EBC983BLEDdriver28V550mA90V-264VACiw3628EE19W

合集下载

金士顿e MMC 5.1嵌入式多媒体卡(e

金士顿e MMC 5.1嵌入式多媒体卡(e

Embedded Multi-Media Card(e•MMC™ 5.1)EMMC16G-IB29-PE90EMMC32G-IB29-PE90EMMC64G-IB29-PE90v1.0Product Features•Packaged managed NAND flash memory with e•MMC™ 5.1 interface•Backward compatible with all prior e•MMC™ specification revisions•153-ball JEDEC FBGA RoHS Compliant package•Operating voltage range:o VCCQ = 1.8 V/3.3 Vo VCC = 3.3 V•Operating Temperature (T case) - 40C to +85C•Storage Temperature -55C to +85C•Compliant with e•MMC™ 5.1 JEDEC Standard Number JESD84-B51•Factory configured with pseudo Single Level Cell (pSLC) mode for enhanced reliability and performance•Factory configured with reliable writee•MMC™ Specific Feature Support•High-speed e•MMC™ protocol•Variable clock frequencies of 0-200MHz•Ten-wire bus interface (clock, 1 bit command, 8 bit data bus) with an optional hardware reset •Supports three different data bus widths: 1 bit(default), 4 bits, 8 bits•Bus Modes:o Single data transfer rate: up to 52MB/s (using 8 parallel data lines at 52MHz)o Dual data rate mode (DDR-104) : up to 104MB/s @ 52MHzo High speed, single data rate mode (HS-200) : up to 200MB/s @ 200MHzo High speed, dual data rate mode (HS-400) : up to 400MB/s @ 200MHz•Supports alternate boot operation mode to provide a simple boot sequence methodo Supports SLEEP/AWAKE (CMD5)o Host initiated explicit sleep mode for power saving•Enhanced write protection with permanent and partial protection options•Multiple user data partition with enhanced attribute for increased reliability•Error free memory accesso Cyclic Redundancy Code (CRC) for reliable command and data communicationo Internal error correction code (ECC) for improved data storage integrityo Internal enhanced data management algorithmo Data protection for sudden power failure during program operations•Securityo Secure bad block erase commandso Enhanced write protection with permanent and partial protection options•Power off notification for sleep•Field firmware update (FFU)•Production state awareness•Device health report•Command queuing•Enhanced strobe•Cache flushing report•Cache barrier•Background operation control & High Priority Interrupt (HPI)•RPMB throughput improvement•Secure write protection•Pre EOL information•Optimal sizeProduct DescriptionKingston’s e•MMC™ products conform to the JEDEC e•MMC™ 5.1standard. These devices are an ideal universal storage solution for many commercial and industrial applications. In a single integrated packaged device, e•MMC™ combines triple-level cell (TLC) NAND flash memory with an onboard e•MMC™ controller, providing an industry standard interface to the host system. The integrated e•MMC™ controller directly manages NAND flash media which relieves the host processor of these tasks, including flash media error control, wear-leveling, NAND flash management and performance optimization. Future revision to the JEDEC e•MMC™ standard will always maintain backward compatibility. The industry standard interface to the host processor ensures compatibility across future NAND flash generations as well, easing product sustainment throughout the product life cycle. ConfigurationsKingston’s e•MMC™ products support a variety of configurations that allow the e•MMC™ device to be tailored to your specific application needs. The most popular configurations described below are each offered under standard part numbers.Standard TLC – By default the e•MMC™ device is configured with the NAND flash in a standard TLC mode. This configuration provides reasonable performance and reliability for many applications. Pseudo Single Level Cell (pSLC) – The TLC NAND flash in the Kingston e•MMC™ device can be configured to further improve device endurance, data retention, reliability and performance over the standard TLC configuration. This is done by converting the NAND TLC cells to a pseudo single level cell (SLC) configuration. In this configuration, along with the performance and reliability gains, the device capacity is reduced by 2/3 of the capacity. This one-time configuration is achieved by setting the e•MMC™ enhanced attribute for the hardware partition.Kingston e•MMC™ can be ordered preconfigured with the option of reliable write or pSLC at no additional cost. Standard TLC devices can also be one-time configured in-field by following the procedures outlined in the JEDEC e•MMC™ specification. The JEDEC e•MMC™ specification allows for many additional configurations such as up to 4 additional general purpose (GPn) hardware partitions each with the option to support pSLC and reliable write. Additionally, Kingston provides a content loading service that can streamline your product assembly while reducing production costs. For more information, contact your Kingston representative.Kingston e•MMC™ devices are fully compliant with the JEDEC Standard Specification No. JESD84-B51. This datasheet provides technical specifications for Kingston’s family of e•MMC™ devices. Refer to the JEDEC e•MMC™ standard for specific information related to e•MMC™ device function and operation. See: /sites/default/files/docs/JESD84-B51.pdfe•MMC™ Mode and ControllerTLC mode using PS8229 - Leading edge 3D NAND flash technology in TLC mode rated to 3,000 endurance cycles.- Strong data protection with LDPC Error control- Improved data integrity with end-to-end data protection.pSLC mode using PS8229 - Leading edge 3D NAND flash technology in pSLC mode.- Strong data protection with LDPC Error control- Improved data integrity with end-to-end data protection.Part NumberingFigure 1 – Part Number FormatEMMC 16G - xxxx - PE90A B C DPart Number FieldsA: Product Family : EMMCB: Device Capacity : Available capacities of 16GB – 64GBC: Hardware Revision and ConfigurationD: Device Firmware Revision and ConfigurationTable 1 - Device SummaryDevice PerformanceTable 2 below provides sequential read and write speeds for all capacities. Performance numbers can vary under different operating conditions. Values are given at HS400 bus mode. Contact your Kingston Representative for performance numbers using other bus modes.Power ConsumptionDevice current consumption for various device configurations is defined in the power class fields of the EXT_CSD register. Power consumption values are summarized in Table 3 below.Device and Partition CapacityThe device NAND flash capacity is divided across two boot partitions (2048 KB each), a Replay Protected Memory Block (RPMB) partition (512 KB), and the main user storage area. Four additional general purpose storage partitions can be created from the user partition. These partitions can be factory preconfigured or configured in-field by following the procedure outlined in section 6.2 of the JEDEC e•MMC™ specification JESD84-B51. A small portion of the NAND storage capacity is used for the storage of the onboard controller firmware and mapping tables. Additionally, several NAND blocks are held in reserve to boost performance and extend the life of the e•MMC™ device. Table 4 identifies the specific capacity of each partition. This information is reported in the device EXT_CSD register. The contents of this register are also listed in the Appendix.e•MMC™ Bus ModesKingston e•MMC™ devices support all bus modes defined in the JEDEC e•MMC™ 5.1 specification. These modes are summarized in Table 6 below.Signal DescriptionTable 7 - e•MMC™ Signals Name Type DescriptionCLK I Clock: Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or a two bits transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.DAT[7:0] I/O/PP Data: These are bidirectional data channels. The DAT signals operate in push-pull mode. These bidirectional signals are driven by either the e•MMC™ device or the host controller. By default, after power up or reset, only DAT0 is used for data transfer. A wider data bus can be configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7, by the e•MMC™ host controller. The e•MMC™ device includes internal pull-ups for data lines DAT1-DAT7. Immediately after entering the 4-bit mode, the device disconnects the internal pull ups of lines DAT1, DAT2, and DAT3. Correspondingly, immediately after entering to the 8-bit mode, the device disconnects the internal pull-ups of lines DAT1–DAT7.CMD I/O/PP/OD Command: This signal is a bidirectional command channel used for device initialization and transfer of commands. The CMD signal has two operation modes: open-drain for initialization mode, and push-pull for fast command transfer. Commands are sent from the e•MMC™ host controller to the e•MMC™ device and responses are sent from the device to the host.DS O This signal is generated by the device and used for output in HS400 mode. The frequency of this signal follows the frequency of CLK. For data output each cycle of this signal directs two bits transfer(2x) on the data - one bit for positive edge and the other bit for negative edge. For CRC status response output and CMD response output (enabled only HS400 enhanced strobe mode), the CRC status and CMD Response are latched on the positive edge only, and don't care on the negative edge.RST_n I Hardware Reset: By default, hardware reset is disabled and must be enabled in the EXT_CSD register if used. Otherwise, it can be left un-connected.RFU - Reserved for future use: These pins are not internally connected. Leave floatingNC - Not Connected: These pins are not internally connected. Signals can be routed through these balls to ease printed circuit board design. See Kingston’s Design Guidelines for further details.VSF - Vendor Specific Function: These pins are not internally connectedVddi - Internal Voltage Node: Note that this is not a power supply input. This pin provides access to the output of an internal voltage regulator to allow for the connection of an external Creg capacitor. See Kingston’s Design Guidelines for further details.Vcc S Supply voltage for core Vccq S Supply voltage for I/ODesign GuidelinesDesign guidelines are outlined in a separate document. Contact your Kingston Representative for more information.Package DimensionsFigure 2 – Package DimensionsFigure 3 – Ball Pattern DimensionsBall Assignment (153 ball)Table 8 – Ball Assignment, Top View (HS400)1 2 3 4 5 6 7 8 9 10 11 12 13 14A NC NC DAT0 DAT1 DAT2 Vss RFU NC NC NC NC NC NC NC AB NC DAT3 DAT4 DAT5 DAT6 DAT7 NC NC NC NC NC NC NC NC BC NC Vddi NC Vssq NC Vccq NC NC NC NC NC NC NC NC CD NC NC NC NC NC NC NC DE NC NC NC RFU Vcc Vss VSF VSF VSF NC NC NC EF NC NC NC Vcc VSF NC NC NC FG NC NC RFU Vss VSF NC NC NC GH NC NC NC DS Vss NC NC NC H J NC NC NC Vss Vcc NC NC NC J K NC NC NC RST_n RFU RFU Vss Vcc VSF NC NC NC K L NC NC NC NC NC NC L M NC NC NC Vccq CMD CLK NC NC NC NC NC NC NC NC M N NC Vssq NC Vccq Vssq NC NC NC NC NC NC NC NC NC N P NC NC Vccq Vssq Vccq Vssq RFU NC NC RFU NC NC NC NC P1 2 3 4 5 6 7 8 9 10 11 12 13 14 Note: VSF, RFU and NC balls are not electrically connected. RFU balls may be defined with functionality by the Joint Electron Device Engineering Council (JEDEC) in future revisions of the e•MMC™ standard. Please refer to Kingston’s design guidelines for more info.Device MarkingFigure 4 - EMMC Package Marking240xxxx-xxx.xxxxYYWW PPPPPPPPxxxxxxx-xxxx2xxxxxxTAIWANKingston Logo240xxxx-xxx.xxxx:Internal control numberYYWW:Date code (YY– Last 2 digits ofyear, WW- Work week)PPPPPPPP: Internal control numberxxxxxxx-xxxx Sales P/N2xxxxxx : Internal control numberCountry:TAIWANCard Identification Register (CID)The Card Identification (CID) register is a 128-bit register that contains device identification information used during the e•MMC™ protocol device identification phase. Refer to JEDEC Standard Specification No.JESD84-B51 for details.Field Byte ValueMID [127:120] 0x70reserved [119:114] 0x00CBX [113:112] 0x01OID [111:104] 0x00PNM [103:56 ] IB2916(16G) IB2932(32G) IB2964(64G)PRV [ 55:48 ] 0x90PSN [ 47:16 ] RandomMDT [ 15:8 ] month, yearCRC [ 7:1 ] Follows JEDEC Standard reserved [ 0:0 ] 0x01Card Specific Data Register [CSD]The Card-Specific Data (CSD) register provides information on how to access the contents stored in e•MMC™. The CSD registers are used to define the error correction type, maximum data access time, data transfer speed, data format…etc. For details, refer to section 7.3 of the JEDEC Standard Specification No.JESD84-B51.Field Byte ValueCSD_Structure [127:126] 0x03 (V2.0)SPEC_VER [125:122] 0x04 (V4.0~4.2)reserved [121:120] 0x00TAAC [119:112] 0x4F (40ms)NSAC [111:104] 0x01TRAN_SPEED [103:96 ] 0x32 (26Mbit/s)CCC [ 95:84 ] 0x0F5READ_BL_LEN [ 83:80 ] 0x09 (512 Bytes)READ_BL_PARTIAL [ 79:79 ] 0x00WRITE_BLK_MISALIGN [ 78:78 ] 0x00READ_BLK_MISALIGN [ 77:77 ] 0x00DSR_IMP [ 76:76 ] 0x00reserved [ 75:74 ] 0x00C_SIZE [ 73:62 ] 0xFFFVDD_R_CURR_MIN [ 61:59 ] 0x07 (100mA)VDD_R_CURR_MAX [ 58:56 ] 0x07 (200mA)VDD_W_CURR_MIN [ 55:53 ] 0x07 (100mA)VDD_W_CURR_MAX [ 52:50 ] 0x07 (200mA)C_SIZE_MULT [ 49:47 ] 0x07 (512 Bytes)ERASE_GRP_SIZE [ 46:42 ] 0x1FERASE_GRP_MULT [ 41:37 ] 0x1FWP_GRP_SIZE [ 36:32 ] 0x0FWP_GRP_ENABLE [ 31:31 ] 0x01DEFAULT_ECC [ 30:29 ] 0x00R2W_FACTOR [ 28:26 ] 0x02WRITE_BL_LEN [ 25:22 ] 0x09 (512 Bytes)WRITE_BL_PARTIAL [ 21:21 ] 0x00reserved [ 20:17 ] 0x00CONTENT_PROT_APP [ 16:16 ] 0x00FILE_FORMAT_GRP [ 15:15 ] 0x00COPY [ 14:14 ] 0x00PERM_WRITE_PROTECT [ 13:13 ] 0x00TMP_WRITE_PROTECT [ 12:12 ] 0x00FILE_FORMAT [ 11:10 ] 0x00Field Byte ValueECC [ 9:8 ] 0x00CRC [ 7:1 ] Follow JEDEC Standard reserved [ 0:0 ] 0x01Extended Card Specific Data Register [EXT_CSD]The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command. For details, refer to section 7.4 of the JEDEC Standard Specification No.JESD84-B51.Field Byte ValueReserved [511:506] 0EXT_SECURITY_ERR [505:505] 0x00S_CMD_SET [504:504] 0x01HPI_FEATURES [503:503] 0x01BKOPS_SUPPORT [502:502] 0x01MAX_PACKED_READS [501:501] 0x3CMAX_PACKED_WRITES [500:500] 0x20DATA_TAG_SUPPORT [499:499] 0x01TAG_UNIT_SIZE [498:498] 0x03TAG_RES_SIZE [497:497] 0x00CONTEXT_CAPABILITIES [496:496] 0x05LARGE_UNIT_SIZE_M1 [495:495] 0x17(16G) 0x2F(32G) 0x5F(64G)EXT_SUPPORT [494:494] 0x03 SUPPORTED_MODES [493:493] 0x01FFU_FEATURES [492:492] 0x00 OPERATION_CODE_TIMEOUT [491:491] 0x00FFU_ARG [490:487] 65535 BARRIER_SUPPORT [486:486] 0x01Reserved [485:309] 0CMDQ_SUPPORT [308:308] 0x01CMDQ_DEPTH [307:307] 0x0FReserved [306:306] 0x00 NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED [305:302] 0 VENDOR_PROPRIETARY_HEALTH_REPORT [301:270] 0 DEVICE_LIFE_TIME_EST_TYP_B [269:269] 0x01DEVICE_LIFE_TIME_EST_TYP_A [268:268] 0x01PRE_EOL_INFO [267:267] 0x01 OPTIMAL_READ_SIZE [266:266] 0x01OPTIMAL_WRITE_SIZE [265:265] 0x08Field Byte Value OPTIMAL_TRIM_UNIT_SIZE [264:264] 0x01 DEVICE_VERSION [263:262] 0FIRMWARE_VERSION [261:254] 0x90 PWR_CL_DDR_200_360 [253:253] 0x00 CACHE_SIZE [252:249] 1024 GENERIC_CMD6_TIME [248:248] 0x32 POWER_OFF_LONG_TIME [247:247] 0xFF BKOPS_STATUS [246:246] 0x00 CORRECTLY_PRG_SECTORS_NUM [245:242] 0 INI_TIMEOUT_AP [241:241] 0x64 CACHE_FLUSH_POLICY [240:240] 0x01 PWR_CL_DDR_52_360 [239:239] 0x00 PWR_CL_DDR_52_195 [238:238] 0x00PWR_CL_200_195 [237:237] 0x00PWR_CL_200_130 [236:236] 0x00 MIN_PERF_DDR_W_8_52 [235:235] 0x00 MIN_PERF_DDR_R_8_52 [234:234] 0x00 Reserved [233:233] 0x00TRIM_MULT [232:232] 0x11(16G) 0x11(32G) 0x22(64G)SEC_FEATURE_SUPPORT [231:231] 0x55 SEC_ERASE_MULT [230:230] 0xF7 SEC_TRIM_MULT [229:229] 0xF7 BOOT_INFO [228:228] 0x07Reserved [227:227] 0x00 BOOT_SIZE_MULT [226:226] 0x20ACC_SIZE [225:225] 0x07(16G) 0x08(32G) 0x09(64G)HC_ERASE_GRP_SIZE [224:224] 0x01ERASE_TIMEOUT_MULT [223:223] 0x11(16G) 0x11(32G) 0x22(64G)REL_WR_SEC_C [222:222] 0x01HC_WP_GRP_SIZE [221:221] 0x10 S_C_VCC [220:220] 0x08S_C_VCCQ [219:219] 0x08 PRODUCTION_STATE_AWARENESS_TIMEOUT [218:218] 0x14 S_A_TIMEOUT [217:217] 0x15 SLEEP_NOTIFICATION_TIME [216:216] 0x0FField Byte ValueSEC_COUNT [215:212] 10207232 (16G) 20414464 (32G) 40828928 (64G)SECURE_WP_INFO [211:211] 0x01 MIN_PERF_W_8_52 [210:210] 0x08 MIN_PERF_R_8_52 [209:209] 0x08 MIN_PERF_W_8_26_4_52 [208:208] 0x08 MIN_PERF_R_8_26_4_52 [207:207] 0x08 MIN_PERF_W_4_26 [206:206] 0x08 MIN_PERF_R_4_26 [205:205] 0x08 Reserved [204:204] 0x00 PWR_CL_26_360 [203:203] 0x00 PWR_CL_52_360 [202:202] 0x00 PWR_CL_26_195 [201:201] 0x00 PWR_CL_52_195 [200:200] 0x00 PARTITION_SWITCH_TIME [199:199] 0xFF OUT_OF_INTERRUPT_TIME [198:198] 0xFF DRIVER_STRENGTH [197:197] 0x1F DEVICE_TYPE [196:196] 0x57 Reserved [195:195] 0x00 CSD_STRUCTURE [194:194] 0x02 Reserved [193:193] 0x00 EXT_CSD_REV [192:192] 0x08 CMD_SET [191:191] 0x00Reserved [190:190] 0x00 CMD_SET_REV [189:189] 0x00 Reserved [188:188] 0x00 POWER_CLASS [187:187] 0x00 Reserved [186:186] 0x00HS_TIMING [185:185] 0x01 STROBE_SUPPORT [184:184] 0x01 BUS_WIDTH [183:183] 0x02Reserved [182:182] 0x00 ERASED_MEM_CONT [181:181] 0x00 Reserved [180:180] 0x00 PARTITION_CONFIG [179:179] 0x00 BOOT_CONFIG_PROT [178:178] 0x00 BOOT_BUS_CONDITIONS [177:177] 0x00 Reserved [176:176] 0x00 ERASE_GROUP_DEF [175:175] 0x00 BOOT_WP_STATUS [174:174] 0x00C - 4Field Byte Value BOOT_WP [173:173] 0x00 Reserved [172:172] 0x00 USER_WP [171:171] 0x00 Reserved [170:170] 0x00 FW_CONFIG [169:169] 0x00 RPMB_SIZE_MULT [168:168] 0x20 WR_REL_SET [167:167] 0x00 WR_REL_PARAM [166:166] 0x15 SANITIZE_START [165:165] 0x00 BKOPS_START [164:164] 0x00 BKOPS_EN [163:163] 0x00 RST_n_FUNCTION[162:162] 0x00 HPI_MGMT[161:161] 0x00 PARTITIONING_SUPPORT [160:160] 0x07 MAX_ENH_SIZE_MULT [159:157] 623(16G) 1246(32G) 2492(64G) PARTITIONS_ATTRIBUTE[156:156] 0x01 PARTITION_SETTING_COMPLETED[155:155] 0x01 GP_SIZE_MULT_4 [154:152] 0 GP_SIZE_MULT_3 [151:149] 0 GP_SIZE_MULT_2 [148:146] 0 GP_SIZE_MULT_1[145:143] 0 ENH_SIZE_MULT[142:140] 623(16G) 1246(32G) 2492(64G)ENH_START_ADDR[139:136] 0 Reserved[135:135] 0x00 SEC_BAD_BLK_MGMNT[134:134] 0x00 PRODUCTION_STATE_AWARENESS[133:133] 0x00 TCASE_SUPPORT [132:132] 0x00 PERIODIC_WAKEUP[131:131] 0x00 PROGRAM _CID_CSD_DDR_SUPPORT[130:130] 0x01 Reserved[129:128] 0 VENDOR_SPECIFIC_FIELD[127:67 ] 538968064ERROR_CODE [ 66:65 ] 0 ERROR_TYPE[ 64:64 ] 0x00 NATIVE_SECTOR_SIZE [ 63:63 ] 0x00 USE_NATIVE_SECTOR [ 62:62 ] 0x00 DATA_SECTOR_SIZE [ 61:61 ] 0x00 INI_TIMEOUT_EMU[ 60:60 ] 0x00C - 5FieldByte Value CLASS_6_CTRL [ 59:59 ] 0x00 DYNCAP_NEEDED[ 58:58 ] 0x00 EXCEPTION_EVENTS_CTRL [ 57:56 ] 0 EXCEPTION_EVENTS_STATUS [ 55:54 ] 0 EXT_PARTITIONS_ATTRIBUTE[ 53:52 ] 0 CONTEXT_CONF[ 51:37 ] 0 PACKED_COMMAND_STATUS [ 36:36 ] 0x00 PACKED_FAILURE_INDEX [ 35:35 ] 0x00 POWER_OFF_NOTIFICATION[ 34:34 ] 0x00 CACHE_CTRL [ 33:33 ] 0x00 FLUSH_CACHE [ 32:32 ] 0x00 BARRIER_CTRL [ 31:31 ] 0x00 MODE_CONFIG[ 30:30 ] 0x00 MODE_OPERATION_CODES[ 29:29 ] 0x00 Reserved [ 28:27 ] 0 FFU_STATUS[ 26:26 ] 0x00 PRE_LOADING_DATA_SIZE [ 25:22 ] 0MAX_PRE_LOADING_DATA_SIZE[ 21:18 ] 3304106(16G) 6608213(32G) 13216426(64G)PRODUCT_STATE_AWARENESS_ENABLEMENT[ 17:17 ] 0x01 SECURE_REMOVAL_TYPE[ 16:16 ] 0x01 CMDQ_MODE_EN[ 15:15 ] 0x00 Reserved[ 14:0 ]。

