深基坑监测技术方案

合集下载

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

深基坑监测方案

深基坑监测方案

目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。

十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。

十一、监测人员配备............................. 错误!未定义书签。

十二、监测资料的提交........................... 错误!未定义书签。

一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。

建设地点: 四川省乐山市夹江县南岸乡。

通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。

占地面积1956.19㎡, 建筑面积4298.00㎡。

建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。

二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。

基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。

四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、引言深基坑施工是建筑工程中常见的一项重要工作,为了确保施工的安全和质量,监测方案的制定和实施显得尤为重要。

本文将介绍深基坑施工监测方案的编制过程和关键内容,以期为相关工程提供参考和指导。

二、监测目标深基坑施工监测的目标是全面了解基坑周边土体的变形和沉降情况,及时掌握并评估施工过程中可能出现的安全隐患。

监测方案应包括以下几个方面的监测目标:1. 土体沉降监测:记录基坑周边土体的沉降变形情况,分析变形特点和趋势;2. 地下水位监测:监测地下水位变化,评估对基坑土体的影响;3. 周边建筑物、地下管线和交通设施的变形监测:关注基坑施工对周围环境的影响,及时发现并解决变形引起的安全问题。

三、监测方法和仪器设备为了实现监测目标,需要选择合适的监测方法和仪器设备。

根据实际情况,可以采用以下常用监测方法:1. 土体沉降监测:倾斜仪、自动水准仪、全站仪等;2. 地下水位监测:水位计、压力传感器等;3. 建筑物、地下管线和交通设施的变形监测:激光测距仪、位移传感器、摄像机等。

四、监测频率与数据处理监测的频率和数据处理是保证监测效果的重要环节。

监测频率应根据施工进度和环境变化确定,常见的频率包括日、周、月等。

数据处理应包括数据收集、校正、分析和报告输出等环节,确保数据的准确性和实时性。

五、监测预警和控制措施在实际监测过程中,如果发现土体变形或沉降超出预定的控制值,需要及时进行预警和采取有效的控制措施。

预警和控制措施应结合具体情况制定,包括但不限于以下几个方面:1. 增加监测频率,密切关注变形情况;2. 加固、加密现场监测设备;3. 调整施工方案,降低土体变形速度;4. 增加支护结构,提高基坑的稳定性;5. 及时向相关部门报告,寻求支持和解决方案。

六、监测报告为了记录监测的结果和过程,并及时向相关方进行汇报,监测方案中应包含监测报告的要求。

监测报告应包括以下几个方面的内容:1. 工程概况和监测目标的说明;2. 监测方法、设备和频率的描述;3. 监测数据的收集、校正和处理过程;4. 监测结果的分析和评估;5. 预警和控制措施的描述;6. 监测报告的格式和提交要求。

深基坑工程监测方案

深基坑工程监测方案

深基坑工程监测方案编制内容及要求东莞市建筑科学研究所2009-10-20封面XXXXXXX深基坑工程监测方案方案编制人:(签名实名制)时间审核人:时间审定人:时间公司名称XX年XX月XX日方案编制基本要求1.建设单位应委托具备相应资质的第三方对建筑基坑及边坡工程实施现场监测,监测单位不得与建设、施工、监理等单位有相互隶属或同属一个上级单位等利益关系。

2.监测单位编写监测方案前,建设单位应向监测单位提供监测工作所需的以下资料:(1)岩土工程勘察成果文件;(2)建筑基坑、边坡工程设计说明书及图纸;(3)建筑基坑、边坡工程影响范围内的道路、地下管线、地下设施及周边建筑物的有关资料。

3.监测单位编写监测方案前,应了解建设单位和相关单位对监测工作的要求,并进行现场踏勘,搜集、分析和利用已有资料,综合考虑基坑工程设计方案、建设场地的工程地质和水文地质条件、周边环境条件、施工方案等因素,在基坑工程施工前制定合理的监测方案。

4.监测单位编写的监测方案应与基坑设计方案对监测的要求相一致,并经建设、设计、监理等单位认可,必要时还需与市政道路、地下管线、人防等有关部门协商一致后方可实施。

5.对周边环境比较复杂的建筑基坑项目,建设单位或工程总承包单位及监测单位在施工前,应邀请相邻房屋业主、市政、供电、供水、供气、通讯、城建等有关单位,就设计、施工方案征询相关各方意见;对可能受影响的相邻建筑物、构筑物、道路、地下管线等作进一步检查;对可能发生争议的部位应拍照或摄像,布设记号,作好原始记录,并经双方确认。

