≥2x ≤2,则2x −y 的最大值为______.15. 已知矩形ABCD 的边AB,AD 中点分别为E,F ,若AB =√10 ,AC⃗⃗⃗⃗⃗ ⋅BF ⃗⃗⃗⃗⃗ =2DE ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ,则EF ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =________.三、解答题(本大题共8小题,共87.0分)16.若双曲线x2−y2=1(b>0)的右焦点为(2,0),则b=__________.b217.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=−1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60人.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.(1)根据以上数据建立一个2×2列联表;(2)判断性别与休闲方式是否有关系.下面临界值表供参考:)(参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.如图,在四棱锥P−ABCD中,∠BAD=∠ADC=90°,且AB=2AD=2CD,E为PB的中点.(Ⅰ)求证:CE//平面PAD;(Ⅱ)若PC⊥平面ABCD,且PC=3,AB=4,求三棱锥P−AEC的体积.20.已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A、B两点(不同于点E),直线EA、EB分别交直线x=−2于点M、N.(1)求抛物线方程及其焦点坐标;(2)求证:以MN为直径的圆恰好经过原点.21. 已知函数f(x)=−x 2+3x −14,g(x)=x −(m +1)lnx −m x ,m ∈R .(1)求函数g(x)的极值;(2)若对任意x 1,x 2∈[1,e],f(x 1)−g(x 2)≤1恒成立,求m 的取值范围.22. 在直角坐标系xOy 中,曲线C 1的参数方程为为参数,α∈R),在以坐标原点为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 2:.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB|的值.23.已知函数f(x)=|x−1|.(Ⅰ)解关于x的不等式f(x)−|x|>0;(Ⅱ)若f(|a−4|+3)>f((a−4)2+1),求实数a的取值范围.【答案与解析】1.答案:B解析:解:∵P ={1,2,3,4,5},Q ={3,4,5,6,7},∴P ∩Q ={3,4,5}.故选:B .由P 与Q ,求出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.答案:C解析:本题主要考查复数代数形式的混合运算,属于基础题.解:∵(3+z)i =1,∴z =1i −3=−3−i ,故选C . 3.答案:A解析:本题考查圆的方程的求法,考查数学转化思想方法,是基础题.求出线段AB 的中垂线方程,联立两直线方程求出圆心坐标,进一步求得半径,则答案可求. 解:由已知可得圆心在AB 的中垂线上且在直线x −y +1=0上,线段AB 的中垂线方程为x =3,联立{x =3,x −y +1=0,解得{x =3,y =4,∴圆心坐标为(3,4),半径为r =√(3−4)2+(4−0)2=√17.∴所求圆的方程为(x −3)2+(y −4)2=17.故选:A .4.答案:C解析:本题主要考查二倍角的正弦公式,以及诱导公式、同角三角函数的基本关系的应用,属于基础题.利用诱导公式可得sinα=−35,再利用同角三角函数的基本关系可得cosα=45,最后利用二倍角的正弦公式,即可求得sin2α的值.解:若α∈(−π2,0),且sin(−α)=35=−sinα,即sinα=−35,cosα=√1−sin2α=45,∴sin2α=2sinαcosα=−2425,故选:C.5.答案:C解析:解:对函数f(x)求导得f′(x)=(x2+2x−3)e x.令f′(x)>0,即x2+2x−3>0,解得x<−3或x>1;令f′(x)<0,解得−3<x<1.所以,函数f(x)的单调递增区间为(−∞,−3)和(1,+∞),单调递减区间为(−3,1),排除A、B、D选项,故选:C.利用导数求出函数f(x)的单调区间,即可得出答案.本题考查函数图象的识别,解决本题的关键在于利用导数求函数的单调区间,考查推理能力,属于中等题.6.答案:A解析:解:由AC=√2BC,BA=BC=1,可得△ABC为直角三角形,由题意将此直三棱柱放在长方体中,可得过同一顶点的三条棱的长分别为:1,1,√2,设外接球的半径为R,则(2R)2=12+12+(√2)2=4,所以R=1,所以球的体积V=43πR3=43π⋅1=43π,故选:A.由题意可得△ABC为直角三角形,将直三棱柱ABC−A1B1C1放在长方体中,可得长方体的长宽高,由长方体的外接球的半径和棱长的关系可得外接球的半径,进而求出球的体积.本题考查直三棱柱的棱长与其外接球的半径之间的关系及球的体积公式,属于基础题.7.答案:C解析:解:将f(x)=cosx向右平移π6个单位,得到函数y=g(x)=cos(x−π6)的图象,则g(π2)=cos(π2−π6)=cosπ3=12,故选:C.由条件根据函数y=Asin(ωx+φ)的图象变换规律可得g(x)的解析式,从而求得g(π2)的值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.答案:C解析:解:如图所示,设AB=1,则BC=√2AB=√2,BD=√3;E为BC的中点,∴BE=CE,若存在某个位置,使得直线AC与直线BD垂直,则∵BD⊥AE,∴BD⊥平面AEC,从而BD⊥EC,这与已知矛盾,排除A;B,若存在某个位置,使得直线AB与直线CD垂直,则CD⊥平面ABC,平面ABC⊥平面BCD取BC中点M,连接ME,则ME⊥BD,∴∠AEM就是二面角A−BD−C的平面角,此角显然存在,即当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直,故B正确;C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,排除CD,由上所述,可排除D故选:B矩形ABCD中,BC=√2AB,E为BC中点,将△ABD沿BD所在直线翻折,在翻折过程中,给出下列结论:①存在某个位置,BD⊥AE;②存在某个位置,BC⊥AD;③存在某个位置,AB⊥CD;④存在某个位置,BD⊥AC.