SAM 3X8E Hirel Arm 微控制器产品概述说明书

SAM 3X8E Hirel Arm 微控制器产品概述说明书

SAM 3X8E Hirel Arm® Microcontroller for AerospaceKey FeaturesCore• Arm Cortex®-M3 rev 2.0 running up to 84 MHz, delivering 105 DMips• Thumb®-2 instruction set, three-stage pipeline• Hardware divide, single cycle 32-bit multiply• Enhanced system debug with extensive breakpoint and trace capabilitiesMemory• 512 Kbytes in dual bank of 256 Kbytes embedded Flash • 64 + 32 Kbytes of SRAM memories in dual bank• 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines• Static Memory Controller (SMC): SRAM, NOR, NAND support Nand Flash controller with 4 Kbyte RAM buffer and ECCSystem• Embedded voltage regulator for single supply operation • Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe reset• Quartz or ceramic resonator oscillators: 3 to 20 MHz main and optional low power 32.768 kHz for RTC or device clock • High precision 8/12 MHz factory trimmed internal RC oscil-lator with 4 MHz default frequency for fast device startup • Slow clock internal RC oscillator as permanent clock for device clock in low-power mode• 3.0V to 3.6V/84 MHz operating voltage and speed grade • Temperature: –40˚C to +105˚C• One PLL for device clock and one dedicated PLL for USB2.0 high-speed mini host/device• Up to 17 peripheral DMA (PDC) channels and 6-channel central DMA plus dedicated DMA for Ethernet MAC• Low-power modesSAM3X8ECortex®-M384 MHzMPU6 LayerAHB Matrix25 ch DMAConnectivity22System1.8V RegulatorPOR, BOD2 Xtal OSC,2 RC OSC, 2 PLLWDT, RTT, RTCTRNGMemory Control16 ch, 12-bit ADC2 ch, 12-bit DACTemperatureSensor8x PWM9x 32-bit TimersUp to 103 IOsThe Microchip name and logo and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and other countries All other trademarks mentioned herein are property of their respective companies. © 2021, Microchip Technology Incorporated. All Rights Reserved. 7/21 DS00002753BSpace Environment• Full wafer loT traceability• 144-lead hermetic ceramic package• Space grade screening and qualification• Total ionizing dose: up to 30 KRad (Si), QML and ESCC • Heavy ions and Protons test• Single Event latch-up LET> 62 MeV.cm2/mg• SEU full characterization at 105°C for all functional blocks •Safety application noteSAM3X8E Developement Tools• Arduino Due Development Board: /• Atmel Studio and software package: Worldwide supportecosystem of industry-leading suppliers of development tools, real-time operating systems and middleware productsOther Aerospace Applications• Full wafer lot traceability • 144-lead plastic package• QML-N/AQEC/AEC-Q100 equivalent• Unitary burn-in and temperature cycling (opt.)• Neutrons Latch-up immune (opt.)• SEU full characterization (opt.)•Other aerospace applicationProduct Selection GuidePeripherals• Up to 4 USARTs (ISO7816, IrDA ®, Flow Control, SPI, Man-chester and LIN support) and one UART• 2 TWI (I 2C compatible), up to 4 SPIs, 1 SSC (I 2S), 1 HSMCI (SDIO/SD/MMC) with up to 2 slots• 9-channel 32-bit Timer Counter (TC) for capture, compare and PWM mode, quadrature decoder logic and 2-bit gray up/down counter for stepper motor•Up to 8-channel 16-bit PWM (PWMC) with complementary output, fault input, 12-bit dead time generator counter for motor control• 32-bit low-power Real-Time Timer (RTT) and low-power Real-Time Clock (RTC) with calendar and alarm features • 16-channel 12-bit 1 msps ADC with differential input mode and programmable gain stage • 2-channel 12-bit 1 msps DAC• Ethernet MAC 10/100 (EMAC) with dedicated DMA • 2 CAN controllers with 8, mailboxes•True Random Number Generator (TRNG)© ESA/ill./HUART Jacky。

BP9833D中文规格书

BP9833D中文规格书
典型应用
LED 平板灯 LED 日光灯
LED 吸顶灯 其它 LED 照明
引出端排列
GND 1 ROVP 2
NC 3 VCC 4
DIP-8
8 CS 7 CS 6 DRAIN 5 DRAIN
引出端功能
序号
符号
1
GND
2
ROVP
3
NC
4
VCC
功能描述 地
开路保护电压调节端 空 电源
序号 5 6 7 8
符号 DRAIN
CS
功能描述 内置高压功率管漏极
电流采样端
V.1.1
第1 页 共9 页
电路方框图
CSC8933兼容BP9833D
最大额定值
项目 电源脚最大电流 内部高压 MOS 管漏源峰 值电压 电流采样端电压 开路保护电压调节端
功耗
热阻
贮存温度 工作结温 ESD
符号 Icc_max
DRAIN
CS
其中,f 为系统工作频率。CSC8933 的系统工作频率和输入电压成正比关系,设置 CSC8933 系统工作 频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率 也最高。 CSC8933 设置了系统的最小退磁时间和最大退磁时间,分别为 4.5us 和 240us。由 TOFF 的
过压保护电阻设置
开路保护电压可以通过 ROVP 引脚电阻来设置,ROVP 引脚电压为 0.5V。 当 LED 开路时,输出 电压逐渐上升,退磁时间变短。因此可以根据需要设定的开路保护电压,来计算退磁时间 TOVP。
VCS 是 CS 关断阈值(400mV) VOVP 是需要设定的过压保护点
TOVP

L ×VCS RCS ×VOVP

AD9834_中文完整资料

AD9834_中文完整资料

Σ
SIN ROM
MUX
10-BIT DAC
IOUT IOUTB
MSB 12-BIT PHASE0 REG 12-BIT PHASE1 REG MUX MUX DIVIDED BY 2
16-BIT CONTROL REGISTER SERIAL INTERFACE AND CONTROL LOGIC
MUX
AD9834提供相位调制和频率调制功能。频率寄存器为 28 位;时钟速率为75 MHz,可以实现0.28 Hz的分辨率。同 样,时钟速率为1 MHz时,AD9834可以实现0.004 Hz的分 辨率。影响频率和相位调制的方法是通过串行接口加载寄 存器,然后通过软件或 FSELECT/PSELECT引脚切换寄存 器。 AD9834通过一个三线式串行接口写入数据。该串行接口 能够以最高40 MHz的时钟速率工作,并且与DSP和微控制 器标准兼容。 该器件采用2.3 V至5.5 V电源供电。模拟和数字部分彼此独 立,可以采用不同的电源供电;例如,AVDD可以是5 V, 而DVDD可以是3 V。 AD9834具有控制休眠的引脚(SLEEP),支持从外部控制断 电模式。器件中不用的部分可以断电,以将功耗降至最 低。例如,在产生时钟输出时,可以关断DAC。 该器件采用20引脚TSSOP封装。
SIGN BIT OUTC来自MPARATORVIN
AD9834
FSYNC SCLK SDATA PSELECT SLEEP RESET
02705-001
图1
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Speci cations subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

H3C交换机忘记密码的解决办法

H3C交换机忘记密码的解决办法
8: Boot 来自om Operation Menu
9: Do not check the version of the software
a: Exit and reboot
Enter your choice(1-a): 6
Start up and ignore configuration, Are you sure?[Y/N]y
7: Enter debugging environment
8: Boot Rom Operation Menu
9: Do not check the version of the software
a: Exit and reboot
Enter your choice(1-a):
选择5后选择a重启路由器
新版本清除密码方法
AR路由器BOOTROM9.07清除CONSOLE密码:
Press Ctrl-B to enter Boot Menu
Please input Bootrom password:
Boot Menu:
1: Download application program with XMODEM
选3会清除配置,选4会忽略配置以出厂设置启动
启运完毕后将路由器配置DOWN下后更改密码后再导入
BOOTROM5.1
Press Ctrl-B to enter Boot Menu
Please input Bootrom password:
Boot Menu:
1: Download application program
中端路由器(262X系列,36XX系列,36XXE系列,263X系列,263XE系列)清除特权口令
重启路由器;

MC9833

MC9833

RADJ 电阻
开路保护电压设置电阻需要尽量靠近芯片 RADJ 引 脚。
地线
电流采样电阻的功率地线尽可能短,且要和芯片 的地线及其它小信号的地线分头接到母线电容的 地端。
R ADJ
VISEN L 15 RISEN VOVP
10 ( Kohm)
6
其中,VISEN 是 ISEN 关断阈值(400mV) ;L 是电感量; RISEN 是采样电阻;VOVP 是需要设定的过压保护点 ;
上海晟矽微电子股份有限公司
page 8 of 8
L
VLED (VIN VLED ) ; VIN I P F
其中 F 为系统工作频率,在设计系统时,首先确定 ILED,ILED 确定后 RISEN、IP 等也就相应确定了, 此时由上式可知,系统频率与输入电压成正比、与 选择之电感 L 成反比:当输入电压最低(或)电感 取值较大时,系统频率较低,当输入电压最高(或) 电感取值较小时,系统频率较高,因此,在系统输 入电压范围确定时,电感的取值直接影响到系统频 率的范围以及恒流特性。考虑到系统频率不可过低 (例如进入音频范围) ,也不宜过高(导致功率管损 耗过大以及 EMI 影响) ,同时 MC9833 设定了最小/ 大退磁时间以及最小/大励磁时间,因此在设计时, 建议系统频率设定在 50KHZ~120KHz。
NC 引脚
NC 引脚内部无连接,建议将其接到芯片地(Pin1), 加强 RADJ Pin 抗干扰能力。
DRAIN 引脚
增加 DRAIN 引脚的铺铜面积以提高芯片散热。
上海晟矽微电子股份有限公司
page 7 of 8
MC9833
深圳市惠新晨电子有限公司
非隔离降压型 LED 恒流驱动芯片