目录1.监测依据工程监测依据主要应列出本监测方案依据的工程设计资料、合同承诺以及相关规范、标准、法律法规等。

(必须包括基坑支护设计方案,《建筑基坑支护技术规程》,《建筑基坑监测技术规范》,《建筑变形测量规范》,《》及建设单位提供的基坑周边环境(周边道路、管线、建筑物)图等)2.工程概况简要叙述如下内容:建设项目名称、建设地点、建设规模;工程的建设、勘察、设计、总承包和分包单位名称,以及建设单位委托的建设监理单位名称以及工期要求等。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。

该方案包括监测目标、监测内容、监测方法和监测频率等方面。

通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。

1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。

具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。

1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。

1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。

1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。

2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。

具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。

2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。

2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。

2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。

3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。

具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。

3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用

深基坑工程安全监测技术及工程应用深基坑工程是指在城市建设中,为了满足地下空间利用的需要,而挖掘的深度较大的基坑。

深基坑工程的建设需要面对许多安全隐患,如地下水位突然上升、土壤失稳、基坑结构坍塌等问题,因此需要对深基坑工程进行安全监测。

本文将介绍深基坑工程安全监测技术及工程应用的相关知识。

一、深基坑工程安全监测技术1.基坑周边环境监测技术基坑周边环境监测技术是指对基坑周围环境进行监测,包括地下水位监测、土壤位移监测、建筑物变形监测等。

地下水位监测是通过设置水位监测点,实时监测地下水位的变化情况,及时掌握地下水位的变化趋势;土壤位移监测是通过设置变形测点,实时监测土壤的位移情况,及时掌握土壤变形的情况;建筑物变形监测是通过设置变形监测点,实时监测周围建筑物的变形情况,及时掌握周围建筑物的变形情况。

通过这些监测手段,可以及时获取基坑周边环境的变化情况,保障基坑施工的安全。

2.基坑支护结构监测技术1.基坑开挖阶段的安全监测在基坑开挖阶段,地下水位的突然上升、土壤的失稳等情况都会对基坑施工造成影响。

因此需要对基坑周边环境进行监测,及时了解地下水位和土壤的变化情况;对基坑支护结构进行监测,及时了解支护结构的变形情况;对基坑开挖过程进行监测,及时了解开挖的深度和速度。

通过这些监测手段,可以及时发现并处理基坑开挖阶段的安全隐患,保障基坑开挖施工的安全。

三、结语深基坑工程的安全监测技术在工程应用中扮演着非常重要的角色。

通过对基坑周边环境、支护结构、施工过程等多方面的监测,可以及时发现并处理基坑施工中的安全隐患,保障基坑施工的安全。

随着科技的不断进步,深基坑工程安全监测技术也在不断创新和完善,为深基坑工程的安全施工提供了有力的保障。

希望在未来的深基坑工程中,安全监测技术能够发挥更大的作用,为城市建设的安全发展提供更多的支持。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。

本文将介绍深基坑施工监测方案。

二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。

三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。

监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。

2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。

水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。

3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。

常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。

这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。

四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。

监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。

五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。

应急措施可能包括停工、加固支护结构、调整施工方案等。

六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。

通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。

在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。

以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。

通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。

深基坑监控专项方案

深基坑监控专项方案

一、编制依据1. 《建筑深基坑基坑工程施工安全技术规范》(JGJ311-2013)2. 《建筑基坑工程监测技术规范》(GB50497-2009)3. 《建筑工程安全生产管理条例》(国务院令393号)4. 项目相关设计文件及施工图纸二、编制原则1. 安全第一、预防为主,确保深基坑施工安全;2. 科学监测、合理分析,为施工提供依据;3. 系统全面、责任明确,确保监控工作顺利进行。

三、监控范围1. 基坑支护结构:围护桩、支撑系统、锚杆、土钉等;2. 基坑周边环境:周边建筑物、地下管线、道路等;3. 基坑内部:土体、地下水、施工设备等。

四、监控内容1. 支护结构变形监测:包括桩顶水平位移、桩身水平位移、桩身倾斜等;2. 基坑周边环境监测:包括周边建筑物沉降、地下管线变形、道路沉降等;3. 基坑内部监测:包括土体位移、地下水位、施工设备运行状态等。

