滨海新区2016-2017第一学期八年级数学期末试卷
2016-2017学年天津市部分区八年级上学期期末数学试卷
2016-2017学年天津市部分区八年级上学期期末数学试卷一、选择题1.下列式子是分式的是(??)A、B、C、+y D、+2.计算(﹣3a3)2的结果是(??)A、﹣6a5B、6a5C、9a6D、﹣9a6+3.如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为(??)A、2B、3C、6D、7+4.下列平面图形中,不是轴对称图形的是(??)A、B、C、D、+5.下列运算正确的是(??)A、﹣2(a+b)=﹣2a+2bB、x5+x5=xC、a6﹣a4=a2D、3a2?2a3=6a5+6.下列从左到右的变形是因式分解的是(??)A、6a2b2=3ab?2abB、﹣8x2+8x﹣2=﹣2(2x﹣1)2C、2x2+8x﹣1=2x(x+4)﹣1D、a 2﹣1=a(a﹣)+7.下列说法正确的是()A、形状相同的两个三角形全等B、面积相等的两个三角形全等C、完全重合的两个三角形全等D、所有的等边三角形全等+8.下列多项式中,含有因式(y+1)的多项式是()A、y2﹣2xy﹣3x2B、(y+1)2﹣(y﹣1)2C、(y+1)2﹣(y2﹣1)D、(y+1)2+2(y+1)+1+9.若一个多边形的内角和与它的外角和相等,则这个多边形是()A、三角形B、四边形C、五边形D、六边形+10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积= AC?BD,其中正确的结论有(??)A、0个B、1个C、2个D、3个+11.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是(??)A、﹣=20B、﹣=20C、﹣=D、﹣=+12.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是(??)A、4个B、3个C、2个D、1个+二、填空题13.若分式有意义,则x的取值范围是.+14.若a2+ab+b2+M=(a﹣b)2,那么M= .+15.在实数范围内分解因式:x2y﹣4y= .+16.如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.+17.若关于x的方程无解,则m的值是.+18.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2 到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是度.+三、解答题19.计算下面各题(1)、计算(12a3﹣6a2+3a)÷3a;(2)、计算(x﹣y)(x2+xy+y2).+20.解方程:﹣=+21.如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,B D=DF,求证:CF=BE.+22.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.+23.按要求完成小题:(1)、计算:+(2)、先化简,再求值:()÷,其中x=3.+24.一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)、求甲、乙两公司单独完成此项工程,各需多少天?(2)、若由一个公司单独完成这项工程,哪个公司的施工费较少?+25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M ,连接MB.度.(1)、若∠ABC=70°,则∠MNA的度数是(2)、若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.+。
学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
2016-2017年天津市部分区八年级上学期期末数学试卷与答案
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a56.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.。
八年级上册数学期末试卷带答案2017
八年级上册数学期末试卷带答案2017八年级数学期末考试将近,这时候一定要努力复习才能拿高分哦。
店铺为大家整理了2017八年级上册数学期末试卷及答案,欢迎大家阅读!2017八年级上册数学期末试卷一、选择题(共10小题,每小题3分,满分30分)1.以下列各组数为边长,能组成直角三角形的是( )A. ,,B.6,8,10C.5,12,17D.9,40,422.在(﹣ )0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.1个B.2个C.3个D.4个3.下列计算正确的是( )A. =2B. • =C. ﹣ =D. =﹣34.已知 +(b﹣1)2=0,则(a+b)2015的值是( )A.﹣1B.1C.2015D.﹣20155.如果点P(m+3,m+1)在y轴上,则点P的坐标是( )A.(0,﹣2)B.(﹣2,0)C.(4,0)D.(0,﹣4)6.点A(x1,y1),点B(x2,y2)是一次函数y=﹣2x﹣4图象上的两点,且x1A.y1>y2B.y1>y2>0C.y17.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是( )A. B.﹣ C. D.﹣8.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为( )A. B. 或 C. 或 D. 或9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数D.加权平均数10.已知一次函数y=kx+b,y随着x的增大而增大,且kb>0,则在直角坐标系内它的大致图象是( )A. B. C. D.二、填空题(共10小题,每小题2分,满分20分)11. =a, =b,则 = .12.一组数据5,7,7,x的中位数与平均数相等,则x的值为.13. ﹣3 + = .14.已知m是的整数部分,n是的小数部分,则m2﹣n2= .15.若x、y都是实数,且y= ,x+y= .16.已知xm﹣1+2yn+1=0是二元一次方程,则m= ,n= .17.在等式y=kx+b中,当x=0时,y=1,当x=1时,y=2,则k= ,b= .18.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是.19.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于.20.已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED=度.三、解答题(共7小题,满分50分)21.(1)计算:(2)解下列方程组: .22.m为正整数,已知二元一次方程组有整数解,求m的值.23.如图:24.如图表示两辆汽车行驶路程与时间的关系(汽车B在汽车A后出发)的图象,试回答下列问题:(1)图中l1,l2分别表示哪一辆汽车的路程与时间的关系?(2)写出汽车A和汽车B行驶的路程s与时间t的函数关系式,并求汽车A和汽车B的速度;(3)图中交点的实际意义是什么?25.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.26.某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:次数选手甲的成绩(环) 选手乙的成绩(环)1 9.6 9.52 9.7 9.93 10.5 10.34 10.0 9.75 9.7 10.56 9.9 10.37 10.0 10.08 10.6 9.8根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?27.已知:如图,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD.八年级上册数学期末试卷2017参考答案一、选择题(共10小题,每小题3分,满分30分)1.以下列各组数为边长,能组成直角三角形的是( )A. ,,B.6,8,10C.5,12,17D.9,40,42【考点】勾股定理的逆定理.【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.【解答】解:A、( )2+( )2≠( )2,不是直角三角形,故此选项错误;B、62+82=102,是直角三角形,故此选项正确;C、122+52≠172,不是直角三角形,故此选项错误;D、92+402≠422,不是直角三角形,故此选项错误.故选:B.【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.在(﹣ )0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数是无限不循环小数,由此即可判定无理数的个数.