其中正确的是①③,故选:C.A,若存在某个位置,使得直线AC与直线BD垂直,可得BD⊥EC,这与已知矛盾,排除A;B,当A在底面上的射影位于BC的中点时,直线AB与直线CD垂直;C、D,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,从而平面ACD⊥平面BCD,即A在底面BCD上的射影应位于线段CD上,这是不可能的,本题主要考查了空间的线面和面面的垂直关系,翻折问题中的变与不变,空间想象能力和逻辑推理能力,有一定难度,属中档题.9.答案:B解析:解:模拟执行程序,可得S=0,i=1S=2,i=2不满足条件i≥4,S=6,i=3不满足条件i≥4,S=14,i=4满足条件i≥4,退出循环,输出S的值为14.故选:B.模拟执行程序,依次写出每次循环得到的S,i的值,当i=4时,满足条件i≥4,退出循环,输出S 的值为14.本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.10.答案:B解析:本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,是中档题.由题意画出图形,结合已知可得|AF|+|BF|=8,再由|AF|=3,得|BF|=5.x2可化为x2=4y,如图可知:解:抛物线C:y=14。
高考数学模拟复习试卷试题模拟卷2111 3
高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
(版)高考数学模拟题含答案
2021年高考数学模拟试题〔理科〕考前须知:1.本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复第一卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.答复第二卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每题5分,共60分。
在每题给出的四个选项中只有一项为哪一项符合题目要求的1.集合{2230},,那么= Axx x B{2,3,4}(C R A)BA.{2,3 }B.{2,3,4}C.{2}D.2.i是虚数单位,z1,那么zz=3iA.5B.10C.1D.11053.执行如下图的程序框图,假设输入的点为P(1,1),那么输出的n值为A.3B.4C.5D.6ED CFA B〔第3题〕〔第4题〕4.如图,ABCD是边长为8的正方形,假设DE1uuuruuurEC,且F为BC的中点,那么EAEF3高三数学〔理〕科试题〔第1页共6页〕A.10B.12C.16D.20x y25.假设实数x,y满足y x1,那么z2x8y的最大值是y0A.4B.8C.16D.32一个棱锥的三视图如右图,那么该棱锥的外表积为A.1658232B.32532C.16232D.165162327.5张卡片上分别写有0,1,2,3,4,假设从这5张卡片中随机取出2张,那么取出的2张卡片上的数字之和大于5的概率是A.1B.1C.3D.4 1051058.设S n是数列{a n}的前n项和,且a11,a n1S n S n1,那么a5=A.1B.1C.1D.1 303020209.函数fxln 1x的大致图像为1xPQRSTUVWXYZAA10.底面为矩形的四棱锥P ABCD的体积为8,假设PA平面ABCD,且PA3,那么四棱锥BB ABCD的外接球体积最小值是高三数学〔理〕科试题〔第2页共6页〕A .25B.125C.125D.256611. 抛物线y 22px p 0,过焦点且倾斜角为30°的直线交抛物线于 A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,那么抛物线的准线方程为A .x1B.x3C .x3D.x32312. 函数f(x)x 2 lnx 〔x2 〕,函数g(x) x 1 ,直线yt 分别与两函数交于22A,B 两点,那么 AB 的最小值为A .1B .1C .3D .222二.填空题:本大题共 4小题,每题 5分,共20分.13. 设样本数据x 1,x 2,...,x 2021的方差是 5,假设y i 3x i 1〔i1,2,...,2021〕,那么y 1,y 2,...,y 2021的方差是________14. 函数f(x)sin x3cos x 〔0 〕,假设3 ,那么方程f(x)1在(0,)的实数根个数是_____15. 我国的?洛书?中记载着世界上最古老的一个幻方:将1,2,... ,9填入33的方格内,使三行、三列、两对角线的三个数之和都等于 15 (如图〕.一般地,将连续的正整数 1,2,3,,n 2填入nn 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做 n 阶幻方. 记n 阶幻方的一条对角线上数的和为N n (如:在3阶幻方中,N 3 15),那么N 5=_______16.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c1,Cπ.3高三数学〔理〕科试题〔第 3页共6页〕假设sinC s in(A B) sin2B,那么ABC的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每题12分,第22—23题为选考题,考生根据要求做答,每题10分.17.(本小题总分值12分)设数列{a n}是公差为d的等差数列.(Ⅰ)推导数列{a n}的通项公式;(Ⅱ)设d0,证明数列{a n1}不是等比数列.18.(本小题总分值12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,,[5,10),[10,15),[15,20),[20,25],得到如下图的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取 2人,并用X表示随机抽取的2人中男生的人数,求X的分布列和数学期望.19.(本小题总分值12分)在直三棱柱ABC A1B1C1中,AB AC AA12,BA CA。
高考数学模拟复习试卷试题模拟卷221 3