五、监控方法1. 测量方法:采用全站仪、激光测距仪、经纬仪等测量仪器进行现场测量;2. 监测频率:根据基坑深度、周边环境、施工进度等因素确定,一般每2-3天进行一次;3. 数据分析:对监测数据进行实时分析,判断基坑安全状态。

六、监控措施1. 建立健全监测体系,明确监控内容、方法和责任人;2. 加强现场巡查,及时发现异常情况;3. 对监测数据进行实时分析,及时调整施工方案;4. 制定应急预案,应对突发事件。

七、监控实施1. 监测人员:配备专业监测人员,负责监测工作的实施;2. 监测设备:配备先进的测量仪器,确保监测数据的准确性;3. 监测数据管理:建立监测数据档案,对监测数据进行归档、整理和分析;4. 监测报告:定期编制监测报告,对基坑安全状态进行评估。

八、结语深基坑监控专项方案的实施,旨在确保深基坑施工安全,降低事故风险。

各部门应高度重视,密切配合,共同做好深基坑监控工作,为工程建设保驾护航。

深基坑工程安全监测方案设计

深基坑工程安全监测方案设计

深基坑工程安全监测方案设计深基坑工程是城市建设中常见的一种基础工程,在建设过程中需要进行安全监测以确保工程施工的安全性和稳定性。

本文将就深基坑工程安全监测方案设计进行详细阐述,包括监测内容、监测方法和监测措施等方面。

一、监测内容深基坑工程的安全监测主要包括以下几个方面的内容:1. 地下水位监测:深基坑工程一般会进入地下水层,因此需要监测地下水位的变化情况,以及地下水位对工程稳定性的影响。

2. 地表沉降监测:深基坑施工可能会引起地表的沉降,因此需要对地表的沉降情况进行实时监测,以确保施工过程中地表的稳定性。

3. 地下水压力监测:深基坑施工会改变周围地下水的流动情况,导致地下水压力的变化,因此需要监测地下水压力的变化情况,以确保施工过程中地下水的稳定性。

4. 土体位移监测:深基坑施工会对周围土体产生较大的变形和位移,因此需要监测土体位移的情况,以及位移对周围建筑的影响。

5. 基坑支护结构监测:深基坑施工需要进行支护结构的设置,因此需要对支护结构的变形和位移进行监测,以确保支护结构的稳定性和安全性。

二、监测方法深基坑工程安全监测需要借助一系列的监测方法来实现,主要包括:1. 监测孔:通过在基坑周围设置监测孔,可以对地下水位、地下水压力、土体位移等进行监测。

监测孔需要合理设置,数量和位置要能够充分反映监测目的。

2. 自动观测站:在深基坑工程周围设置自动观测站,可以实现对多个监测点的实时监测。

自动观测站可以通过传感器等设备实现对各种监测参数的采集和记录。

3. 激光测距仪:可以用于测量地表沉降和土体位移等参数。

激光测距仪具有高精度和高速度的特点,适用于实时监测需求较为紧迫的监测项目。

4. 数字测网:通过在基坑周围布设一定数量的监测点,可以实现对地下水位、地下水压力和土体位移等参数的实时监测。

数字测网可以通过传感器和数据采集仪实现对各个监测点的数据采集和传输。

三、监测措施深基坑工程安全监测需要采取一系列的监测措施来确保监测的有效性和科学性,主要包括:1. 监测计划制定:在施工前制定详细的监测计划,包括监测目的、监测内容、监测方法和监测频率等,以确保监测工作的有序进行。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是指在建筑工地中挖掘较深的坑道,以便进行地下工程的施工。

