天津大学固态相变复习题纲---亲自整理
材料热处理 固态相变 相变基础课程复习题纲
“固态相变”课程复习提纲一、铁碳相图1、Fe-Fe3C相图,A1、A3、Acm线,下标c和r的含义。
2、纯铁加热时晶体结构的变化和膨胀特性。
3、各临界点的温度和碳含量。
4、应用杠杆定律计算各相含量。
二、奥氏体的形成1、奥氏体、铁素体和马氏体的结构和比容大小。
2、奥氏体晶核的形成和长大机制。
共析钢奥氏体形成时各相C浓度的分布。
为何奥氏体化时共析钢中的铁素体总是先消失(有残留碳化物)?3、奥氏体的成核率随过热度变化的规律与金属凝固时成核率随过冷度变化的规律有何不同?为何加热速度越快所形成奥氏体的成分越不均匀?4、温度、碳含量和原始组织如何影响奥氏体的形核和长大?5、奥氏体的三种晶粒度。
影响奥氏体晶粒度的因素有哪些?为何要细化奥氏体?三、珠光体转变1、片状珠光体的形成机理及C的扩散机制。
2、珠光体、索氏体和屈氏体的概念。
为何冷速越大,珠光体片层越薄?3、成核率N、长大速度G 与转变温度的关系。
4、影响珠光体转变的主要合金元素有哪些,起何作用?5、影响珠光体机械性能的主要因素(珠光体团尺寸、片层厚度)和机制及提高性能可采取的措施。
四、马氏体转变1、马氏体的晶体结构和转变的主要特点。
2、马氏体形成热力学:T0,M s,M f,A s,M d,A d等概念。
为何钢的马氏体转变有很大的热滞后(过冷度)?3、板条马氏体和片状马氏体的形态、亚结构和性能(强度、塑性)特点。
C含量对马氏体形态、M s点和γR的影响。
为何C含量越高M s点越低、室温下γR 越多?4、如何根据奥氏体和马氏体的物理性能特点,测定奥氏体转变为马氏体的过程。
5、形状记忆合金的特点和应用。
五、贝氏体转变1、上贝氏体和下贝氏体的形成温度范围、组织形态和性能特点。
2、为何说贝氏体转变兼有珠光体和马氏体转变的特点?恩金贝氏体相变假说。
3、上、下贝氏体中铁素体的含C量特点;与珠光体中的铁素体有何不同?4、影响贝氏体力学性能的主要因素及机理。
六、过冷奥氏体转变1、TTT曲线和CCT曲线的含义。
天津大学《固态相变》2020年考研专业课复试大纲
课程名称:固态相变
一、考试的总体要求
掌握金属材料中的相变基本理论,主要是钢中组织转变的基本规律。
具有运用金属材料中相变基本规律,分析和研究热处理工艺问题的能力。
初步掌握成分、组织与性能之间的关系,对金属材料具有一定的分析研究能力。
二、考试内容及比例
第一章绪论及金属固态相变特征
概述;金属固态的扩散和无扩散转变,弹性能对新旧相形成的影响;新相成核时的惯习面和位向关系、共格界面、半共格界面和非共格界面;界面能和晶界对新相形成的影响;过渡相的形成。
第二章钢中奥氏体的形成
平衡组织加热时的奥氏体形成,P-A 转变的热力学条件、形成机理、等温形成动力学;连续加热时的奥氏体形成,亚(过)共析钢的奥氏体形成及特点。
奥氏体晶粒长大及其控制,奥氏体晶粒度的概念,影响奥氏体长大的因素,加热时钢的过热现象。
第三章珠光体转变
珠光体的组织形态,片状、粒状珠光体的形成过程;珠光体转变动力学及其影响因素; 亚(过)共析钢中的无共析相的形成、形态及动力学,伪共析组织;片状珠光体和粒状珠光体的机械性能及。
固态相变原理考试试题+答案
固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别调幅分解与形核长大型相变地区别调幅分解形核长大型变形成分连续变化,最后达到平衡始终保持平衡,不随时间变化相界面开始无明显相界面,最后才变明显始终都有明显地相界面组织形态两相大小分布规则,组织均匀,不呈球状大小不一,分布混乱,常呈球状,组织均匀性差结构结构与母相一致,成分与母相不同结构、成分均不同三、(20分)1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ M G α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,rt ∂∂<0小粒子溶解;③当时,r>r ,rt ∂∂>0粒子长大;④当时,r=2r ,rt ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0e x p ()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。
2013固态相变知识点-复习提纲[1]
复习提纲及考试题型1 选择题(大约10个左右,20分)2 名次解释(大约5个,20分)固态相变TTT曲线,CCT曲线奥氏体的起始晶粒度\奥氏体实际晶粒度\奥氏体的本质晶粒度二次硬化\二次淬火形变硬化\时效硬化Ms点及其物理意义As点及其物理意义回火屈氏体\回火马氏体\回火索氏体第一类回火脆性,第二类回火脆性魏氏体组织3问答题或者分析比较题(大约2-3个,20分左右)请分析钢中马氏体高强度和高硬度的主要原因。
说明钢中板条状马氏体和片状马氏体的形态特征,以及亚结构特点及其类型,并指出它们的性能差异。
试比较上贝氏体和下贝氏体的组织形态特征,以及碳化物分布特点和形态,并指出它们的性能差异。
试比较连续脱溶和非连续脱溶机制、组织形态特征,并指出它们的性能差异。
试比较胞状脱溶和珠光体相变之间的差异。
