时间序列模型stata基本命令汇总分析解析
stata操作介绍之时间序列-四
ARIMA模型
dfuller 检验: . dfuller fylltemp, lag(3)
说明:P值为0.089,大于0.05,故不能拒绝原假设,说明该 变量满足稳定性检验;
ARIMA模型
dfgls检验: . dfgls fylltemp, maxlag(3) notrend
说明:P值为0.0,小于0.05,故拒绝原假设,说明该变量不 满足稳定性检验;
说明:由上图可知,常数项与一期滞后变量系数都是统计显 著的,卡方检验也显著。
ARIMA模型
生成残差: . predict fylres, res . corrgram fylres ,lags(9)
说明:由图可知,统计量对应的P值为0.6574,不能拒绝原 假设,即认为残差不存在自相关。因此,认为变量fylltemp 使用AR(1)进行分析是合适的。
平滑分析
生成移动平均值(1):
. gen water3=(water[ _n-1]+water[ _n]+water[ _n+1])/3
平滑分析
生成移动平均值(2): . tssmooth ma water5=water,window(2 1 2)
注:tssmooth:表示移动平均值平滑(加权或不加权); window(2 1 2):表示使用该值的前两个值、该值与该值的
说明:由图可知,lag为0时,交叉相关性最强(线条最长), 且为负。
自相关分析
交叉相关表: . xcorr wNAO fylltemp if year >=1970 & year <=1990,lags(7) table
ARIMA模型
时间序列中的自相关集成移动平均模型 (autoregressive integrated moving average简称 ARIMA),是指将非平稳时间序列转化为平稳时间 序列,然后将因变量仅对它的滞后值以及随机误差 项的现值和滞后值进行回归所建立的模型。
与时间序列相关的STATA命令及其统计量的解析完整版
与时间序列相关的S T A T A命令及其统计量的解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】与时间序列相关的S T A T A命令及其统计量的解析残差U 序列相关:①DW 统计量——针对一阶自相关的(高阶无效)STATA 命令:1.先回归2.直接输入dwstat统计量如何看:查表②Q 统计量——针对高阶自相关correlogram-Q-statisticsSTATA 命令:1.先回归reg2.取出残差predict u,residual(不要忘记逗号)3. wntestq u Q统计量如何看:p 值越小(越接近0)Q 值越大——表示存在自相关具体自相关的阶数可以看自相关系数图和偏相关系数图:STATA 命令:自相关系数图:ac u( 残差) 或者窗口操作在 Graphics ——Time-series graphs ——correlogram(ac)偏相关系数图:pac u 或者窗口操作在Graphics——Time-series graphs—— (pac)自相关与偏相关系数以及Q 统计量同时表示出来的方法:corrgram u或者是窗口操作在Statistics——Time-series——Graphs—— Autocorrelations&Partial autocorrelations③LM 统计量——针对高阶自相关STATA 命令:1.先回归reg2.直接输入命令estate bgodfrey,lags(n) 或者窗口操作在 Statistics——Postestimation(倒数第二个)——Reports andStatistics(倒数第二个) ——在里面选择 Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)LM 统计量如何看:P 值越小(越接近 0)表示越显着(显着拒绝原假设),存在序列相关具体是几阶序列相关,你可以把滞后期写为几,当然默认是 1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。
stata操作介绍之时间序列分析
【例1】使用文件“cpi.dta”的数据来对tsset命令的应用 进行说明。该例子是我国1983年1月年至2007年8月的居 民消费价格指数CPI。部分数据如表2所示: 表2 我国居民消费价格指数CPI Year
1983 1983 1983 1983 1983 1983 1983
month
daily weekly monthly quarterly harfyearly yearly generic format(%fmt) 时间周期 delta(#) delta((exp)) delta(#units) delta((exp)units)
注:(1)units表示时间单位,对于%tc,允许的时间单位包括:second、seconds、secs、secs、 minutes、minute、mine、min、hours、hour、days、weeks、week。对于其他%t的格式,Stata自动 获得其时间单位,delta选项经常与%tc格式一起使用。 STATA从入门到精通 Page 4
【例2】继续使用上例的数据来对tssmooth命令的应用进 行说明。在本例中对该组数据进行修匀,以便消除不规则 变动的影响,得到时间序列长期趋势,本例修匀的方法是 利用之前的1个月和之后的2个月及本月进行平均。
Page 9
STATA从入门到精通
二、
ARIMA模型的估计、单位根与协整
时间序列模型一般分为四类,分别是自回归过程、移动平均过程、自 回归移动平均过程、单整自回归移动平均过程。 自回归过程 如果一个剔出均值和确定性成分的线性过程可表达为 xt = 1xt-1 + 2 xt-2 + … + p xt-p + ut 其中i, i = 1, … p 是自回归参数,ut 是白噪声过程,则称xt为p阶自 回归过程,用AR(p)表示。xt是由它的p个滞后变量的加权和以及ut相 加而成。
stata操作介绍之时间序列分析
时间序列构成分析就是要观察现象在一个相当长的时期内, 由于各个影响因素的影响,使事物发展变化中出现的长期趋 势、季节变动、循环变动和不规则变动。
通过测定和分析过去一段时间之内现象的发展趋势,可以认 识和掌握现象发展变化的规律性,为统计预测提供必要的条 件,同时也可以消除原有时间序列中长期趋势的影响,更好 地研究季节变动和循环变动等问题。测定和分析长期趋势的 主要方法是对时间序列进行修匀。
timevar的格式为%tc, 0=1jan1960 00:00:00.000,1=1jan1960 00:00:00.001 即0代表1960年1月1日的第一秒,1为1960年1月1日的第二秒,依次后推。 timevar的格式为%td,0=1jan1960,1=2jan1960;即0为1960年第一天,1 为1960年第二天,依次后推。 timevar的格式为%tw,0=1960w1,1=1960w2;即0为1960年第一周,1 为1960年第二周,依次后推。 timevar的格式为%tm,0=1,1=;即0为1960年第一月,1为1960年第二 月,依次后推。 timevar的格式为%tq,0=1960q1,1=1960q2;即0为1960年第一季,1为 1960年第二季,依次后推。 timevar的格式为%th,0=1960h1,1=1960h2;即0为从1960起的第一个半 年,1为从1960年起第二个半年,依次后推。 timevar的格式为%ty,1960=1960,1961=1960 timevar的格式为%tg
义时间单位,或者定义时间周期(即timevar两个观测值 之间的周期数)。Options的相关描述如表1所示。
Page 3
STATA从入门到精通
时间单位
格式说明
Clocktime
stata操作介绍之时间序列分析 PPT
数据=修匀部分+粗糙部分,运用Stata进行修匀使用tssmooth命令, 其基本命令格式如下所示:
tssmooth smoother[type] newvar = exp [if] [in] [, ...] 其中smoother[type]有一系列目录,如下表3所示:
