6、5一元一次方程应用题归类汇集(一)
一元一次方程应用题归类汇集讲义(补课用)
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题 , 工程问题 , 和差倍分问题(生产、做工等各类问题), 调配问题, 分配问题,配套问题 , 增长率问题 数字问题 ,方案设计与成本分析 ,古典数学 , 浓度等问题。
一、行程问题:(1)行程问题中的三个基本量及其关系: 路程=速度×时间。
(2)基本类型有:① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(一)相遇:1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
2. A 、B 两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A 、B 两地同时出发,相向而行,几小时后两人相遇?3.A 、B 两地相距15千米.甲每小时走5千米,乙每小时走4千米.甲、乙两人分别从A 、B 两地相向而行,甲先出 类型 等 量 关 系 列一元一次方程解行程问题 直线 相遇 追及 相遇 追及 顺逆流问题 错车问题 两者的路程之和=两地的距离 两者的路程之差=两地的距离 两者的路程之和=环形跑道一圈的长度 两者的路程之差=环形跑道一圈的长度 路程或静水中的速度相等 两者路程和或差=两个车身的长度和发1小时后乙再出发,几小时后两人相遇?4. A 、B 两地相距15千米. 甲每小时走5千米,乙每小时走4千米. 甲、乙两人分别从A 、B 两地同时出发,背向而行,几小时后两人相距60千米?5.甲乙两人从相距32千米的两地相向而行,甲步行每小时走4千米,先行1小时后,乙骑自行车出发2小时后与甲相遇,问乙骑自行车每小时走多少千米?6.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
七年级数学一元一次方程应用题归类汇集(含答案)
七年级数学一元一次方程应用题归类聚集(含答案)一元一次方程应用题归类聚集一、列方程解应用题的一般步骤〔解题思路〕〔1〕审—审题:认真审题,弄清题意,找出能够表示此题含义的相等关系〔找出等量关系〕.〔2〕设—设出未知数:根据提问,巧设未知数.〔3〕列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.〔4〕解——解方程:解所列的方程,求出未知数的值.〔5〕答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.〔注意带上单位〕二、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度时间时间=路程速度速度=路程时间〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,那么列方程为。
解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:xx 3.6 840 2、某人从家里骑自行车到学校。
假设每小时行15千米,可比预定时间早到15分钟;假设每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x小/时,那么列出方程是:15〔x-0.25〕=9〔x+0.25〕方法二:设从家里到学校有x千米,那么列出方程是:x15x15 15609603、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
一元一次方程应用题归类汇集(含答案)
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
初一数学《一元一次方程应用题》类型归纳及练习
一元一次方程应用题归类(典型例题、练习)一、列方程解应用题的一般步骤(解题思路)(1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设出未知数:根据提问,巧设未知数.(3列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系,列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验写答:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意单位统一及书写规范)第一类:与数字、比例有关的问题:例1.比例分配问题:比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?例2.数字问题:1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。
(1)有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
(2)一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个2位数的17大6,求这个两位数。
第二类:与日历、调配有关的问题:例3. 日历问题:探索日历问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题。
在日历上,三个相邻数(列)的和为54,求这三天分别是几号?变式:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)1 3 5 7 9 1113 15 17 19 21 2325 27 29 31 33 3537 39 41 43 45 47……(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a 的代数式表示十字框框住的5个数字之和;(2)十字框框住的5个数之和能等于2020吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;例4.劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
一元一次方程应用题归类汇集
一元一次方程应用题归类汇集:(一)行程问题:行程问题是指有关匀速运动的应用题.这类问题可分为:①基本行程问题;②相遇问题;③追及问题;④航行问题;⑤环行问题等等。