4 综合题(1个,考通过基本原理分析问题的能力,15分左右)初始奥氏体化和淬火冷却速度等对过共析钢混合组织(马氏体、残余渗碳体、残余奥氏体)的影响规律?混合组织(马氏体、残余铁素体、残余奥氏体)对性能的影响规律?重点是会分析问题知识点固态相变导论固态相变概念,平衡相变与非平衡相变的分类,固态相变特点,弹性应变能及其影响因素,界面种类及其特点,固态相变临界晶核和临界形核功,界面/界隅/界棱对临界晶核尺寸和固态相变的影响。
JMA方程,Avrami方程,TTT/CCT曲线,临界淬火速度,合金元素对TTT曲线影响。
扩展●无成分变化/有成分变化的固态相变中,新相长大速度的模型及其影响因素。
●试通过推导固态相变临界晶核尺寸(假设球形晶核),分析各种影响因素的作用,并在此基础上讨论固态相变与液态凝固之间的异同。
奥氏体化奥氏体化四个阶段,连续加热奥氏体化的特点,奥氏体晶粒度,奥氏体的起始晶粒度/本质晶粒度/实际晶粒度,控制晶粒尺寸的方法。
扩展试示意画出亚共析钢/共析钢/过共析钢奥氏体化过程的阶段。
请利用铁碳平衡相图和新相长大速度模型分析为什么共析钢奥氏体化过程中,铁素体的消失速度远大于渗碳体的消失速度。
(完整版)固态相变原理考试试题+答案
固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④ 在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ MG α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,r t ∂∂<0小粒子溶解;③当时,r>r ,r t ∂∂>0粒子长大;④当时,r=2r ,r t ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0exp()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。
固态相变原理测验试题+答案
固态相变原理测验试题+答案--————--———-——---————-——-————--— 作者: —————————————-——-—-——-—-——-—--—— 日期:固态相变原理考试试题一、(20 分) 1、试对固态相变的相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。
界面能 :是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。
与大小和化学键的数目、强度有关。
为表面张力,为偏摩尔自由能, 为由于界面面积改变而引起的晶粒内部自由能变化 (1) 共格界面的化学键数目、强度没有发生大的变化,σ最小;半共格界面产生错配位错,化学键发生变化,σ次之;非共格界面化学键破坏最厉害,σ最大. (2) 应变能 ① 错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。
② 比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。
2、分析晶体缺陷对固态相变中新相形核的作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。
(1) 空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。
(2) 位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能。
③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。
④位错是快速扩散的通道.⑤位错分解为不全位错和层错,有利于形核。
Aaromon 总结:刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20 分) 已知调幅分解浓度波动方程为:1、试分析发生调幅分解的条件,其中:只有当 R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使 R(λ)>0,得 G”<0 且| G”|>2η2Y+8π2k/λ2 令 R(λ)=0 得 λc—临界波长,则 λ<λc 时,偏聚团间距小,梯度项 8π2k/λ2 很大,R(λ)>0,不能发生;λ>λc 时,随着波长增加,8π2k/λ2 下降,易满足| G”| >2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发生。
天津大学版物理化学复习提纲[优质文档]word资料10页
物理化学复习提纲一、 热力学第一定律1. 热力学第一定律:ΔU = Q -W (dU=δQ -δW ,封闭体系、静止、无外场作用)*热Q,习惯上以系统吸热为正值,而以系统放热为负值;功W ,习惯上以系统对环境作功为正值,而以环境对系统作功为负值。