【解答】解:在(﹣ )0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有0.010010001…,两个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列计算正确的是( )A. =2B. • =C. ﹣ =D. =﹣3【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、 =2 ,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣ =2﹣,故C错误;D、 =|﹣3|=3,故D错误.故选:B.【点评】此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质: =|a|.4.已知 +(b﹣1)2=0,则(a+b)2015的值是( )A.﹣1B.1C.2015D.﹣2015【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,所以,(a+b)2015=(﹣2+1)2015=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如果点P(m+3,m+1)在y轴上,则点P的坐标是( )A.(0,﹣2)B.(﹣2,0)C.(4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点的横坐标等于零,可得关于m的方程,根据解方程,可得m的值,根据m的值,可得点的坐标.【解答】解:点P(m+3,m+1)在y轴上,得m+3=0.解得m=﹣3,m+1=﹣2,点P的坐标是(0,﹣2),故选:A.【点评】本题考查了点的坐标,利用y轴上点的横坐标等于零得出关于m的方程是解题关键.6.点A(x1,y1),点B(x2,y2)是一次函数y=﹣2x﹣4图象上的两点,且x1A.y1>y2B.y1>y2>0C.y1【考点】一次函数图象上点的坐标特征.【分析】由一次函数y=﹣2x﹣4可知,k=﹣2<0,y随x的增大而减小.【解答】解:由y=﹣2x﹣4可知,k=﹣2<0,y随x的增大而减小,又∵x1∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时y随x的增大而减小是解答此题的关键.7.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是( )A. B.﹣ C. D.﹣【考点】二元一次方程组的解;二元一次方程的解.【专题】计算题.【分析】将a看做已知数,求出方程组的解得到x与y,代入方程中计算即可求出a的值.【解答】解:依题意知,,由①+②得x=6a,把x=6a代入①得y=﹣3a,把代入2x﹣3y+12=0得2×6a﹣3(﹣3a)+12=0,解得:a=﹣ .故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为( )A. B. 或 C. 或 D. 或【考点】坐标与图形性质;待定系数法求一次函数解析式.【专题】计算题.【分析】求出直线解析式后再求与坐标轴交点坐标,进一步求解.【解答】解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:× ×1= ;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:× ×1= .故选C.【点评】主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理和面积公式求解.9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数D.加权平均数【考点】统计量的选择.【分析】根据平均数、中位数、众数、方差的意义进行分析选择.【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.已知一次函数y=kx+b,y随着x的增大而增大,且kb>0,则在直角坐标系内它的大致图象是( )A. B. C. D.【考点】一次函数图象与系数的关系.【分析】首先根据反比例函数的增减性确定k的符号,然后根据kb>0确定b的符号,从而根据一次函数的性质确定其图形的位置即可.【解答】解:∵一次函数y=kx+b,y随着x的增大而增大,∴k>0.∵kb>0,∴b>0,∴此函数图象经过一、二、三象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限是解答此题的关键.二、填空题(共10小题,每小题2分,满分20分)11. =a, =b,则 = 0.1b .【考点】算术平方根.【专题】计算题;实数.【分析】根据题意,利用算术平方根定义表示出所求式子即可.【解答】解:∵ =b,∴ = = = =0.1b.故答案为:0.1b.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.一组数据5,7,7,x的中位数与平均数相等,则x的值为5或9 .【考点】中位数;算术平均数.【专题】分类讨论.【分析】根据平均数与中位数的定义就可以解决.中位数可能是7或6.【解答】解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=9;当x≤5时: (7+7+5+x)=6,解得:x=5;当5所以x的值为5或9.故填5或9.【点评】本题考查平均数和中位数.求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.同时运用分类讨论的思想解决问题.13. ﹣3 + = 3 .【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=4 ﹣ +=(4﹣ +1)=3 .故答案为:3 .【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.已知m是的整数部分,n是的小数部分,则m2﹣n2= 6 ﹣10 .【考点】估算无理数的大小.【分析】由于3< <4,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵3< <4,则m=3;又因为3< <4,故n= ﹣3;则m2﹣n2=6 ﹣10.故答案为:6 ﹣10.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.15.若x、y都是实数,且y= ,x+y= 11 .【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式求出x、y的值,代入代数式计算即可.【解答】解:由题意得,x﹣3≥0,3﹣x≥0,解得,x=3,则y=8,∴x+y=11,故答案为:11.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.16.已知xm﹣1+2yn+1=0是二元一次方程,则m= 2 ,n= 0 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的次数方面考虑,求常数m、n的值.【解答】解:根据二元一次方程两个未知数的次数为1,得,解得m=2,n=0.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.17.在等式y=kx+b中,当x=0时,y=1,当x=1时,y=2,则k= 1 ,b= 1 .【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入已知等式得到关于k与b的方程组,求出方程组的解即可得到k与b的值.【解答】解:把x=0,y=1;x=1,y=2代入得:,解得:k=b=1,故答案为:1;1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是.【考点】列代数式.【分析】设水流的速度是x千米/时,根据静水的速度=顺流速度﹣水流的速度,静水的速度=逆流速度+水流的速度,列式计算即可.【解答】解:设水流的速度是x千米/时,根据题意得:m﹣x=n+x,解得:x= ,答:水流的速度是千米/时.故答案为: .【点评】此题考查了列代数式;用到的知识点为:逆水速度=静水速度﹣水流速度;顺水速度=静水速度+水流速度.19.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于62°.【考点】平行线的性质;三角形内角和定理.【分析】先根据三角形的内角和定理求出∠A,再根据两直线平行,同位角相等可得∠DEC=∠A,从而得解.【解答】解:∵∠B=55°,∠C=63°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣63°=62°,∵DE∥AB,∴∠DEC=∠A=62°.故答案为:62°.【点评】本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.20.已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED=78 度.【考点】平行线的性质.【专题】计算题;压轴题.【分析】首先做一条辅助线,平行于两直线,再利用平行线的性质即可求出.