【例2】继续使用上例的数据来对tssmooth命令的应用进 行说明。在本例中对该组数据进行修匀,以便消除不规则 变动的影响,得到时间序列长期趋势,本例修匀的方法是 利用之前的1个月和之后的2个月及本月进行平均。
可以通过以下三种方式来定义时间序列。例如,想要生成 格式为%td的时间序列,并定义该时间序列为t,则可以用 以下三种方法:
【例1】使用文件“cpi.dta”的数据来对tsset命令的应用 进行说明。该例子是我国1983年1月年至2007年8月的居 民消费价格指数CPI。部分数据如表2所示:
表2 我国居民消费价格指数CPI
义时间单位,或者定义时间周期(即timevar两个观测值 之间的周期数)。Options的相关描述如表1所示。
注:(1)units表示时间单位,对于%tc,允许的时间单位包括:second、seconds、secs、secs、 minutes、minute、mine、min、hours、hour、days、weeks、week。对于其他%t的格式,Stata自动 获得其时间单位,delta选项经常与%tc格式一起使用。
通过测定和分析过去一段时间之内现象的发展趋势,可以认 识和掌握现象发展变化的规律性,为统计预测提供必要的条 件,同时也可以消除原有时间序列中长期趋势的影响,更好 地研究季节变动和循环变动等问题。测定和分析长期趋势的 主要方法是对时间序列进行修匀。
时间序列模型分析报告地各种stata命令
时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。
在一些大规模的联立方程中,情况更是如此。
而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。
从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。
本章将介绍如下时间序列分析方法,ARIMA模型、ARCH 族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96.dta, clearlist in 1/20gen Lgnp = L.gnptsset datelist in 1/20gen Lgnp = L.gnp2)检查是否有断点:tsreport, reportuse gnp96.dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96.dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L.gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1.2变量的生成与处理1)滞后项、超前项和差分项help tsvarlist use gnp96.dta, cleartsset dategen Lgnp = L.gnp96 /*一阶滞后*/gen L2gnp = L2.gnp96gen Fgnp = F.gnp96 /*一阶超前*/gen F2gnp = F2.gnp96gen Dgnp = D.gnp96 /*一阶差分*/gen D2gnp = D2.gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D.lngnpgen growth2 = (gnp96-L.gnp96)/L.gnp96gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101.3日期的处理日期的格式help tsfmt基本时点:整数数值,如-3, -2, -1, 0, 1, 2, 3 ....1960年1月1日,取值为0;显示格式:1)使用tsset 命令指定显示格式use B6_tsset.dta, cleartsset t, dailylistuse B6_tsset.dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式%d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ . , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写) M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年(1 or 2)q 一年中的第几季度(1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格). display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point)样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY.q 1999.2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920.dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1 tsset newmonth, monthlylist year month time newmonth in 1/301.4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0.7 0.2) nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _ttsline ar2 ma2* 亦可采用twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) ///ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert)) 3)例3:增加两条纵向的标示线sysuse tsline2, cleartsset daytsline calories, tline(28nov2002 25dec2002) * 或采用 twoway line 命令 local d1 = d(28nov2002) local d2 = d(25dec2002) line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)") tsline calories, tlabel(, format(%td))二、ARIMA 模型和SARMIA 模型ARIMA 模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
stata操作介绍之时间序列分析
时间单位
格式说明
Clocktime
daily weekly monthly quarterly harfyearly yearly generic format(%fmt) 时间周期
timevar的格式为%tc, 0=1jan1960 00:00:00.000,1=1jan1960 00:00:00.001 即0代表1960年1月1日的第一秒,1为1960年1月1日的第二秒,依次后推。 timevar的格式为%td,0=1jan1960,1=2jan1960;即0为1960年第一天,1 为1960年第二天,依次后推。 timevar的格式为%tw,0=1960w1,1=1960w2;即0为1960年第一周,1 为1960年第二周,依次后推。 timevar的格式为%tm,0=1,1=;即0为1960年第一月,1为1960年第二 月,依次后推。 timevar的格式为%tq,0=1960q1,1=1960q2;即0为1960年第一季,1为 1960年第二季,依次后推。 timevar的格式为%th,0=1960h1,1=1960h2;即0为从1960起的第一个半 年,1为从1960年起第二个半年,依次后推。 timevar的格式为%ty,1960=1960,1961=1960 timevar的格式为%tg
数据=修匀部分+粗糙部分,运用Stata进行修匀使用 tssmooth命令,其基本命令格式如下所示:
tssmooth smoother[type] newvar = exp [if] [in] [, ...]