**体积功δW=(f外dl =p外·Adl )=p外dV=nRT ⎰21/V V V dV =nRTlnV 2/V 1=nRTlnp 1/p 22. 焓:定义为H ≡U+pV ;U ,H 与Q ,W 区别(状态函数与否?) 对于封闭体系,Δ H= Qp, ΔU= Qv, ΔU= -W (绝热过程)3. Q 、W 、ΔU 、ΔH 的计算 a. ΔU=T nCv.md T T ⎰21= nCv.m(T 2-T 1) b. ΔH=T nCp.md T T ⎰21= nCp.m(T 2-T 1) c. Q :Qp=T nCp.md T T ⎰21;Qv=T nCv.md T T ⎰21d. T ,P 衡定的相变过程:W=p (V 2-V 1);Qp=ΔH=n ΔH m ;ΔU=ΔH -p(V 2-V 1) 4. 热化学a. 化学反应的热效应,ΔH=∑H(产物)-∑H (反应物)=ΔU+p ΔV (定压反应)b. 生成热及燃烧热,Δf H 0m (标准热);Δr H 0m (反应热)c. 盖斯定律及基尔戈夫方程 [G .R.Kirchhoff, (ΔH/T)=C p(B) -C p(A)= ΔCp]二、 热力学第二定律1. 卡诺循环与卡诺定理:η=W/Q 2=Q 2+Q 1/Q 2=T 2-T 1/T 2,及是(Q 1/T 1+Q 2/T 2=0)卡诺热机在两个热源T 1及T 2之间工作时,两个热源的“热温商”之和等于零。
2. 熵的定义:dS=δQr/T, dS ≠δQir/T (克劳修斯Clausius 不等式, dS ≥δQ/T ;对于孤立体系dS ≥0,及孤立系统中所发生任意过程总是向着熵增大的方向进行)。
固态相变复习
第一章:固态相变一般规律钢中的临界点(记住这些临界点的物理意义)◆A1、A2、A3、A4、Acm◆Ac1、Ac3、Accm◆Ar1、Ar3、Arcm第二章:奥氏体形成一、奥氏体的形成可以分为四个阶段:①奥氏体形核;②晶核向铁素体和渗碳体两个方向长大;③剩余碳化物溶解;④奥氏体成分均匀化。
二、影响奥氏体晶粒大小的因素三、什么是奥氏体的起始晶粒度,本质晶粒度和实际晶粒度,各有何意义?第三章、珠光体转变一、珠光体的形态有几种,片状珠光体分哪几种,性能各有何特点?二、什么是粒状珠光体,如何才能获得粒状珠光体?粒状珠光体和片状珠光体性能有何不同?三、什么是TTT图,在TTT图上都存在什么类型的固态相变?TTT图为什么呈现出C形状?四、影响C曲线的因素说什么?五、什么是CCT图,有何应用?什么是上临界冷速,什么是下临界冷速?有何意义?第四章、马氏体转变一、什么是钢种的马氏体?马氏体的相变的特征有哪些?二、掌握不同含碳量马氏体的形态特征,亚结构,惯习面和晶体结构。
三、马氏体组织为什么硬而脆?如何才能使用?四、根据CCT图会分析在不同的冷速下获得什么组织?第五章、贝氏体转变一、什么是贝氏体?贝氏体转变有何特征?二、掌握不同温度形成的贝氏体的形貌、亚结构及性能特点?第六章、马氏体的回火转变一、马氏体为什么要回火?马氏体的回火都包括那些内容?二、掌握不同含碳量的碳钢马氏体回火在不同温度下碳化物的析出贯序三、合金钢马氏体碳化物的析出贯序(以v、W、Mo、Cr为例)四、回火过程中基体α相有何变化?五、什么是二次淬火,什么叫二次硬化?研究他们有何意义?六、掌握不同回火温度形成的回火组织,组成及性能特点。
固态相变部分复习提纲2
固态相变部分(60 分)试题类型:一、选择题(20 分)二、名词解释(20 分)1.何谓奥氏体本质晶粒度?(3 分)答:根据标准试验方法,在930土10 C,保温3- 8小时后测定的奥氏体晶粒大小。
、2.何谓奥氏体热稳定化?(3 分)答:淬火时因缓慢冷却或在冷却过程中停留引起奥氏体稳定性提高,而使马氏体转变迟滞的现象。
3.何谓二次硬化?(4 分)答:含有Mo、V、W、Nb、Ti 等合金元素的钢淬火后回火时,随温度升高,析出特殊碳化物,导致钢的再度硬化的现象。
4.Ms 点的定义及其物理意义是什么?(5 分)答:马氏体转变开始温度,即奥氏体和马氏体的两相自由能差达到相变所需的最小驱动力值时的温度。
5.写出马氏体相变的K-S 位向关系和西山位向关系。
(5 分)答:① K-S 关系:{111} Y II {110} a ' <110>Y// <111>a'②西山关系:{111} Y I {110} <112>Y// <110>a'6.简述马氏体相变的主要特征。
(10分)答:切变共格和表面浮凸现象;无扩散性;具有一定的位向关系和惯习面;在一个温度范围内完成相变(Ms-Mf),大于某一临界冷速;可逆性,有As 点和Af 点;钢中马氏体转变速度极快;7.简述淬火碳钢回火时的组织转变概况。
(15 分)答:①马氏体中碳的偏聚(回火前期阶段一时效阶段)80-100 'C以下板条马氏体,C原子向位错线附近偏聚,马氏体弹性畸变能下降。
片状马氏体,大多数C在某些晶面上富集,形成小片状富碳区,这种偏聚称为予沉淀聚集。
②马氏体分解(回火第一阶段转变)100-250 C含碳量较高的片状马氏体发生分解,马氏体中的C%降低,正方度c/a减小。
分解机构:<150C为双相分解,>150C为连续式分解。
分解产物:过饱和度下降的马氏体+弥散分布的亚稳碳化物(£-FexC)。
固态相变习题学习资料
固态相变习题学习资料固态相变习题第一章自测题试卷1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。
2、相的定义为()。
3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。
4、固态相变的阻力为()及()。
5、平衡相变分为()、()、()、()、()。
6、非平衡相变分为()、()、()、()、()。
7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。