高考模拟复习试卷试题模拟卷【高频考点解读】 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【热点题型】题型一 等比数列基本量的运算例1 (1)设{an}是由正数组成的等比数列,Sn 为其前n 项和.已知a2a4=1,S3=7,则S5等于( )A.152B.314C.334D.172(2)在等比数列{an}中,若a4-a2=6,a5-a1=15,则a3=________. 答案 (1)B (2)4或-4(2)设等比数列{an}的公比为q(q≠0),则⎩⎪⎨⎪⎧a1q3-a1q =6,a1q4-a1=15,两式相除,得q 1+q2=25,即2q2-5q +2=0,解得q =2或q =12.所以⎩⎪⎨⎪⎧a1=1,q =2或⎩⎪⎨⎪⎧a1=-16,q =12.故a3=4或a3=-4.【提分秘籍】等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n ,q ,an ,Sn ,一般可以“知三求二”,通过列方程(组)可迎刃而解.【举一反三】(1)已知正项数列{an}为等比数列,且5a2是a4与3a3的等差中项,若a2=2,则该数列的前5项的和为( )A.3312B .31C.314D .以上都不正确(2)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.答案 (1)B (2)-12(2)因为等差数列{an}的前n 项和为 Sn =na1+n n -12d , 所以S1,S2,S4分别为a1,2a1-1,4a1-6. 因为S1,S2,S4成等比数列,所以(2a1-1)2=a1·(4a1-6),解方程得a1=-12. 题型二 等比数列的性质及应用例2、(1)在等比数列{an}中,各项均为正值,且a6a10+a3a5=41,a4a8=5,则a4+a8=________. (2)等比数列{an}的首项a1=-1,前n 项和为Sn ,若S10S5=3132,则公比q =________. 答案 (1)51 (2)-12解析 (1)由a6a10+a3a5=41及a6a10=a28,a3a5=a24,得a24+a28=41.因为a4a8=5,所以(a4+a8)2=a24+2a4a8+a28=41+2×5=51. 又an>0,所以a4+a8=51. (2)由S10S5=3132,a1=-1知公比q≠1, 则可得S10-S5S5=-132.由等比数列前n 项和的性质知S5,S10-S5,S15-S10成等比数列,且公比为q5, 故q5=-132,q =-12. 【提分秘籍】(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则am·an =ap·aq”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【举一反三】(1)设等比数列{an}的前n 项和为Sn ,若S6∶S3=1∶2,则S9∶S3=________.(2)在等比数列{an}中,若a1a2a3a4=1,a13a14a15a16=8,则a41a42a43a44=________. (3)设数列{an}、{bn}都是正项等比数列,Sn 、Tn 分别为数列{lgan}与{lgbn}的前n 项和,且SnTn =n2n +1,则logb5a5=________. 答案 (1)3∶4 (2)1024 (3)919解析 (1)由等比数列的性质:S3,S6-S3,S9-S6仍成等比数列,于是(S6-S3)2=S3·(S9-S6), 将S6=12S3代入得S9S3=34.(2)方法一 a1a2a3a4=a1·a1q·a1q2·a1q3 =a41·q6=1,①a13a14a15a16=a1q12·a1q13·a 1q14·a1q15 =a41·q54=8,②②÷①:a41·q54a41·q6=q48=8⇒q16=2, 又a41a42a43a44=a1q40·a1q41·a1q42·a1q43=a41·q166=a41·q6·q160 =(a41·q6)·(q16)10=1·210=1024.方法二 由性质可知,依次4项的积为等比数列,设公比为p , 设T1=a1·a2·a3·a4=1, T4=a13·a14·a15·a16=8, ∴T4=T1·p3=1·p3=8⇒p =2. ∴T11=a41·a42·a43·a44 =T1·p10=210=1024.(3)由题意知S9T9=lg a1·a2·…·a9lg b1·b2·…·b9 =lga95lgb95=lga5lgb5 =logb5a5=919.题型三等比数列的判定与证明例3、已知数列{an}的前n 项和为Sn ,且an +Sn =n. (1)设cn =an -1,求证:{cn}是等比数列; (2)求数列{an}的通项公式.【提分秘籍】(1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证. 【举一反三】设数列{an}的前n 项和为Sn ,已知a1=1,Sn +1=4an +2. (1)设bn =an +1-2an ,证明:数列{bn}是等比数列; (2)求数列{an}的通项公式.【高考风向标】【高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+526c =-,则b =. 【答案】1【解析】因为三个正数a ,b ,c 成等比数列,所以(25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.【高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =. 【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6. 1.(·重庆卷)对任意等比数列{an},下列说法一定正确的是( )A .a1,a3,a9成等比数列B .a2,a3,a6成等比数列C .a2,a4,a8成等比数列D .a3,a6,a9,成等比数列 【答案】D【解析】因为在等比数列中an ,a2n ,a3n ,…也成等比数列,所以a3,a6,a9成等比数列. 2.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】1【解析】 因为数列{an}是等差数列,所以a1+1,a3+3,a5+5也成等差数列.又 a1+1,a3+3,a5+5构为公比为q 的等比数列,所以a1+1,a3+3,a5+5为常数列,故q =1.3.