【解答】解:过点E作直线EF∥AB,∵AB∥CD,∴EF∥CD,∵AB∥EF,∴∠1=180°﹣∠ABE=180°﹣130°=50°;∵EF∥CD,∴∠2=180°﹣∠CDE=180°﹣152°=28°;∴∠BED=∠1+∠2=50°+28°=78°.故填78.【点评】解答此题的关键是过点E作直线EF∥AB,利用平行线的性质可求∠BED的度数.三、解答题(共7小题,满分50分)21.(1)计算:(2)解下列方程组: .【考点】二次根式的加减法;解二元一次方程组.【分析】(1)首先化简二次根式,进而合并同类二次根式即可;(2)利用代入消元法解方程组得出答案.【解答】解:(1)= +2 ﹣10=﹣ ;(2)整理得:,由②得,y=9﹣4x,代入3x+4y=10,故3x+4(9﹣4x)=10,解得:x=2,故y=1,故方程组的解集为: .【点评】此题主要考查了二次根式的加减以及二元一次方程组的解法,正确化简二次根式是解题关键.22.m为正整数,已知二元一次方程组有整数解,求m的值.【考点】二元一次方程组的解.【专题】计算题.【分析】利用加减消元法易得x、y的解,由x、y均为整数可解得m的值.【解答】解:关于x、y的方程组:,①+②得:(3+m)x=10,即x= ③,把③代入②得:y= ④,∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2.故m的值为2.【点评】本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.23.如图:【考点】二元一次方程组的应用.【分析】首先设1本笔记本为x元,1支钢笔y元,由题意得等量关系:①1本笔记本+1支钢笔=6元;②1本笔记本+4支钢笔=18元,根据等量关系列出方程组,再解即可.【解答】解:设1本笔记本为x元,1支钢笔y元,由题意得:,解得:,答:1本笔记本为2元,1支钢笔4元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.如图表示两辆汽车行驶路程与时间的关系(汽车B在汽车A后出发)的图象,试回答下列问题:(1)图中l1,l2分别表示哪一辆汽车的路程与时间的关系?(2)写出汽车A和汽车B行驶的路程s与时间t的函数关系式,并求汽车A和汽车B的速度;(3)图中交点的实际意义是什么?【考点】一次函数的应用.【分析】(1)分析图形,得知l1表示先出发的那辆,l2表示两小时后出发的那辆,从而得出结论;(2)设出路程与时间的关系式,分别代入图形中能看出的点,即可得知函数关系式,汽车的速度为函数关系式的斜率;(3)由y轴表示的路程可知,交点表示两车路程相同,即相遇.【解答】解:(1)∵汽车B在汽车A后出发,∴l1表示A车的路程与时间的关系,l2表示B车的路程与时间的关系.(2)设汽车行驶的路程s与时间t的函数关系s=vt+b,①将(0,0),(3,100)代入,得,解得v= ,b=0,∴汽车A行驶的路程s与时间t的函数关系式y= t,汽车A的速度为 km/h.②将(2,0),(3,100)代入,得,解得v=100,b=﹣200,∴汽车B行驶的路程s与时间t的函数关系式y=100t﹣200,汽车B的速度为100km/h.(3)汽车A出发3h(或汽车B出发1h)两车相遇,此时两车行驶路程都是100km.【点评】本题考查的一次函数的运用,解题的关键是熟练利用一次函数的特点,会使用代入法求出函数表达式.25.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.【考点】二元一次方程组的应用.【分析】首先设快车速度为xm/s,慢车速度为ym/s,由题意得等量关系:两车速度和×4s=两车长之和;两车速度差×16s=两车长之和,根据等量关系列出方程组,再解即可.【解答】解:设快车速度为xm/s,慢车速度为ym/s,由题意得:,解得:,答:快车速度为55m/s,慢车速度为33m/s.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.26.某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:次数选手甲的成绩(环) 选手乙的成绩(环)1 9.6 9.52 9.7 9.93 10.5 10.34 10.0 9.75 9.7 10.56 9.9 10.37 10.0 10.08 10.6 9.8根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?【考点】方差;算术平均数.【分析】根据平均数的计算公式先分别求出甲和乙的平均数,再根据方差公式进行计算即可得出答案.【解答】解:∵甲的平均数是:(9.6+9.7+…+10.6)=10,乙的平均数是:(9.5+9.9+…+9.8)=10,∴S2甲= [(9.6﹣10)2+(9.7﹣10)2+…+(10.6﹣10)2]=0.12,S2乙= [(9.5﹣10)2+(9.9﹣10)2+…+(9.8﹣10)2]=0.1025,∵S2甲>S2乙,∴派乙选手参加比赛更好.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣ )2+(x2﹣)2+…+(xn﹣ )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.27.已知:如图,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD.【考点】平行线的性质.【专题】证明题.【分析】过点C作CF∥AB,再由平行线的性质得出∠BCF=∠ABC,∠DCF=∠EDC,进而可得出结论.【解答】证明:过点C作CF∥AB,∵AB∥CF,∴AB∥ED∥CF,∴∠BCF=∠ABC,∠DCF=∠EDC,∴∠ABC+∠CDE=∠BCD.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.。
天津市五区联考2016-2017年八年级上期末数学试卷含答案解析
天津市宝坻、宁河、蓟州、静海、武清五区联考2016-2017学年八年级(上)期末数学试卷(解析版)一、单选题(本题包括12小题,每小题3分,共38分)1.下列式子是分式的是()A.B. C. +y D.2.计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.下列平面图形中,不是轴对称图形的是()A.B.C.D.5.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a56.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积= AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.如果分式有意义,那么x的取值范围是.14.若a2+ab+b2+M=(a﹣b)2,那么M=.15.在实数范围内分解因式:x2y﹣4y=.16.如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.若关于x的方程无解,则m的值是.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是.三、解答题(本题共46分)19.计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.计算: +.24.(5分)先化简,再求值:(﹣)÷,其中x=3.25.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?26.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市宝坻、宁河、蓟州、静海、武清五区联考八年级(上)期末数学试卷参考答案与试题解析一、单选题(本题包括12小题,每小题3分,共38分)1.下列式子是分式的是()A.B. C. +y D.【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【考点】幂的乘方与积的乘方.【分析】先根据积的乘方,再根据幂的乘方计算即可.【解答】解:(﹣3a3)2=9a6.故选C.【点评】本题考查了积的乘方与幂的乘方.注意负数的偶次幂是正数;幂的乘方底数不变,指数相乘.3.如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【考点】三角形三边关系.【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.【点评】本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.5.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【考点】单项式乘单项式;整式的加减.【分析】直接利用去括号法则以及合并同类项法则以及单项式乘以单项式运算法则分别判断得出答案.【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.【点评】此题主要考查了去括号法则以及合并同类项法则、单项式乘以单项式运算等知识,正确掌握运算法则是解题关键.6.