8、在体积相同时,新相呈()体积应变能最小。
A.碟状(盘片状) B.针状 C.球状9、简述固态相变的非均匀形核。
10、简述固态相变的基本特点。
第二章自测题试卷1、分析物相类型的手段有()、()、()。
2、组织观测手段有()、()、()。
3、相变过程的研究方法包括()、()、()。
4、阿贝成像原理为()。
5、物相分析的共同原理为()。
6、扫描电镜的工作原理简单概括为:()。
7、透射电子显微镜的衬度像分为()、()、()。
第三章自测题试卷1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的():A.能量起伏、浓度起伏、结构起伏B. 相起伏、浓度起伏、结构起伏C.能量起伏、价键起伏、相起伏D. 浓度起伏、价键起伏、结构起伏2. 奥氏体所具有的性能包括:()A.高强度、顺磁性、密度高、导热性差;B.高塑性、顺磁性、密度高、导热性差;C.较好热强性、高塑性、顺磁性、线膨胀系数大;D.较好热强性、高塑性、铁磁性、线膨胀系数大。
3. 影响奥氏体转变的影响因素包括()、()、()、()。
4.控制奥氏体晶粒大小的措施有:(),(),(),()。
5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。
6. 绘图说明共析钢奥氏体的形成过程。
7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么?8. 简述连续加热时奥氏体转变的特点。
整理背诵版 固态相变重要简答以及重要名词解释
金属固态相变1.固态相变的特点:具有确定的形状,较高的切变强度,内部原子按点阵规律排列并且总是不同程度存在着各种分布很不均匀的结构缺陷。
(1). 与液态相变一样,驱动力是新旧两相的自由能差。
(2). 新相与母相界面上原子排列易保持一定的匹配,根本原因在于有力于相变阻力的降低,固态相变产生的相界面的分类:a.共格界面:当界面上的原子所占据的位置恰好是两相点阵共有的位置时,两相在界面上的原子可以一对一的相互匹配,这种界面叫共格界面。
b.半共格界面:界面上两相原子部分地保持匹配。
c.非共格界面:当两相界面的原子排列差异很大,即错配度很大时,原子间的匹配关系不再维持。
(3).新相与母相之间存在一定的晶体学位相关系当两相界面为共格或半共格时,新相和母相之间必然有一定的位相关系。
若两相间没有确定的位相关系,则界面肯定为非共格界面。
(4).新相习惯于在母相的一定晶面上形成固态相变时,新相往往以特定的晶向在母相的特定晶面上形成,这个晶面称为惯习面,晶向为惯习方向,这种现象称为惯习现象,是由于降低界面能和应变能以致减小相变阻力所造成的。
(5).母相晶体缺陷对相变起促进作用。
(6).易于出现过渡相。
2. 固态相变的基本类型:按相变过程中的形核与长大的特点分为:扩散型,非扩散型,半扩散型相变。
a.扩散型相变:新相的形核和长大主要依靠原子进行长距离的扩散,或者说依靠相界面的扩散移动进行(非共格的)b.非扩散型相变:新相的成长通过类似塑性变形过程的滑移和孪生那样,孪生切变和转动而进行,相界面共格c.半扩散型相变:(贝氏体的转变)块状转变。
2.马氏体转变特点:1.马氏体转变是在无扩散的情况下进行的.由于马氏体转变是在较大的过冷度条件下进行的,铁原子,碳原子及其它合金元素活动能力较低,因此点阵重构是由原子集体有规律的近程性的完成.2.马氏体的转变过程中会在表面产生浮凸.3.马氏体转变具有一定的位向关系和惯习面.马氏体是在奥氏一定的结晶面上形成的,此面称为惯习面,它在相变过程中不变形,也不转动.由于马氏体转变时新相和母相始终保持切变共格性,因此马氏体转变后新相和母相之间存在一定的结晶学位向关系.主要在K-S位向关系和西山位向关系.4.降温转变及马氏体转变的高速特点.马氏体转变是在一定的温度范围内进行的,马氏体转变动力学的主要形式有变温转变和等温转变两种.降温形成的马氏体其转变速度极快.5.马氏体转变具有可逆性.6.合金元素无扩散.马氏体力学性能:1.马氏体最主要的特点就是具有高强度和高硬度。
固态相变原理考试复习
② 无扩散型相变
原子和离子也要发生有规律的迁移使点阵改组,但是相邻原子的移动距离不超过一个原子间
距,不破坏近邻关系,不改变固溶体成分。
(3)相变方式分类(动力学机制分类)
① 不连续相变(也叫非均匀相变)(有核相变)
形核长大型,形核形成就有一个明确的相界面,在新母相界面的两侧。新相和母相的成分不
A. ∆Gγ→α 的估算:徐祖耀计算:∆Gγ→α=(1-xc)∆G∆γ→α+ xc(9320-2.71T)
B. ∆Gα→M 的估算:
1) 切变能 1/2VmΦδs(Ms),Vm 为 M 的摩尔体积,Φ 切变角,δs(Ms)在 Ms 点 γ 的屈服应力。
2) 协作形变能 1/2VγΦδs(Ms),Vγ:γ 的摩尔体积,
状以降低界面能,若比容差较大,则倾向于形成针状以兼顾降低界面能和比容差应变能。
b) 分析晶体缺陷对固态相变中新相形核的作用
固相中存在各种晶体缺陷,如空位、位错、层错、晶界及亚晶界等,如果在晶体缺陷处形
核,随着核的形成,缺陷将消失,缺陷的能量将释放以供形核需要,使临界形核功下降,
故缺陷促进形核。
(1)空位:可通过加速扩散过程或释放自身能量提供形核驱动力而促进形核,过饱和空位
(2)应变能: 固态相变时新相与母相界面上的原子因强行匹配而在界面附近产生应变能.