其中平s滑mo的o种t类her[type]有一系sm列oo目ther录[ty,pe]如下表3所示:
stata命令总结
stata命令总结.docStata命令总结引言Stata是一款强大的统计分析软件,广泛应用于经济学、社会学、医学等领域。
Stata命令是进行数据处理、统计分析、图形展示等操作的基础。
本文将对Stata中常用的命令进行总结,以帮助用户更高效地使用Stata进行数据分析。
Stata基础命令1. 数据管理导入数据:import excel, import delimited导出数据:export excel, export delimited数据集保存:save, saveold2. 变量管理创建变量:generate, egen修改变量:replace删除变量:drop3. 数据清洗数据类型转换:destring, encode, format缺失值处理:mvdecode, drop if missing()异常值检测:tabulate, summarize描述性统计分析1. 基本统计量描述性统计:summarize频率统计:tabulate相关系数:correlate2. 分组统计分组描述:bysort, xtsum 分组汇总:collapse3. 数据转换数据长格式:reshape long 数据宽格式:reshape wide 推断性统计分析1. 假设检验t检验:ttest方差分析:anova卡方检验:tabulate, chi2 2. 回归分析线性回归:regress逻辑回归:logit泊松回归:poisson3. 时间序列分析时间序列描述:tsreport自回归模型:arima高级统计分析1. 面板数据分析面板数据描述:xtset, xtsum固定效应模型:xtreg fe随机效应模型:xtreg re2. 多层次模型多层次线性模型:xtmelogit3. 结构方程模型结构方程模型:sem绘图与可视化1. 基本图形散点图:scatter线图:line柱状图:bar2. 高级图形箱线图:boxplot直方图:histogram核密度估计图:kdensity3. 交互式图形交互式图形:twoway, graph edit编程与自动化1. 循环与条件语句循环:foreach, forvalues条件语句:if, else2. 脚本与批处理脚本编写:do-file批处理:batch3. 宏与用户定义命令宏:macro用户定义命令:program define结语Stata命令的掌握是进行高效数据分析的前提。
时间序列模型分析报告地各种stata命令
时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。
在一些大规模的联立方程中,情况更是如此。
而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。
从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。
本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96.dta, clearlist in 1/20gen Lgnp = L.gnptsset datelist in 1/20gen Lgnp = L.gnp2)检查是否有断点:tsreport, reportuse gnp96.dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96.dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L.gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1.2变量的生成与处理1)滞后项、超前项和差分项 help tsvarlistuse gnp96.dta, cleartsset dategen Lgnp = L.gnp96 /*一阶滞后*/gen L2gnp = L2.gnp96gen Fgnp = F.gnp96 /*一阶超前*/gen F2gnp = F2.gnp96gen Dgnp = D.gnp96 /*一阶差分*/gen D2gnp = D2.gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D.lngnpgen growth2 = (gnp96-L.gnp96)/L.gnp96gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101.3日期的处理日期的格式 help tsfmt基本时点:整数数值,如 -3, -2, -1, 0, 1, 2, 3 ....1960年1月1日,取值为 0;1)使用 tsset 命令指定显示格式use B6_tsset.dta, cleartsset t, dailylistuse B6_tsset.dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式 %d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ . , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写) M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年 (1 or 2)q 一年中的第几季度 (1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格). display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point)样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY.q 1999.2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920.dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1tsset newmonth, monthlylist year month time newmonth in 1/301.4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0.7 0.2) nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _ttsline ar2 ma2* 亦可采用 twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) /// ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert)) 3)例3:增加两条纵向的标示线sysuse tsline2, cleartsset daytsline calories, tline(28nov2002 25dec2002) * 或采用 twoway line 命令 local d1 = d(28nov2002) local d2 = d(25dec2002)line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)") tsline calories, tlabel(, format(%td))二、ARIMA 模型和SARMIA 模型ARIMA 模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