(·广东卷)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.【答案】504.(·全国卷) 等比数列{an}中,a4=2,a5=5,则数列{lg an}的前8项和等于( ) A .6 B .5 C .4 D .3 【答案】C【解析】设数列{an}的首项为a1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a1q3=2,a1q4=5,解得⎩⎨⎧a1=16125,q =52,所以an=a1qn -1=16125×⎝⎛⎭⎫52n -1=2×⎝⎛⎭⎫52n -4,所以lg an =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝⎛⎭⎫4×52=4.5.(·湖北卷) 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.【解析】(1)设数列{an}的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d)2=2(2+4d),化简得d2-4d =0,解得d =0或d =4. 当d =0时,an =2;当d =4时,an =2+(n -1)·4=4n -2.从而得数列{an}的通项公式为an =2或an =4n -2.6.(·新课标全国卷Ⅱ)已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式; (2)证明1a1+1a2+…+1an <32.【解析】(1)由an +1=3an +1得an +1+12=3⎝⎛⎭⎫an +12.又a1+12=32,所以⎩⎨⎧⎭⎬⎫an +12是首项为32,公比为3的等比数列,所以an +12=3n2,因此数列{an}的通项公式为an =3n -12.(2)证明:由(1)知1an =23n -1. 因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即1an =23n -1≤13n -1.于是1a1+1a2+…+1an ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32.所以1a1+1a2+…+1an <32.7.(·山东卷) 已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.【解析】 (1)因为S1=a1,S2=2a1+2×12×2=2a1+2, S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1, 所以an =2n -1. (2)由题意可知, bn =(-1)n -14nanan +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1. 当n 为偶数时,Tn =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1.当n 为奇数时,Tn =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以Tn =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或Tn =2n +1+(-1)n -12n +1 8.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.9.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-12【解析】∵S2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,S1,S2,S4成等比数列, ∴(2a1-1)2=a1(4a1-6),解得a1=-12.10.(·天津卷)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1}, 集合A ={x|x =x1+x2q +…+xnqn -1,xi ∈M ,i =1,2,…,n}.(1)当q =2,n =3时,用列举法表示集合A.(2)设s ,t ∈A ,s =a1+a2q +…+anqn -1,t =b1+b2q +…+bnqn -1,其中ai ,bi ∈M ,i =1,2,…,n.证明:若an<bn ,则s<t.【高考押题】1.对任意等比数列{an},下列说法一定正确的是( ) A .a1,a3,a9成等比数列 B .a2,a3,a6成等比数列 C .a2,a4,a8成等比数列 D .a3,a6,a9成等比数列 答案 D解析 设等比数列的公比为q ,因为a6a3=a9a6=q3,即a26=a3a9,所以a3,a6,a9成等比数列.故选D. 2.等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于( ) A .6B .5C .4D .3 答案 C解析 数列{lgan}的前8项和S8=lga1+lga2+…+lga8=lg(a1·a2·…·a8)=lg(a1·a8)4 =lg(a4·a5)4=lg(2×5)4=4.3.等比数列{an}的前n 项和为Sn ,已知S3=a2+10a1,a5=9,则a1等于( ) A.13B .-13C.19D .-19 答案 C解析设等比数列{an}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,q2=9,又a5=a1q4=9,所以a1=1 9.4.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是()A.13B.12C.11D.10答案B解析设该等比数列为{an},其前n项的积为Tn,则由已知得a1·a2·a3=3,an-2·an-1·an=9,(a1·an)3=3×9=33,∴a1·an=3,又Tn=a1·a2·…·an-1·an,Tn=an·an-1·…·a2·a1,∴T2n=(a1·an)n,即7292=3n,∴n=12.5.设各项都是正数的等比数列{an},Sn为前n项和,且S10=10,S30=70,那么S40等于() A.150B.-200C.150或-200D.400或-50答案A6.等比数列{an}中,Sn表示前n项和,a3=2S2+1,a4=2S3+1,则公比q为________.