① 错配度引起的应变能(共格应变能):和新母相界面类型相关,共格界面的应变能最大,
半共格界面次之,非共格界面最小。
2
② 比容差引起的应变能(体积应变能):和新相的形状有关,E = 3 MΔ2 f(c⁄a),球状由于比
一样,结构不一样。
相变原理(复习题)
相变原理复习习题第一章固态相变概论相变:指在外界条件(如温度、压力等)发生变化时,体系发生的从一相到另一相的变化过程。
固态相变:金属或陶瓷等固态材料在温度和/或压力改变时,其内部组织或结构会发生变化,即发生从一种相状态到另一种相状态的改变。
共格界面:若两相晶体结构相同、点阵常数相等、或者两相晶体结构和点阵常数虽有差异,单存在一组特定的晶体学平面使两相原子之间产生完全匹配。
此时,界面上原子所占位置恰好是两相点阵的共有位置,界面上原子为两相所共有,这种界面称为共格界面。
当两相之间的共格关系依靠正应变来维持时,称为第一类共格;而以切应变来维持时,成为第二类共格。
半共格界面:半共格界面的特点:在界面上除了位错核心部分以外,其他地方几乎完全匹配。
在位错核心部分的结构是严重扭曲的,并且点阵面是不连续的。
非共格界面:当两相界面处的原子排列差异很大,即错配度δ很大时,两相原子之间的匹配关系便不在维持,这种界面称为非共格界面;一般认为,错配度小于0.05时两相可以构成完全的共格界面;错配度大于0.25时易形成非共格界面;错配度介于0.05~0.25之间,则易形成半共格界面。
一级相变:相变前后若两相的自由能相等,但自由能的一级偏微商(一阶导数)不等的相变。
特征:相变时:体积V,熵S,热焓H发生突变,即为不连续变化。
晶体的熔化、升华,液体的凝固、气化,气体的凝聚,晶体中大多数晶型转变等。
二级相变:相变时两相的自由能及一级偏微商相等,二级偏微商不等。
特征:在临界点处,这时两相的化学位、熵S和体积V相同;但等压热容量Cp、等温压缩系数β、等压热膨胀系数α突变。
例如:合金的有序-无序转变、铁磁性-顺磁性转变、超导态转变等。
均匀相变:没有明显的相界面,相变是在整体中均匀进行的,相变过程中的涨落程度很小而空间范围很大。
特点:A: 无需形核;B: 无明确相界面;非均匀相变:是通过新相的成核生长来实现的,相变过程中母相与新相共存,涨落的程度很大而空间范围很小。
固态相变考试题.doc
一、名称解释(10分,每题2分)1.冋火马氏体答:淬火钢在低温回火吋得到的组织。
2.回火脆性答:随冋火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,軔性反而显著下降的现象。
3.组织遗传答:合金钢构件在热处理吋,常出现由于锻压、轧制、铸造、焊接等工艺而形成的原始有序粗晶组织。
这些非平衡的粗品有序组织(马氏体、贝氏体、魏氏组织等)在一定加热条件下所形成的奥氏体晶粒继承或恢复原始粗大晶粒的现象,称为组织遗传。
4.时效答:过饱和的固溶体在室温放賈或加热到一定温度下保持一段时间,使得溶质原子在同溶体点阵中的一定区域内析山、聚集、形成新相,引起合金的组织和性能的变化称为吋效。
5.形状记忆效应答:将某些金属材料进行变形后加热到某一特定温度以上时,能自动回复到原來的形状的效应。
6.二次硬化现象当M中K形成元素含量足够多时,500° C以上回火会析出合金碳化物,细小的弥散分布的合金K将使己经因回火温度升高而下降的硬度重新升高,故称二次硬化。
7.晶粒度设n为放大10()倍时每645mm2(lin2)而积P、j的晶粒数,则下式屮的N被用来表示晶粒大小的级别,被称为晶粒度。
N=2N-1二、填空:(20分,每空0.5分)1.马氏体转变时K-S关系是指{110} a ’| {111} y (晶面关系),< 111 > u ’ |< 110〉y (晶向关系)o2.奥氏体是碳溶于丫一Fe固溶体,碳原子位于八面体屮心位置,钢中马氏体是碳溶于a 一Fe 过饱和固溶体,具有体心正方点阵点阵。
3.固相界面根据其共格性有选搔,半共格,非共格,其巾非共格界面的弹性应变能最小。
4.M回火加热时,回火转变过程依次为M屮碳原子的偏聚和聚集,M的分解,残余A分解,碳化物类型变化,a相回复与PJ•结晶。
5.由淬火吋造成的三类内应力在回火吋,随着回火温度的升高,三类应力消失或减小的顺序和原因为••笫H类应力,原因是M分解,造成碳原子析出;第X类应力,原因是碳化物的析出;第二类应力,原因是a相再结晶o6.时效硬化机制有内应变强化,切过颗粒强化,绕过析出相(Orowan机制)。
固态相变复习题考试
♥第一章♥1.同素异构转变:纯金属在温度和压力改变时,由一种晶体结构转变为另一种晶体结构的过程。
多形性转变:在固溶体中发生的同素异构转变。
2.平衡脱溶沉淀:在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程。