由于深基坑施工涉及到地质条件、土壤力学和安全等多个方面的问题,因此需要制定一套完善的施工监测方案来确保施工的安全和顺利进行。

一、施工前准备在进行深基坑施工前,应先进行详细的工程勘察和地质勘探,以了解地下情况、土层状况和地下水位等信息。

同时,还需要制定相应的施工方案,明确施工过程和所需的监测参数。

二、监测设备和方法1. 地下水位监测为了及时了解地下水位的变化情况,需要在基坑周边设置水位监测点,使用水位计等设备定期进行监测,并记录监测数据。

在施工过程中,需要根据监测结果采取相应的排水措施,以保证基坑内部的稳定。

2. 基坑变形监测为了监测深基坑周边土体的变形情况,可以采用测量仪器和遥感技术。

常用的监测方法包括全站仪测量、激光扫描仪和遥感监测等。

这些监测设备可以实时记录基坑周边土体的位移和形态变化,并生成监测报告。

根据监测结果,可以及时调整施工方案,以减少变形对深基坑安全的影响。

3. 基坑周边建筑物的监测在深基坑施工过程中,需要密切关注周边建筑物的安全情况。

可以采用测量仪器和振动监测系统来监测周边建筑物的振动情况。

通过实时监测周边建筑物的振动变化,可以及时采取相应的措施来防止建筑物的受损。

三、监测结果处理和应对措施1. 数据分析和报告监测期间所采集到的数据需要进行统计和分析,以得出相应的结论。

监测报告应当清晰明了地陈述监测数据、变化趋势及其对施工安全的影响,并提出相应的建议和措施。

2. 应对措施根据监测结果和报告的分析,需要及时采取相应的措施来应对可能出现的问题。

比如,在地下水位上升时,可以增加排水量来维持基坑的稳定;在土体变形较大时,可以增加加固措施或调整施工工艺。

四、监测方案的调整和完善在施工过程中,如果监测结果发现有异常情况或超出了设计预期的范围,应及时调整监测方案,并完善施工措施。

监测方案的调整需要经过工程负责人和专业技术人员的评估,并及时通知相关人员进行相应的操作。

深基坑开挖监测方案

深基坑开挖监测方案

深基坑开挖监测方案深基坑的开挖是一个复杂而风险较高的施工过程,需要进行严格的监测,以确保开挖过程的安全和稳定。

下面是一个针对深基坑开挖的监测方案,旨在为开挖施工提供有力的支持和控制:一、监测参数和目标:1.地表沉降监测地表沉降是深基坑开挖的一种常见影响,因此需要进行实时监测,以掌握沉降速度和变化趋势。

监测目标是确保地表沉降量控制在可接受的范围内,避免对周边建筑和基础设施造成损害。

2.周边建筑物倾斜监测3.地下水位监测4.地面周边土体应力监测二、监测方法和技术:1.地表沉降监测可以采用全站仪、GNSS定位仪等设备对基坑周边地表进行定位测量,通过测量点与基准点的位置变化,计算出地表沉降量。

监测频率可根据施工进展和工况的变化进行调整,以保证监测的及时性和准确性。

2.周边建筑物倾斜监测可以采用倾斜仪、自动水平仪等设备对周边建筑物进行倾斜监测,通过监测倾斜角度和倾斜方向的变化,判断建筑物是否发生倾斜。

监测频率也可根据施工进展和工况的变化进行调整。

3.地下水位监测可以采用水位计、压力传感器等设备对基坑周边的井点和监测孔进行水位监测,及时获取地下水位的变化情况。

监测频率可根据施工进展和工况的变化进行调整。

4.地面周边土体应力监测可以采用应变计、标准屈光仪等设备对周边土体进行应力监测,通过监测应变值和变形分布,判断土体的力学性质和稳定状态。

监测频率可根据施工进展和工况的变化进行调整。

三、监测数据处理与分析:1.监测数据的实时处理和分析监测系统应能够实时采集、处理和分析监测数据,并及时生成监测报告和预警信息。

监测数据的处理和分析应该由专业的技术人员进行,以确保数据的准确性和可靠性。

2.监测数据的比对分析监测数据应与设计值、历史数据进行比对分析,判断开挖过程中是否存在异常情况,并及时采取相应措施进行调整。

比对分析结果可用于优化施工方案和风险预警。

3.监测数据的可视化展示监测数据应以图形、表格等形式进行可视化展示,使监测人员和管理人员能够直观地了解监测结果,并及时做出决策。

深基坑监测工程施工方案

深基坑监测工程施工方案

深基坑监测工程施工方案一、引言深基坑工程是指在建设中需要挖掘深度超过一定限度的地下工程。

由于深基坑施工对周围环境和土地稳定性造成较大影响,因此在施工过程中需要进行全面的监测和控制,以确保工程安全顺利进行。

本文将针对深基坑监测工程的施工方案进行详细介绍。

二、监测方案2.1 监测内容•地表位移监测•地下水位监测•周边建筑物变化监测•地基变位监测2.2 监测设备•测斜仪•水准仪•沉降仪•压力计2.3 监测频率•地表位移:每日监测•地下水位:每周监测•建筑物变化:每月监测•地基变位:每季度监测三、监测方案实施3.1 规划布点根据深基坑的具体位置和周边环境,确定监测设备的布点位置,并进行标记。