与时间序列相关的STATA_命令及其统计量的解析资料
与时间序列相关的STATA 命令及其统计量的解析残差U 序列相关:①DW 统计量——针对一阶自相关的(高阶无效)STATA 命令:1.先回归2.直接输入dwstat统计量如何看:查表②Q 统计量——针对高阶自相关correlogram-Q-statisticsSTATA 命令:1.先回归reg2.取出残差predict u,residual(不要忘记逗号)3.wntestq u Q统计量如何看:p 值越小(越接近0)Q 值越大——表示存在自相关具体自相关的阶数可以看自相关系数图和偏相关系数图:STATA 命令:自相关系数图:ac u( 残差) 或者窗口操作在Graphics ——Time-series graphs —— correlogram(ac)偏相关系数图:pac u 或者窗口操作在Graphics——Time-series graphs—— (pac)自相关与偏相关系数以及Q 统计量同时表示出来的方法:corrgram u 或者是窗口操作在Statistics——Time-series——Graphs—— Autocorrelations&Partial autocorrelations③LM 统计量——针对高阶自相关STATA 命令:1.先回归reg2.直接输入命令estate bgodfrey,lags(n) 或者窗口操作在Statistics——Postestimation(倒数第二个)——Reports and Statistics(倒数第二个) ——在里面选择Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)LM 统计量如何看:P 值越小(越接近0)表示越显著(显著拒绝原假设),存在序列相关具体是几阶序列相关,你可以把滞后期写为几,当然默认是1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。
时间序列模型分析的各种stata命令
时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。
在一些大规模的联立方程中,情况更就是如此。
而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。
从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象与过程控制等领域。
本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令1、1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96、dta, clearlist in 1/20gen Lgnp = L、gnptsset datelist in 1/20gen Lgnp = L、gnp2)检查就是否有断点:tsreport, reportuse gnp96、dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96、dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L、gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1、2变量的生成与处理1)滞后项、超前项与差分项 help tsvarlistuse gnp96、dta, cleartsset dategen Lgnp = L、gnp96 /*一阶滞后*/gen L2gnp = L2、gnp96gen Fgnp = F、gnp96 /*一阶超前*/gen F2gnp = F2、gnp96gen Dgnp = D、gnp96 /*一阶差分*/gen D2gnp = D2、gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D、lngnpgen growth2 = (gnp96-L、gnp96)/L、gnp96gen diff = growth - growth2 /*表明对数差分与变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101、3日期的处理日期的格式 help tsfmt基本时点:整数数值,如 -3, -2, -1, 0, 1, 2, 3 、、、、1960年1月1日,取值为 0;1)使用use B6_tsset、dta, cleartsset t, dailylistuse B6_tsset、dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式 %d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ 、 , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写)M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年 (1 or 2)q 一年中的第几季度 (1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格)、 display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point) 样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY、q 1999、2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920、dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1tsset newmonth, monthlylist year month time newmonth in 1/301、4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0、7 0、2) nobs(200)sim_arma ma2, ma(0、7 0、2)tsset _ttsline ar2 ma2* 亦可采用 twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) /// ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert)) 3)例3:增加两条纵向的标示线 sysuse tsline2, clear tsset daytsline calories, tline(28nov2002 25dec2002) * 或采用 twoway line 命令 local d1 = d(28nov2002) local d2 = d(25dec2002)line calories day, xline(`d1' `d2') 4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)") tsline calories, tlabel(, format(%td))二、ARIMA 模型与SARMIA 模型ARIMA 模型的基本思想就是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
sac模型的stata命令 解释说明以及概述