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【考点】因式分解的意义.【分析】根据因式分解的定义即可判断.【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)【点评】本题考查因式分解的意义,属于基础题型.7.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【考点】公因式.【分析】应先对所给的多项式进行因式分解,根据分解的结果,然后进行判断.【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.【点评】本题主要考查公因式的确定,先因式分解,再做判断,在解题时,仅看多项式的表面形式,不能做出判断.9.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积= AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【考点】全等三角形的判定.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS 证明△AOD与△COD全等.11.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【考点】因式分解的应用.【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a=b=c.进而判断即可.【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.【点评】此题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.二、填空题(本题包括6小题,每小题3分,共18分)13.如果分式有意义,那么x的取值范围是x≠1.【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.14.若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【考点】完全平方公式.【分析】直接利用完全平方公式将原式展开进而求出M的值.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.【点评】此题主要考查了完全平方公式,正确展开原式是解题关键.15.在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【考点】实数范围内分解因式.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.16.如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【考点】轴对称的性质.=S△CEF,根据图中阴影部分的面积是S 【分析】根据△CEF和△BEF关于直线AD对称,得出S△BEF求出即可.△ABC【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.【点评】本题考查了勾股定理、轴对称的性质.通过观察可以发现是轴对称图形,且阴影部分的面积为全面积的一半,根据轴对称图形的性质求解.其中看出三角形BEF与三角形CEF关于AD 对称,面积相等是解决本题的关键.17.若关于x的方程无解,则m的值是2.【考点】分式方程的解.【分析】关键是理解方程无解即是分母为0,由此可得x=1,再按此进行计算.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.【点评】本题是一道基础题,考查了分式方程的解,要熟练掌握.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.三、解答题(本题共46分)19.(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【考点】整式的除法;多项式乘多项式.【分析】(1)根据多项式除单项式先用多项式的每一项除以单项式,再把所得的商相加,计算即可;(2)根据多项式与多项式相乘的法则进行计算即可.【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】本题考查多项式除单项式的法则、多项式与多项式相乘的法则,熟练掌握运算法则是解题的关键.20.解方程:﹣=【考点】解分式方程.【分析】本题的最简公分母是(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.21.如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【考点】全等三角形的判定与性质;角平分线的性质.【分析】根据角平分线的性质可以得出DC=DE,由HL证明△DCF≌△DEB,得出对应边相等即可.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.【点评】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用;熟记角平分线的性质定理,证明三角形全等是解决问题的关键.22.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.计算: +.【考点】分式的加减法.【分析】先通分,把分母都化为10a2b,然后进行同分母的加法运算.【解答】解:原式=+=.【点评】本题考查了分式的加减法:同分母的分式相加减,分母不变,把分子相加减.异分母分式的加减就转化为同分母分式的加减.24.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=x﹣2,当x=3时,原式=3﹣2=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【考点】分式方程的应用.【分析】(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天,然后根据两队合作18天完成列出关于x的方程求解即可;(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元,依据两队18天的施工费之和为144000元列出关于y的方程,从而可求得两队每天的施工费,然后再求得两队单独施工的费用,于是可得到问题的答案.【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.【点评】本题主要考查的是分式方程的应用、一元一次方程的应用,列出关于x的分式方程是解题的关键.26.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解,②当点P与M重合时,△PBC周长的值最小,于是得到结论.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠MNA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,∴△PBC周长的最小值=AC+BC=8+6=14.【点评】本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.。
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
天津市五区联考2016-2017年八年级上期末数学试卷含答案解析
2016-2017 学年天津市宝坻、宁河、蓟州、静海、武清 五区联考八年级(上)期末数学试卷
参考答案与试题解析
一、单选题(本题包括 12 小题,每小题 3 分,共 38 分) 1.下列式子是分式的是( ) A. B. C. +y D. 【考点】分式的定义. 【分析】根据分母中含有字母的式子是分式,可得答案. 【解答】解:A、分母中不含有字母的式子是整式,故 A 错误; B、分母中含有字母的式子是分式,故 B 正确; C、分母中不含有字母的式子是整式,故 C 错误; D、分母中不含有字母的式子是整式,故 D 错误; 故选:B. 【点评】本题主要考查分式的定义,注意 π 不是字母,是常数,所以 分式,是整式.
()
A.2 B.3 C.6 D.7
4.下列平面图形中,不是轴对称图形的是( )
A.
B.
C.
D.
5.下列运算正确的是( ) A.﹣2(a+b)=﹣2a+2b 5 B.5=xx C.6a﹣a=4 a2 D.3a2•2a3=6a5 +6.x 下列从左到右的变形是因式分解的是( ) A.6a2b2 =3ab•2ab B.﹣2 8x +8x﹣2=﹣2(2 2x﹣1)
3.如果一个三角形的两边长分别为 2 和 5,则此三角形的第三边长可能为 Nhomakorabea不是
2.计算(﹣33a)2 的结果是( ) A.﹣65a B.65 aC.9a6 D.﹣69a 【考点】幂的乘方与积的乘方. 【分析】先根据积的乘方,再根据幂的乘方计算即可.
). 【解答】解:(﹣3a3 2=9a6 故【点选评C.】本题考查了积的乘方与幂的乘方.注意负数的偶次幂是正数;幂的乘 方底数不变,指数相乘.