答案3解析由a3=2S2+1,a4=2S3+1得a4-a3=2(S3-S2)=2a3,∴a4=3a3,∴q =a4a3=3.7.等比数列{an}的前n 项和为Sn ,公比不为1.若a1=1,则对任意的n ∈N*,都有an +2+an +1-2an =0,则S5=________.答案 11解析 利用“特殊值”法,确定公比.由题意知a3+a2-2a1=0,设公比为q ,则a1(q2+q -2)=0.由q2+q -2=0解得q =-2或q =1(舍去),则S5=a11-q51-q=1--253=11. 8.设等比数列{an}的各项均为正数,其前n 项和为Sn ,若a1=1,a3=4,Sk =63,则k =________. 答案 6解析 设等比数列{an}公比为q ,由已知a1=1,a3=4,得q2=a3a1=4.又{an}的各项均为正数,∴q =2.而Sk =1-2k 1-2=63, ∴2k -1=63,解得k =6.9.已知等差数列{an}满足a2=2,a5=8.(1)求{an}的通项公式;(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4,求{bn}的前n 项和Tn.解 (1)设等差数列{an}的公差为d ,则由已知得⎩⎪⎨⎪⎧a1+d =2,a1+4d =8.∴a1=0,d =2. ∴an =a1+(n -1)d =2n -2.(2)设等比数列{bn}的公比为q ,则由已知得q +q2=a4,∵a4=6,∴q =2或q =-3.∵等比数列{bn}的各项均为正数,∴q =2.∴{bn}的前n 项和Tn =b11-qn 1-q =1×1-2n 1-2=2n -1.10.已知数列{an}的前n 项和为Sn ,且Sn =4an -3(n ∈N*).(1)证明:数列{an}是等比数列;(2)若数列{bn}满足bn +1=an +bn(n ∈N*),且b1=2,求数列{bn}的通项公式.(1)证明 依题意Sn =4an -3(n ∈N*),n =1时,a1=4a1-3,解得a1=1.因为Sn =4an -3,则Sn -1=4an -1-3(n≥2),所以当n≥2时,an =Sn -Sn -1=4an -4an -1,整理得an =43an -1.又a1=1≠0,所以{an}是首项为1,公比为43的等比数列.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值; (2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.(2)因为x>0,所以x 1+y2=2x212+y22≤2[x2+12+y22]2, 又x2+(12+y22)=(x2+y22)+12=32,所以x 1+y2≤2(12×32)=324,即(x 1+y2)max =324.(3)令t =x -1≥0,则x =t2+1,所以y =t t2+1+3+t =t t2+t +4. 当t =0,即x =1时,y =0;当t>0,即x>1时,y =1t +4t +1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t +1≤15, 即y 的最大值为15(当t =2,即x =5时y 取得最大值).【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( )A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( ) A .1+2B .1+3C .3D .4答案 (1)B (2)C题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________.(2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________.答案 (1)18 (2)6解析 (1)(常数代换法)∵x>0,y>0,且x +y =1, ∴8x +2y =(8x +2y )(x +y)=10+8y x +2x y ≥10+28y x ·2x y =18.当且仅当8y x =2x y ,即x =2y 时等号成立,∴当x =23,y =13时,8x +2y 有最小值18.(2)由已知得x =9-3y 1+y. 方法一 (消元法)∵x>0,y>0,∴y<3,∴x +3y =9-3y 1+y+3y =121+y +(3y +3)-6≥2121+y·3y +3-6=6, 当且仅当121+y=3y +3, 即y =1,x =3时,(x +3y)m in =6.方法二 ∵x>0,y>0,9-(x +3y)=xy =13x·(3y)≤13·(x +3y 2)2,当且仅当x =3y 时等号成立.设x +3y =t>0,则t2+12t -108≥0,∴(t -6)(t +18)≥0,又∵t>0,∴t≥6.故当x =3,y =1时,(x +3y)min =6.【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.答案 (1)D (2)5解析 (1)x +2y =(x +2y)(2x +1y )=2+4y x +xy +2≥8,当且仅当4y x =xy ,即x =2y 时等号成立.由x +2y>m2+2m 恒成立,可知m2+2m<8,即m2+2m -8<0,解得-4<m<2.(2)方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y)(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5.(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是() A .(-∞,-1) B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)(2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________. 答案 (1)B (2)[-83,+∞)解析 (1)由f(x)>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x ,即x =log32时,等号成立),∴k +1<22,即k<22-1.(2)对任意x ∈N*,f(x)≥3恒成立,即x2+ax +11x +1≥3恒成立,即知a≥-(x +8x )+3. 