DS28E05说明

DS28E05说明

Maxim > Design Support > Technical Documents > Application Notes > 1-Wire® Devices > APP 5548Maxim > Design Support > Technical Documents > Application Notes > Memory > APP 5548Keywords: 1-Wire, evaluation kit, evkit, EEPROM, evaluate 1-Wire, socket boardAPPLICATION NOTE 5548Evaluating the DS28E05By:Brian Hindman, Senior Member Technical Staff, SoftwareFeb 11, 2013Abstract:This application note explains how to evaluate the DS28E05 1-Wire® EEPROM on a Windows® PC. The following discussion outlines the hardware and software required along with step-by-step setup instructions. Useful links to download hardware data sheets, evaluation software, and the correct device drivers are provided, and a detailed description of the evaluation software is given.IntroductionThe DS28E05 can be evaluated on a PC without the need for a specialized evaluation (EV) kit. The hardware required to evaluate the DS28E05 in a TSOC package can be readily obtained through Maxim Integrated’s online store. The hardware consists of an evaluation (EV) board with RJ11 cable (DS9120P), a Maxim 1-Wire® adapter module that connects the board to the PC (DS9481R-3C7), and a DS28E05 in a TSOC package. All three hardware components are listed in Table 1.Table 1. Required Hardware for PC EvaluationQty Description1DS9120P+ EV board with RJ11 cable1DS9481R-3C7+ 1-Wire USB adapter with cable*1DS28E05+ in a TSOC package+Denotes lead(Pb)-free and RoHS compliant.*The DS9481R-3C7+ is the only 1-Wire adapter electrically compatible with the DS28E05.See Figure 1 for a picture of the stand-alone EV board with RJ11 cable and Figure 2 for a picture of the EV board with USB cable that plugs into the PC.Figure 1. The DS9120P EV board with RJ11 cable.Figure 2. The DS9481R-3C7 1-Wire USB adapter with cable.The DS28E05 features 112 bytes of user memory organized as seven pages of 16 bytes. Each page can be write-protected or set into EPROM emulation mode. The evaluation software runs under Windows® 8, Windows 7, Windows Vista®, or Windows XP®, providing a handy user interface to exercise the features of the DS28E05. The evaluation software is available for download.Note: In this application note, text in bold refers to either references, such as figures or tables, or to items directly from the EV kit software. Text in bold and italicized refers to items from the Windows operating system.Driver Installation Quick Start1.Before beginning, make sure the following equipment is available:The log can be copied to the clipboard through the File Copy Log to Clipboard Clear LogThe program can be ended through the File ExitFigure 3. The DS28E05 EV kit software: main window Setup tab.The software window contains a menu at the top as seen in Figure 3. The log can be copied to the clipboard through the File Copy Log to Clipboard menu item. The log can be cleared through the File Clear Log menu item. The Help menu displays the version of the software. The File Exit menu exits the EV kit software.Setup TabThe Setup tab (Figure 3) contains two sections: 1-Wire Adapter and Device Selection Methods.1-Wire AdapterThe 1-Wire Adapter group box includes adapter type and port selections. This setup is required before performing operations on a connected device. Only the Adapter Port Type of USB (COM) is supported with Adapter Part # of DS9481R-3C7. Once the Adapter Port is selected, click on the Open Adapter/Port button. If the adapter is detected, Success is displayed in the status field to the right of the button. If the adapter is not detected, an error message is displayed. If this happens, fix the problem and click the button again. Optionally, the Auto-Search button can be used to search through all available COM ports to find the DS9481R-3C7.The Auto-Open checkbox instructs the program to automatically open the selected adapter and port when the program starts. This should be used if the adapter port combination is not expected to change often. The Open Adapter/Port button does not need to be clicked if the Auto-Open was checked when the application started and Success is displayed in the status field.Device Selection MethodsThe Device Selection Methods group box in the Setup tab instructs the Memory tab operations on how to select the device using the ROM (read-only memory) level 1-Wire commands. The 1-Wire protocol uses the unique 64-bit ROM ID as the network address of the device.The ROM Selection Method drop-down list has two options: Match-ROM and Skip-ROM.Match-ROM uses the ROM ID to select the devicewith the Match-ROM command. Because this operation uses the ROM ID, it needs to know this number in advance. Consequently, whenselecting Match-ROM, the Use Search-ROM to find first available EVKit device (Recommended) is automatically checked. This operation finds the available DS28E05 on the network and populates the drop-down list. The first device found is selected by default. If the contents of the 1-Wire network are changed, the Refresh Selection button can be clicked to refresh the list. Note that the message below the device list indicates if there are other non-DS28E05 devices present on the network found during the search. The Skip-ROM option calls on the Skip-ROM command to select any device present. This option should only be used if there is only one device present on the 1-Wire. If multiple devices are present, they are all selected at once, potentially causing collisions. A warning message to that effect is displayed if potential conflicts are detected when changing to the Memory tab.The Use 'Resume' command when possible checkbox instructs the Memory tab operations to use the Resume command. The Resume command is a shortcut command to select the same device that was previously selected with the ROM level command.Overdrive speed is used at all times since the DS28E05 is an overdrive-only device.Figure 4. The DS28E05 EV kit software: main window Memory tab.Memory TabThe Memory tab (Figure 4) contains five sections: Memory Resource Selection, Commands, Options, Log, and Key.Memory Resource SelectionThe contents of this drop-down list mirror the memory resources described in the DS28E05 data sheet. Selecting a memory resource automatically displays the commands available to operate on this memory in the Commands group box. Most ranges at a minimum provide the Read command.Commands/OptionsOnce a memory range has been selected, one or more command buttons appear in the Commands group box depending on the properties of the memory range. Clicking on one of the command buttons highlights it in yellow. Clicking on the command button also populates the Optionsgroup box with fields and/or components representing the options offered for the command. The options offered change depending on the command selected and the selected memory range’s properties. Once the options have been set, the command can be performed by clicking on the Execute Command button in the Options group box.The following sections list all possible commands and the corresponding options.Read MemoryThe Read Memory command (Figure 5) is applicable to all memory ranges. Possible options are the Starting Address and Read Length in the drop-down lists. The Starting Address list is populated with all possible addresses in the selected memory range. The Read Length is populated from one to the maximum size of the memory range.Figure 5. The Read Memory command Options.Write MemoryThe Write Memory command is applicable to those memory locations that are not read-only. For the DS28E05, this is the address range of 0000h to 0073h. There are two sets of options for the Write Memory command. The first set of options pertains to a general-purpose memory write, which writes a 2-byte segment on a data page (Figure 6). The page written to must not have Write Protect enabled. If it is enabled, the write fails. The New Data must be 2 bytes of hex digits.Figure 6. The Write Memory command Options for general-purpose writing.The second set of Write Memory options pertains to the memory range of 0070h to 0073h. When these memory locations are written, they turn on special options associated with each page of the DS28E05’s memory on a page-by-page basis. The Write Protect option (Figure 7) uses the standard, general-purpose Write Memory command but formats that data to set the desired protection. The following options are provided as radio buttons: Write Protect, EPROM Emulation Mode, and Open. Open selects no protection and is the default state. Once protection has been set on a page, it cannot be changed.Figure 7. The Write Memory command Options for Write Protect and EPROM Emulation Mode.LogThe Log group box consists of a scrollable output field and a Key to explain the output. The output field displays all communication with theDS28E05, along with comments to describe the operations. The log contents can be copied to the system clipboard for pasting into a document or email message through the File Copy Log to Clipboard menu item. The Log can also be cleared with the File Clear Log menu item. The program window can be resized to expand the Log group box for easier viewing. The text in the Log group box is also color-coded. This color coding is preserved when copying to another program. See Table 2 for a detailed explanation of the key to the log contents.Table 2. Log KeyR P1-Wire reset and presence pulse response. Color-coded blue for the reset pulse and red for the response.R N1-Wire reset and no presence pulse response. Color-coded blue for the reset pulse and red for the response.<SP_ON>/<SP_OFF>1-Wire strong pullup on/1-Wire strong pullup off. Strong pullup is used to provide additional current to the device during operations such as EEPROM write.HH - write to device 1-Wire write from master to device represented by a pair of hex digits showing the byte that was transmitted. Valid for a line that does not begin with a comment symbol “//”. Color-coded blue.[HH] - read to device 1-Wire read from device represented by a pair of hex digits bounded by brackets “[ ]” showing the byte that was received. Valid for a line that does not begin with a comment symbol “//”. Color-coded red.B 1-Wire write bit from master to device represented by a single binary digit (1/0). Valid for a line that does not begin with a comment symbol “//”. Color-coded blue.[B]1-Wire read bit from master to device represented by a single binary digit (1/0) bounded by brackets “[ ]”showing the bit that was received. Valid for a line that does not begin with a comment symbol “//”. Color-coded red.<<>>Indicates an error with the error message between the “<< >>”. Color-coded purple.<STD>/<OVR>Indicates 1-Wire line speed: <STD> for standard and <OVR> for overdrive. This symbol is logged before every 1-Wire reset pulse and when the speed changes as in an Overdrive Match command. Color-coded blue.// line comment Indicates a line that is not 1-Wire communication, but is instead commentary on the operation performed. Color-coded black.Raw 1-Wire TabFigure 8. The DS28E05 EV Kit software: main window Raw 1-Wire tab.The Raw 1-Wire tab (Figure 8) provides the facilities to send and receive any raw 1-Wire communication. This can be used to recreate some of the operations seen on the Memory tab or to experiment with other operations. It can also be used on 1-Wire devices other than the DS28E05 since it provides direct access to the 1-Wire network. All of the operations are recorded in the Log group box on the Memory tab as well as on the bottom of the Raw 1-Wire tab for later examination and copying. The operations available on the Raw 1-Wire tab are divided into two group boxes: Low Level and ROM Level.Low LevelThe Low Level group box provides the low-level 1-Wire primitives that can be used to construct any 1-Wire communication sequence. The 1-Wire Reset button issues a reset low presence at the speed specified in the drop-down list to the right of the 1-Wire Reset button. The Read Bytes button reads the number of bytes specified in the input field to the right of the button. The Write Bytes button writes the bytes displayed in the input field to the right of the button. The Write Bytes input field is also a drop-down list that remembers all previous write byte sequences. The Write 1 Bit and Write 0 Bit buttons write the indicated bit to the 1-Wire network.The Start Strong-Pullup after next Byte button starts the 1-Wire strong pullup power delivery after the next communication byte (either read or write). The Start Strong-Pullup after next Bit button starts the 1-Wire strong pullup power delivery after the next communication bit (either read or write). The Set Power Normal button disables the 1-Wire strong pullup power delivery. The Power Down 1-Wire button powers down the 1-Wire. Any 1-Wire operation returns the 1-Wire to a normal state.Note: The following items in the Low Level group box of the Raw 1-Wire tab can be used for other 1-Wire products, but are not used for evaluating the DS28E05.The 7V VCC Pulse (100ms) button enables a 7V pulse on the PULSE pin of the DS9481R-3C7. This is not necessary to evaluate the DS28E05.The 12V 1-Wire Pulse button enables a 512µs pulse on the 1-Wire to support EPROM programming. A warning message displays before the operation completes. Do not use this feature when evaluating DS28E05 as it could result in damage to the DS28E05.1-Wire is a registered trademark of Maxim Integrated Products, Inc.iButton is a registered trademark of Maxim Integrated Products, Inc.Microsoft is a registered trademark and registered service mark of Microsoft Corporation. Windows is a registered trademark and registered service mark of Microsoft Corporation. Windows Vista is a registered trademark and registered service mark of Microsoft Corporation. Windows XP is a registered trademark and registered service mark of Microsoft Corporation.Additional Legal Notices: /legal。

三汇 NTP-480A PCIe(2.0) VoIP 录音卡 用户手册说明书

三汇 NTP-480A PCIe(2.0) VoIP 录音卡 用户手册说明书

三汇NTP系列录音卡NTP-480A/PCIe(2.0)VoIP录音卡Version 1.0杭州三汇信息工程有限公司目录目录 (i)版权申明 (ii)版本修订记录 (iii)第1章概述 (1)1.1功能描述 (1)1.2性能特点 (1)第2章安装 (3)2.1结构示意图 (3)2.2系统要求 (5)2.3安装步骤 (5)附录A 主要技术/性能参数 (6)附录B 技术/销售支持 (7)版权申明本文档版权属杭州三汇信息工程有限公司所有。

杭州三汇信息工程有限公司保留对此文件进行修改而不另行通知之权利。

杭州三汇信息工程有限公司承诺所提供的信息为正确且可靠, 但并不保证本文件绝无错误。

请在使用本产品前, 自行确定所使用的相关技术文件及规格为最新有效之版本。

若因贵公司使用本公司之文件或产品, 而需要第三方之产品、专利或者著作等与其配合时,则应由贵公司负责取得第三方同意及授权。

关于上述同意及授权,非属本公司应为保证之责任。

版本修订记录版本号发布日期修订内容Version1.0 2017.07 新创建此文档。

请访问我们的网站()以获取该文档的最新版本。

第1章 概述NTP系列NTP-480A/PCIe(2.0) VoIP录音卡是三汇公司推出的最大可支持480路IP通话录音的板卡。

本系列板卡可以应用于100M/1000M的网络环境,可通过交换机端口镜像录音。

1.1 功能描述●单卡提供最多480路IP电话处理能力。

●通过端口镜像实现目标交换机的数据采集,能够支持两台交换机同时录音。

●板卡采用端口镜像的形式采集网络上的语音数据,并转发到PC机上。

不对原有通话双方造成任何干扰,也不会被通话双方察觉。

●固件中均写入了唯一的硬件序列号,可用于区分板卡类型,亦可作防伪识别。

●具有硬件授权号识别电路。

用户可向本公司申请唯一的授权号,保护用户软件安全。

1.2 性能特点●支持PCIe x1总线PCIe x1接口,符合PCIe1.0a总线标准,适用各种PCIe插槽,支持即插即用(PNP)。

手机解锁密码大全

手机解锁密码大全

手机解锁密码大全三、GSM手机密笈&e r.b]'a D:V(一)摩托罗拉摩托罗拉所有机锁:按MENU+5+1/2 2f} o U%AT190解锁密码: 20010903T191解锁密码:199807223X8/2X88/998/8088/L2000/7689/T189/C289等初始密码为1234 ;话机密码为000000 ;解锁方法:如无测试卡,则先输入1234,如密码已更改,先按Menu键会出现“修改开锁密码”,按OK键,然后输入000000就会显示四位数的话机密码,如保密码已更改,则只能用测试卡或软件工具解。