3.2 安装监测设备由专业技术人员安装监测设备,确保设备连接正确、稳定。

3.3 数据采集与传输监测设备将采集到的数据传输至监测中心,实现实时监测和数据记录。

3.4 数据分析与报告监测数据进行专业分析,生成监测报告,并根据监测结果调整施工方案。

四、应急预案4.1 突发情况处理一旦发现异常情况,立即启动应急预案,停止施工并通知相关部门。

4.2 紧急措施根据具体情况采取必要的紧急措施,保障工程安全和周边环境稳定。

五、施工总结深基坑监测工程在施工过程中必须严格按照监测方案执行,确保监测数据准确可靠。

只有做好监测工作,才能及时发现问题并采取相应措施,保障深基坑工程的安全顺利进行。

以上是深基坑监测工程施工方案的基本内容,希望对相关工程的实施提供一定的参考和指导。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案1. 引言深基坑施工是在城市建设过程中常见的一项工程,其施工期间可能会对周围土层、建筑物以及地下管线等造成一定的影响。

为了确保施工安全和保护周围环境,施工监测变得尤为重要。

本文将介绍深基坑施工监测的方案,包括监测目标、监测内容、监测方法以及监测频率等方面的内容。

2. 监测目标深基坑施工监测的主要目标是在施工期间及时掌握施工工程所产生的变形、沉降、位移等情况,以及对周围环境的影响,从而保证工程的施工安全和周围环境的保护。

3. 监测内容深基坑施工监测的内容包括但不限于以下几个方面:3.1 地表沉降地表沉降是深基坑施工中常见的问题,通常通过在施工周围设置水平测网进行监测。

监测点应均匀分布在周围区域,并根据施工进度及时调整监测点的位置。

3.2 结构变形深基坑施工对周围建筑物的结构产生一定的影响,因此需要对建筑物的变形情况进行监测。

监测点通常设置在建筑物的重要结构部位,如墙体、柱子等。

结构变形监测可以通过安装应变计、测斜仪、位移传感器等设备进行。

3.3 周围地下管线监测深基坑施工需要对周围的地下管线进行监测,特别是对于各种管线的位移情况需要及时掌握。

监测方法可以使用测斜仪、位移传感器等设备进行。

4. 监测方法深基坑施工监测可以结合传统的现场监测方法和现代的无线监测技术进行。

具体的监测方法包括但不限于以下几种:4.1 传统监测方法传统的监测方法通常包括现场测量和监测设备的安装。

现场测量通常使用水平仪、经纬仪、测距仪等设备进行,可以得到地表沉降、建筑物变形等数据。

监测设备的安装包括应变计、测斜仪、位移传感器等,需要专业的技术人员进行。

4.2 无线监测技术现代的无线监测技术可以大大提高监测的效率和准确性。

通过使用无线传感器网络,可以实现远程监测和数据传输,减少了人力和物力的投入。

无线监测技术可以实时监测变形情况,并通过数据分析提供预警和决策支持。

5. 监测频率深基坑施工监测的频率应根据工程的特点和监测目标来确定。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案
为了确保深基坑施工的安全和质量,必须采用可行的监测方案。