设g(x)=x +8x ,x ∈N*,则g(2)=6,g(3)=173.∵g(2)>g(3),∴g(x)min =173.∴-(x +8x )+3≤-83,∴a≥-83,故a 的取值范围是[-83,+∞).【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max ,a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性.【举一反三】已知函数f(x)=x +p x -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.答案 94解析 由题意得x -1>0,f(x)=x -1+p x -1+1≥2p +1,当且仅当x =p +1时取等号,因为f(x)在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.答案 10【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q 2%,若p>q>0,则提价多的方案是________.答案 (1)B (2)乙解析 (1)设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x8=20.当且仅当800x =x 8(x>0),即x =80时“=”成立,故选B.(2)设原价为1,则提价后的价格为方案甲:(1+p%)(1+q%),方案乙:(1+p +q 2%)2,因为1+p%1+q%≤1+p%2+1+q%2=1+p +q 2%,且p>q>0,所以1+p%1+q%<1+p +q 2%, 即(1+p%)(1+q%)<(1+p +q 2%)2,所以提价多的方案是乙.【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、4【答案】C 【解析】12121220022,22ab a b ab ab a b a b a b ab+=∴=+≥⨯=∴≥,>,>,,(当且仅当2b a =时取等号),所以ab 的最小值为22,故选C.2.【高考重庆,文14】设,0,5a ba b ,则1++3a b 的最大值为________.【答案】233.【高考福建,文5】若直线1(0,0)x y a b a b +=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5【答案】C【解析】由已知得111a b +=,则11=()()a b a b a b +++2+b a a b=+,因为0,0a b >>,所以+2b a b a a b a b ≥⋅,故4a b +≥,当=b a a b,即2a b ==时取等号. 4.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c的最小值为________.【答案】-25.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 【答案】2【解析】Tr +1=Cr 6(ax2)6-r·⎝⎛⎭⎫b x r =Cr 6a6-r·brx12-3r ,令12-3r =3,得r =3,所以C36a6-3b3=20,即a3b3=1,所以ab =1,所以a2+b2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a2+b2的最小值是2.6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元【解析】设底面矩形的长和宽分别为a m ,b m ,则ab =4(m2).容器的总造价为20ab +2(a +b)×10=80+20(a +b)≥80+40ab =160(元)(当且仅当a =b 时等号成立).故选C.【答案】C7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________. 【解析】由log4(3a +4b)=log2ab 得3a +4b =ab , 且a >0,b >0,∴4a +3b =1, ∴a +b =(a +b)·⎝⎛⎭⎫4a +3b =7+⎝⎛⎭⎫3a b +4b a ≥ 7+23a b ·4b a =7+43,当且仅当3a b =4b a 时取等号.【答案】7+438.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.10 【答案】B【解析】由题意可知,F ⎝⎛⎭⎫14,0.设A(y21,y1),B(y22,y2),∴OA →·OB →=y1y2+y21y22=2,解得y1y2=1或y1y2=-2.又因为A ,B 两点位于x 轴两侧,所以y1y2<0,即y1y2=-2. 当y21≠y 2时,AB 所在直线方程为y -y1=y1-y2y21-y22(x -y21)=1y1+y2(x -y21),令y =0,得x =-y1y2=2,即直线AB 过定点C(2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y1|+12×2|y2|+12×14|y1|=18(9|y1|+8|y2|)≥18×29|y1|×8|y2|=3,当且仅当9|y1|=8|y2|且y1y2=-2时,等号成立.当y21=y22时,取y1=2,y2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B.9.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.94【答案】C10.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22【答案】B 【解析】因为-6≤a≤3,所以(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6,即a =-32时等号成立,故选B.【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 答案 C解析 当x>0时,x2+14≥2·x·12=x , 所以lg(x2+14)≥lgx(x>0), 故选项A 不正确;运用基本不等式时需保证“一正”“二定“三相等”, 而当x≠kπ,k ∈Z 时,sinx 的正负不定, 故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x2+1=1,故选项D 不正确.2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .8 答案 C解析 由a>0,b>0,ln(a +b)=0得⎩⎪⎨⎪⎧a +b =1,a>0,b>0.