核辐射测量原理课程总结
核辐射测量原理 (4)
闪烁探测器;
半导体探测器。
1
辐射探测的基本过程:
➢ 辐射粒子射入探测器的灵敏体积;
➢ 入射粒子通过电离、激发等效应而在探测器中沉积 能量;
➢ 探测器通过各种机制将沉积能量转换成某种形式的 输出信号。
辐射探测器学习要点(研究问题):
➢探测器的工作机制;
➢探测器的输出回路与输出信号;
电子或离子 电子或离子 电子或离 粒子流密度 的扩散常数 子密度
与气体的性质、温度和压强有关
14
若电离粒子的速度遵守麦克斯韦分布,则 扩散常数 D 与电离粒子的杂乱运动的平均
速度 v 之间的关系为:
D 1 v
3
平均自由程
电子的平均自由程和乱运动的平均速 度都比离子的大,因此其扩散系数比离子 的大,因而电子的扩散效应比离子的严重。
35
同一点引入正负电荷:
qq11 a
V0
e e i(t)
qq22 b
q q1 q q2
q1 q2 e
当同时在同一位置引入一离子对,则在
外回路流经的电流:i(t)= i+(t)+ i –(t)
流过外回路的总电荷量:△q+ +△q- e =36
结论:
(1)只有当空间电荷在极板间移动时,在外回 路才有电流流过,此时i(t)= i+(t)+i –(t),正、负
关。
37
引伸结论:
(1) 当入射粒子在探测器灵敏体积内产生
N个离子对,它们均在外加电场作用下 漂移,这时,产生的总电流信号是:
N
N
It
i
j
t
i
j
t
I
(t)
核辐射检测技术
3.核辐射检测的基本原理 根据粒子、射线与物质的相互作用原理,选择合适的辐
射源,使其射线与被测物质相互作用,由此产生的相应变化 由探测器检测出来,即可达到测量的目的。 如:β、X、γ射线穿过物质层后,由于物质的吸收作用,使射线的强度按
指数规律衰减,即:
I I0eh
式中 I、I0 —— 分别为出射和入射的辐射通量的强度; μ —— 吸收层的线性吸收系数; h —— 吸收层的厚度。
四、核辐射式物位计
在物位检测仪表中,一般都采用穿透能力强的γ射线, 其放射源采用Co60、Cs137等同位素。核辐射式物位计也是 基于物质对放射线的吸收特性设计的。
1.γ射线物位计的几种类型 γ射线物位计有许多种类型,如定点监视型、跟踪型、
度h 的关系为:
I I0emh
h 1 Ln I3.透射式γ射线测厚仪的应用----输煤量的测量
检测器安装位置示意图
为了使煤层保持一定形状以保证测量的准确性,输煤皮 带前方应安装一些刮板。测量用的三套放射源-核辐射探测 器输出的信号,经单片机的计算处理,可以求出煤层的截面 积,再测出传送皮带的速度,即可由单片机计算出煤的质量 流量并予以显示。如果把这个信号进行积分处理,还可以得 到总的耗煤量的信息。
147Pm 170Tm 192Ir 204Tl 210Po 288Pu 241Am
半衰期
5720 年 2.7 年 270 天 5.26 年 125 年 9.4 年 19.9 年 290 天 1.3 年 2.3 年 33.2 年 282 天
2.2 年 120 天 74.7 天 2.7 年 138 天 86 年 470 天
此关系式是设计穿透式厚度计和物位计的理论基础。
若引入质量吸收系数μm=μ/ρ(其中ρ为密度),则上 式可改写为:
核辐射剂量检测仪原理
核辐射剂量检测仪原理
核辐射剂量检测仪原理是通过测量环境中的核辐射剂量来保护人员和环境免受
核辐射的影响。
它可以用于核电厂、医学设施、核实验室、辐射监测站等场所。
核辐射剂量检测仪的原理基于核辐射与物质的相互作用。
当核辐射通过物质时,它会与物质中的原子相互作用,导致原子的电离和激发。
检测仪可以测量核辐射所产生的电离或激发的粒子或能量,从而确定辐射剂量。
常见的核辐射剂量检测仪有三种类型:电离室、闪烁体和半导体探测器。
电离室是最常用的核辐射剂量检测仪。
它基于气体中的电离现象来测量核辐射
剂量。
当核辐射通过气体时,它会电离气体分子,产生带电粒子和电离的气体分子。
电离室中有两个电极,通过测量电离室中的电流来确定核辐射的剂量。
闪烁体核辐射剂量检测仪使用一种特殊的晶体来测量核辐射。
当核辐射通过闪
烁体时,它会激发晶体内的原子或分子,使其跃迁到一个高能级。
跃迁过程中,晶体会发出可见光或紫外光。
检测仪使用光电倍增管或光电二极管来测量闪烁体发出的光信号,从而确定核辐射的剂量。
半导体探测器是最先进的核辐射剂量检测仪器之一。
它使用半导体材料来测量
核辐射。
当核辐射通过半导体材料时,它会激发半导体中的电子和空穴,产生电流。
检测仪通过测量电流来确定核辐射的剂量。
核辐射剂量检测仪的原理是基于核辐射与物质的相互作用,并利用不同的检测
技术来测量核辐射剂量。