天津市滨海新区2016-2017学年八年级(上)期末数学试卷(解析版)
2016-2017学年天津市滨海新区八年级(上)期末数学试卷一、选择题1.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm2.下列四副图案中,不是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.(ab)2=ab2D.a6÷a2=a34.如图,在△ABC中,∠B=63°,∠C=51°,AE是∠BAC的平分线,则∠BEA的度数为()A.96° B.84° C.66° D.33°5.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m+n)(﹣m﹣n)6.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN7.如果把分式中的x和y都扩大5倍,那么分式的值将()A.扩大5倍 B.扩大10倍C.不变 D.缩小5倍8.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁9.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块10.如图,三角形纸片ABC中,∠BCA=90°,在AC上取一点E,以BE为折痕进行翻折,使AB的一部分与BC重合,A与BC延长线上的点D重合,若∠A=30°,AC=6,则,DE的长度为()A.6 B.4 C.3 D.211.若关于x的方程+=﹣1无解,则m的值为()A.3 B.﹣3 C.﹣ D.012.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12 B.24 C.27 D.54二、填空题(本题共6小题,每小题3分,共18分)13.因式分解:x2y﹣4y= .14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.数据0,3,3,4,5的平均数是,方差是.16.若x=,则式子÷×的值为.17.已知a2+2a+b2﹣4b+5=0,则a+b= .18.如图,已知B是线段AD上的一点,△ABC、△BDE均为等边三角形,AE交BC于P,CD交BE于Q,则结论:①AE=CD;②CQ=CA;③PQ∥AD;④EP=QD中,其中正确结论是.三、解答题(本题共7小题,共66分)19.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.20.计算(﹣)÷(2)解方程:﹣1=.21.(1)(3x+1)(x+2);(2)(a3x4﹣0.9ax3)÷ax3;(3)4(x+1)2﹣(2x+5)(2x﹣5).22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.如图,△ABC中,AB=AC,BE⊥AC于点E,AD⊥BC于点D,∠ABE=45°,AD与BE交于点F,连接CF.求证:(1)∠DAC=∠EBC;(2)△BEC≌△AEF;(3)AF=2BD.24.一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地,求前一小时的行驶速度.设原计划行驶的速度为xkm/h.(1)根据题意填写下表(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解.25.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.2016-2017学年天津市滨海新区八年级(上)期末数学试卷参考答案与试题解析一、选择题1.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【考点】三角形三边关系.【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.下列四副图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.3.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.(ab)2=ab2D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】依据幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则计算即可.【解答】解:A、(a2)3=a6,故A正确;B、a2•a3=a5,故B错误;C、(ab)2=a2b2,故C错误;D、a6÷a2=a4,故D错误.故选:A.【点评】本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则的应用,熟练掌握相关法则是解题的关键.4.如图,在△ABC中,∠B=63°,∠C=51°,AE是∠BAC的平分线,则∠BEA的度数为()A.96° B.84° C.66° D.33°【考点】三角形内角和定理.【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,根据三角形外角的性质计算即可.【解答】解:∵∠B=63°,∠C=51°,∴∠BAC=180°﹣∠B﹣∠C=66°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=33°,∴∠BEA=∠BAC+∠C=84°,故选:B.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.5.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m+n)(﹣m﹣n)【考点】平方差公式.【分析】根据平方差公式对照四个选项给定的代数式,即可找出可以使用平方差公式计算的选项.【解答】解:根据平方差公式为(a+b)(a﹣b)=a2﹣b2,即可得出(﹣m+n)(﹣m﹣n)可以用平方差公式计算.故选D.【点评】本题考查了平方差公式,牢记平方差公式是解题的关键.6.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如果把分式中的x和y都扩大5倍,那么分式的值将()A.扩大5倍 B.扩大10倍C.不变 D.缩小5倍【考点】分式的基本性质.【分析】解此题时,可将分式中的x,y用5x,5y代替,用此方法即可解出此题.【解答】解:依题意得: ==原式,故选C.【点评】此题考查的是对分式的性质的理解和运用,扩大或缩小n倍,就将原来的数乘以n或除以n.8.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【考点】方差.【分析】首先比较平均数,然后比较方差,方差越小,越稳定.【解答】解:∵ ==9.7,S2甲>S2乙,∴选择丙.故选C.【点评】此题考查了方差的知识.注意方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.10.如图,三角形纸片ABC中,∠BCA=90°,在AC上取一点E,以BE为折痕进行翻折,使AB的一部分与BC重合,A与BC延长线上的点D重合,若∠A=30°,AC=6,则,DE的长度为()A.6 B.4 C.3 D.2【考点】翻折变换(折叠问题).【分析】先用含30°的直角三角形性质得出BC,进而求出CE,即可求出AE,由折叠的性质即可得出结论.【解答】解:在Rt△ABC中,∠A=30°,∴BC=2,∠ABC=60°由折叠知,DE=AE,∠DBE=∠ABE=∠ABC=30°=∠A,在Rt△BCE中,BC=2,∠DBE=30°,∴CE=2,∴AE=AC﹣CE=4,∴DE=4,故选B.【点评】此题是折叠问题,主要考查了折叠的性质,含30°的直角三角形的性质,用30°的直角三角形的性质是解本题的关键.11.若关于x的方程+=﹣1无解,则m的值为()A.3 B.﹣3 C.﹣ D.0【考点】分式方程的解.【专题】分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:3﹣2x﹣2﹣mx=﹣x+3,由分式方程无解,得到x﹣3=0,解得:x=3,把x=3代入整式方程得:3﹣6﹣2﹣3m=0,解得:m=﹣,故选C【点评】此题考查了分式方程的解,分式方程无解即为最简公分母为0.12.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12 B.24 C.27 D.54【考点】因式分解的应用.【专题】计算题;因式分解.【分析】原式变形后,利用完全平方公式化简,将已知等式变形后代入计算即可求出值.【解答】解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)= [(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a=x﹣20,b=x﹣18,c=x﹣16,∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2,则原式=×(4+16+4)=12,故选A【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.