模式识别-原始模型 数据结构

合集下载

模式识别(国家级精品课程讲义).ppt

模式识别(国家级精品课程讲义).ppt
模式判定: 是一种集合运算。用隶属度将模糊集合划分
为若干子集, m类就有m个子集,然后根据择近原 则分类。
29
1.1 概述-模式识别的基本方法
理论基础:模糊数学 主要方法:模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
式中,p(xi )是 X 的第 i 个分量的 边缘
密度。随机矢量 X 的均值矢量 的各
分量是相应的各随机分量的均值。
47
1.3 随机矢量的描述
(二)随机矢量的数字特征:
⑵ 条件期望
在模式识别中,经常 以类别 i 作为条件,在这
种情况下随机矢量 X 的条件期望矢量定义为
i E[ X | i ] X n xp(x | i )dx
34
1.1 概述-模式识别的发展简史
1929年 G. Tauschek发明阅读机 ,能够阅 读0-9的数字。
30年代 Fisher提出统计分类理论,奠定了 统计模式识别的基础。
50年代 Noam Chemsky 提出形式语言理论— —傅京荪提出句法/结构模式识别。
60年代 L.A.Zadeh提出了模糊集理论,模糊 模式识别方法得以发展和应用。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
概念

特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一
个矢量
x

模式识别详细PPT

模式识别详细PPT
迁移学习在模式识别中广泛应用于目标检测、图像分类等任务,通过将预训练模 型(如ResNet、VGG等)应用于新数据集,可以快速获得较好的分类效果。
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有

模式识别的基本概念

模式识别的基本概念

模式识别的基本概念模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。

随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。

(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。

什么是模式和模式识别?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。

而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。

模式识别的研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。

前者是生理学家、心理学家、生物学家、神经生理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。

一个计算机模式识别系统基本上是由三个相互关联而又有明显区别的过程组成的,即数据生成、模式分析和模式分类。

数据生成是将输入模式的原始信息转换为向量,成为计算机易于处理的形式。

模式分析是对数据进行加工,包括特征选择、特征提取、数据维数压缩和决定可能存在的类别等。

模式分类则是利用模式分析所获得的信息,对计算机进行训练,从而制定判别标准,以期对待识别模式进行分类。

有两种基本的模式识别方法,即统计模式识别方法和结构(句法)模式识别方法。

统计模式识别是对模式的统计分类方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。

利用模式与子模式分层结构的树状信息所完成的模式识别工作,就是结构模式识别或句法模式识别。

模式识别的应用包括文字识别,语音识别,指纹识别等。

模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。

模式识别系统的典型构成

模式识别系统的典型构成

模式识别系统的典型构成
模式识别系统是一种通过学习和识别数据模式来实现自动分类、识别、预测的智能系统。

在实际应用中,模式识别系统通常由以下几个构成部分组成:
1. 数据预处理模块:对原始数据进行采样、滤波、归一化、特征提取等处理,以便于后续的模式识别处理。

2. 特征选择和提取模块:从预处理后的数据中提取出最具有代表性的特征,以便于后续的分类器能够更准确地进行分类。

3. 分类器模块:根据特征向量对数据进行分类或聚类。

常用的分类器包括:K-最近邻算法、支持向量机、决策树、神经网络等。

4. 学习算法模块:利用已知类别的数据样本训练模型,使模型能够对未知数据进行分类或聚类。

5. 性能评估模块:对模型进行评估,包括准确率、召回率、F1值、ROC曲线等指标,以便于优化模型的参数和算法。

6. 应用模块:将模式识别模型应用到实际场景中,比如图像识别、语音识别、信号识别等。

以上是模式识别系统的常见构成部分,不同的应用场景可能会有所差异,但都是基于以上构成部分进行设计和实现的。

- 1 -。

(模式识别)第六章结构模式识别

(模式识别)第六章结构模式识别

例1:G = (VN,VT, P, S)
– VN = {S, B, C} VT = {a, b, c} – P: S→aSBC, CB→BC,S→abC,bB→bb,
bC→bc, cC→cc
S →aSBC→aabCBC→abbBCC→aabbCC→aabbcC →aabbcc 由文法G产生的语言L(G)={anbncn|n≥0}
• 每个待识别的样本都可用若干基元按照一 定的文法组合成的句子表示
• 同一类别的样本可用相同的文法描述 • 当表示某个样本的一个句子中的每个基元
都被识别后,通过句法分析可判断出该句 子是否符合某一个类别的文法。
模式基元
• 信号基元 • 图像基元
– 链码和模板 – 曲线段
链码和模板
• Freeman链码和模板可以用来描述图形的边界和 骨架。
• 字符串的运算
– X=a1a2…am, Y=b1b2…bn, 则X+Y=a1a2…amb1b2…bn
– X+ λ= λ+X=X
• 字符串结构描述适合于串联结构
结构化描述之图形
• 图形G是一个有序对G={N,R},N表示分 析集合,R表示边长集合,通俗的说, N表示图中的顶点,R表示联接顶点的 弧
– 无约束型(0型)文法 – 前后文有关型(1型)文法 – 前后文无关型(2型)文法 – 正规(3型)文法
• L(G)表示由文法G产生的语言
无约束型(0型)文法
• P:α→β,其中α∈V+,β∈V*,α,β无约束
• 由0型文法产生的语言称为0型语言
• 例2:G = (VN,VT, P, S) – VN = {S, A, B},VT = {a, b, c} – P: S→aAbc, Ab→bA, Ac→Bbcc bB→Bb, aB→aaA, aB→λ