它在核能行业、医学领域和环境监测中起着至关重要的作用,保护人类和环境免受核辐射的损害。
核辐射探测复习知识点
第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。
同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。
核辐射探测的原理
核辐射探测的原理一、核辐射的基本原理核辐射是指放射性物质在衰变过程中释放出的能量或粒子。
常见的核辐射有α粒子、β粒子和γ射线。
核辐射具有穿透力强、能量高等特点,对人体和环境具有一定的危害性。
二、核辐射的探测方法1. 闪烁体探测器闪烁体探测器是一种常见的核辐射探测器,它利用放射性粒子与闪烁体相互作用产生闪烁光信号来检测辐射。
闪烁体探测器的原理是将待测辐射与闪烁体相互作用,使闪烁体中的原子或分子被激发,然后通过荧光转换器将激发能量转换为可见光信号,最后由光电倍增管或光电二极管转换为电信号进行测量和分析。
2. 电离室探测器电离室探测器是利用电离室原理测量核辐射的一种设备。
它由一个金属外壳和一个中心电极组成,内部充满了气体。
当核辐射穿过电离室时,会产生电离效应,使气体中的离子和电子产生。
通过测量电离室中的电离电流大小,可以间接测量核辐射的强度。
3. 半导体探测器半导体探测器是利用半导体材料的电离效应测量核辐射的仪器。
常见的半导体探测器有硅探测器和锗探测器。
当核辐射穿过半导体材料时,会与材料中的原子或分子发生相互作用,产生电子空穴对。
通过测量半导体材料中的电流变化,可以确定核辐射的能量和强度。
4. 闪烁体探测器+光电倍增管闪烁体探测器结合光电倍增管可以提高探测灵敏度。
闪烁体探测器将辐射能量转换为闪烁光信号,然后通过光电倍增管放大光信号,最后转换为电信号进行测量。
5. 电离室探测器+放大器电离室探测器结合放大器可以提高测量精度。
电离室探测器测量的是电离电流信号,通过放大器对电离电流信号进行放大和处理,可以提高测量的灵敏度和精确度。
三、核辐射探测的应用核辐射探测技术广泛应用于核工业、医疗、环境监测等领域。
在核工业中,核辐射探测用于核电站的安全监测和辐射防护;在医疗领域,核辐射探测用于医学影像学、癌症治疗等;在环境监测中,核辐射探测用于监测环境中的放射性物质,保障公众的健康和安全。
总结:核辐射探测的原理是基于核辐射与物质相互作用的特性,通过测量辐射与探测器的相互作用所产生的效应,来间接测量核辐射的能量和强度。
核辐射测量原理 (2)
重带电粒子与单个电子的碰撞情况:
电子受到的库仑力:
fx
m0 , e
ze(e) ze 2 f r2 r2
r
f fy
b
该作用过程的时间为:
v
~
M, ze
0
x
在 t 时间内,带电粒子传给电子的动量 P 为:
P f t
整个作用过程中,传给电子的总动量为:
P f dt
在x方向,电子获得的动量为:
第二章
射线与物质的相互作用
Radiation Interactions with Matter
2.1 带电粒子与靶物质原子的碰撞 2.1.1 什么是射线? 射线,指的是如X射线、射线、射 线、射线等,本质都是辐射粒子。
射线与物质相互作用是辐射探测的基 础,也是认识微观世界的基本手段。
本课程讨论对象为致电离辐射,辐射 能量大于10eV。即可使探测介质的原 子发生电离的能量。
2.2 重带电粒子与物质的相互作用
Interaction of Heavy Charged Particles
2.2.1重带电粒子与物质相互作用的特点
重带电粒子均为带正电荷的离子;
重带电粒子主要通过电离损失而损失 能量,同时使介质原子电离或激发;
重带电粒子在介质中的运动径迹近似 为直线。
11
α 射线与β射线电离效应比较
-
ln
1
-
v2 c2
-
v2 c2
-
C Z
入射粒子电荷数 入射粒子速度 m0为电子静止质量
靶物质平均等效电离电位 靶物质原子的原子序数 靶物质单位体积的原子数
(3)
Bethe
公式的讨论
Sion
dE dx
核辐射监测原理及应用
核辐射监测原理及应用核辐射监测是指对周围环境中的核辐射水平进行测量和监测。
核辐射是指自然界或人工制造的核放射物质释放出的辐射能量,主要包括α射线、β射线和γ射线。
核辐射具有辐射能量高、穿透能力强和对人体组织具有较高的生物学危害性等特点,所以对核辐射进行监测是非常重要的。
核辐射监测的原理主要是利用辐射监测仪器进行测量。
辐射监测仪器中最常用的主要有γ剂量仪、α活度计和β剂量仪。
γ剂量仪可以测量γ射线的辐射剂量率和累计剂量;α活度计可以测量α射线放射源的活度;β剂量仪可以测量β射线的辐射剂量率和累计剂量。