二、填空题(本题共6小题,每小题3分,共18分)13.因式分解:x2y﹣4y= y(x﹣2)(x+2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式y,再利用平方差公式分解因式即可.【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式分解因式是解题关键.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.15.数据0,3,3,4,5的平均数是 3 ,方差是.【考点】方差;算术平均数.【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可.【解答】解:数据0,3,3,4,5的平均数是,方差为:,故答案为:3【点评】本题考查方差和平均数,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数是所有数据的和除以数据的个数.16.若x=,则式子÷×的值为.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将x=代入化简后的式子求出即可.【解答】解:÷×,=××,=××,=;当x=时,原式===.故答案为:.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.17.已知a2+2a+b2﹣4b+5=0,则a+b= 1 .【考点】配方法的应用;非负数的性质:偶次方.【分析】利用配方法得出(a+1)2+(b﹣2)2=0,进而得出a,b的值,即可得出答案.【解答】解:∵a2+2a+b2﹣4b+5=0,(a+1)2+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,则a+b=﹣1+2=1.故答案为:1.【点评】此题主要考查了配方法的应用,熟练掌握完全平方公式的形式是解题关键.18.如图,已知B是线段AD上的一点,△ABC、△BDE均为等边三角形,AE交BC于P,CD交BE于Q,则结论:①AE=CD;②CQ=CA;③PQ∥AD;④EP=QD中,其中正确结论是①③④.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】由等边三角形的性质可证得△ABE≌△CBD,可求得AE=CD,可判断①;由全等三角形的性质得出∠BAP=∠BCQ,证出∠ABC=∠CBQ=60°,由ASA证明△ABP≌△CBQ,得出CQ=AP≠CA,可判断②;证明△PBQ是等边三角形,得出∠BPQ=60°=∠ABC,由平行线的判定方法得出PQ∥AD,可判断③;由AE=CD,AP=CQ,得出EP=QD,可判断④;可求得答案.【解答】解:∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,故①正确;∴∠BAP=∠BCQ,∵∠ABC=∠EBD=60°,∴∠CBQ=180°﹣60°×2=60°,∴∠ABC=∠CBQ=60°,在△ABP与△CBQ中,,∴△ABP≌△CBQ(ASA),∴CQ=AP≠CA,故②不正确;∵∠CBQ=60°,BP=BQ,∴△PBQ是等边三角形,∴∠BPQ=60°=∠ABC,∴PQ∥AD,故③正确;∵AE=CD,AP=CQ,∴EP=QD,故④正确;综上可知正确的为①③④,故答案为:①③④.【点评】本题考查了等边三角形的判定与性质、全等三角形的判定及性质、平行线的判定等知识;本题综合性强,难度不大,证明三角形全等是解决问题的关键.三、解答题(本题共7小题,共66分)19.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.(1)计算(﹣)÷(2)解方程:﹣1=.【考点】解分式方程;分式的混合运算.【专题】分式;分式方程及应用.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•=;(2)去分母得:x2+2x+1﹣x2+1=4,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(1)(3x+1)(x+2);(2)(a3x4﹣0.9ax3)÷ax3;(3)4(x+1)2﹣(2x+5)(2x﹣5).【考点】整式的混合运算.【分析】(1)根据多项式乘多项式可以解答本题;(2)根据多项式除以单项式可以解答本题;(3)根据完全平方公式和平方差公式可以解答本题.【解答】解:(1)(3x+1)(x+2)=3x2+6x+x+2=3x2+7x+2;(2)(a3x4﹣0.9ax3)÷ax3=2a2x﹣;(3)4(x+1)2﹣(2x+5)(2x﹣5)=4x2+8x+4﹣4x2+25=8x+29.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.如图,△ABC中,AB=AC,BE⊥AC于点E,AD⊥BC于点D,∠ABE=45°,AD与BE交于点F,连接CF.求证:(1)∠DAC=∠EBC;(2)△BEC≌△AEF;(3)AF=2BD.【考点】全等三角形的判定与性质.【分析】(1)由∠DAC+∠ACD=∠EBC+∠BCE=90°即可得;(2)根据∠ABE+∠BAE=90°及∠ABE=45°知∠BAE=∠ABE=45°,证得AE=BE,结合∠BEC=∠AEF、∠EBC=∠FAE可证得答案;(3)由△BEC≌△AEF知BC=AF,根据AB=AC、AD⊥BC知BD=DC=BC,即可得证.【解答】证明:(1)∵AD⊥BC,∴∠DAC+∠ACD=90°,∵BE⊥AC,∴∠EBC+∠BCE=90°,∴∠DAC=∠EBC;(2)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵∠ABE=45°,∴∠BAE=∠ABE=45°,∴AE=BE,在△BEC和△AEF中,∵,∴△BEC≌△AEF(ASA);(3)∵△BEC≌△AEF,∴BC=AF,∵AB=AC,AD⊥BC,∴BD=DC=BC,∴AF=2BD.【点评】本题主要考查全等三角形的判定与性质及等腰三角形的性质,熟练掌握等腰三角形的三线合一、垂直的性质及全等三角形的判定与性质是解题的关键.24.一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地,求前一小时的行驶速度.设原计划行驶的速度为xkm/h.(1)根据题意填写下表(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解.【考点】分式方程的应用.【分析】(1)根据题意和表格中的数据可以把表格补充完整;(2)根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:(1)由题意可得,出发一小时以后行驶是速度为1.5x,所用的时间为:,原计划行驶的时间为:,故答案为:1.5x,,;(2)由题意可得,,解得,x=60经检验x=60时,1.5x≠0,∴x=60是原分式方程的解,即原计划行驶的速度为60km/h.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,注意要验根.25.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.【解答】解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.。
20162017学第一学期期末测试卷
2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。
天津市2016-2017学年八年级数学上册期末模拟题及答
2016-2017年八年级数学上册期末模拟题一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个2.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为( )A.10 B.8 C.6 D. 43.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b 2=a2﹣b2C.(a﹣b 2=a2+2ab+b2D.(a﹣b 2=a2﹣ab+b24.下列算式中,你认为错误的是()A. B.C. D.5.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25B.25或32C.32D.196.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a67.化简,可得()A. B. C. D.8.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.119.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A.∠BCA=∠EDFB.∠BCA=∠EFDC.∠BAC=∠EFDD.这两个三角形中,没有相等的角10.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°11.