数据结构在人工智能和机器学习中的应用

数据结构在人工智能和机器学习中的应用

数据结构在人工智能和机器学习中的应用1.引言人工智能(Artificial Intelligence,简称AI)和机器学习(Machine Learning,简称ML)是当今科技领域的热门话题。

随着计算机技术的发展,数据成为了AI和ML的关键资源,而数据结构则扮演了重要的角色。

本文将探讨数据结构在人工智能和机器学习中的应用。

2.树结构在决策树算法中的应用决策树是一种常见的机器学习算法,用于解决分类和回归问题。

决策树可以通过树结构表示数据和决策过程。

树的每个节点代表一个特征属性,而边表示属性值的选择。

利用树结构可以实现高效的特征选择和分类过程。

3.图结构在图神经网络中的应用图神经网络(Graph Neural Networks,简称GNN)是一种在图数据上进行学习和推理的深度学习模型。

图数据通常由节点和边构成,而图结构可以帮助模型捕捉节点之间以及节点与边之间的关系。

通过合理的图数据表示和图结构的建模,GNN 可以提高对图数据的学习能力。

4.队列和栈在搜索算法中的应用搜索算法是AI中常用的技术之一,用于寻找最优解或近似最优解。

在搜索过程中,队列和栈结构常被用来保存待搜索的节点或状态。

队列(先进先出)常用于广度优先搜索算法,而栈(后进先出)通常用于深度优先搜索算法。

这些数据结构能够有效地组织搜索过程,提高搜索效率。

5.哈希表在模式识别中的应用哈希表是一种高效的数据结构,用于将键值对存储和查询。

在模式识别任务中,哈希表可以帮助我们快速检索特征向量或图片等数据。

通过将数据映射到哈希表的键,我们可以快速地查找并匹配输入数据与已有的模式。

6.链表在数据预处理中的应用数据预处理是机器学习中常用的步骤之一,用于清洗、转换和归一化原始数据。

链表是一种常见的数据结构,可以帮助我们处理和组织数据。

例如,在数据清洗过程中,我们可以使用链表来删除无效或重复的数据项,同时保持数据的有序性。

7.堆和优先队列在排序算法中的应用排序算法是数据结构中的经典问题,也是机器学习中常用的操作之一。

模式识别方法简述

模式识别方法简述

XXX大学课程设计报告书课题名称模式识别姓名学号院、系、部专业指导教师xxxx年 xx 月 xx日模式识别方法简述摘要:模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的( 数值的、文字的和逻辑关系的) 信息进行处理和分析, 以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分。

模式识别研究主要集中在两方面,一是研究生物体( 包括人)是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法.前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。

关键词:模式识别;模式识别方法;统计模式识别;模板匹配;神经网络模式识别模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。

随着2 0 世纪4 0 年代计算机的出现以及5 0 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动.(计算机)模式识别在2 0 世纪6 0 年代初迅速发展并成为一门新学科。

模式识别研究主要集中在两方面,一是研究生物体( 包括人)是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下,如何用计算机实现模式识别的理论和方法.前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。

模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系.它与人工智能、图像处理的研究有交叉关系.例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题.又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术.模式识别是一种借助计算机对信息进行处理、判别的分类过程。