这些仪器通过探测辐射粒子的能量、强度和活度等参数,对辐射水平进行定量监测。
核辐射监测的应用非常广泛。
首先,核辐射监测在核电站和核工业等核设施的安全监测中起到重要作用。
核电站和核工业是可能产生核辐射的重要场所,对其周围环境进行监测可以及时了解辐射水平,保证核设施的安全运行。
其次,核辐射监测在核事故和核灾难中的应急响应中起到重要作用。
在核事故或核灾难发生后,核辐射监测可以及时监测辐射水平的变化,为灾区人员撤离和辐射防护提供重要依据。
再次,核辐射监测在环境监测领域中也非常重要。
环境中的核辐射水平对人类健康和生态系统的影响至关重要,通过对环境中的核辐射进行监测,可以及时发现和控制辐射污染,保护环境和人类的健康。
此外,核辐射监测还广泛应用于科学研究领域,如核物理试验、核医学等领域。
除了核辐射监测的原理和应用外,还需要注意核辐射监测的方法和技术。
核辐射监测常用的方法包括空气监测、土壤监测、水体监测和食物监测等。
通过不同的监测方法,可以全面掌握辐射水平的变化情况。
在核辐射监测技术方面,随着科技的发展,新的监测技术不断涌现,如敏感探测器、遥感技术和分析仪器等。
这些技术可以提高核辐射监测的准确性和效率。
总之,核辐射监测是对周围环境中核辐射水平进行测量和监测的过程。
核辐射监测的原理主要是利用辐射监测仪器对辐射粒子的能量、强度和活度等参数进行测量。
核辐射测量原理课程总结
第一章 辐射源
1
2、典型辐射源
Am-241,Cs-137,Co-60,Cf-252.
第二章 射线与物质的相互作用
2、重点与难点
重带电粒子与物质相互作用的特点和规律,快电子与物质相互作用的特点和规律,伽马射线与物质相互作用的特点和规律,物质对伽马射线的吸收,中子与物质相互作用的四种方式。
第三章 核辐射测量的统计误差和数据处理
1、基本内容
基本概念 核衰变与核辐射测量的统计分布 核辐射测量中的统计误差与数据检验
2、重点与难点
知道核衰变与核辐射测量的统计分布类型,掌握核辐射测量中的统计误差计算以及知道其常规数据检验方法。
第四章 核辐射探测器
1、基本内容
2、重点与难点
三大探测器的工作原理与特性。
第五~八章 核辐射测量方法
1
2、重点与难点
能够根据给出的设备及辅助工具正确测量各种射线活度测量及能量。
核辐射探测器。
核辐射测量方法复习资料综述
第一章1、误差类型⑴ 偶然误差:在实际的测量中,由于某些无法控制的因素或测量的量的本身具有统计涨落的规律,使得测得的数据总是不一样,有时大,有时小,总在某一数值附近上下变化。
(2)系统误差:由某未发现或未校正的影响因素造成了测量数据与另一组数据相比单向的偏大或偏小,一旦这种影响因素被校正,误差就会消失。
(3)过失误差:由操作人员粗心大意或者不负责任等原因引起的误差。
2、灵敏度的概念所谓灵敏度是指被测定的物理量的变化会引起测量值变化的幅度。
若幅度大,说明灵敏度高;反之,若幅度小,则说明灵敏度差。
3、检出限所谓检出限是指最小的探测极限。
4、置信度的概念置信度是指某测量值落在某一范围内的概率。
如单次测量值x 落在2x σ±之内的或然率为95.4%,即置信度为95.4%;落在3x σ±内的或然率为99.7%,即置信度为99.7%;落在4x σ±内的或然率为99.9%,即置信度为99.9%。
5、放射性统计涨落的计数标准偏差的表示方法:N σ=6、可疑观测值的处理方法可疑观测值不可轻易舍弃,需经过初步分析判断再决定保留或舍弃。
处理的方法如下:⑴可疑值的初步判断 在发现某一次观测值与已有的观测数据相差较大时,例如大于标准差σ的二倍,则需要加以注意。
因为误差大于2σ的观测值出现的或然率只有5%。
检查的内容主要包括:①测试样品有无污染、损失、测量几何条件是否正确;②仪器工作是否正常;③电源及周围环境、温度、湿度是否在正常范围内;④操作、读数、记录是否有误等等。
若这些方面都没有发现问题或差错,则只有根据误差理论对数据的可靠性进行判断,再决定数据的取舍。
(2)舍弃的标准除去可疑数值外,将其余数值做平均值;若可疑数值与平均值之差大于4δ,则舍弃此观测值。
第二章1、放射性核素的衰变类型①α衰变:放射性核素的原子核自发地放出α粒子而变成另一种核素的原子核的过程称为α衰变。
衰变式如下:4422X Y He A A ZZ --→+; 特点:(1)α衰变时放出的α粒子能量是一定的;(2)有的核素衰变时放出单一能量的α粒子,有的核素衰变时放出几种能量不同的α粒子;(3)当α衰变放出几种能量的α粒子时,可伴随放出γ射线.②β-衰变:放射性核素的原子核自发地放出β-粒子而变成另一个核素的原子核的过程称为β-衰变。
核辐射检测实验报告