3.调幅分解:某些合金在高温下具有均匀单相固溶体,但冷却到某一温度范围时可分解成为与原固溶体结构相同但成分不同的两个威区的转变。
4.金属固态相变的主要特点共格界面(两相在界面上的原子可以一对一的相互匹配)①相界面半共格界面(两相原子在界面上部分的保持匹配,刃型位错)非共格界面(两相原子在界面上不再保持匹配关系)②位向关系与惯习面一般来说,当新相与母相之间为共格或半共格界面时必然存在一定的位向关系;若无一定的位向关系,则两相界面必定为非共格界面。
但反过来,有时两相之间虽然存在一定的位向关系,但未必都具有共格或半共格界面,这可能是在新相长大过程中其界面的共格或半共格性已遭破坏所致。
③弹性应变能新相与母相的比容差应变能+共格应变能(共格界面半共格界面非共格界面,降低)④过渡相的形成当稳定的新相与母相的晶体结构相差较大时,两者之间只能形成高能量的非共格界面因界面能对形核的阻碍作用很大,并且非共格界面的界面能和形核功均较大,此时,母相不直接转变成自由能较低的稳定新相,而是先形成晶体结构和成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。
⑤晶体缺陷的影响对固态相变起促进作用(1°在位错线上形核时,新相出现部位的位错线消失,位错中心的畸变能得到释放,从而使系统自由能降低。
这部分被释放的能量可作为克服形成新相界面和相变应变=所需的能量,从而使相变加速。
2°新相形成时位错本身不消失,依附在新相界面上,构成半共格界面的一部分,降低系统自由能。
)⑥原子的扩散过冷度增大,相变驱动力增大,相变速率增大。
当过冷度增大到一定程度,原子扩散能力下降,相变速度减慢。
5.金属固态相变形核的阻力驱动力①界面能新旧两相的自由能差②弹性应变能6.为什么在晶体缺陷上优先形核?①结构起伏:缺陷处原子排列不整齐,溶质原子易从母相向新相转移,利于形核②成分起伏:缺陷处,溶质原子浓度差大,有利于获得形核需要的浓度,形核容易③能量起伏;晶体缺陷所储存的能量可降低形核功,容易形核7.影响TTT图的因素亚共析钢—ωc↑,C曲线右移;过共析钢—ωc↑,C曲线左移①含碳量ωc↑,Ms、Mf点下降亚共析钢—多一条先共析铁素体线过共析钢—多一条先共析渗碳体线②合金元素除Co和Al外的合金元素均使TTT曲线右移(即增加过冷A的稳定性)A的晶粒度:越小,C曲线左移,即转变越快;对M转变。
固态相变 复习习题
性 能
相变驱动力:两相自由能差,母相中缺陷提供的能量
及 特
3、金属固态相变主要有哪些变化?
征
结构、成分、有序度。
4、固态相变的过程中形核和长大的方式是什么?
形核:非均匀形核为主,缺陷处形核(界面形核,空位形核,位错形核) 长大:成分变化,依靠扩散进行;结构变化,依靠界面过程
其中半共格界面采用均匀切变或台阶方式,非共格界面依靠界面上 原子的短程扩散。
习题六 回火转变
1、简述碳钢在回火时的组织转变过程及相应性能变化,并简述合金元素对 于回火转变的影响 。
回火时的组织转变:
温度(℃) 阶段名称
组织变化
20~100 碳原子偏聚
无
100~250 马氏体分解
回火马氏体
200~300 残余奥氏体分解 回火马氏体
250~400 碳化物转变
回火屈氏体
400~700 α相回复再结晶, 回火索氏体 碳化物聚集长大
(各片间有交角),电镜下排列成行的细片状或粒状碳化物分布于 铁素体片中;亚结构为高密度位错;K-S关系;强度和韧性较高。
3. 根据相变热力学来分析BS点和MS点的温度差异。
△G=-(△GV+△GD )+△GS +△GE +△GP
B转变有C的扩散,使相同温度下的两相自由能差增大,即△GV↗; B与A比容差小,使△GE ↘;形成温度高,长大速度慢, A强度低, 使切变阻力减小。 因此,B转变不需要M转变那样大的过冷度,BS点 高于MS点。
4、简述获得粒状珠光体的两种方法。
片状P 加热
略高于A1
A+未溶Fe3C
保温
缓冷
粒状P
A+粒状Fe3C
片状P
长时间保温 粒状P
固态相变复习考点
固态相变复习考点第一章(1)一、固态相变:(包括纯金属及合金)在温度和压力改变时,组织和结构会发生变化的统称,是以材料热处理的基础二、热处理定义:将钢在固态下加热到预定的温度,保温一定的时间,然后以预定的方式冷却到室温的一种热加工工艺。
三、按平衡状态图金属固态相变的类型分为平衡转变和不平衡转变其变化在于三个方面:结构、成分、有序化程度(发生固态相变时,其中至少伴随这三种变化之一):⑴ 晶休结构的变化。
如纯金属的同素异构转变、固溶体的多形性转变、马氏体转变、块状转变等;⑵ 化学成分的变化。
如单相固溶体的调幅分解;⑶有序程度的变化。
如合金的共析转变、包析转变、贝氏体转变、脱溶沉淀、有序化转变、磁性转变、超导转变等。