2C&r/_F3@X!JT2688/2988万能解锁码:19980722C300解话机锁:20020801摩托罗拉手机出现“话机坏,请送修”:可利用测试卡,输入0205#、0205068#即可修复,无须重写码片。

T2688/2988/988d设置中文:*#0000# ok(插卡)V60/V66/V70解锁:插入测试卡,开机后输入menu+048263*进入测试状态后按18*1总清除,输入18*0是主复位。

V998外文改中文:MENU—左方向键按3下—OK—左方向键按5下—OK—Simplified—CHINESE摩托罗拉2688时间不走修复密诀:将电源1脚和8脚用漆包线短接,必杀!(二)诺基亚初始保密码:12345 W"w2K z k#i)A n5110锁码机解码:在保密码锁死,输入正确保密码无效的情况下,可1、按C键不放,2、按*键不放,3、按*键不放,4、输入04*PIN*PIN*PIN# 解除锁码。

;z8N M4s y!q3210解 SP 锁: 1、按C键 2、按向下键 3、按C键直到屏幕清除 4、按住*键直到其闪烁 5、再按住*键直到其闪烁,输入04*PIN码*PIN 码*PIN 6~,O Y)^/W"K vTN7650恢复出厂设置:*#7370#诺基亚手机省30%电密码:*#746025625# |(H3K诺基亚手机查出厂日期:*#0000#诺基亚能打过进不能呼出:如果显示屏左上角有“2”字,按住#键两秒,再按确认即可;如果没有显示“2”,则按“功能键”+6+1+4+2再按确认即可。

非隔离降压型LED恒流电源9833D替换BP2833

非隔离降压型LED恒流电源9833D替换BP2833

其中, IPK 是电感的峰值电流。
toff
L I PK VLED
线电压补偿
储能电感的计算公式为:
5
9833D
L V LED (V IN V LED ) f I PK V IN
保护控制
9833D 内置多种保护功能,包括输出 LED 开路/短路保护,电流检测电阻短路保护和 芯片过温保护。 芯片工作时自动检测负载状态,如果输出 LED 开路/短路、电流检测电阻短路或者电 感饱和, 芯片立刻进入短路保护状态, 功率 MOSFET 被关断。同时,芯片不断检测负载 状态, 直到故障解除, 当外部短路故障解除 后,芯片自动恢复到正常工作。 内部过热保护电路检测芯片结温度, 当结温 度超过热保护阈值时, 芯片进入过热保护状 态,功率 MOSFET 立刻被关断,直到结温度 下降 20℃以后,芯片才会退出过热保护状 态,恢复到正常工作。
电气特性参数
(若无特殊说明,TA=25℃,VCC=7.3V)
符号
Vcc_clamp Icc_clamp VCC_ST Vuvlo_HYS Ist Iop Vcs_th TLEB TDELAY TOFF_MIN TOFF_MIN TON_MAX
参数
VCC 钳位电压 VCC 钳位电流 芯片启动电压 欠压保护迟滞 启动电流 工作电流 电流检测阈值 电流采样消隐时间 芯片关断延迟 最小退磁时间 最大退磁时间 最大开通时间 内部开关管导通阻 抗 内部开关管最大耐 压 功率管漏电流 内部基准电压
I LED
I PK 2
其中,L 是电感的感量;IPK 是流过电感的 电流峰值;VIN 是输入交流经整流后的直流 电压;VLED 是输出 LED 上的电压。 当芯片输出脉冲关断时,外部功率 MOSFET 也被关断, 流过储能电感的电流从峰值开始 往下降, 当电感电流下降到零时, 芯片再次 输出脉冲。功率管的关断时间为:

FD6288直流无刷电机三相250V栅极驱动器

FD6288直流无刷电机三相250V栅极驱动器

FD6288FD6288三相250V 栅极驱动器概述FD6288是一款集成了三个独立的半桥栅极驱动集成电路芯片,专为高压、高速驱动MOSFET 和IGBT 设计,可在高达+250V 电压下工作。

FD6288内置VCC/VBS 欠压(UVLO )保护功能,防止功率管在过低的电压下工作。

FD6288内置直通防止和死区时间,防止被驱动的高低侧MOSFET 或IGBT 直通,有效保护功率器件。

FD6288内置输入信号滤波,防止输入噪声干扰。

封装TSSOP20QFN24产品特点● 悬浮绝对电压+250V ● 电源电压工作范围:4.8~20V ● 集成三个独立的半桥驱动● 输出电流+1.5A/-1.8A● 3.3V/5V 输入逻辑兼容● VCC/VBS 欠压保护(UVLO )● 内置直通防止功能● 内置200ns 死区时间 ● 内置输入滤波功能● 高低端通道匹配● 输出与输入同相应用三相直流无刷电机驱动订购信息P re li mi na ry1.绝对最大额定值(除非特殊说明,所有管脚均以COM 作为参考点)电压超过绝对最大额定值,可能会损坏芯片。

芯片长久地工作在推荐的工作条件之上,可能会影响其可靠性。

不建议芯片在推荐的工作条件之上长期工作。

注意:在任何情况下,不要超过P D 。

2. 推荐工作条件(所有电压均以COM 为参考点)建议不超过推荐的工作条件,或将绝对最大额定值设计为工作条件。

注1:V S1,2,3为(COM-2V )到250V 时,HO 正常工作。

V S1,2,3为(COM-2V )到(COM-V BS )时,HO 逻辑状态保持。

注2:V S1,2,3为(COM-50V ),宽50ns 的瞬态负电压时,HO 正常工作。

mi3. 静态电气参数(除非特别注明,否则T A =25︒C ,V CC =V BS1,2,3=15V ,V S =COM )4. 动态电气参数(除非特别注明,否则T A =25︒C ,V CC =V BS1,2,3=15V ,V S =COM )e5. 电路框图6. 芯片引脚配置 6.1 TSSOP20HIN1VS1HO1HIN3HIN2VCC LIN2VS2HO2VB2LIN3LIN1HO3VB3LO2LO1VS3LO3COM VB1图6-1 封装管脚图表6-1 管脚说明i y6.2 QFN24LIN1LIN2LIN3VCC COMLO3LO2LO1VS3VS1VB2HO2VS2VB3HO3HO1VB1HIN1HIN2HIN3NC NC NC NC图6-2 封装管脚图表6-2 管脚说明P i ny7. 开关时间测试标准8. 传输时间匹配测试标准50%50%HIN LIN9. 直通防止功能芯片内部设计专门用于防止功率管直通的保护电路,能有效地防止高侧和低侧输入信号受到干扰时造成的功率管直通损坏。

华邦(winbond)产品手册

华邦(winbond)产品手册
Copyright 2005 Hengsen Technology. All Rights Reserved.
PRODUCT GUIDE ==Winbond、ISSI 授权香港及中国代理== 8 位单片宽工作电压系列
型号 ROM 型式 ROM RAM I/O 脚 外扩存储 器空间 64K 工作电压 定时器/ 计数器 3 封装 Int 特殊功能 PDIP 6 CMOS 通用功能 特殊 I/O 口 /INT2, /INT3,WDT 特殊 I/O 口 /INT2, /INT3,WDT 16 KB 掩膜 ROM W78L54 掩膜 16K 256 32/36 64K 5.5V - 1.8V 3 8 特殊 I/O 口 /INT2,/INT3,WDT W78L801 掩膜 4K 256 36 64K 5.5V - 1.8V 2 12 特殊 I/O 口,P1 口 退出省电方式 WDT 可多次编程,特殊 I/O 口 / INT2, /INT3, WDT 可多次编程特殊 I/O 口 / INT2, /INT3, WDT 可多次编程特殊 I/O 口 / INT2, /INT3, WDT 可多次编程,可在线编程 特殊 I/O 口/ INT2, /INT3 可多次编程,可在线编程 W78LE516 Flash EPROM 64K 512 32/36 64K 5.5V - 2.4V 3 8 特殊 I/O 口,/ INT2, /INT3, 可多次编程,可在线编程 W78LE365 Flash EPROM 64K 1280 32/36 64 K 5.5V - 2.4V 3 8 特殊 I/O 口/ INT2, /INT3,WTD,PWM 特殊 I/O 口 W78LE812 Flash EPROM 8K 256 36 64K 5.5V - 2.4V 3 14 P1 口退出省电方式 WDT,UART 40 44 44 40 44 44 40 44 44 40 44 44 40 44 44 40 PLCC 44 PQFP 44

John Deere 第 4 代显示器兼容性说明书

John Deere 第 4 代显示器兼容性说明书

第 4 代显示器兼容性这是通过软件更新至 19-1 版本所允准的兼容设备,并且可能随着较新的软件更新而更改。

为保证完整性和相应的兼容性,应使用最新版本的机具控制单元软件、第 4 代显示器软件或兼容的农场管理信息软件 (FMIS)。

非当前软件版本将需要更新才能提供支持。

未经批准的软件版本配置将不予支持。

软件更新 19-1 版本仅兼容于 4600 CommandCenter™ v2 处理器。

软件更新 17-2 是与 4600 v1 处理器兼容的最新版本。

服务器序列号如下:v1 = RWG 前缀v2 = PCG 前缀机器兼容性John Deere 大型农用拖拉机John Deere 大型农用拖拉机(包含所有自动检测到的机器的清单)型号年份CommandCenter™ 显示器通用显示器4600 v24200464042409R/9RT/9RX 系列2018 年型及更新型号X---X X9R/9RT/9RX 系列2015 年 - 2017 年*---X X 9R/9RT2012 年 - 2014 年------X X9030/9030T 系列2008 年型 - 更新型号------X X8R/8RT 系列2018 年型 - 更新型号X---X X8R/8RT 系列2014 年中期 - 2017年*---X X8R/8RT 系列2010 年 - 2013 年------X X8030/8030T 系列2006 年型及更新型号------X X7R 系列2018 年型及更新型号X X X X7R 系列2014 年 - 2017 年*---X X 7R 系列2012 年 - 2013 年------X X7J 系列2018 年型及更新型号------X X7030 系列2007 年型及更新型号------X X7030 系列(大型机架)2007 年型及更新型号------X X6030 和 7030 系列(小机架)2006 年型及更新型号------X X6R 系列2018 年型及更新型号X X X X6R 系列2015 年 - 2017 年*---X X6M 系列2013 年型及更新型号------X X6J 系列2018 年型及更新型号------X X5R 系列2019 年型及更新型号------X X*注意:为获得最新精准农业功能,请将出厂配备的机器从 v1 处理器更新为 v2。

DDS常用芯片

DDS常用芯片

DDS常用芯片,生产线,芯片手册~常用频率合成器(DDS)芯片型号及特点介绍随着微电子技术的飞速发展,目前高超性能优良的DDS产品不断推出,主要有Qualcomm、AD、Sciteg和Stanford等公司单片电路(monolithic)。