一、实验目的本次实验旨在通过核辐射检测仪对环境中的辐射水平进行测量,了解核辐射的分布情况,评估辐射对人体和环境的影响,并验证核辐射检测仪的性能和准确性。
二、实验原理核辐射检测仪利用放射性物质释放出的粒子,如α粒子、β粒子和γ射线等,产生电离作用,使空气分子产生电离辐射场。
通过测量电离辐射场强度,可以判断出目标区域是否存在核辐射,并估算其剂量。
三、实验仪器与材料1. 核辐射检测仪2. 标准辐射源3. 数据采集器4. 计时器5. 实验室环境四、实验步骤1. 标准辐射源准备:将标准辐射源放置在实验室内,确保其稳定。
2. 检测仪校准:开启核辐射检测仪,调整仪器至合适的工作状态,进行校准。
3. 实验环境布置:在实验室内设置多个检测点,每个检测点距离标准辐射源不同距离。
4. 数据采集:使用核辐射检测仪依次对每个检测点进行辐射水平测量,记录每个点的辐射剂量率。
5. 数据处理与分析:将采集到的数据输入数据采集器,进行数据处理和分析。
6. 实验结果对比:将实验结果与标准辐射源的实际剂量率进行对比,评估核辐射检测仪的性能和准确性。
五、实验结果与分析1. 实验数据检测点 | 距离(m) | 辐射剂量率(nSv/h)-------|----------|-------------------1 | 1 | 502 | 2 | 253 | 3 | 12.54 | 4 | 6.252. 结果分析(1)从实验数据可以看出,随着检测点距离标准辐射源的增大,辐射剂量率逐渐减小,符合核辐射衰减规律。
(2)核辐射检测仪的测量结果与标准辐射源的实际剂量率基本一致,说明核辐射检测仪的性能和准确性较好。
(3)在实验过程中,核辐射检测仪的稳定性较好,能够满足实验要求。
六、实验结论1. 本次实验验证了核辐射检测仪的性能和准确性,为核辐射检测提供了可靠的实验数据。
2. 核辐射检测仪在环境辐射水平监测方面具有较好的应用前景,有助于保障人体和环境的安全。
核辐射测量原理复习
名词解释:1. 光电效应:光子被原子吸收后发射轨道电子的现象。
2. 康普顿效应: 光子与轨道电子相互作用使得光子只改变方向而不损失能量。
3. 电子对产生效应: 当 r 光子能量大于 1.02Mev 时,r 光子经过与之相互作用的原子核附件时,与原子核发生电磁相互作用, r 光子消失而产生一个电子和一个正电子。
4. 电子吸附效应:电子在运动过程中与气体分子碰撞时可能被分子俘获,形成负离子,这种现象称为电子吸附效应。
5. 复合:电子和正离子相遇或者负离子和正离子相遇能复合成中性原子或中性分子。
6. 漂移:电子和正离子在电场的作用下分别向正、负电极方向运动,这种定向运动叫做漂移运动。
7. 平均电离能:带电离子在气体中产生一对离子所需的平均能量称为平均电离能。
8. 轫致辐射:快速电子通过物质时,原子核电磁场使电子动量改变并发射出电磁辐射而损失能量,这种电磁辐射就是轫致辐射。
9. 截面:单位面积单位时间粒子与靶核发生相互作用的概率。
10. 活化:原子核吸收中子后,变成同一种元素的另一种核素,这种现象叫做活化。
11. 真符合计数:时间上有关的事件产生的脉冲引起的符合计数称为真符合计数。
12. 偶然符合计数:在时间上没有必然联系的事件产生的脉冲引起的符合计数称为偶然符合计数。
13. 衰变常数:表示某种放射性核素的一个核在单位时间内进行衰变的概率。
14. 碘逃逸峰:当 r 射线在 NaI(Tl) 晶体表面发生光电效应时, 碘的 KaX 射线很容易逃逸出晶体,形成一个碘逃逸峰。
( 28.61KeV )15. 本征效率:探测器记录到的射线数与入射到探测器灵敏体积内的γ 光子数的比。
16. 辐射损失率:电子在物质中通过单位长度路径,由于轫致辐射而损失的能量为辐射损失率。
17. 电离损失率:入射粒子因原子的激发和电离在单位路径上引起的能量损失。
18. 能量分辨率:探测器微分脉冲幅度分布谱中的特征峰半高宽与峰值所对应的脉冲幅度之比:V Fw V2.355E 0探测效率:记录到的脉冲数记录到的脉冲数源源发射的光子数本征入射到探测器灵敏区体积内的光子数19.仪器谱:20.能谱:记录粒子能量和单位能量间隔内计数的谱。
核辐射检测技术
若引入质量吸收系数μm=μ/ρ(其中ρ为密度),则上 式可改写为:
I
I em h 0
当厚度h一定后,上式即成为核辐射式密度计的理论基础。
研究结果表明,当γ射线能量E小于0.3MeV时,质量吸
收系数将取决于吸收体的化学成份。成份复杂的物质对γ射
0.8
5.48,0.027
常用的放射性同位素及其基本参数
X 射线能量 (MeV) 5.9 6.4
12~21
2.核辐射探测器 常用的核辐射探测器有:电离室、正比计数器、盖革-弥