基坑施工监测方案是一种科学、有效的施工管理方法,包括监测目标、监测位置、监测范围、监测方法等方面的具体安排。

本文将介绍深基
坑施工监测方案的具体内容。

1. 监测目标
深基坑施工监测目标是对基坑周围的地下环境进行监测,旨在确保
施工期间和施工完成后相关建筑物和地下管线的稳定性。

具体监测目
标包括地下水位、基坑变形、建筑物沉降、周围结构的损伤等。

2. 监测位置
监测位置应该在基坑的四周及周边建筑物和地下管线,以监测监测
目标涉及的范围为主。

监测位置的选取应该具有代表性,并且应该能
够反映出所监测对象的变化趋势和变化量,比如监测孔的安装位置等。

3. 监测范围
监测范围应该包括设计基坑周围的地下环境,具体包括基坑内外的
地下水位、地表沉降和周边建筑物的变形。

监测范围可以通过现场勘
察和文献资料分析等方式来确定。

4. 监测方法
监测方法应该根据实际情况来确定,包括实测法、观测法、统计法、数学模型法等等。

其中最常用的是实测法和观测法。

实测法是在监测
点上安装相应的仪器,测量实际的物理量。

观测法是将监测目标的变化通过观测取得,比如地面沉降的观测通过地面标志物和水准仪器等来进行。

综上所述,深基坑施工监测方案需要根据实际情况来制定,并且需进行全面的监测范围的规划和精细化的监测点选定。

同时,监测方案的实施应该符合施工进度和经济效益的要求,以保证施工的顺利进行和项目的成功交付。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案1. 简介深基坑施工是指在建筑工程中,为了满足特定的建设需求而挖掘较深的土方体,常常用于地下停车场、地铁站等工程。

由于深基坑的施工过程中存在一定的风险和安全隐患,因此需要制定相应的监测方案,以确保施工的安全和稳定。

2. 监测目标深基坑施工监测的主要目标是对基坑边界土层的变形和支护结构的变化进行实时监测,以及对施工过程中可能出现的地下水位变化进行监测。

通过监测数据的分析和处理,可以及时掌握施工过程中的变形和变化情况,提前采取相应的措施,确保施工的安全性和稳定性。

3. 监测方法3.1 地表测量法地表测量法是最常用的监测方法之一,该方法通过使用全站仪或者自动水准仪进行测量,对基坑周边地表的沉降和变形情况进行监测。

通过定期测量并比对测量结果,可以及时发现地表下陷和倾斜等问题,从而采取相应的补救措施。

3.2 支护结构监测法深基坑的施工中常常采用支护结构,如钢支撑、混凝土墙等,用于稳定挖掘的土方体。

支护结构监测法主要通过在支护结构上安装压力应力计、位移传感器等监测设备,实时监测支护结构的受力变化和变形情况。

通过对监测数据的分析,可以确定支护结构的稳定性,并及时采取措施加固或修复。

3.3 地下水位监测法地下水位的变化对于深基坑施工来说具有重要意义,因为地下水的变化可能导致土层的液化和基坑的失稳。

地下水位监测一般使用浮标式或压力式水位计进行监测,通过实时监测地下水位的变化,可以及时采取抽水或加固等措施,以确保施工过程中的安全。

4. 数据处理与分析深基坑施工监测数据量大、频率高,需要进行有效的数据处理和分析,以获取有价值的信息。

数据处理和分析的方法包括数据计算、数据插值、数据挖掘等,通过这些方法可以得出土层变形的趋势和规律,提前预测可能发生的问题,并及时采取相应的措施。

5. 安全措施与应急预案深基坑施工监测方案中还应包含相关的安全措施和应急预案,以应对可能发生的意外情况。

如在施工过程中,如果发现土层变形超出安全值,或者支护结构出现破损等情况,应立即采取紧急措施,确保施工现场的安全。

深基坑监测技术方案85175

深基坑监测技术方案85175

曹妃甸工业区西港路管线工程基坑监测施工方案编制复核审核中交一公局第三工程有限公司曹妃甸工业区西港路管线工程项目部2016年4月2日1、工程概况施工现场紧邻已修完的道路和一个厂房(唐山鑫联环保科技有限公司),基坑开挖深度2.9米~9。

7米。

基坑支护体系:基坑支护采用双排拉森IV钢板桩支护,钢板桩根据基坑深度采用9米和12米长钢板桩,围檩采用双拼40工字钢,支撑采用Φ529mm钢管.基坑止水、排水体系:基坑止水采用钢板桩止水,基坑底部沿周边设置排水沟与集水井进行集水明排。

2、监测方案2。

1 监测设计依据1。

《建筑基坑工程监测技术规范》(GB50497-2009)2.《建筑基坑支护技术规程》(JGJ120-99)3.《工程测量规范》(GB50026—2007)5。

《建筑变形测量规范》(JGJ8—2007)6。

《建筑边坡工程技术规范》(GB50330—2002)7.《城市测量规范》(CJJ8—99)8.《全球定位系统城市测量技术规程》(CJJ73—97)9。

《建筑地基基础工程施工质量验收规范》(GB50202-2002)2。

2监测项目监测内容设置取决于工程本身的规模、施工方法、地质条件、环境条件等,本着经济、合理、有效的原则,根据设计要求并结合本工程特点,确定本工程的监测对象为:基坑支护结构。