Qualcomm公司推出了DDS系列Q2220、Q2230、Q2334、Q2240、Q2368,其中Q2368的时钟频率为130MHz,分辨率为0.03Hz,杂散控制为-76dBc,变频时间为0.1μs;美国AD公司也相继推出了他们的DDS系列:AD9850、AD9851、可以实现线性调频的AD9852、两路正交输出的AD9854以及以DDS为核心的QPSK 调制器AD9853、数字上变频器AD9856和AD9857.AD公司的DDS系列产品以其较高的性能价格比,目前取得了极为广泛的应用。

AD公司的常用DDS芯片选用列表见表1.下面仅对比较常用的AD9850芯片作一简单介绍。

表1 AD公司的常用DDS芯片选用列表AD9850是AD公司采用先进的DDS技术1996年推出的高集成度DDS频率合成器,它内部包括可编程DDS系统、高性能DAC及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器。

接上精密时钟源,AD9850可产生一个频谱纯净、频率和相位都可编程控制的模拟正弦波输出。

此正弦波可直接用作频率信号源或转换成方波用作时钟输出。

AD9850接口控制简单,可以用8位并行口或串行口经、相位等控制数据。

32位频率控制字,在125MHz 时钟下,输出频率分产率达0.029Hz。

先进的CMOS工艺使AD9850不仅性能指标一流,而且功耗少,在3.3V供电时,功耗仅为155mW。

扩展工业级温度范围为-40~+85摄氏度,其封装是28引脚的SSOP表面封装。

AD9850采用32位相位累加器,截断成14位,输入正弦查询表,查询表输出截断成10位,输入到DAC。

DAC输出两个互补的模拟电流,接到滤波器上。

歌林數位式錄晉筆 DP-480 使用说明书

歌林數位式錄晉筆 DP-480 使用说明书

歌林數位式錄音筆DP-480使用說明書●謝謝您的惠顧,使用前請詳細閱讀本說明書。

●本產品附有保證書,請妥善保管,享受服務。

目錄(一)本機特點 (2)(二)安裝方法 (2)電池使用注意事項 (2)(三)安全注意事項 (3)(四)免責聲明 (3)(五)外型及各部份名稱 (4)(六)基本操作 (5)開∕關機 (5)功能設定 (5)按鍵鎖功能 (6)錄音 (7)放音 (8)省電功能 (8)刪除檔案 (8)語音循環 (8)MP3播放 (9)(七)與電腦連結 (9)條件與安裝 (9)連結 (9)(八)故障排除 (10)(九)規格 (10)請詳細閱讀本說明書,讓您輕鬆操作,使用 EASY!11.聲控五段高感度調整功能。