勒计数器和半导体探测器等。 电离室
正比计数器
三、透射式γ射线测厚仪
1.工作原理 由于物质的吸收作用,使得射入核辐射探测器
的射线强度降低,射到探测器的透射射线强度I和物质厚
度h 的关系为:
I I0emh
h 1 Ln I0
m I
2. γ射线测厚仪的结构
3.透射式γ射线测厚仪的应用----输煤量的测量
检测器安装位置示意图
为了使煤层保持一定形状以保证测量的准确性,输煤皮 带前方应安装一些刮板。测量用的三套放射源-核辐射探测 器输出的信号,经单片机的计算处理,可以求出煤层的截面 积,再测出传送皮带的速度,即可由单片机计算出煤的质量 流量并予以显示。如果把这个信号进行积分处理,还可以得 到总的耗煤量的信息。
N N0et
式中 N0 —— 原有的物质原子数; N —— 物质在 t 时尚未衰变的原子数; λ—— 物质的衰变常数。
放射性元素从N0个原子衰变至N0/2个原子所经历的时 间,称为半衰期。不同放射性元素的半衰期T是不同的。
原子系数在83以下的每一种元素都有一个或几个稳定 的同位素,原子序数在83以上的同位素则只有放射性同位 素。放射性同位素又分天然的和人工的两种。目前知道的 可以利用的放射性同位素有二百多种,这些放射性同位素 是用原子能反应堆和回旋加速器等办法制造出来的。
核辐射检测测试原理
核辐射检测测试原理
核辐射包括离子辐射和电磁辐射两种类型。
离子辐射包括α粒子、
β粒子和中子,电磁辐射包括γ射线和X射线。
核辐射的存在会对人体
和环境造成危害,因此需要进行核辐射检测来确保安全。
电离室是一种常用的核辐射探测器。
它由一个气体密封的空心金属容
器和电极组成。
当核辐射通过电离室时,会电离气体分子产生正、负电荷。
这些电荷在电场的作用下会分别移动到正、负电极上,产生电流。
通过测
量电流的大小,可以确定核辐射的强度。
比计数器是另一种常见的核辐射测量设备。
它由一个带有填充气体的
金属管和一个电路组成。
当核辐射通过填充气体时,会产生电离和激发。
电离和激发过程会产生光子,被光电倍增管吸收并产生电流。
通过测量电
流的大小,可以确定核辐射的水平。
闪烁体探测器通过材料吸收核辐射,将能量转化为可见光或可见光附
近的电磁辐射。
这种光在光电倍增管或光电二极管中产生电流或电荷,通
过测量电流或电荷的多少,可以确定核辐射的水平。
半导体探测器是一种基于半导体材料的核辐射检测技术。
它通过半导
体材料吸收核辐射,并在晶格中产生电离电子对。
通过应用电场,可以将
电离电子对分离,产生电流。
通过测量电流的大小,可以确定核辐射的水平。
在实际应用中,核辐射检测主要用于核电站和核工业中的辐射安全监测,医疗领域的放射医学设备监测,以及环境监测中的核辐射污染检测。
通过核辐射检测,可以确保辐射水平在安全范围内,从而保护人体健康和
环境安全。
核辐射技术使用方法与要点总结
核辐射技术使用方法与要点总结引言:核辐射技术是一种应用广泛的技术,在医疗、能源、环境等领域都有重要的应用。
本文将总结核辐射技术的使用方法与要点,以帮助读者更好地了解和应用这一技术。
一、核辐射技术的基本原理核辐射技术是指利用放射性核素自发放出的射线进行测量、分析、治疗等操作的技术。
核辐射包括α射线、β射线和γ射线,它们具有不同的能量和穿透能力。
核辐射技术的基本原理是通过探测器测量射线的能量和强度,从而得到有关物质组成、浓度、厚度等信息。
二、核辐射技术在医疗领域的应用1. 放射治疗:核辐射技术在癌症治疗中起到重要作用。
通过将放射性同位素引入体内,利用其放射性衰变产生的射线杀死癌细胞。
2. 核医学影像学:核医学影像学利用放射性同位素标记的药物追踪人体内部的生物过程,如心血管系统、骨骼系统等,从而帮助医生诊断疾病。
3. 核医学诊断:核医学诊断通过注射放射性同位素追踪剂,利用射线探测器测量放射性同位素在体内的分布情况,从而得到有关疾病的信息。
三、核辐射技术在能源领域的应用1. 核能发电:核能发电是目前世界上最重要的清洁能源之一。
通过核反应堆中的核裂变反应,释放出巨大的能量,驱动发电机产生电能。
2. 核燃料循环:核燃料循环是指将已使用的核燃料进行处理和回收再利用的过程。
核辐射技术在核燃料循环中起到关键作用,如核燃料的辐射监测、核燃料元素的分析等。
四、核辐射技术在环境监测中的应用1. 核辐射监测:核辐射技术可以用于监测环境中的放射性物质,如空气中的氡气、土壤中的铀等。
通过对环境中的辐射水平进行监测,可以及时发现和评估辐射风险。
2. 核辐射清除:核辐射技术可以用于清除环境中的放射性物质。
例如,通过土壤修复技术,可以将污染的土壤中的放射性物质去除或转化为无害物质。
结论:核辐射技术是一种重要的技术,广泛应用于医疗、能源、环境等领域。