但无论怎样变化,都离不开匀速运动基本关系式:,以及由此推导出来的:,.现将这几类应用题的解法,通过举例介绍如下:一基本行程问题.基本行程问题的特点是:同一人(或物体)在去时与回时的运动过程中,改变了路程、速度或时间;也可以是两人(或两物体)在同一路程行进中,由于速度不同而导致到达的时间不同.解这类问题时,要抓住总路程或总时间不变,直接运用路程、速度与时间三者之间的关系式.二、相遇问题.相遇问题的特点是:两个运动着的人(或物体)从两地沿同一路线相向而行,最终相遇.解这类问题时,要抓住甲、乙同时出发至相遇时的基本等量关系:(1)甲行的路程+乙行的路程=两地间的路程,即:甲与乙的速度和×相遇时间=两地间的路程;(2)同时出发到相遇甲与乙所用的时间相等.三、追及问题.追及问题的特点是:两人(或两物体)同时沿同一路线,同一方向运动,慢者在前,快者在后,快者追赶慢者.解这类问题要抓住基本等量关系:(1)快者行的路程-慢者行的路程=两者间的距离,即:两者的速度差×追及时间=两者间的距离;(2)从开始追赶到追及时,快者与慢者所用的时间相等.四、航行问题.航行问题是一种特殊的行程问题,它的特殊性在于要考虑水速对船速的影响,其基本等量关系是:(1)船顺流速度=船的速度+ 水流速度;(2)船逆流速度=船的速度-水流速度.五、环行问题.环行问题即封闭路线上的行程问题.如果同时从同一地点出发,到第一次相遇,有两种情况:同向环行类似追及问题,其基本等量关系是:快者走的路程-慢者走的路程=环形周长;反向环行类似相遇问题,其基本等量关系是:快者走的路程+慢者走的路程=环形周长.数学运算之行程问题专题行程问题的“三原色”路程、速度、时间。
问题千变万化,归根结底就是这三者之间的变化。
一元一次方程应用题 类型归纳
一元一次方程应用题
一元一次方程是指只含有一个未知数的一次方程,可表示为ax+b=0,其中a和b为已知数,x为未知数。
一元一次方程应用题常见的类型包括:
1. 购买商品问题:如某商品的价格为x元,现有b元,求买几件商品后还剩a元。
2. 时间、速度、距离问题:如A车以每小时x公里的速度行驶,经过b小时后行驶了a公里,求A车的速度。
3. 水混合问题:如已知某种酒精溶液中酒精的浓度为x%,现加入b 升水后酒精的浓度为a%,求原溶液中酒精的浓度。
4. 利润问题:如一件商品的进价为b元,售价为x元,求多少件商品时能够获利a元。
这些应用题主要通过建立一元一次方程来求解,需要根据题目中给出的已知条件和未知量,写出方程并解出未知数的值。
一元一次方程应用题归类汇集(含答案)
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际, 检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
一元一次方程应用题归类汇集(已整理)
一元一次方程应用题归类汇集(已整理)一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。
一元一次方程应用题题型与解题方法归类
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt (2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
一元一次方程应用题分类汇集(我已整)2013.12.5
一元一次方程应用题分类汇集一、一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,销售问题增长率问题数字问题,方案设计与成本分析,积分问题 5古典数学,浓度问题等。
二、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)三、具体分类(一)行程问题——画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。
常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
一元一次方程应用题归类汇集[实用]
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
一元一次方程应用题分类题集(最全面)
一元一次方程应用题归类题集(一)行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.相遇问题:同时出发开始计时,到相遇时两者所花时间是相等[相向而行] 同时出发开始计时,到相遇时两者所走的路程之和等于全程1、甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?2、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时候相遇。
已知甲骑车每小时比乙每小时多走2千米,若设乙的速度为x千米/小时。
则可列方程:3.小明家与小红家相距6000米,小明要尽快把一件重要的东西交给小红,小明先骑自行车从家里出发,小明骑了1500米后小红骑摩托车也从家出发.小明每分钟骑500米,小红每分钟骑1000米.小明出发几分钟后他们在路上相遇?4.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后第一次相遇?5、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。
(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?6. 甲,乙两地相距168千米,一列慢车从甲地出发,每小时行驶36千米,一列快车从乙地出发,每小时行驶48千米。
如果慢车先开一小时,快车才出发,问快车出发几小时后两车相遇?7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2问两车每秒各行驶多少米?追及问题:同时出发开始计时,追到时两者所用时间相等1、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米然后奋力去追,设x秒钟后,甲便追上了乙?2、甲乙两人从A、B同时出发,甲骑自行车,乙骑摩托车,沿同一条路线同时相向而行,出发后3小时相遇,已知相遇时乙比甲多走90千米,相遇后经过1小时乙到达A地,问甲乙的速度分别是多少?3、甲、乙两人分别从相距140千米的A,B两地同时出发,甲的速度:40千米/小时,乙的速度:20千米/小时(1)若相向而行,经过多少小时两人相距20千米?(2)如果同向而行,经过多少小时两人相距20千米?4.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,问甲乙两地相距多少千米?5. 某人从家里骑自行车到学校。