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2关系是()A.∠1=2∠2B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°12.在一段坡路,小明骑自行车上坡的速度为每小时v千米,下坡时的速度为每小时v2千米,则1他在这段路上、下坡的平均速度是每小时()A.千米B.千米C.千米D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)13.已知﹣(x﹣1)0有意义,则x的取值范围是.14.分解因式:8(a2+1)﹣16a= .15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °.16.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.17.已知a+=3,则a2+的值是.18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.三、计算题(本大题共6小题,共24分)19.(1) (ab2)2•(﹣a3b)3÷(﹣5ab); (2)(x+1)2﹣(x+2)(x﹣2).20.化简:(1) +. (2)21.分解因式:(1)3x﹣12x3;(2)3m(2x-y)2-3mn2;四、解答题(本大题共4小题,共22分)22.如图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,(1)试证明:DE=BF;(2)连接DF、BE,猜想DF与BE的关系?并证明你的猜想的正确性.23.如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.24.在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数比甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.2016-2017年八年级数学上册期末模拟题答案1.C.2.B3.A4.B.5.C6.D7.B.8.C9.B 10.C 11.D 12.C.13.答案为:x≠2且x≠1.14.【解答】解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.15.【解答】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.16.7cm17.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.18.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.19.(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=x2+2x+1﹣x2+4=2x+5.20.(1)原式=+•=+==.(2)原式=﹣÷=﹣•=﹣.21.(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)原式=3m(2x-y+n)(2x-y-n);22.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∵DC∥AB,∴∠DCE=∠BAF,在△AFB和△CED中∴△AFB≌△CED,∴DE=EF;(2)DF=BE,DF∥BE,证明:∵DE⊥AC,BF⊥AC,∴DE∥BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE,DF∥BE.23.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.24.【解答】解:设甲班平均每人捐款为x元,依题意得整理得:4x=8,解之得x=2经检验,x=2是原方程的解.答:甲班平均每人捐款2元25.(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE-CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS)∴BD=CE ∴CE-CD=BD-CD=BC=AC,∴AC=CE-CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD-CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD-BD,∴BC=CD-CE,∴AC=CD-CE.。
2016-2017学年天津市部分区八年级第一学期期末数学试卷带答案
2016-2017学年天津市部分区初二(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)初二学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区初二(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选:C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选:C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选:D.11.(3分)初二学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选:C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
2016-2017学年第一学期人教版八年级上册期末数学试卷含答案
2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
2016-2017年天津市部分区八年级上学期期末数学试卷和答案
2016-2017学年天津市部分区八年级(上)期末数学试卷一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市部分区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12小题,每小题3分,共36分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选(B)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围是x≠1.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S△BEF =S△CEF,∵△ABC的面积是:×BC×AD=×3×4=6,∴图中阴影部分的面积是S△ABC=3.故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是度.【解答】解:∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1A==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°=37.5°;同理可得,∠EA3A2=,∠FA4A3=,∴第n个等腰三角形的底角的度数=.故答案为.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(8分)(1)计算:+(2)先化简,再求值:()÷,其中x=3.【解答】解:(1)原式=+=+=;(2)原式=[﹣]•=•=,当x=3时,原式=.24.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.25.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
滨海新区初二上数学试卷
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2.5B. -3/4C. √2D. 02. 若a=3,b=-1,则a-b的值是()A. 4B. 2C. -2D. -43. 下列方程中,无解的是()A. x+2=0B. 2x+1=0C. x-3=0D. 2x=04. 已知一元二次方程x^2-5x+6=0,则它的解是()A. x1=2,x2=3B. x1=3,x2=2C. x1=6,x2=1D. x1=1,x2=65. 在直角坐标系中,点P(-3,4)关于x轴的对称点是()A.(-3,-4)B.(3,4)C.(-3,4)D.(3,-4)6. 若a、b是方程2x^2+3x-4=0的两个根,则a+b的值是()A. -1B. 1C. 2D. 37. 下列函数中,是反比例函数的是()A. y=2x+3B. y=x^2C. y=1/xD. y=3x^28. 若a、b是方程ax^2+bx+c=0(a≠0)的两个根,则a+b+c的值是()A. 0B. 1C. -1D. a9. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则a^2<b^2C. 若a>b,则a^2>b^2或a^2=b^2D. 若a>b,则a^2<b^2或a^2=b^2或a^2>b^210. 在平面直角坐标系中,点A(3,2)关于y=x的对称点是()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)二、填空题(每题3分,共30分)11. 若x^2+5x+6=0,则x^2+5x=-______。