通过核辐射技术的应用,可以实现癌症治疗、疾病诊断、能源发电、环境监测等目标。
在使用核辐射技术时,需要注意辐射防护、设备维护、辐射监测等要点,以确保操作的安全性和有效性。
核辐射物理知识点总结
核辐射物理知识点总结核辐射物理是一门研究核能放射性衰变、核反应、离子辐射和电磁辐射等现象的学科,涉及核物理、粒子物理、原子物理、化学物理等多个学科知识。
核辐射物理对于我们了解宇宙的起源和演化、研究原子核结构和核反应、应用核技术等方面都有着重要的意义。
本文将介绍核辐射物理的基本概念、辐射种类、辐射防护、核裂变和核聚变等方面的知识点,希望能为读者提供一些参考。
一、核辐射的基本概念1.1 核辐射的定义核辐射是指原子核发生自发性变化时放出的一种高能射线。
这种高能射线能够穿透物质,使物质产生电离、激发和损伤等作用,因此具有很强的穿透能力和生物学危害性。
1.2 核辐射的种类核辐射主要包括α射线、β射线、γ射线和中子射线四种。
其中,α射线是一种带正电荷的粒子束,由氦原子组成,其穿透能力相对较弱;β射线是高速电子束,其质子数变化,穿透能力大于α射线;γ射线是一种电磁波,其能量较高,能够穿透物质达数厘米,具有很强的穿透能力;中子射线是由中子组成的射线,穿透能力最强,很难被阻挡。
1.3 核辐射的单位核辐射的单位有居里(Ci)、贝克勒尔(Bq)、辐(rad)、格雷(Gy)等。
其中,居里是衡量放射性核素活度的单位,1居里等于1秒内放出2.7×10^10次核变化;贝克勒尔是国际单位制中用于衡量放射性衰变速率的单位,1贝克勒尔等于1秒内有1个核衰变事件发生;辐是国际单位制中用于衡量辐射吸收剂量的单位,1辐等于1克组织吸收1爱因斯坦能量;格雷是国际单位制中用于衡量辐射吸收剂量的单位,1格雷等于1焦尔/千克。
1.4 核辐射的生物学危害核辐射对人体的生物学危害主要表现在辐射照射后会对细胞和组织产生电离、激发和损伤,导致遗传变异和癌症等疾病。
因此,正确了解核辐射的危害性并采取适当的防护措施是非常重要的。
二、核辐射的辐射防护2.1 核辐射的防护原则核辐射的防护原则包括时间原则、距离原则、屏蔽原则和个人防护原则。
在实际工作中,人们可以通过缩短接触辐射源的时间、增加与辐射源的距离、使用屏蔽材料和配备防护设备等方式来降低辐射的危害。
核辐射测量原理复习知识要点
核辐射测量原理复习知识要点1. 辐射单位:核辐射的单位有剂量当量(简称剂量)、剂量率和活度。
剂量是衡量辐射对人体或物体的能量沉积的量度,单位为戈瑞(Gray,Gy),也可以用辐(Rad)来表示。
剂量率是单位时间内所接受的辐射剂量,单位为戈瑞每小时(Gy/h)或辐每小时(Rad/h)。
活度是指放射性核素单位时间内发生核变的次数,单位为贝可勒尔(Bq)或居里(Ci)。
2.伽玛射线测量原理:伽玛射线具有高能量、高穿透力和无电荷的特点,它们的测量可以通过闪烁体、场效应管、固态探测器等方法进行。
闪烁体通过吸收伽玛射线后产生光子,可以利用光电倍增管放大光信号进行测量。
场效应管是一种半导体器件,其导电性能受到入射辐射的影响,可以通过测量电流变化来获得伽玛射线的剂量。
固态探测器利用半导体材料的能带结构和电导特性,可以直接将入射辐射转化为电信号进行测量。
3.α粒子测量原理:α粒子具有较大的电离能力和强大的破坏能力,但其穿透能力较差。
α粒子的测量可以采用闪烁体、气体探测器或固态探测器。
闪烁体通过吸收α粒子后产生光子,并通过光电倍增管放大光信号进行测量。
气体探测器利用气体经α粒子电离后导电性能的变化来测量α粒子的剂量,其中,流动计数管和泄漏计数管是常用的气体探测器。
固态探测器利用α粒子与半导体材料之间的相互作用,通过测量电流变化或电荷收集来获得α粒子的剂量。
4.β粒子测量原理:β粒子具有较高的能量和较好的穿透能力,但其电离能力较弱。
β粒子的测量可以采用闪烁体、气体探测器或固态探测器。
闪烁体通过吸收β粒子后产生光子,并通过光电倍增管放大光信号进行测量。
气体探测器利用气体经β粒子电离后导电性能的变化来测量β粒子的剂量,其中,流动计数管和泄漏计数管是常用的气体探测器。
固态探测器利用β粒子与半导体材料之间的相互作用,通过测量电流变化或电荷收集来获得β粒子的剂量。
5.辐射防护:核辐射对人体有害,如不正确处理可能引起辐射病或致癌。
核辐射测量原理复习知识要点
第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?带电粒子源快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变非带电粒子源电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X 射线 中子源:自发裂变、放射性同位素(α,n )源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。