依据本工程基坑支护设计方案确定本基坑工程的监测内容和项目如下:1)钢板桩顶水平位移2)钢板桩顶沉降3)周边建筑物和既有道路沉降观测4)支撑变形观测5)裂缝监测2.3钢板桩水平位移监测基坑开挖过程中,由于基坑受外部压力的影响,钢板桩会产生水平位移,因此在钢板桩顶上设置水平位移观测点.测点布置:沿两侧钢板桩顶均匀布设位移监测点,喷红漆编号做标记,监测点间距约5米.监测仪器:使用全站仪或者GPS;坡顶水平位移监测点布置图见附图。

2。

4钢板桩垂直位移监测钢板桩顶沉降是基坑基本监测项目,它最直接地反映支护结构外围的土体变形情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省铜仁市大兴水利枢纽工程
基坑监测
施工方案
编制
复核
审核
中国葛洲坝集团第五工程有限公司
铜仁市大兴水利枢纽工程输水工程土建及安装A(Ⅱ)标项目部
2016年11月25日
1、工程概况
施工现场包括两个主厂房(一级泵站及二级泵站),基坑开挖深度5.3米~13米。

基坑防护护体系:基坑防护采用材料布对边坡进行遮雨,防止雨水对边坡冲刷导致边坡土质松软进而滑坡。

基坑排水体系:基坑排水采用基坑底部沿周边设置排水沟与集水井进行集水明排。

2、监测方案
2.1 监测设计依据
1.《建筑基坑工程监测技术规范》(GB50497-2009)
2.《建筑基坑支护技术规程》(JGJ120-99)
3.《工程测量规范》(GB50026-2007)
4.《国家一、二等水准测量规范》(GB12897-2006)
5.《建筑变形测量规范》(JGJ8-2007)
6.《建筑边坡工程技术规范》(GB50330-2002)
7.《城市测量规范》(CJJ8-99)
8.《全球定位系统城市测量技术规程》(CJJ73-97)
9.《建筑地基基础工程施工质量验收规范》(GB50202-2002)
2.2 监测项目
监测内容设置取决于工程本身的规模、施工方法、地质条件、环境条件等,本着经济、合理、有效的原则,根据设计要求并结合本工程特点,确定本工程的监测对象为:基坑开挖边坡结构。

依据本工程基坑支护设计方案确定本基坑工程的监测内容和项目如下:
1)开挖边坡水平位移
2)开挖边坡沉降
3)周边建筑物和既有道路沉降观测
4)裂缝监测
2.3 开挖边坡水平位移监测
基坑开挖过程中,由于基坑受外部压力的影响,开挖边坡会产生水平位移,因此在开挖边坡顶上设置水平位移观测点。

测点布置:沿两侧开挖边坡顶均匀布设位移监测点,喷红漆编号做标记,监测点间距约5米。

监测仪器:使用全站仪或者GPS;坡顶水平位移监测点布置图见附图。

2.4 开挖边坡垂直位移监测
开挖边坡顶沉降是基坑基本监测项目,它最直接地反映支护结构外围的土体变形情况。

测点布置:点位借用开挖边坡顶水平位移监测点,在每次观测时将监测点顶端部作为高程测点。

监测仪器:使用全站仪1台,其精度为每公里中误差为±0.3mm,最小显示0.01mm,观测点精度不低于1mm;
监测方法:待点位稳固后,根据边坡开始施工后进行第一次观测。

2.5 周边建筑物及道路沉降观测
周边建筑物及道路沉降观测是基坑监测的最基本的项目,以防止基坑开挖过程中基坑外围土体的变化导致周边建筑物及道路的突然变形。

测点布置:建筑物沉降点布设在基坑周边建筑物的四周拐角处及各重要部位,道路沉降点布设在道路向内侧1米位置处,在基坑开挖前,在道路相应位置处打钢钉设置沉降观测点,间距5米,喷红漆编号做标记。