一元一次方程应用题归类汇集
一元一次方程应用题归类汇集一、行程问题(一)追击和相遇问题1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,甲地到乙地的距离是多少千米?2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后俩人相遇?4、一列客车长200m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?(二)时钟问题1、在8点和9点间,何时时钟分针和时针重合?何时时钟分针和时针成直角?何时时钟分针和时针成平角?(三)行船问题1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?二、工程问题1、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?4、整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作?三、比赛积分问题1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
(整理)一元一次方程应用题归类汇集(含答案)
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)找——等量关系:根据题意找出等量关系。
(4)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(5)解——解方程:解所列的方程,求出未知数的值.(6)验——检验所求出的未知数的值是否是方程的解,是否符合实际。
(7)答——作答检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
一元一次方程应用题归类汇集(实用)
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
一元一次方程应用题归类汇集
一元一次方程应用题归类汇集一、列一元一次方程解应用题的一般步骤 (1)找:找等量关系;(2)设:设未知数;(3)列:列出方程;(4)解:解方程;(5)检验:检验解是否符合题意;(6)作答:详细作答。
二、典型问题1.和差倍分(包括年龄问题、增长问题)知识点:一岁一年,人人平等 增长量=原有量×增长率 现在量=原有量+增长量 例1.小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的41,求小强叔叔今年的年龄。
例2. 两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?例3. 把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?附加题:某校2014年初一年级与高一年级招生总数为500人,计划2015年秋季招生初一年级增加20%,高一年级招生增加15%,这样2015年初一、高一招生总数比2014年增加18%。
求2015年初一、高一年级的计划招生人数各是多少?2.配套问题知识点:先根据题意列出比例式,再根据 将甲:乙=a:b 化为乘积形式 。
例4.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?附加题:某工厂第一车间人数是第二车间人数的四分之三多10人,若从第二车间调30人到第一车间,则第二车间的人数是第一车间人数的一半,求第一、二车间原来各有多少人?3.销售问题知识点:(1)商品利润=— =(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.例5.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?例6.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?例7.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25% ,另一件亏损25% ,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?例8.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.例9.一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元?这套家具售出后可赚多少元?利息=利息税=实得本利和=例9.小明把压岁钱按定期一年存入银行。
一元一次方程应用题分类汇集
2.某汽车在一段坡路上往返行驶,上坡的速度为 10 千米/时,下坡的速度为 20 千米/时,求
汽车的平均速度.
【解析】解:设这段坡路长为 a 千米,汽车的平均速度为 x 千米/时,
a
a
则上坡行驶的时间为 小时,下坡行驶的时间为 小时.
10
20
依题意,得:
a 10
a 20
x
2a
,
化简得: 3ax 40a . 显然 a≠0,解得 x 13 1 .
3 答:汽车的平均速度为13 1 千米/时.
根据题意,得 x (3x 2 000) 10 000 . 解得 x 2 000 . 答:粗加工的该种山货质量为 2 000 kg.
6.植树节期间,两所学校共植树 834 棵,其中海石中学植树的数量比励东中学的 2 倍少 3 棵, 求两校各植树多少棵. 【解析】解:设励东中学植树 x 棵. 根据题意,得 x (2x 3) 834 , 解得 x 279 . 2x 3 2 279 3 555 . 答:励东中学植树 279 棵,海石中学植树 555 棵.
(3)解此类题的关键ቤተ መጻሕፍቲ ባይዱ抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助 画草图来分析.