3、252Cf 可做哪些辐射源?答:重带点粒子源(α衰变和自发裂变均可)、中子源。
第二章 射线与物质的相互作用电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。
辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。
作用机制:入射带电粒子与靶原子核间的非弹性碰撞。
能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。
引起能量歧离的本质是:能量损失的随机性。
射程:带电粒子沿入射方向所行径的最大距离。
路程:入射粒子在物质中行径的实际轨迹长度。
入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。
重带电粒子与物质相互作用的特点: 1、主要为电离能量损失2、单位路径上有多次作用——单位路径上会产生许多离子对3、每次碰撞损失能量少4、运动径迹近似为直线5、在所有材料中的射程均很短 电离损失: 辐射损失:快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失2、单位路径上较少相互作用——单位路径上产生较少的离子对3、每次碰撞损失能量大4、路径不是直线,散射大⎛⎫ ⎪⎝⎭242ion 0dE 4πz e -=NZB dx m v ()()⋅≅rad ion dE/dx E ZdE/dx 800222NZ m E z dx dE rad∝⎪⎭⎫ ⎝⎛-21m S rad ∝E S rad ∝2NZ S rad∝带电粒子在靶物质中的慢化:(a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。
核辐射测量仪原理
核辐射测量仪原理核辐射是指放射性物质衰变过程中释放出的能量以及与核反应有关的能量,它包括三种形式:α粒子、β粒子和γ射线。
核辐射对人体健康具有潜在的危害,因此对辐射水平进行准确测量和监测非常重要。
核辐射测量仪的工作原理基于放射性物质与探测器之间发生的相互作用。
探测器是核辐射测量仪的核心部件,它能够感应并测量辐射源释放的粒子和射线。
常见的核辐射测量仪探测器包括闪烁体探测器、半导体探测器和电离室。
闪烁体探测器是一种利用物质在受到辐射时发光的原理进行测量的探测器。
当辐射粒子或射线通过闪烁体时,闪烁体会吸收辐射能量,并发出可见光。
探测器内部的光电倍增管会将发出的光信号转换为电信号,进而进行测量和记录。
半导体探测器是一种利用半导体材料对辐射的敏感性进行测量的探测器。
当辐射粒子或射线通过半导体材料时,会产生电子-空穴对。
通过半导体材料的电导性变化,可以测量辐射的强度和能量。
电离室是一种利用气体离子化现象进行测量的探测器。
当辐射粒子或射线通过电离室时,会使气体分子电离产生正、负离子。
通过测量电离室中离子产生的电流,可以确定辐射的强度和能量。
核辐射测量仪的工作原理是基于探测器感应辐射并将其转换为可测量的信号。
这些信号经过放大、处理和转换后,可以得到辐射水平的定量结果。
核辐射测量仪主要应用于核能工业、医疗领域、环境监测和辐射灾害事故等领域。
在核能工业中,核辐射测量仪可以用于监测核电站和核燃料加工厂等场所的辐射水平,以确保工作人员和公众的安全。
在医疗领域,核辐射测量仪可以用于放射治疗和诊断中,确保辐射剂量控制在安全范围内。
在环境监测中,核辐射测量仪可以用于检测空气、水和土壤中的辐射水平,以评估环境的辐射风险。
在辐射灾害事故中,核辐射测量仪可以用于快速响应和紧急监测,以指导应急处理和人员疏散。
核辐射测量仪是一种重要的仪器,可以帮助我们了解和监测环境中的核辐射水平。
核辐射测量仪的工作原理基于探测器感应辐射并将其转换为可测量的信号。
核辐射监测原理及应用
核辐射监测技术的原理及应用
核辐射检测技术是利用放射性同位素所发射的α、β、γ等射线与被测物质的作用,如反散、吸收、电离或使物质激发而射出新的射线(如X射线),若测得电离程度或接收反射后射线的强度及X射线的能谱和强度等,即可得到与被测物有关的物理量。
核辐射检测系统一般有产生射线的放射源,检测与物质作用前后射线强度变化的探测器,对探测器输出信号进行加工处理的测量电路和显示装置。
核辐射检测是基于以下原理工作:
1.利用放射源的标记作用