监测仪器:使用全站仪1台。

监测方法:待点位稳固后,根据边坡开始施工后进行第一次观测。

2.6 支撑钢管垂直位移监测
测点布置:测点布置在每个支撑钢管的中部,采用喷红漆编号做标记。

监测仪器:使用全站仪1台。

监测方法:待点位稳固后,根据边坡开始施工后进行第一次观测。

2.7 裂缝监测
在基坑周边应选择有代表性的裂缝进行布置,在基坑施工期间当发现新裂缝或原有裂缝有增大趋势时,应及时增设监测点。

每一条裂缝的测点至少设2组,在裂缝的最宽处及裂缝末端宜布设监测点。

2.8 巡视检查
作为仪器监测的补充,本基坑工程整个施工期内,将作巡视检查。

1.巡视检查内容
a.施工工况:基坑开挖分层高度、开挖分段长度是否与设计工况一致,有无超深、超长开挖;基坑场地地表水、地下水排放状况是否正常,基坑降水设施是否正常运转;基坑周围地面堆载是否有超载情况。

b.周边环境:邻近基坑及建筑物施工工况;基坑周边建筑物、道路及地表有无裂缝出现。

c.监测设施:基准点、测点有无破坏现场;有无影响观测工作的障碍物。

2.巡视检查方法和记录
主要依靠目测,可辅以锤、钎、量尺等工器以及摄像机进行。

每次巡视检查应对自然环境、基坑工程检查情况进行详细记录。

如发现异常,应及时通知现场负责人。

巡视检查记录应及时整理,并与当日监测数据综合分析,以便准确地评价基坑的工作状态。

3.施工组织
为做好监测工作,保证在施工过程中万无一失,选派有经验的测量专业人员组成测量技术领导班子,专门领导和研究施工测量技术工作,及测量过程中出现的各种问题。

具体作业要求如下:
a.固定主要观测人员;
b.固定观测仪器、标尺、钢尺及有关附件;
c.固定观测线路、观测方法,露天作业部分应固定观测时间;
d.每天观测前30分钟凉仪器和标尺;
e.前后视的标尺至仪器的距离尽可能相等。

3、监测期和监测频率
在每个测试项目受基坑开挖施工影响之前,必须先测得各项目的初始值。

本工程监测期限为土方开始开挖至下完管土方回填完成。

现场仪器监测的项目及频率如下:
现场仪器监测的监测频率
基坑开挖工程结束后,在厂房施工过程中,若监测数据较稳定可适当减小监测频度,延长监测间隔时间,至基坑回填完毕,结束基坑工程监测。

3.1 监测报警值及异常情况下的监测措施
3.1.1.本基坑工程监测项目的报警值见下表:
本基坑工程监测报警值
注:当监测数据的变化速率达到表中规定值或连续3天超过该值的70%,应立即报警。

3.1.2.异常情况下的监测措施:
(1).当监测数据异常时,分析其原因,必要时进行复测;
(2).当监测数据达到报警值时,在分析原因的同时,应预测出其变化趋势,并加大监测频率,必要时跟踪监测。

4、仪器保养和使用制度
1.测量仪器的使用:
(1)测量人员应负责和检查测量仪器的使用和保管情况;
(2)测量人员必须熟悉和掌握并严格遵守测量专业规程;
(3)凡新仪器使用之前必须进行检验校正,并根据说明书,充分了解仪器的性能后方可使用;
(4)精密测量仪器,必须由测量主管技术人员或在其具体指导下才能使用;
(5)测量人员在使用仪器施测过程中,必须坚守岗位,避免仪器受震、倾倒、和碰撞,雨天或烈日下测量应打伞。

2.测量仪器的维护:
(1)测量仪器必须由熟悉仪器性能和实践经验的专业技术人员经常定期维护。

要按计量管理规定及时送检。

(2)领用和归还仪器时,使用和保管人员应互相进行检查,发现问题及时提出。

(3)测量仪器主管人员必修掌握、检查、了解测量仪器使用、保管情况,要求每年登记一次,发现问题及时处理。

(4)建立测量仪器档案卡片制度,并随同仪器同事调动。

(5)测量仪器必须经公司主管业务部门组织鉴定后方可报废。

(6)增补购置测量仪器必须由公司技术部提出申请,报公司总工程师审批。

测量人员必须严格遵守各项管理制度,严格按施工规范的要求进行操作,认真踏实,不弄虚作假,不敷衍了事,测量数据及时准确,保证施工正常顺利进行,保证施工质量。

5、信息反馈图
当监测数据达到报警值时,应及时发出报警报表,及时采取加密观测措施,并对前期观测数据进行汇总分析,形成有效的信息反馈系统,反馈图见下图:。

相关文档
最新文档