2.區段循環放音、跟讀,可當語言學習功能。

3.可查詢錄音時間及剩餘可錄音時間。

4.內建喇叭。

5.具耳機功能。

6.可連結電腦。

7.按鍵鎖功能。

8.吊飾孔。

9.三個檔案夾功能,每個檔案夾最多可存999筆錄音。

10.電池電力指示,自動省電關機功能。

11.時間顯示功能,含錄音時間記錄。

12.可執行電話錄音功能。

(需使用配件)2(初次使用時,請務必詳閱)打開錄音筆背面的電池蓋,依正負極性裝入4號電池2顆,將電池蓋裝回即可。

更換電池後,需再重新設定時間。

1.電池請選購知名品牌電池,勿使用來路不明之電池。

2.請勿將電池放於高溫處,或燃燒、拆解、穿孔,以免電池釋放有毒物質造成損傷。

3.長時間不使用機器時,請將電池取出,以免電池液體流出損壞機器。

4.電池電量用盡時,請交至電池回收中心處理。

5.當電池漏液時,請儘速移除電池,並將漏夜處擦拭乾淨,電池漏液屬人為使用疏失, 機器送修時需自費,無法免費保固。

在使用本機之前,應仔細閱讀下列事項及使用說明,閱後並請妥為收存,以備將來參考:1.本機請勿置於雨中、濕氣中或避免陽光直射及遠離其他會產生熱能的裝置。

2.在本機和電腦連接進行通訊時,不要隨意扭動USB連線,以免資料中斷影響正常 操作,而導致資料存取毀損。

BUK3F00-50WDFE资料

BUK3F00-50WDFE资料

BUK3F00-50WDxxController for TrenchPLUS FETsRev. 04 — 4 September 2008Product data sheet1.IntroductionThis data sheet describes a family of integrated circuits which provide direct digital controlof multiple power switches (T renchPLUS FETs) for use in automotive applications, andwhich are available in various configurations.2.General descriptionEight channel high-side switch controller in a leaded plastic quadflat package,with digitalcontrol and diagnostics, and load current measurement.Specific configurations are denoted by the last 2 letters in the type number.3.FeaturesI Standby mode with very low power consumptionI Programmable drain current trippingI Serial Peripheral Interface (SPI) communicationsI Outputs controllable via SPI-bus or direct inputI Diagnostic status reporting via SPI-busI Analog and digital drain current measurementI Watchdog for invalid commands or inactive SPI, with programmable time-outI Programmable interrupt generatorI Overtemperature protectionI Pulse-width modulation with programmable frequency and duty cycleI ESD protection on all pinsI Protection for battery transient overvoltage and reversed polarity battery connectionI Open-circuit detectionI Configurable fail-safe channel control options4.ApplicationsI Automotive applications such as DC and pulse-width modulation control in bodycontrol clusters, etc.5.Quick reference dataTable 1.Quick reference dataSymbol Parameter Conditions Min Typ Max UnitV BA T battery supply voltage operating[1] 5.51352VT j junction temperature[2]−40-+150°C[1]When V BAT < 9V, the charge pump cannot be guaranteed to drive the external MOSFETs to achieve their specified R DSon.[2]When T j > 125°C, the device will function, but electrical parameters may deviate from the specified values.6.Ordering informationTable 2.Ordering informationType number PackageName Description Version BUK3F00-50WDFE QFP64plastic quadflat package;64leads(lead length1.6mm);body14×14×2.7mm SOT393-1 BUK3F00-50WDFMBUK3F00-50WDFY6.1Ordering optionsTable 3.Type number differencesType number DescriptionBUK3F00-50WDFE channel 4 has analog trip ratio of 3× I meas(ADC)(fs)[1]BUK3F00-50WDFM-BUK3F00-50WDFY-[1]I meas(ADC)(fs) = full-scale ADC measure current.User-accessible registers; see T able5.Protected settings; see Table19.Additional metal mask options; see Table35.7.Block diagramFig 1.Block diagram001aaf047SERIAL PERIPHERAL INTERFACE (SPI)REFERENCE SUPPLIESPOWER AND REFERENCE SUPPLIES SUPPLIESPULSE-WIDTH MODULATION(PWM)SPIWATCHDOGCHARGE PUMPV BAT(CP)V BAT 7443837689152353645341134131214474651,16,33,484140394342V BATCPN CPP CT GND(CP)CURRENT MEASUREMENTCURRENT SENSETEMPERATURESENSEanode 0 to 7TrenchPLUSFET INTERFACE(8×)EXTERNAL TrenchPLUSFET SWITCHES(8×)INTERRUPT SCSN DIGITAL CONTROLBUK3F00-50WDxxCONTROL LOGICgate 0 to 7sense 0 to 7kelvin 0 to 7cathode 0 to 7INTNSDI SDO SCLK V CC(LOG)EXT10V CC(MOD)V CC(DIGC)V CC(MEASC)GND(DIGC)GND IREFTEMP IREFCURR EN WDEN WDTON IN0IN1IN2IN3INPPWMMONIMEAS8.Pinning information8.1Pinning8.2Pin descriptionFig 2.Pin configurationBUK3F00-50WDxxGND GND WDTONPWMMON IN0INTN IN1SDO IMEAS V CC(LOG)EXT V CC(MEASC)GND(CP)V BATV BA T(CP)IREFCURR CPN IREFTEMPCPP V CC(MOD)CT EN V CC(DIGC)IN3GND(DIGC)IN2SDI INP SCSN WDEN SCLK GND GNDK E L V I N 7G A T E 0A N O D E 7S E N S E 0S E N S E 7A N O D E 0G A T E 7K E L V I N 0K E L V I N 6G A T E 1A N O D E 6S E N S E 1S E N S E 6A N O D E 1G A T E 6K E L V I N 1K E L V I N 5G A T E 2A N O D E 5S E N S E 2S E N S E 5A N O D E 2G A T E 5K E L V I N 2K E L V I N 4G A T E 3A N O D E 4S E N S E 3S E N S E 4A N O D E 3G A T E 4K E L V I N 3001aaf04812345678910111213141516484746454443424140393837363534331718192021222324252627282930313264636261605958575655545352515049Table 4.Pin descriptionSymbol PinDescriptionSupplies V BAT 7battery supply voltage GND 1, 16, 33, 48battery groundV BAT(CP)42charge pump battery supply voltage GND(CP)43charge pump ground V CC(DIGC)38digital core supply voltage GND(DIGC)37digital core ground V CC(MOD)10module supply voltageV CC(LOG)EXT 44external logic supply voltage for PWMMON and SDO outputs V CC(MEASC)6measurement circuit supply voltageTable 4.Pin description …continuedSymbol Pin DescriptionCharge pump capacitorsCPP40positive connection to external pump capacitorCPN41negative connection to external pump capacitorCT39connection to external storage capacitorDigitalEN11enable input; internal pull-down resistorINTN46interrupt output; open-drain outputWDEN15watchdog enable input; internal pull-up resistorWDTON2watchdog timed output; open-drain outputPWMMON47PWM frequency monitor outputSerial peripheral interfaceSCLK34SPI clock input; internal pull-down resistorSCSN35SPI chip select input; internal pull-up resistorSDI36SPI data input; internal pull-down resistorSDO45SPI data output; 3-state when inactiveAnalogIREFCURR8set reference for current measurement (with external resistor) IREFTEMP9set reference for temperature sense (with external resistor) IMEAS5analog current measurement output (for selected channel) Direct input pinsIN03direct input 0; internal pull-down resistorIN14direct input 1; internal pull-down resistorIN213direct input 2; internal pull-down resistorIN312direct input 3; internal pull-down resistorINP14PWM input; internal pull-down resistorConnections for external TrenchPLUS switchesChannel 0GA TE064gateKELVIN061source kelvinSENSE063current senseANODE062anode of temperature sense diodeChannel 1GA TE160gateKELVIN157source kelvinSENSE159current senseANODE158anode of temperature sense diodeChannel 2GA TE256gateKELVIN253source kelvinSENSE255current senseANODE254anode of temperature sense diodeTable 4.Pin description …continuedSymbol Pin DescriptionChannel 3GA TE352gateKELVIN349source kelvinSENSE351current senseANODE350anode of temperature sense diode Channel 4GA TE432gateKELVIN429source kelvinSENSE431current senseANODE430anode of temperature sense diode Channel 5GA TE528gateKELVIN525source kelvinSENSE527current senseANODE526anode of temperature sense diode Channel 6GA TE624gateKELVIN621source kelvinSENSE623current senseANODE622anode of temperature sense diode Channel 7GA TE720gateKELVIN717source kelvinSENSE719current senseANODE718anode of temperature sense diode9.Functional descriptionThe main functions of the device are:•Power and reference supplies•Charge pump•Control logic•Current measurement•TrenchPLUS FET interface (8×)9.1Power and reference suppliesThe main battery supplies power to the device and the eight TrenchPLUS FET switches.This device is intended for vehicle system applications that operate at a battery voltage of12V, 24V or 42V. The device has several different supply connections to ensure correctoperation of the device within the application module.9.1.1Battery supply: pins V BAT and GNDPins V BA T and GND are the direct supply connections of the device to the battery.Low battery voltage is detected on the charge pump supply pin V BA T(CP). Channels areswitched off during extended low battery supply conditions and switched on when normalbattery conditions return.Extended low battery voltage occurs when the battery supply voltage V BA T goes below:•the battery undervoltage threshold (V th(uv)bat) for longer than the battery low time(t low(bat))•the battery low threshold voltage (V th(low)bat)Transient low battery voltage occurs when the battery supply voltage V BA T goes belowV th(uv)bat for less than t low(bat), but remains above V th(low)bat. Transient low battery voltageconditions affect the overcurrent protection; for details see Section 9.5.2 “Overcurrentprotection”.Normal battery voltage occurs when the battery supply voltage exceeds V th(uv)bat formore than the battery high time (t high(bat)).Hysteresis on detection reduces the possibility of repeated switching when the batterysupply voltage is close to the threshold values.The supply circuit has an internal overvoltage clamp to protect the control IC fromovervoltage transients and is also protected against ESD. All four GND pins must beconnected together to ground.If this supply is connected to a reverse polarity battery voltage then the FET switches areturned on to protect against conduction through the source-drain diode. This protectionoperates whether the device is enabled or not.9.1.2Module supply: pins V CC(MOD) and GNDPins V CC(MOD) and GND supply power to the circuits in the device that need to be keptfunctioning when the main battery supply dips below its normal operating limit. It isanticipated that the connection will be to the protected supply of the application modulecontrol circuits.This can be created using a suitable diode and storage capacitor from the battery supply. The connection should be decoupled close to the device.Low module voltage causes the device to go through a Power-On Reset (POR). Thiscondition is detected when the module supply voltage goes below the moduleundervoltage threshold voltage (V th(uv)mod). The power-on reset is triggered when thesupply voltage recovers and exceeds V th(uv)mod. Hysteresis on this detection reduces the possibility of repeated resetting when the module supply is close to the threshold value.The supply circuit has an internal overvoltage clamp to protect the control chip fromovervoltage transients and is also protected against ESD.This supply should be protected against reverse battery connection in the application circuit.9.1.3External logic supply: pins V CC(LOG)EXT and GNDThe external logic supply provides power for the SDO and PWMMON output pins. PinV CC(LOG)EXT should be connected to the same supply (3.3V or 5V) used by the circuits that monitor these outputs.9.1.4Analog measurement supply: pins V CC(MEASC) and GNDThis supply provides power for the IMEAS analog current measurement output. PinV CC(MEASC)should be connected to the same supply(3.3V or5V)used by the circuit that uses this output.If this output is not needed, then pins V CC(MEASC) and IMEAS should be grounded.9.1.5Digital supply: pins V CC(DIGC) and GND(DIGC)This supplies power to the internal regulator for the digital core and should be connected to the same potential as V CC(MOD) and GND. It is not internally connected to the module supply, ensuring that digital noise does not affect the measurement circuits. Theconnection should be decoupled close to the device.The digital supply circuit has an internal overvoltage clamp to protect theBUK3F00-50WDxx from overvoltage transients and is also protected against ESD.9.1.6Reference supplies: pins IREFCURR and IREFTEMPAn internal band gap reference is used to ensure stable voltage and current references:•Measured current reference pin IREFCURR: The full-scale analog output measurement current and the full-scale measurement current through the ADC areboth set by connecting an external resistor between pins IREFCURR and GND.•Temperature reference pin IREFTEMP: The forward current for the temperature sensing diodes in the TrenchPLUS FETs is set by connecting an external resistorbetween pins IREFTEMP and GND.9.2Charge pumpThe controller has an internal charge pump circuit to supply the gate voltage required to operate the high-side FET switches. The charge pump uses an internal oscillator andinternal switches with external pump and storage capacitors.9.2.1Charge pump supply: pins V BAT(CP) and GND(CP)Pins V BA T(CP) and GND(CP) supply power to the internal charge pump. This is derivedfrom the V BA T supply either via an internal resistor between pins V BA T and V BAT(CP) or by linking these pins externally.Pin GND(CP)should be connected to pin GND;the grounds are not internally connected to ensure any charge pump noise does not affect themeasurement circuit. The connections should be decoupled close to the device.The charge pump supply circuit has an internal overvoltage clamp to protect theBUK3F00-50WDxx from overvoltage transients and is also protected against ESD.If connected to a reverse polarity battery voltage,the charge pump supply is protected by the internal resistor connection to V BA T.9.2.2Charge pump boost modeTo ensure fast start-up, the charge pump has a boost mode that operates for a set time.This mode is triggered at power-on reset and when the charge pump voltage falls below the charge pump fault threshold or the battery voltage stays below the undervoltagethreshold. If the charge pump voltage is below the fault threshold after the charge pump boost is completed, then no further boost is possible until the charge pump fault iscleared.9.3Control logicThe control logic is responsible for switching the individual FET channels on and off,depending on user settings and the implementation of protection methods. It containsregisters used for storing the user settings for channel configurations, current referenceand measurement, diagnostic and watchdog modes. Communication with a controller is via the SPI-bus.The digital block is designed to support 8 channels; unused channels should beprogrammed off at all times.9.3.1Digital controlThe device is enabled by pin EN.When pin EN is LOW,the device is in Standby mode and all FETs are held off by an active switch with a standby resistance between pins GA TEand KELVIN. When pin EN is HIGH, the device is enabled for normal operation. Pin ENcan be used as the reset signal by a controller for the control logic. When pin EN is reset to HIGH,the device goes through a power-on reset,registers are loaded with their default values and channels are switched on or