四、按动力学分类(原子迁移情况、形核和长大特点1.扩散型相变 2 非扩散型相变 3半扩散型相变(2)一、 1、固态相变的阻力大 2、新相一般有特定的形状 3、新相与母相之间往往存在特定的位向关系和惯习面 4 原子迁移率低,多数相变受扩散控制 5 相变时容易产生亚稳相 6 普遍存在新相的非均与形核二、固态相变与凝固时的液一固相变一样,服从总的相变规律,即以新相和母相之间的自由能差作为相变的驱动力。
大多数固态相变也符合相变的一般规律,包含形核和长大两个过程,而且驱动力也是靠过冷度来获得,过冷度对形核、生长机制及速率都会发生重要影响。
但固态相变的新相、母相均是固体,因此又有一系列不同于凝固(结晶)的特点。
? ? ? ? ? ?一. 新相和母相间存在不同的界面(相界面特殊)二.新相晶核与母相间的晶体学关系三.相变阻力大(应变能的产生)四.母相晶体缺陷的促进作用五.易出现过渡相(过渡相或中间亚稳相的形成)六. 原子迁移率低(3)固态相变驱动力来源于新相与母相的体积自由能的差ΔGV。
它随相变温度和相成分的改变而改变,一般相变驱动力随过冷度的增大而增大固态相变阻力来自新相与母相基体间形成界面所增加的界面能,以及两相体积差别所导致的弹性应变能,即弹性应变能和界面能之和构成了相变阻力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章钢的回火转变
1 回火处理的定义:
淬火钢加热到低于A1点以下某一温度保温一段时间,然后进行冷却(空冷到室温)的一种热处理工艺。
2 回火转变:
这个转变过程中材料内部
组织发生的变化即称为回火转变。
3 回火目的:(1)消除或减少淬火钢件的内应力(热应力、组织应力),防止变形、开裂;
(2)调整性能:提高钢塑性、韧性,达到硬度,强度,塑性和韧性的配合;改
善钢的切削加工性;
(3)稳定组织和尺寸--- 回火使马氏体和残余奥氏体充分分解,从而起到稳定钢
件组织和尺寸的作用。
4 回火过程中的组织变化:
碳的偏聚和聚集;M分解及ε-碳化物的沉淀;
残余A’分解;K类型变化;
@-Fe相回复再结晶,Fe3C球化粗化;
5 回火马氏体:马氏体经分解后, 原马氏体组织转化为由有一定过饱和度的立方马氏体和
ε-碳化物所组成的复相组织。
6二次淬火:回火冷却时残余奥氏体转变为马氏体的现象
淬火时冷却中断或冷速较慢均使奥氏体不易转变成马氏体而使淬火至室温时的残余奥氏体量增多,即发生奥氏体稳定化现象。
A稳定化现象可通过回火加以消除。
将淬火钢加热到较高温度回火,若残余奥氏体比较稳定,在回火保温时为发生分解,则在回火冷却的过程中转变成马氏体
8碳化物转变方式:
(1)“原位”转变-在旧碳化物的基础上通过成分改组和点阵改组逐渐转化为新的碳化物;(2)“独立”转变-新碳化物在其他部位通过形核和长大独立形成,即“独立”形核长大转变,此时由于新碳化物的析出使母相碳含量下降,故细小的旧碳化物将重新溶入基体当中,直至消失。
以何种方式转变,取决于新旧碳化物与母相的位相关系和惯习面。
9 马氏体的两种分解方式:
(1)双相分解(低于125-150℃):随着碳化物的析出,出现了两种不同正方度的α相--- 高正方度(保持原始碳浓度的未分解的马氏体)和低正方度(碳以部分析出的低碳马氏体);----- 双向分解速度与温度有关,温度越高,速度越快;低碳区碳含量与马氏体原始碳含量及温度均无关
(2)当温度高于150℃时,碳原子能够进行较长距离的扩散。
析出的碳化物粒子可从较远处得到碳原子而长大,α相中不同浓度可通过长程扩散消除。
10 自回火:低碳钢中Ms点低,淬火形成马氏体过程中,除了可能会发生碳原子向位错线偏聚外,在最先形成的马氏体中还有可能析出碳化物---这一特征为自回火。
11 内应力变化:淬火产生三种应力:
☐第一类:冷却时工件内外温差造成的宏观应力-引起工件变形、开裂
------- 淬火后通过回火
☐第二类:由于工件中的几个晶粒内的温度不一致和相变的不同时,而造成晶粒或亚晶粒范围内处于平衡的微观应力---- 回火温度达到550度时消失☐第三类:由于晶格畸变而引起的内应力(由C原子过饱和固溶、M相变停止后仍保持共格关系所致)---- 随马氏体分解和碳原子析出而不断下降
淬火钢回火时力学性能的变化
1 室温~200°C碳的偏聚和聚集-固溶强化
100~ 250°C M分解-固溶强化消失,时效强化是主要因素
200~ 300°C A’分解-取决于转变性质及转变产物
250~400°C K类型变化
400~700°C 相回复再结晶,Fe3C球化粗化-相硬化强化效应消除
2 随回火温度升高,淬火钢硬度和强度降低,塑性增强
低C钢淬火后,不经回火或经低温回火可获得良好的综合力学性能。
中碳钢经过中温回火后可以获得良好的综合力学性能,故中碳钢一般均在中温回火状态下使用。
低碳钢:
☐硬度强度下降不多,塑性基本不变,σs有所升高-由于C原子偏聚于位错,起钉扎作用。