题型分析——一般问题
1.小明要到城里参加运动会,如果每小时走 4 千米,那么走完预订时间离县城还有 0.5 千米, 如果他每小时走 5 千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是 多少千米? 【解析】解:设小明预订的时间为 x 小时,由题意得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐学教育学员个性化教学辅导教案学科:数学任课教师:叶授课时间:2016年月日(星期 )
本次课授课内容
6、5一元一次方程应用题归类汇集(一)
一、列方程解应用题的一般步骤(解题思路)
(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系
列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,
检验后写出答案.(注意带上单位)
二、一元一次方程应用题的几种常见题型及其特点归纳
1.和差倍分问题
增长量=原有量×增长率现在量=原有量+增长量
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 2、数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
例1:有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的四分之一,求这个两位数。
注:(和、差、倍、分问题)
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定未知量与已知量,并注意每个词的细微差别。
最后根据等量关系列出方程
练:一个数的2倍与这个数的一半的和等于25,求这个数。
2、体积变化问题:
基本量、基本数量关系:常见几何图形的面积、周长、体积计算公式。
寻找相等关系的方法:抓住两个等量关系:第一,形变体积不变;第二,形变体积变,但重量不变。
等积变形
例2:在底面直径为12cm,高为20cm的圆柱形容器中注满水,倒入底面是边长为10cm的正方形的长方体容器,正好注满。
这个长方体容器的高是多少?(在本题中,假设两个容器里的厚度都可以不考虑,π取近似值3.14。
)
注:(等积变形问题)
此类问题的关键在“等积”上,是等量关系的所在,就是寻找题干中的不变量,不变量就是我们的等量关系,所以对孩子的要求就是掌握常见几何图形的面积、体积公式。
练:用5.2米长的铁丝围成一个长方形,使得长比宽多0.6米,求围成的长方形的长为多少米?
3、调配问题
例3、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
注:(调配问题)
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
练3:某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)
4、年龄问题
其基本数量关系:大小两个年龄差不会变。
这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。
基本相等关系:增长量=原有量×增长率,现有量=原有量+增长量或现有量=原有量-降低量
寻找相等关系的方法:抓住关键性词语:共、多、少、倍、几分之几以及原有量、先有量之间的关系推导出相等关系。
例4、小兵今年13岁,约翰的年龄的3倍比小兵的年龄的2倍多10岁,求约翰的年龄。
练:小蓓蓓今年3岁,她与她妈妈年龄的十分之一的和的一半恰好就是小蓓蓓的年龄,小蓓蓓的妈妈今年多少岁?
课堂练习:
1、三个连续整数的和为72,则这三个数分别是多少?
2、足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
3、某商品由A,B两种原料制成,其中A原料每千克50元,B原料每千克40元;调价后,A原料价格上涨10%,B
原料价格下降15%,但核算后,产品成本不变。
问生产11千克这种产品需A,B原料各多少千克?
4、父子2人,父亲今年40岁,儿子12岁,问几年后,父亲的年龄是儿子的2倍。
课后巩固复习:作业_________题
1、和差倍分问题
1、5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?
2、学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人
.
3、学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?
4、某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?
5、某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组,且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。
2、体积变化问题
1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?
2、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成
后的铜块的高是多少厘米(不计损耗)?
3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘
米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
4、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆
柱形水桶里,问这时水的高度是多少?
5、一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒
水,当铁盒装满水时,水桶中的水高度下降了多少米。
6、长方形的长和宽的比是5:3,长比宽长12厘米,求这个长方形的长和宽分别是多少。
7、小圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆柱体体积的
2.5倍,则大圆柱的高是多少厘米?
8、要锻造一个半径为5厘米,高为8厘米的圆柱形毛胚,应截取半径为4厘米的圆钢多长?
9、已知黄豆发芽后的重量可以增加3.5倍,现需要100千克黄豆芽,要用黄豆多少千克?
10、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。
3、调配与配套问题
1、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
2、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?
3、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?
4、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).
5、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
7、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
8、甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
4、年龄问题
1、现在弟弟的年龄恰是哥哥年龄的,而九年前弟弟的年龄是哥哥年龄的,问哥哥现在的年龄是多少?
2、1998年某人的岁数正好等于他出生年份的数字之和,问这个人2003年是多少岁?
3、某中学初一学生小刚今年13岁,属羊,非常巧合的是,小刚的爷爷也是属羊的,而且两个人的年龄的和是86,你能算出小刚爷爷的年龄吗?
预习布置:。