sac模型的stata命令解释说明以及概述1. 引言1.1 概述本文将介绍和解释SAC模型(Switching Autoregressive Conditional Heteroskedasticity Model)在STATA软件中的实现方法和命令。
SAC模型是一种时间序列模型,用于描述随时间变化的方差结构,并被广泛用于金融领域的风险管理、股价预测等问题。
STATA软件是一种统计分析软件,提供了丰富的命令和功能,可用于各种数据分析任务。
1.2 文章结构本文按照以下顺序组织内容:首先介绍SAC模型的基本概念,包括定义、原理、应用领域以及优势与局限性。
然后简要介绍STATA软件,并详细说明其命令的基本语法和功能。
接下来重点介绍在STATA中实现SAC模型需要使用的相关命令,并解释这些命令的参数含义与使用方法。
随后,将通过案例分析来展示如何使用STATA命令进行SAC模型拟合和参数估计,并对结果进行解读和评价指标分析。
最后,在结论部分总结主要研究发现并提出对SAC模型及在STATA中使用方法的改进建议和展望。
1.3 目的本文的目的是为读者提供一个全面的理解和使用SAC模型在STATA中实现的指南。
通过阅读本文,读者将了解到SAC模型的基本概念、原理和应用领域,并具备在STATA软件中实现SAC模型的能力。
同时,本文还希望通过案例分析和结果解释,展示SAC模型在实际问题中的应用,并引发对于改进和拓展这一模型及其在STATA中使用方法的思考。
2. SAC模型的基本概念2.1 SAC模型定义与原理SAC模型(Stochastic Approach to Chemical Kinetics)是一种用于描述化学反应动力学的统计模型。
它基于概率和统计推断的原理,通过考虑分子碰撞的随机性来建立反应速率方程。
SAC模型认为分子之间的碰撞是随机发生的,而反应速率受到温度、浓度和催化剂等因素的影响。
SAC模型中,化学反应被视为由一系列元反应组成的网络。
时间序列模型分析的各种stata命令
时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。
在一些大规模的联立方程中,情况更是如此。
而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着BoxandJenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。
从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。
本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset命令usegnp96.dta,clearlistin1/20genLgnp=L.gnptssetdatelistin1/20genLgnp=L.gnp2)检查是否有断点:tsreport,reportusegnp96.dta,cleartssetdatetsreport,reportdropin10/10listin1/12tsreport,reporttsreport,reportlist/*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport,reportlistlistin1/124)追加样本:tsappendusegnp96.dta,cleartssetdatelistin-10/-1sumtsappend,add(5)/*追加5个观察值*/listin-10/-1sum5)应用:样本外预测:predictreggnp96 L.gnp96predictgnp_hatlistin-10/-16)清除时间标识:tsset,cleartsset,clear1.2变量的生成与处理1)滞后项、超前项和差分项helptsvarlistusegnp96.dta,cleartssetdategenLgnp=L.gnp96/*一阶滞后*/genL2gnp=L2.gnp96genFgnp=F.gnp96/*一阶超前*/genF2gnp=F2.gnp96genDgnp=D.gnp96/*一阶差分*/genD2gnp=D2.gnp96listin1/10listin-10/-12)产生增长率变量:对数差分genlngnp=ln(gnp96)gengrowth=D.lngnpgengrowth2=(gnp96-L.gnp96)/L.gnp96gendiff=growth-growth2/*表明对数差分和变量的增长率差别很小*/ listdategnp96lngnpgrowth*diffin1/101.3日期的处理日期的格式helptsfmt基本时点:整数数值,如-3,-2,-1,0,1,2,3....1960年1月1日,取值为0;1)使用useB6_tsset.dta,cleartssett,dailylistuseB6_tsset.dta,cleartssett,weeklylist2)指定起始时点capdropmonthgeneratemonth=m(1990-1)+_n-1formatmonth%tmlisttmonthin1/20capdropyeargenyear=y(1952)+_n-1formatyear%tylisttyearin1/203)自己设定不同的显示格式日期的显示格式%d(%td)定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符cymlndjhqw_.,:-/'!cCYMLNDJW定义如下:candC世纪值(个位数不附加/附加0)yandY不含世纪值的年份(个位数不附加/附加0)m三个英文字母的月份简写(第一个字母大写)M英文字母拼写的月份(第一个字母大写)nandN数字月份(个位数不附加/附加0)dandD一个月中的第几日(个位数不附加/附加0)jandJ一年中的第几日(个位数不附加/附加0)h一年中的第几半年(1or2)q一年中的第几季度(1,2,3,or4)wandW一年中的第几周(个位数不附加/附加0)_displayablank(空格).displayaperiod(句号),displayacomma(逗号):displayacolon(冒号)-displayadash(短线)/displayaslash(斜线)'displayaclosesinglequote(右引号)!cdisplaycharacterc(code!!todisplayanexclamationpoint) 样式1:FormatSampledateinformat-----------------------------------%td07jul1948%tdM_d,_CYJuly7,1948%tdY/M/D48/07/11%tdM-D-CY07-11-1948%tqCY.q1999.2%tqCY:q1992:2%twCY,_w2010,48-----------------------------------样式2:FormatSampledateinformat----------------------------------%d11jul1948%dDlCY11jul1948%dDlY11jul48%dM_d,_CYJuly11,1948%dd_M_CY11July1948%dN/D/Y07/11/48%dD/N/Y11/07/48%dY/N/D48/07/11%dN-D-CY07-11-1948---------------------------------- clearsetobs100gent=_n+d(13feb1978)listtin1/5formatt%dCY-N-D/*1978-02-14*/listtin1/5formatt%dcy_n_d/*1978214*/listtin1/5useB6_tsset,clearlisttssett,format(%twCY-m)list4)一个实例:生成连续的时间变量usee1920.dta,clearlistyearmonthin1/30sortyearmonthgentime=_ntssettimelistyearmonthtimein1/30 