故1a +1b =a +b ab =1ab ≥1a +b22=1122=4.当且仅当a =b =12时上式取“=”.3.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .2 答案 D解析 ∵x>0,y>0,x +2y≥22xy , ∴4xy -(x +2y)≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0, ∴2xy ≥2,∴xy≥2.4.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b2 答案 A5.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 答案 C解析 由题意知:z =x2-3xy +4y2,则z xy =x2-3xy +4y2xy =x y +4y x -3≥1,当且仅当x =2y 时取等号,此时z =xy =2y2. 所以x +2y -z =2y +2y -2y2=-2y2+4y =-2(y -1)2+2≤2. 6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.答案 a≥15 解析x x2+3x +1=13+x +1x, 因为x>0,所以x +1x ≥2(当且仅当x =1时取等号), 则13+x +1x≤13+2=15,即x x2+3x +1的最大值为15,故a≥15.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________. 答案 9解析 (x2+1y2)(1x2+4y2)=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.答案 209.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值. 解 (1)y =x +82x -3=-(3-2x 2+83-2x )+32.当x<32时,有3-2x>0, ∴3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y≤-4+32=-52.故函数的最大值为-52. (2)∵0<x<2,∴2-x>0,∴y =x 4-2x =2·x 2-x ≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x 4-2x 的最大值为 2.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高考数学模拟复习试卷试题模拟卷2021
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
【答案】①④⑤ 【解析】∵等边三角形ABC 的边长为2,a AB 2=∴=21=⇒,故①正确;∵+=+=2∴2=⇒=b BC ,故②错误,④正确;由于b a b BC a AB 与⇒==,2夹角为 120,故③错误;又∵04)21(2144)4()4(=+-⨯⨯⨯=+⋅=⋅+=⋅+∴BC b a ⊥+)4(,故⑤正确 因此,正确的编号是①④⑤1.(·辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a·b =0,b·c =0,则a·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p)∧(綈q)D .p ∨(綈q)【答案】A【解析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.2.(·新课标全国卷Ⅰ] 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.【答案】90°【解析】由题易知点O 为BC 的中点,即BC 为圆O 的直径,故在△ABC 中,BC 对应的角A 为直角,即AC 与AB 的夹角为90°.3.(·四川卷)平面向量a =(1,2),b =(4,2),c =ma +b(m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 【答案】2【解析】c =ma +b =(m +4,2m +2),由题意知a·c |a|·|c|=b·c |b|·|c|,即(1,2)·(m +4,2m +2)12+22=(4,2)·(m +4,2m +2)42+22,即5m +8=8m +202,解得m =2.4.(·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12 【解析】如图所示,DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=⎝⎛⎭⎫12-23AB →+23AC →,又DE →=λ1AB →+λ2AC →,且AB →与AC →不共线, 所以λ1=12-23,λ2=23, 即λ1+λ2=12.5.(·陕西卷)设a ,b 为向量,则“|a·b|=|a||b|”是“a ∥b”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】由已知中|a·b|=|a|·|b|可得,a 与b 同向或反向,所以a ∥b.又因为由a ∥b ,可得|cos 〈a ,b 〉|=1,故|a·b|=|a|·|b||cos 〈a ,b 〉|=|a|·|b|,故|a·b|=|a|·|b|是a ∥b 的充分必要条件.6.(·四川卷) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos2A -B 2cos B -sin (A -B)sin B +cos(A +C)=-35.(1)求cos A 的值;(2)若a =4 2,b =5,求向量BA →在BC →方向上的投影.