模式识别概念原理及其应用

模式识别概念原理及其应用
数字识别是指利用计算机技术自动识别和分析手 写数字的能力。
详细描述
手写数字识别系统通过采集手写数字图像,提取特征 并转换为数字格式,然后与预定义的标准数字进行匹 配,实现数字的自动识别。该技术广泛应用于邮政编 码、支票和银行票据等领域的自动化处理。
医学影像诊断
总结词
医学影像诊断是指利用医学影像技术获取人体内部结构 和功能信息,进而对疾病进行诊断和治疗的过程。
结构模式识别
总结词
基于结构分析和语法规则的模式识别方法,通过建立输入数据的结构模型进行分 类和识别。
详细描述
结构模式识别通过分析输入数据的结构和语法规则,建立相应的结构模型,然后 根据这些模型对输入数据进行分类和识别。常见的结构模式识别方法包括句法分 析、语法制导的翻译等。
模糊模式识别
总结词
基于模糊逻辑和模糊集合论的模式识别方法,通过建立模糊隶属度函数进行分类和识别。
02 模式识别的基本原理
特征提取
特征提取
01
从原始数据中提取出具有代表性的特征,以便更好地分类和识
别。
特征选择
02
选择与分类任务最相关的特征,去除无关或冗余的特征,提高
分类准确率。
特征变换
03
将特征进行变换,使其更适应分类器的需求,提高分类性能。
分类器设计
分类器设计
根据不同的分类任务和数据集,设计合适的分类器。
详细描述
语音识别在智能语音助手、语音搜索、语音 导航、智能家居等领域有广泛应用。通过语 音识别技术,用户可以更方便地与设备进行 交互,提高用户体验和效率。
生物特征识别
总结词
生物特征识别是利用个体独特的生物特征进 行身份认证和识别的技术。
详细描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3.1 String Grammars
Define a formal string grammar as a quadruple G = (T, N, P, S): T is a set of symbols, called terminal symbols, corresponding in the case of the patterns to the set of primitives, also called pattern alphabet. The set of strings built with the elements of T is usually denoted T+ + (6-5) 1 2 n i
Structural Pattern Recognition
Chapter 6
6 Structural Pattern Recognition 6.1 6.2 6.3 6.4 Pattern Primitives Structural Representations Syntactic Analysis Structural Matching
Curve segments Images described by curve segments, particularly line segments, can be obtained by applying edge detectors to them. They are usually called shape primitives or image silhouette primitives.
6.1 Pattern Primitives
6.1.1 Signal Primitives
a piecewise linear approximation of a signal is by the most popular method of signal decomposition.Set a signal s(x) that the approximate by a piecewise linear function h(x) with d segments. The approximation error is:
E =
d
∑ ∑
i =1
x j ∈ hi
s ( x j ) − hi ( x j )
(6-1)
where an appropriate norm, usually the Chebychev norm or the Euclidian norm, is used to evaluate the deviations of s(xj) from hi(xj).
6.3.2 Picture Description Language
This is the approach of the picture description language, PDL, which provides an adequate representation of two- dimensional patterns. In PDL each primitive has two attaching points, tail and head, where it can be linked to other primitives. The set of terminals includes four binary operators and one unary operator that can be used to join primitives as shown in Table 6.1.
Chain Code and Templates
Figure 6.1 (a) Octal primitives (top) and templates (bottom); (b) Binary image with contour line segments according to the octal primitives
Figure 6.2 (a) Image of a tank (toy model); (b) Image contours detected by an edge detection algorithm
6.2 Structural Representations
6.2.1 Strings 6.2.2 Graphs 6.2.3 Trees
1.
T = {a a La ; a ∈T , n ≥ 1}
A formal language L is a subset of , constituted by strings obeying certain rules.
2. N is a set of class symbols, also called non-terminal symbols, i.e., symbols that denote classes of elements of T. The sets T and N are disjointed and their union, V =T ∪N constitutes the language vocabulary. 3. P is a set of syntactic rules, known as production rules, used to generate the strings. Each rule is represented as:
Chain code constitutes an easy way of encoding a two- dimensional curve, It consists of following the curve from a specified starting point and, for each line segment, connecting the grid points that fall closest to the curve. The grid point connections are then coded according to a set of octal primitives.. Classic templates are starting from the highest vertical grid cell that is not empty, one can follow the contour in a clockwise direction, selecting the template that best corresponds with the current contour cell.
6.1.2 Image Primitives Image primitives can be obtained through the application of a large variety of image analysis techniques, such as image segmentation, edge detection, contour following and medial axis transformation.
Figure 6.3 primitives and relations used to describe capital letters (a) and labelled digraphs for the letters R and E (b).
6.2.3 Trees A tree is an undirected graph with no closed loops (acyclic graph) and with a special node, the root node, with in-degree of zero and every other node with outdegree ≥1, except the terminal or leaf nodes, which have out-degree zero
6.2.1 Strings
A string is an ordered sequence of symbols, each symbol representing a primitive. A string x is then a sequence of symbols of T represented as:
Table 6.1. PDL operators and their meaning.
6.3.3 Grammar Types
The following relations exist for these four types of grammars: G0 ⊃ G1⊃ G2 ⊃ G3. This is called the Chomsky' hierarchy, named after Noam Chomsky whose contribution to the formal language theory was capital.
6.3 Syntactic Analysis
Syntactic analysis is the approach to structural pattern recognition based on the theory of formal languages. The use of grammars to describe patterns is advantageous, given the well-developed body of knowledge in this area and the standardized way one can apply the same approach in many different circumstances.
x = aa2 Lam, 1
相关文档
最新文档