generatenewmonth=m(1920-1)+time-1 tssetnewmonth,monthly listyearmonthtimenewmonthin1/301.4图解时间序列1)例1:clearsetseedsim_armaar2,ar(0.70.2)nobs(200)sim_armama2,ma(0.70.2)tsset_ttslinear2ma2*亦可采用twowayline命令绘制,但较为繁琐twowaylinear2ma2_t2)例2:增加文字标注sysusetsline2,cleartssetdaytslinecalories,ttick(28nov200225dec2002,tpos(in))///ttext(347028nov2002"thanks"///347025dec2002"x-mas",orient(vert))3)例3:增加两条纵向的标示线sysusetsline2,cleartssetdaytslinecalories,tline(28nov200225dec2002)*或采用twowayline 命令locald1=d(28nov2002)locald2=d(25dec2002)linecaloriesday,xline(`d1'`d2')4)例4:改变标签tslinecalories,tlabel(,format(%tdmd))ttitle("Date(2002)")tslinecalories,tlabel(,format(%td))二、ARIMA 模型和SARMIA 模型ARIMA 模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
与时间序列相关的STATA_命令及其统计量的解析
与时间序列相关的STATA 命令及其统计量的解析残差U 序列相关:①DW 统计量——针对一阶自相关的(高阶无效)STATA 命令:1.先回归2.直接输入dwstat统计量如何看:查表②Q 统计量——针对高阶自相关correlogram-Q-statisticsSTATA 命令:1.先回归reg2.取出残差predict u,residual(不要忘记逗号)3.wntestq u Q统计量如何看:p 值越小(越接近0)Q 值越大——表示存在自相关具体自相关的阶数可以看自相关系数图和偏相关系数图:STATA 命令:自相关系数图:ac u( 残差) 或者窗口操作在Graphics ——Time-series graphs —— correlogram(ac)偏相关系数图:pac u 或者窗口操作在Graphics——Time-series graphs—— (pac)自相关与偏相关系数以及Q 统计量同时表示出来的方法:corrgram u或者是窗口操作在Statistics——Time-series——Graphs—— Autocorrelations&Partial autocorrelations③LM 统计量——针对高阶自相关STATA 命令:1.先回归reg2.直接输入命令estate bgodfrey,lags(n) 或者窗口操作在Statistics——Postestimation(倒数第二个)——Reports and Statistics(倒数第二个) ——在里面选择Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)LM 统计量如何看:P 值越小(越接近0)表示越显著(显著拒绝原假设),存在序列相关具体是几阶序列相关,你可以把滞后期写为几,当然默认是1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。
stata操作介绍之时间序列-
虽然pperron 检验和dfgls检验拒绝了变量 fylltemp具有稳定性的假设,但是dfuller 检验 不能拒绝原假设,还是可以认为该变量具有 稳定性。
ARIMA模型
自相关表: . corrgram fylltemp,lags(4)
说明:该变量的自相关关系随着滞后期的增加而减少,偏自 相关关系在一期自后滞后消失,故适合模型AR(1)来分析该 变量。
注:本部分继续使用ch52.dta数据。
自相关分析
自相关表: . corrgram fylltemp,lags(9)
说明:大多数P值都小于0.05,故认为fylltemp具有显著的自相 关性;相关关系或偏相关关系越强,相应的线条越长;
自相关分析
自相关图: . ac fylltemp,lags(9)
平滑分析
生成移动平均值(1):
. gen water3=(water[ _n-1]+water[ _n]+water[ _n+1])/3
平滑分析
生成移动平均值(2): . tssmooth ma water5=water,window(2 1 2)
注:tssmooth:表示移动平均值平滑(加权或不加权); window(2 1 2):表示使用该值的前两个值、该值与该值的
平滑分析-滞后变量
生成n阶滞后变量的两种方法: . gen wNAO_n=wNAO[ _n-1] . gen wNAO_n=Ln.wNAO 注:第二种方法中的''Ln''表示Lag(n);
平滑分析-滞后变量
生成一阶滞后变量: . gen wNAO_1=wNAO[ _n-1]
生成二阶滞后变量: . gen wNAO_2=L2.wNAO
与时间序列相关的STATA命令及其统计量的解析完整版
与时间序列相关的STATA命令及其统计量的解析完整版与时间序列相关的S T A T A命令及其统计量的解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】与时间序列相关的S T A T A命令及其统计量的解析残差U 序列相关:①DW 统计量——针对一阶自相关的(高阶无效)STATA 命令:1.先回归2.直接输入dwstat统计量如何看:查表②Q 统计量——针对高阶自相关correlogram-Q-statisticsSTATA 命令:1.先回归reg2.取出残差predict u,residual(不要忘记逗号)3. wntestq u Q统计量如何看:p 值越小(越接近0)Q 值越大——表示存在自相关具体自相关的阶数可以看自相关系数图和偏相关系数图:STATA 命令:自相关系数图:ac u( 残差) 或者窗口操作在 Graphics ——Time-series graphs ——correlogram(ac)偏相关系数图:pac u 或者窗口操作在Graphics——Time-series graphs——(pac)自相关与偏相关系数以及Q 统计量同时表示出来的方法:corrgram u或者是窗口操作在Statistics——Time-series——Graphs——Autocorrelations&Partial autocorrelations③LM 统计量——针对高阶自相关STATA 命令:1.先回归reg2.直接输入命令estate bgodfrey,lags(n) 或者窗口操作在 Statistics——Postestimation(倒数第二个)——Reports and Statistics(倒数第二个) ——在里面选择 Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)LM 统计量如何看:P 值越小(越接近 0)表示越显着(显着拒绝原假设),存在序列相关具体是几阶序列相关,你可以把滞后期写为几,当然默认是1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。