【解析】(1)由2cos2A -B 2cos B -sin(A -B)sin B +cos(A +C)=-35,得 [cos(A -B)+1]cosB -sin(A -B)sinB -cosB =-35, 即cos(A -B)cosB -sin(A -B)sinB =-35, 则cos(A -B +B)=-35,即cos A =-35. (2)由cos A =-35,0<A<π,得sinA =45.由正弦定理,有a sin A =b sinB ,所以sinB =bsinA a =22. 由题意知a>b ,则A>B ,故B =π4.根据余弦定理,有(4 2)2=52+c2-2×5c×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去),故向量BA →在BC →方向上的投影为|BA →|cosB =22.7.(·四川卷)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.【答案】2 【解析】根据向量运算法则,AB →+AD →=AC →=2AO →,故λ=2.8.(·重庆卷)在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【答案】D【解析】根据条件知A ,B1,P ,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,如图.设|AB1|=a ,|AB2|=b ,点O 的坐标为(x ,y),则点P 的坐标为(a ,b),由|OB1→|=|OB2→|=1得⎩⎪⎨⎪⎧(x -a )2+y2=1,x2+(y -b )2=1,则⎩⎪⎨⎪⎧(x -a )2=1-y2,(y -b )2=1-x2. 又由|OP →|<12,得(x -a)2+(y -b)2<14,则1-x2+1-y2<14,即x2+y2>74①. 又(x -a)2+y2=1,得x2+y2+a2=1+2ax≤1+a2+x2,则y2≤1; 同理由x2+(y -b)2=1,得x2≤1,即有x2+y2≤2②. 由①②知74<x2+y2≤2,所以72<x2+y2≤ 2. 而|OA →|=x2+y2,所以72<|OA →|≤2,故选D. 【高考押题】1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是 () A .一条线段 B .一段圆弧 C .两个孤立点D .一个圆解析 由单位向量的定义可知,如果把平面上所有的单位向量平移到相同的起点上,则所有的终点到这个起点的距离都等于1,所有的终点构成的图形是一个圆.答案 D2.设a 是非零向量,λ是非零实数,下列结论中正确的是()A .a 与λa 的方向相反B .a 与λ2a 的方向相同C .|-λa|≥|a|D .|-λa|≥|λ|·a解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa|=|-λ||a|,由于|-λ|的大小不确定,故|-λa|与|a|的大小关系不确定;对于D ,|λ|a 是向量,而|-λa|表示长度,两者不能比较大小.答案 B3.设a ,b 都是非零向量,下列四个条件中,使a |a|=b|b|成立的充分条件是() A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a|=|b|解析 a |a|表示与a 同向的单位向量,b |b|表示与b 同向的单位向量,只要a 与b 同向,就有a|a|=b|b|,观察选项易知C 满足题意.答案 C4.在△ABC 中,AD →=2DC →,BA →=a ,BD →=b ,BC →=c ,则下列等式成立的是 () A .c =2b -a B .c =2a -b C .c =3a 2-b 2D .c =3b 2-a2解析 依题意得BD →-BA →=2(BC →-BD →),BC →=32BD →-12BA →=32b -12a ,故选D. 答案 D5.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为() A.12B.13C.14D .1解析 ∵M 为BC 上任意一点,∴可设AM →=xAB →+yAC →(x +y =1).∵N 为AM 的中点,∴AN →=12AM →=12xAB →+12yAC →=λAB →+μAC →,∴λ+μ=12(x +y)=12. 答案 A6.向量e1,e2不共线,AB →=3(e1+e2),CB →=e2-e1,CD →=2e1+e2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.解析 由AC →=AB →-CB →=4e1+2e2=2CD →,且AB →与CB →不共线,可得A ,C ,D 共线,且B 不在此直线上.答案 ④7.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a ,b 表示). 解析 由AN →=3NC →,得4AN →=3 AC →=3(a +b),AM →=a +12b ,所以MN →=34(a +b)-⎝⎛⎭⎫a +12b =-14a +14b.答案 -14a +14b8.设a ,b 是两个不共线向量,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为________.解析 ∵BD →=BC →+CD →=2a -b ,又A ,B ,D 三点共线,∴存在实数λ,使AB →=λBD →,即⎩⎪⎨⎪⎧2=2λ,p =-λ,∴p =-1.答案 -19.已知向量a =2e1-3e2,b =2e1+3e2,其中e1,e2不共线,向量c =2e1-9e2,问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?10.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.解 AG →=AB →+BG →=AB →+λBE →=AB →+λ2(BA →+BC →)=⎝⎛⎭⎫1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB →+λ2AC →=(1-λ)a +λ2b.又AG →=AC →+CG →=AC →+mCF →=AC →+m 2(CA →+CB →)=(1-m)AC →+m 2AB →=m 2a +(1-m)b ,∴⎩⎨⎧1-λ=m 2,1-m =λ2,解得λ=m =23,∴AG →=13a +13b. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。