☐200~300°C,σs↑(针状θ-K在位错缠结处析出,起钉扎位错作用),ak↓(板条M 条界上析出了薄片状θ-K)
☐>300°C,硬度强度↓,塑性↑(由于θ-K充分析出,并随T升高而聚集长大,α回复再结晶)
高碳钢:
<100°C时,C原子扩散形成富C聚集区,使晶格发生更大畸变,硬度升高☐200-300°C ,硬度变化与钢中A’%有关。
含较多A’时,硬度变化极少(A’分解为B,抵消了M随回火温度升高硬度的下降)
☐>300°C时,由于K析出及聚集,球化和再结晶,硬度强度下降,塑性韧性升高。
3 二次硬化:当M中K形成元素含量足够多时,500°C以上回火会析出合金碳化物,细小的弥散分布的合金K将使已经因回火温度升高而下降的硬度重新升高,故称二次硬化。
4 回火脆性:随回火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,韧性反而显著下降的现象。
回火脆性有两类:250~400℃,第一类回火脆性
450~600℃,第二类回火脆性
5 几乎所有的钢均有第一类回火脆性
特征:再加热到更高温度时脆性可消失,若再在200~350°C回火将不再出现-称为不可逆回火脆性
影响因素:1)、化学成份
有害杂质元素:包括S、P、As、Sn、Sb、Cu、N、H、O
促进回火脆性元素:Mn、Si、Cr、Ni、V
减弱回火脆性元素:Mo、W、Ti、Al
2)奥氏体晶粒大小:奥氏体晶粒愈小,回火脆性愈弱
3)残余奥氏体的量:越多,回火脆性越严重
形成机制:残余奥氏体转变;碳化物薄壳析出理论;晶界偏聚理论---奥氏体化时杂质元素等在晶界亚晶界偏聚导致晶界弱化
6 第二类回火脆性:又称高温回火脆性
特点:1)在450~650°C长时间等温加热或缓慢通过上述温度范围时停留时间愈长,回火脆性愈大;
2)可逆:重新在600°C短时加热并随之快冷,可消除,还可再次发生
3)经脆性处理试样,总是沿A晶界断裂
4)形成机制:碳化物、氧化物、磷化物等脆性相沿晶界析出及杂质元素的晶界偏聚
7 回火工艺:
低温回火:强度和塑性均有一定提高的回火马氏体
中温回火后,钢得到回火屈氏体组织
高温回火后,钢的组织为回火索氏体,渗碳体聚集球化、弥散分布在基体中而起强化作用。
8 调质处理:淬火加高温回火
第九章合金的脱溶沉淀与时效
1 固溶处理:将合金加热到一定温度,使合金元素溶入到固溶体中,然后快速冷却下来,得到过饱和状态的固溶体。
时效:指淬火合金在室温或较低温下放置一段时间后,硬度升高的现象.
2 工艺:固溶处理:在固溶度曲线以上某一温度保持,让B充分溶入A中,迅速冷却使B 来不及析出而形成过饱和固溶体。
时效:经固溶处理后在室温放置或加热到溶解度曲线以下某一温度保温,使B组元从过饱固溶体中析出的过程。
即:过饱和固溶体→饱和固溶体+析出相
3 时效的实质:过饱和固溶体的脱溶沉淀
4 时效:自然时效----(在室温放置过程中过饱和固溶体脱溶使合金产生强化的效应)
人工时效---- 加热到某一温度是过饱和固溶体脱溶,合金产生强化的效应
5 时效强化:经过固溶处理的过饱和固溶体在室温或较高温度下等温保持时,将发生脱溶,使合金的强度和硬度显著提高,称为沉淀强(硬)化或时效强(硬)化
6合金时效过程的热力学:形核、长大
脱溶的驱动力也是新/旧相的自由能差,阻力是形成脱溶相的界面能和应变能
7 以Al- 4% Cu合金为例:
在固溶处理后时效,结构变化过程:
1)最先形成的是铜原子的富集区(G.P.区) 2) θ〞相(G.P.II区),
3) θˊ相,4) θ相,即CuAl2
即:G.P.区→θ〞相→θˊ相→ θ相,即CuAl2
8性能变化:
1)G.P.区是溶质原子(Cu)富集区,均匀分布在α基体上,形成弹性畸变能导致硬度升高。
2)θ〞相性能:为了保持与母相共格,产生弹性畸变区使硬度升高(合金达到最大强化的阶段)。
3)θ’形成:对位错运动的阻碍作用减小,合金的硬度开始降低
4)θ相形成:随着时效温度的提高何时间的延长, 相质点聚集长大,合金的强度、硬度进一步降低
9 微观组织变化:
连续非均匀脱溶加均匀脱溶:先发生局部脱溶,再发生连续均匀脱溶
非连续脱溶加连续脱溶
仅发生非连续脱溶
10 较低温度下,硬度随时效时间的延长迅速上升后保持不变-冷时效
较高温度下,随着时间延长,硬度增加,达到极大值后,硬度下降-温时效
超过极大值后硬度下降称为过时效
11 按位错通过析出相的方式,硬化机制可分三类:
(1)内应变强化
(2)位错切过析出相颗粒强化------G.P区和G.P.II区(θ’’)
(3)位错绕过析出相颗粒强化
12 回归现象:将经过时效处理的合金放在低于固溶处理温度以下比较高的某一温度下短时间加热(几分之一秒至若干秒),并迅速冷却,时效硬化现象会立即消除,硬度恢复到固溶处理状态,而塑性的指标上升,这种现象称为回归。
该处理过程称为回归热处理(RHT)。