时间序列分析STATA 第三课
第三课:ARMA/ARIMA建模及预测核心问题:1,前提:同方差,因此,不用考虑不同时刻变量的离散性;2,建立的是变量分布的均值模型,也就是,随机变量分布的均值所在的位置3,难点在于,时间序列数据建立模型并没有唯一性以quarterly.dta的数据来说明。
这个数据是美国的季度GDP数据,数据从1947年一季度开始,到2012年一季度结束。
研究对象,GDP,存在通货膨胀问题。
所以要用GDP平减指数(GDP Deflator)进行矫正,这里是以2005年的美元作为基准的。
所以考察变量是GDP2005,即以2005年的美元作为基准的各季度的GDP 真实值。
一,一些基本符号:D L F二,建立模型:前期准备:观察时序图相关命令:tsset, tsline/twoway从图上可以看出,GDP2005值呈线性的向右上方倾斜,第一种方法:可以用确定性分析理的方法,使用研究变量对时间变量进行回归 即:regress lrgdp date (采用的是最小二乘估计)然后对残差项进行White Noise 检验观察此图:特征大值跟大值,小值跟小值,这说明Residual 中存在着自相关信息。
肯定不是White Noise因此,从这里看出,确定性的方法比较直观,简单,但效果不好,弥补:对残差序列进行回归,建立AR 模型,这就是所谓的 残差自回归模型。
第二种方法BOX-JENKINS 方法,也就是通常所说的ARMA(p,d) /ARIMA(p,d,d)建模(采用的是最大似然估计)。
四大步骤:1、模型识别Identification :决定p 和q2、模型估计Estimation :估计εσθφμ 个),(,个)(,q p 3、模型检验Diagnostic Checking4、模型优化Parsimony1,模型识别Identification 相关命令:ac pac这个图的特征是ac值虽然在减小,但其减少类似线性,这时候就要考虑差分了,通常使用的是一阶差分和二阶差分一阶差分generate growth=lrgdp-L.lrgdp这个时候,growth就是经济增长率这张图的ac值快速减少到影音之内,说明在样本中,变量growth显现的是平稳。
时间序列分析STATA第二课
第二课:平稳性检验重点:1)平稳的基本含义及扩展2)制图的命令3)单位根检验一,平稳的基本含义及其扩展:1, 基本含义:平稳(stationary ),在本书中分析的都是弱/宽平稳,也称为协方差平稳(covariance stationary )即:1)μ=t Ex 2)22)(σ=t x E3)协方差只与时滞有关,而与所处时刻无关 即j j t t x x E γ=-)(2,非平稳产生的原因:1)奇异点(outlier )2)随机游走(Random Walk )3)漂移(Drift )4)趋势(Trend )5)方差变化(Changing Variance )。
时序图是判别上述五种情形最为直接和简便的方法。
单位根检验(Unit Root )检验的是2),3),4)种情形3,DF/ADF 检验的三种情形分别是:无漂移项的自回归过程(又称为 差分平稳过程difference stationary );带漂移项的自回归过程,带趋势项的自回归过程(这类过程又称为 趋势平稳Trend Stationary )二,制图命令:Twoway Historgram三,单位根检验UNIT ROOT Test命令:dfuller dfgls 适用于同方差场合pperron 适用于异方差场合检验结果表示为:t p t p t t t x x x x εββρμ+∇++∇++=∇---+1111...关键:看懂软件运行结果格式:Dfuller varname [if] [in] [, options]options Description---------------------------------------------------------------------------------------noconstant suppress constant term in regressiontrend include trend term in regressiondrift include drift term in regressionregress display regression tablelags(#) include # lagged differences---------------------------------------------------------------技巧:lags(#)的选择,是艺术,不是科学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。
在一些大规模的联立方程中,情况更是如此。
而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。
从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。
本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96.dta, clearlist in 1/20gen Lgnp = L.gnptsset datelist in 1/20gen Lgnp = L.gnp2)检查是否有断点:tsreport, reportuse gnp96.dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96.dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L.gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1.2变量的生成与处理1)滞后项、超前项和差分项 help tsvarlistuse gnp96.dta, cleartsset dategen Lgnp = L.gnp96 /*一阶滞后*/gen L2gnp = L2.gnp96gen Fgnp = F.gnp96 /*一阶超前*/gen F2gnp = F2.gnp96gen Dgnp = D.gnp96 /*一阶差分*/gen D2gnp = D2.gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D.lngnpgen growth2 = (gnp96-L.gnp96)/L.gnp96gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101.3日期的处理日期的格式 help tsfmt基本时点:整数数值,如 -3, -2, -1, 0, 1, 2, 3 ....1960年1月1日,取值为 0;1)使用 tsset 命令指定显示格式use B6_tsset.dta, cleartsset t, dailylistuse B6_tsset.dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式 %d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ . , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写) M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年 (1 or 2)q 一年中的第几季度 (1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格). display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point)样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY.q 1999.2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920.dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1tsset newmonth, monthlylist year month time newmonth in 1/301.4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0.7 0.2) nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _ttsline ar2 ma2* 亦可采用 twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) /// ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert)) 3)例3:增加两条纵向的标示线sysuse tsline2, cleartsset daytsline calories, tline(28nov2002 25dec2002) * 或采用 twoway line 命令 local d1 = d(28nov2002) local d2 = d(25dec2002)line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)") tsline calories, tlabel(, format(%td))二、ARIMA 模型和SARMIA 模型ARIMA 模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
ARIMA(1,1)模型:t t t t y y εθερα+++=--112.1 ARIMA 模型预测的基本程序:1) 根据时间序列的散点图、自相关函数和偏自相关函数图以ADF 单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。
一般来讲,经济运行的时间序列都不是平稳序列。
2) 对非平稳序列进行平稳化处理。
如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
3) 根据时间序列模型的识别规则,建立相应的模型。
若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR 模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA 模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA 模型。
4) 进行参数估计,检验是否具有统计意义。
5) 进行假设检验,诊断残差序列是否为白噪声。
6) 利用已通过检验的模型进行预测分析。
2.2 ARIMA 模型中AR 和MA 阶数的确定方法: clearsim_arma y_ar, ar(0.9) nobs(300) line y_ar _t, yline(0)ac y_ar /*AR 过程的 ACF 具有“拖尾”特征,长期记忆*/ pac y_ar /*AR 过程的 PACF 具有“截尾”特征*/sim_arma y_ma, ma(0.8)line y_ma _t, yline(0)ac y_ma /*MA过程的 ACF 具有“截尾”特征,短期记忆*/pac y_ma /*MA过程的 PACF 具有锯齿型“拖尾”特征*/2.3 ARIMA模型中涉及的检验:use /data/r11/wpi1 ,cleartsset tgen d_wpi = D.wpidfuller wpi /*单位根检验*/dfuller d_wpiwntestq wpi /*白噪声检验:Q检验*/wntestq d_wpiwntestb wpi,table /*累积统计Q检验并以列表显示*/wntestb d_wpi,tablewntestb wpi /*画出累积统计量Q*/wntestb d_wpi /*画出累积统计量Q*/corrgram wpi ,lag(24) /*自相关、偏相关、Q统计量*/corrgram d_wpi ,lag(24)2.4 ARIMA模型和SARIMA模型的估计ARIMA模型:use /data/r11/wpi1 ,cleargen d_wpi = D.wpiarima wpi,arima(1,1,1) /* 没有漂移项即常数项的命令是noconstant */ * 或者下面的这种形式也行arima D.wpi,ar(1) ma(1)SARIMA模型:use /data/r11/air2,clearline air tgenerate lnair=ln(air)arima lnair,arima(0,1,1) sarima(0,1,1,12) noconstant2.5 ARIMA模型的一个真实应用——美国批发物价指数use /data/r11/wpi1 ,cleardfuller wpi /*单位根检验*/gen d_wpi = D.wpidfuller d_wpiarima wpi,arima(1,1,1) /* 没有漂移项即常数项的命令是noconstant */ * 或者下面的这种形式也行arima D.wpi,ar(1) ma(1)ac D.ln_wpi,ylabels(-.4(.2).6)pac D.ln_wpi,ylabels(-.4(.2).6)arima D.ln_wpi,ar(1) ma(1/4)estat ic /*LL 越大越好, AIC 和 BIC 越小越好*/arima D.ln_wpi,ar(1) ma(1 4) /*季节效应 */estat ic* 残差检验predict r,reswntestq r /*白噪声检验:Q检验*/wntestb r,table /*累积统计Q检验并以列表显示*/wntestb r /*画出累积统计量Q*/corrgram r ,lag(24) /*自相关、偏相关、Q统计量*/* 样本内预测predict y_hat0 /* y的拟合值 */* 样本外预测list in -15/-1tsappend, add(8)list in -15/-1predict y_hat1 /* y 的样本外一步预测值 */list in -15/-1gen Dln_wpi = D.ln_wpisumpredict y_hat_dy0, dynamic(124) /*动态预测*/predict y,y /*对未差分变量的预测*/predict fy,y dynamic(124)gen fwpi=exp(fy) /*实际wpi的预测值*/gen ywpi=exp(y)line wpi fwpi ywpi t in -20/-1三、ARCH 模型传统的计量经济学对时间序列变量的第二个假设:假定时间序列变量的波动幅度(方差)是固定的,不符合实际,比如,人们早就发现股票收益的波动幅度是随时间而变化的,并非常数。