将放射源放在被测物体上,若放射源和核辐射探测器间的距离变化,将使探测器接收的射线强度发生变化,根据射线强度变化可确定被测物的位置和运动情况。
利用这一原理可测线位移、角位移、液位、流量和转速等参数。
2.利用被测物质与核辐射的相互作用
核辐射与被测物质有多种效应。
利用射线的透射效应或荧光效应能测物体厚度、流体密度和温度、线位移和角位移等;用α、β射线的电离效应可测量位移、气体压力和速度等;用中子和物质的相互作用测厚度、液位、温度和流速等
3.射线摄影术
γ射线照射到被测物体,经物体透射后的射线照射到底片上,进行射线摄影。
材料缺陷状况能在底片的对比度中反映出来。
4.利用穆斯鲍尔效应
穆斯鲍尔效应,即原子核对低能γ射线的无反冲共振吸收或共振发射现象。
利用该效应可进行位移、速度、加速度、温度、应力的测量以及材料检测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识: 电离;
射
电离损失
线 与
快电子
辐射损失 散射
物
无确定射程
质
的
光电效应
相 互 γ射线 作 用
康普顿效应 电子对效应 物质对γ射线吸收
激发;
电离损失; 辐射损失;
能量歧离; 射程歧离;
光电效应;
核反应
康普顿效应;
中子
核反冲 核裂变
电子对效应;
核活化
相关公式:
Sion
=
-
dE dx
ion
z2 v2
NZ
Srad
dE dx rad
z2E m2
NZ 2
dE/dx rad
EZ
dE/dxion 700
I (t ) I0e t
μ=
Σ
= σγ N
= σγ
NAρ A
σ ph Z 5
σc Z
σ
ph
-7
(hν) 2
hν(hν)-1
σc (hν)0 hν(hν)-1
Eγ
=
1+
Eγ
Eγ m0 c 2
9
考题类型:
一、填空题 二、判断题 三、名词解释 四、简述题 五、计算题 六、设计题
10
11
辐射源
基础知识 射线与物质的相互作用
放射性测量中的统计学
核
辐
气体探测器
射
闪烁探测器
测 量
探测器
半导体探测器
原
其他探测器及其进展
理
带电粒子测量方法
γ射线测量方法 测量方法 核物理实验中的符合法
中子测量方法
1
带 电
重带电粒子源
α衰变 241Am 自发裂变
粒 子 源
快电子源
β衰变3H, 14C 内转换 俄歇电子
E( x) eN A (b x)
(-a x 0) (0 x b)
V (x) = - eND (x + a)2 + V -a
2ε
V (x) = eN A (x - b)2 + V b
2ε
-a x 0 0 < x b
h = Ne = E0 e C ωC
ND a=NA b
1/2
d
=
辐 射
伴随核衰变的γ辐射 60Co,137Cs
源
湮没辐射 22Na
非 带 电
电磁辐射源
伴随核反应的γ射线 韧致辐射 特征X射线
粒 子 源
自发裂变 252Cf
中子源
放射性同位素源(α,n) 光致中子源
加速的带电粒子引起的反应(D,T), (D2 ,D)
电离损失-能量歧离 重带电粒子 有确定射程-射程歧离
差
脉冲幅度的统计分布
和
数
存在本底时净计数误差的计算
据 误 存在本底时计数率的误差
处 理
差 平均计数的统计误差
计 算
平均计数率的统计误差
测量时间的选择
5
电离室 气体 正比计数器
G-M计数器
基础知识:
探测器的工作原理或工作过程;
核 辐
闪烁体 闪烁 光电倍增管
射
NaI(Tl)谱仪
探
测
P-N结
器 半导体 Li漂移
(1
-
cosθ)
σ p Z 2 σ p hν
hν ln(hν)
Ee
E2(1 cos ) m0c2 E (1 cos )
二项式分布
核 类 泊松分布
辐 射 测
型 高斯分布(正态分布) 合成分布
量
核衰变数
的 统 计 误
核 脉冲计数 测 测量计数的统计误差 量 (标准误差,相对标准误差,标准偏差)
2εV0 eN i
V0
1
Cd
S
eN D 2V0
2
V0
相对测量 活度 绝对测量,影响因素及修正
核
辐 射 测
能量刻度 能谱 γ能谱,识谱,知谱峰形成原因
量
分得清主过程,次过程及外界干扰过程
方
法
基本定义
符合
测量方式:符合,反符合,延迟符合 分辨时间
降低偶然符合的方法
8
各概念的 准确定义及公式 以课堂PPT所讲内容为准!
HPGe
探测效率,灵敏度;
峰源探测效率,γ射线探测效率; 能量分辨率,γ谱仪能量分辨率; 峰康比,峰总比; 饱和特性, 坪特性;
发射光谱,光谱响应; 发光效率; 光照灵敏度,PMT增益;
其它 热释光(TLD) 工作原理,选材依据
相关公式:
(
x)
eeNNDA
(a x 0) (0 x b)
E( x) eN D ( x a)