off according to the mapping for the individualdevice type.Digital control consists of a number of registers that control the functions. The defaultvalue is loaded during power-on reset and,if the WRITE_PROTECT option is enabled,for defined registers,when the SPI watchdog times out.For some registers the default setting can be programmed by metal mask options.Table er-accessible registersRegister[1]Name Description Maskoption Version default value[2] FE FM FYRead/write registers[3]01h CHAN_ONOFF channels select: on/off; see Section9.5.7N00h00h00h 02h IN02_MAP direct input pins IN0 and IN2 mapping;see Section9.5.8Y[4]21h10h1Ch03h IN13_MAP direct input pins IN1 and IN3 mapping;see Section9.5.8Y[4]84h40h01h04h INP_MAP PWM input pin INP mapping;see Section9.5.8Y[4]10h08h00h05h ANDOR_MAP direct input pin AND/OR operation;see Section9.5.8Y[4]00h00h00h06h CURR_MEAS channel select analog current measurement;see Section9.4.2N00h00h00h07h SEL_CURR_TRIP_CHAN select current tripping channel;see Section9.5.2Y[4]00h00h00h08h CHAN_OT_FAULT_CLR channel set overtemperature fault clear;see Section9.5.1Y[4]00h00h00h09h PWM_SYNC channel PWM synchronization;see Section9.3.4N00h00h00h0Ah PWM_SAM_BEGINEND channel PWM sample point begin or end;see Section9.3.4N FFh FFh FFh0Ch CHAN_WD_MAP select channel watchdog behavior;see Section9.3.3Y[4]21h58h1Dh0Dh WD_TO watchdog time-out period setting;see Section9.3.3Y[4]3Fh3Fh3Fh 0Eh CTRL_SET controller settings; see Section9.5.5Y[4]08h08h08h 0Fh INT_PWM_FREQ internal PWM frequency setting;see Section9.3.4Y[4]B6h BBh B1h 10h PWM_DC_CH0internal PWM duty cycle setting for channel 0Y[4][5]FFh FFh FFh 11h PWM_DC_CH1internal PWM duty cycle setting for channel1;see Section9.3.4Y[4][5]FFh FFh FFh12h PWM_DC_CH2internal PWM duty cycle setting for channel2;see Section9.3.4Y[4][5]FFh FFh FFh13h PWM_DC_CH3internal PWM duty cycle setting for channel3;see Section9.3.4Y[4][5]FFh FFh FFh14h PWM_DC_CH4internal PWM duty cycle setting for channel4;see Section9.3.4Y[4][5]FFh FFh FFh15h PWM_DC_CH5internal PWM duty cycle setting for channel5;see Section9.3.4Y[4][5]FFh FFh FFh16h PWM_DC_CH6internal PWM duty cycle setting for channel6;see Section9.3.4Y[4][5]FFh FFh FFh17h PWM_DC_CH7internal PWM duty cycle setting for channel7;see Section9.3.4Y[4][5]FFh FFh FFh18h OT_TRIPLEV_CH30overtemperature trip level channels 3 to 0;see Section9.5.1Y[4]AAh AAh AAh19h OT_TRIPLEV_CH74overtemperature trip level channels 7 to 4;see Section 9.5.1Y [4]AAh AAh AAh 1Ah IFSC_CH30full-scale reference current channels 3 to 0;see Section 9.5.2Y [4]AAh FFh FFh 1Bh IFSC_CH74full-scale reference current channels 7 to 4;see Section 9.5.2Y [4]AAh FFh FFh 1Ch CURR_TRIPLEV_CH0current trip level for channel 0;see Section 9.5.2N [4]FFh FFh FFh 1Dh CURR_TRIPLEV_CH1current trip level for channel 1;see Section 9.5.2N [4]FFh FFh FFh 1Eh CURR_TRIPLEV_CH2current trip level for channel 2;see Section 9.5.2N [4]FFh FFh FFh 1Fh CURR_TRIPLEV_CH3current trip level for channel 3;see Section 9.5.2N [4]FFh FFh FFh 20h CURR_TRIPLEV_CH4current trip level for channel 4;see Section 9.5.2N [4]FFh FFh FFh 21h CURR_TRIPLEV_CH5current trip level for channel 5;see Section 9.5.2N [4]FFh FFh FFh 22h CURR_TRIPLEV_CH6current trip level for channel 6;see Section 9.5.2N [4]FFh FFh FFh 23h CURR_TRIPLEV_CH7current trip level for channel 7;see Section 9.5.2N [4]FFh FFh FFh 24h IRQ_MAP interrupt request mapping; see Section 9.5.2Y [4]04h 19h 00h 25h CURR_TRIP_BLANKTIME current trip blanking time; see Section 9.5.2Y [4]2Fh 2Fh 2Fh 26h OLDET_ONOFF off-state open-circuit detection;see Section 9.5.6N FFh FFh FFh 27h READBACK register and diagnostic read back;see Section 9.3.2N 30h 30h 30h 28hIRQ_CHAN_MAPinterrupt generating channels;see Section 9.3.5N [4]FFhFFhFFhWrite-only registers [6]29h CLEAR_CHAN_INTN clear channels and interrupt; see Section 11.12Ah CLEAR_WD clear watchdog state; see Section 11.1Read-only registers [7]30h DIAG_BASIC basic diagnostics; see Section 11.231h DIAG_CTRL controller diagnostics; see Section 11.232h ISR interrupt status register; see Section 11.233h VERSION device version number; see Section 11.234h DIAG_CHAN_01VOUTHIGH and VOUTLOW states [8];see Section 11.235h DIAG_CHAN_02TSNSOPEN signal state [9]; see Section 11.238h DIAG_DET AIL_CH0detail diagnostics;channel 0;see Section 11.239hDIAG_DET AIL_CH1detail diagnostics;channel 1;see Section 11.2Table er-accessible registers …continued Register [1]NameDescriptionMask option Version default value [2]FE FM FY[1]This column denotes either the address used to write to the indicated register, or the data sent to register READBACK (27h) to readback from the indicated register.[2]Default values for read/write registers are either fixed or programmable as mask options for individual types.[3]8-bit read/write registers store settings that control the behavior of the device.Default values are stored at power-on reset and data can be changed via SPI-bus communication. To help provide security of operation these registers can also be read back.[4]Another metal mask option is available, which means that WRITE_PROTECT is set. CHAN_WD_MAP and WD_TO registers are write-protected by this option. The other registers indicated will be reloaded with default values if an SPI watchdog time-out occurs.[5]Only bit 7 is mask programmable.[6]8-bit write-only registers clear tripped channels, interrupt and watchdog states when data is written. The values are not stored and cannot be read back.[7]16-bit read-only registers contain data about the state of the device for diagnostic use. Data cannot be written to these registers.[8]VOUTHIGH: high-side FET is in on-state for overcurrent protection (> V th(on)(bat-KEL)).VOUTLOW: high-side FET output voltage is below the voltage required for open-circuit detection (< V det(oc)off ).[9]TSNSOPEN: temperature sensor open-circuit.3Ah DIAG_DET AIL_CH2detail diagnostics;channel 2;see Section 11.23Bh DIAG_DET AIL_CH3detail diagnostics;channel 3;see Section 11.23Ch DIAG_DET AIL_CH4detail diagnostics;channel 4;see Section 11.23Dh DIAG_DET AIL_CH5detail diagnostics;channel 5;see Section 11.23Eh DIAG_DET AIL_CH6detail diagnostics;channel 6;see Section 11.23FhDIAG_DET AIL_CH7detail diagnostics;channel 7;see Section 11.2Table er-accessible registers …continued Register [1]NameDescriptionMask option Version default value [2]FE FM FY9.3.2Serial Peripheral Interface (SPI)The SPI is used for communication with a controller and provides control and diagnostic functions. The device is configured as an SPI slave.The interface consists of SPI Chip Select (SCSN), Serial Clock (SCLK), Serial Data In (SDI)and Serial Data Out (SDO).SPI communication is enabled when SCSN is set LOW.Data is shifted out to pin SDO on the SCLK rising edge. The data shifted out depends on which register is addressed by register READBACK (27h). Data is shifted in from pin SDI on the SCLK falling edge.The controller can be timed to send data to SDI on the SCLK rising edge with data valid on the falling edge. Data is valid for reading on the falling edge. For full timingrequirements; see T able 25 “Recommended operating conditions” and Figure 9 “SPI timing definitions”.SPI communication uses 16-bit words; see Figure 3. The most significant byte, theregister address byte,is transferred first.The 2most significant bits of the register address byte are not used,they must always be logic 0.The 6least significant bits form the actual register address.When SCSN is set HIGH after a 16-bit valid communication, then the SDO output becomes inactive and goes to high-impedance. The data in the low byte is thentransferred to the address given in the high byte. After this is completed the SPI shift register is refreshed with the latest contents of the register addressed by the entry in register READBACK. When 8-bit registers are read, the least significant byte is padded with 55h.Data is checked for validity after SCSN goes HIGH. It is valid if the count of SCLKnegative edges is a multiple of 8 and the address part (high byte) of the 16-bit message contains a valid address. An invalid address will result in a value of 00h being sent on SDO. T o allow time for validity checking, writing data and refreshing the shift register,SCSN must be disabled (HIGH) for a period t w(SCSN).Fig 3.SPI communication format; full 16-bit operation001aae9960A A A A A A D D D D D D D DMSB MSBdataaddressLSB LSBlow byteSPI communication word high byteTo support 8-bit microcontrollers an 8-bit operation is possible; see Figure 5. In this operation, SCSN is taken HIGH between the 8-bit bytes. SDO is taken HIGH before the SCLK of the low byte to indicate that the low byte is to be sent.A number of devices can be daisy chained by connecting the SDO of the first device to the SDI of the next device and so on; see Figure 6.All devices have their SCSN inputs connected to the same controller chip select so that they can be selected together.When n devices are daisy chained,then n SPI 16-bit word cycles must be executed to program all devices.Daisy chaining cannot be used with 8-bit SPI operation.Fig 4.SPI communication frame: full 16-bit operationFig 5.SPI communication frame: 8-bit operation001aaf575MSBMSBLSB LSBMSB high byteSCSNSDI SCLKSDO low byteMSB LSB LSBMSBMSBLSB LSBMSB high byteSCSNSDISCLKSDO low byteMSB LSB LSB001aaf5769.3.3SPI watchdogThe SPI watchdog detects if there is a breakdown in the SPI communication with the controller. A timer is activated that resets when a valid communication is received. If no valid SPI communications are received within the specified time-out period,the watchdog will signal this to the control logic.The SPI watchdog is enabled either by setting pin WDEN = HIGH or by enablingwatchdog active with bit WD_TO[5]. FET channels can be turned either on or off when a watchdog time-out occurs as set by register CHAN_WD_MAP .Pin WDTON is set LOW for a selectable period when a watchdog time-out occurs and can be used as a reset for the controller. An interrupt on pin INTN can also be set when a watchdog time-out occurs.Other functions of the device are not changed in Watchdog mode. In particular, if the SPI fault that caused the condition is resolved, SPI communication would work and diagnostics could be performed.See Section 11.1 “Reset for interrupt and SPI watchdog” for details of clearing watchdog states.[1] A metal mask option WRITE_PROTECT is available, which means that registers are write protected.[2]Provided channel is not mapped to a direct input pin. If channel is mapped to a direct input pin, then the channel will only turn on if the direct input pin is HIGH.Fig 6.Daisy chain connection of three ASICs (requires three SPI 16-bit word cycles)MASTERSLAVE1SLAVE2SLAVE3SDI SDISDISDOSCSN SCSNSCSN SDO SDOMCSNMDO MDI001aag750Table 6.Select channel watchdog behavior register (address 0Ch) bit description Address RegisterBitDescription0ChCHAN_WD_MAP [1]7 to 0behavior when watchdog time-out occurs in individualchannels 7 to 0:1 = turn selected channel on [2]0=turn selected channel offTable 7.Watchdog time-out period setting register (address 0Dh) bit description Address Register Bit Description 0DhWD_TO7 to 6not used 5enable watchdog4 to 0watchdog time-out period; see T able 89.3.4Pulse-Width Modulation (PWM)PWM can be implemented on selected channels by either an internally generated signal or an externally connected signal.For the internally generated signal,it is possible to select frequency and duty cycle and to synchronize the selected channels.The internally generated signal is used when the duty cycle is set to less than 100%.For both internal and external PWM signals it is possible to specify the point at which the FET current is sampled in the PWM period.An external PWM signal can be connected to the input pin INP (intended for normal PWM operation) or pins IN0 to IN3 (intended for fail-safe operation). The required channels are then mapped accordingly.[1]If channels are run out-of-phase each will be staggered by one eighth of a PWM cycle.When more than one channel is selected by this command then the master signal is the channel with the lowest number. This does not apply to the external PWM signal on pin INP .[2]Controls the point of the on-time at which the current is sampled for digital current measurement. Only operates when duty cycle is set to < 100 % or channel is mapped to pin INP .[3]A metal mask option WRITE_PROTECT is available which means that this register is reloaded with the default value if an SPI watchdog time-out occurs.Table 8.Watchdog time-out periodGiven times are valid for nominal master clock frequency.Time-out period Value Time Value Time Value Time Value Time 00h 1.0 ms 08h 4.1 ms 10h 16 ms 18h 66 ms 01h 1.3 ms 09h 5.1 ms 11h 20 ms 19h 82 ms 02h 1.5 ms 0Ah 6.1 ms 12h 25 ms 1Ah 98 ms 03h 1.8 ms 0Bh 7.2 ms 13h 29 ms 1Bh 115 ms 04h 2.0 ms 0Ch 8.2 ms 14h 33 ms 1Ch 131 ms 05h 2.6 ms 0Dh 10 ms 15h 41 ms 1Dh 164 ms 06h 3.1 ms 0Eh 12 ms 16h 49 ms 1Eh 197 ms 07h3.6 ms0Fh14 ms17h57 ms1Fh229 msTable 9.PWM setting registers (addresses 09h, 0Ah, 0Fh, 10h to 17h) bit description Address Register BitDescription09hPWM_SYNC [1]7 to 0PWM synchronization in individual channels 7 to 0:1 = selected channel synchronized to previous channel in this mode 0 = selected channel one eighth of internal PWM cycle out of phase0AhPWM_SAM_BEGINEND7 to 0PWM sample begin or end in individual channels 7 to 0[2]:1 = selected channel set to end 0 = selected channel set to start0FhINT_PWM_FREQ [3]7 to 0internal PWM frequency setting for all channels:00h to 3Fh: f = {code + 01h}× 0.125Hz, from 0.125Hz to 8.0Hz in 0.125Hz steps40h to 7Fh: f = {code − 3Fh}× 0.5Hz, from 0.5Hz to 32.0Hz, in 0.5Hz steps 80h to BFh: f = {code − 7Fh}× 2.0Hz, from 2.0Hz to 128.0Hz, in 2.0Hz steps C0h to FFh: f = {code − BFh}× 8.0Hz, from 8.0Hz to 512.0Hz, in 8.0Hz steps10h to 17h PWM_DC_CHn [3]7 to 0internal PWM duty cycle for specified channel 7 to 0; duty cycle δ = (n +1) / 256,where n = decimal number set in register。