12. 若a、b是方程2x^2-3x-4=0的两个根,则a^2+b^2=______。
13. 若函数y=kx+b(k≠0)的图象经过点(2,-3),则k=______,b=______。
14. 在直角坐标系中,点P(-2,3)关于x轴的对称点是______。
人教版八年级第一学期数学期末试题及答案(精)
八年级数学第1页共6页天津市滨海新区(油田11-12学年度第一学期八年级期末质量检测数学一、选择题(每小题3分,共30分1、下列计算正确的是(A .326a a a ⋅=B .32a a a ⋅=C .4442a a a =⋅D .(n n n b a b a b a 41212((+=+⋅+-+2、如果((q px x x x ++=+-232,那么p ,q 的值是(A .5=p ,6=qB .1=p ,6-=qC .1=p ,6=qD .5=p ,6-=q3、对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( .A 1个B 2个C 3个D 4个4、下列说法:⑴ 9的算术平方根是-3; ⑵ 6是(26-的算术平方根; ⑶5的一个平方根;⑷5=±. 其中正确的说法有( .A . 1个 B. 2个 C. 3个 D .4个5、如图,已知AB =AC ,AD =AE ,AO 平分∠BAC ,则图中共有全等三角形的对数为( .A .1 B. 2 C. 3 D .46、已知等腰三角形的一边长为4cm ,另一边长为9cm ,则它的周长为( .A.13cmB. 17cmC. 22cmD. 17cm 或 22cm八年级数学第2页共6页7、下列判断中,不正确的是( .A.有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等8、将一次函数21y x =-的图象,沿着y 轴向上平移2个单位长度后得到的新的函数解析式为( .A.21y x =+B.41y x =-C.22y x =+D.23y x =-9、已知一次函数y m x m =-,若y 随x 的增大而增大,则这个函数的图象经过( .A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限10、当b a >时,函数y ax b =+与y bx a =+在同一坐标系中的图象可能是( .二、填空题(每小题3分,共30分.11.计算:= .12.如图,已知A C F E =,BC D E =,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件, 这个条件可以是 (填一种即可.13.正比例函数y =kx (k ≠0的图象是一条 ,当k>0时,直线y =kx 经过第象限,y 随x 的增大而 ;14.已知一次函数的图象过点(35,与(49--,,则该函数的解析式为 ;该八年级数学第3页共6页函数图象与y 轴交点的坐标为________ _.15.已知一次函数26y x =-与3y x =-+的图象交于点P ,则点P 的坐标为 .16.已知△ABC 中,50AB AC A AB =∠=︒,,的垂直平分线交A C 于D ,则D B C ∠= .17.如果92++ma a 是完全平方式,则=m .18.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm .则腰长为㎝.19. 计算:223131⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+a a = . 20.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与C D 交于点F ,AG C D ⊥于点G , 则FGAF 的值为 .三、解答题(21题10分,22题4分,23---26各5分,27题6分,共40分21. 计算:(1(24n m - (2 212y ⎛⎫-- ⎪⎝⎭(3(⎪⎭⎫⎝⎛-÷22232434b a b a (4 ((33a b c a b c +-++八年级数学第4页共6页22. 先化简,再求值.((32223225xyx y x y xy +-÷- , 其中1x =,3y =-.23.已知正比例函数y =kx 的图象经过点(3,-6,一次函数y =2x +1的图象平移后经过该正比例函数图象上的点(2,m .⑴求正比例函数的解析式;⑵求出m 的值;⑶求平移后的一次函数的解析式.24.如图,在等边三角形ABC中,D为AC的中点,CE为BC的延长线且BD D E=.∠的度数.25.某市出租车3千米的起步价是8元,每增加1千米加价1.5元.(1求当行车超出起步价范围时,收费y(元与所行整数距离x(千米的函关系式;(2求乘车12千米应付费多少元?八年级数学第5页共6页26.已知:函数 y1=-⑴求函数 y1=- 1 x 与 y2=2x+5 . 2 1 x 与 y2=2x+5 的图象的交点坐标; 2 ⑵利用图象说明当 x 为何值时,满足下列条件:① y1=y2 ;② y1>y2; ③ y1<y2 . 27.如图,已知点 B、C、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交 AC 于 F,AD 交 CE 于 H . ①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH 的形状并说明理由.八年级数学第 6 页共 6 页参考答案一、选择题(每小题 3 分,共 30 分) 1、D 2、B 3、D 4、C 5、D 6、C 7、B 8、A 9、D 10、D 增大 18、8 二、填空题(每小题 3 分,共 30 分)11、-4 12、AD=BF (或∠E=∠C 或 AB=DF 14、y = 2 x − 1 19、a 4 − (0,-1)15、(3,0) 20、 13、直线一、三 16、15° 17、±6 2 2 1 a + 9 81 1 2 三、解答题 2 2 21、原式=16 m − 8mn + n -------2 分原式== y2 + y + 原式=16a 4b 6 ÷ ( − =−16 ×=− 1 4 -----------2 分 3 2 2 ab 4 原式=( a + b − 9c 2 2 4 4−2 6−2 a b 3 ---------3 分=a 2 + 2 ab + b 2 − 9c 2 -------3 分64 2 4 ab 3 22、原式=−2 y − x + 5 xy 当x = 1, y = −3 时原式=−2(−3 − 1 + 5 ×1× ( −3 =6-1-15 =-10 23、∵正比例函数的 y = kx 图象过(3,-6)∴ −6 = k × 3 ∴ k = −2 所以正比例函数的解析式为y = −2 x ∵(2,m)在y = −2 x 的图象上,∴ m = −4 -----------------------3 分 ----------------------4 分 ------------------2 分 --------------3 分八年级数学第 7 页共 6 页∴设 y = 2 x + 1 的图象平移后的一次函数的解析式为 y = 2 x + b ------------4 分∵平移后经过点(2,-4)∴ −4 = 2 × 2 + b ∴ b = −8 ∴平移后的一次函数的解析式为y = 2 x − 8 24、∵△ABC 为等边三角形∴∠ABC=∠C=60°又∵D 为 AC 的中点∴BD 平分∠ABC,即∠DBC=30°∵BD=DE ∴∠DBC=∠E=30°∴∠ACB=∠E+∠CDE=60°∴∠CDE=30° 25、(1)y = 1.5( x − 3 + 8 (2)当 x=12 时, -----------4 分 ------------5 分 -------------3 分 ------------5 分( x ≥ 3 ------------3 分y = 1.5(12 − 3 + 8 =21.5(元) 26、解由y = − 5分解得x = − 1 x 和 y = 2x + 5 2 10 5 ,y= 3 3 ------------2 分所以交点坐标为−当时, y1 = y2 3 10 当x<− 时, y1 > y2 3 10 当x>− 时, y1 < y2 3 -------------3 分 ------------4 分 ------------5 分 27、证明:①△ABC,△CDE 为等边三角形∴∠ACB=∠DCE=60°,AC=BC,CE=CD 在△BCE 和△ACD 中,八年级数学第 8 页共 6 页∠ACD = ∠∴△BCE≌△ACD∴∠BEC=∠ADC ②在△ECF 和△DCH 中,∠BEC=∠ADC EC=CD∠ECF=∠DCH=60°∴△ECF≌△DCH ∴CF=CH ③∵CF=CH,∠FCH=60°∴△HCF 为等边三角形 --------------6 分 --------------5 分 -----------------3 分八年级数学第 9 页共 6 页。