PowerVu

PowerVu

综述PowerVu™ D9834型卫星接收机适用于卫星内容分配、目标商业TV 、专用网络以及SMATV 等方面。

接收机可接收数字加密的视频,音频和VBI 数据。

它实现模拟业务向数字转变的经济有效的解决方案。

其他还包括IP 数据和RS-232应用数据。

易于应用对本单元的设置可通过:屏幕显示菜单,手执红外遥控器,或接收机前面板的浏览键。

所提供的64个用户可编预先设置可以很快地重新调谐到其他广播通道,还支持通过以太网口的互联网界面和SNMP 控制。

接收无线信号接收机可接收符合DVB/MPEG 标准的无线广播信号。

接收保密广播支持Power Vu 带DES 或DVB 解扰的条件接入,此接收机可接收带保密信息的视频、音频或数据广播。

它还可用于保密传送到宾馆,MDU ,家庭以及商厦等处的电视节目。

数据输出数据输出可用于文件传送,如价目表、视频文件等。

RS-232数据适用于低速小型文件的传送。

而通过10/100BT 接口的DVB MPETG IP 数据可连接到本地网络传输较大的文件,并与多个网络用户通信。

各项特点• 可变的QPSK 字符率从1-45每秒兆字符 • 带DES 和DVB 解扰的Power Vu 条件接入 • 4:2:0NTSC 和PAL-B/G/I/D/M/N 视频解码 • MPEG 和Dolby ®(AC-3)音频解码 • DVB 字幕 • Imitext 字幕• Power Vu VBI (包括NABTS ,WST ) • DVB VBI (WST ,WSS ,VPS ) • 一路非平衡立体声音频输出• 支持第21行闭路标题信号和重复消隐内置信息 • 手指触发 • 业务替换• RS-232非同步数据 • IP 数据率可达10Mbps • 软件和密码现场可升级• 前面板4位数LED 作通道显示 • 屏幕菜单提供设置和状态显示 • 64个用户可编的预设置参数 • 锁定等级严格保护接入系统结构 • 网络浏览界面 • SNMP 控制D9834型卫星接收机PowerVu TM各项指标特点说明系统MPEG2/DVB兼容EN300421,EN300468解调:QPSK,FEC:可变(1/2,2/3,3/4,5/6或7/8)调谐器字符率范围:1到45每秒兆字符输入电平:•每个载波-35到-65dBm(< 5Msymb)•每个载波-25到-65 dBm( > 5Msymb )频率范围:950MHZ到2150MHZ每步调谐:125KHZ载波捕捉范围:±3.0MHZ(5-45M symb)卫星:C波段和KU波段阻抗:75ohm音/视频输出模拟视频输出通道数:1,接插件型式:RCA视频解压缩型式:MPEG-2,4:4:0电平:1VPP±10%视频标准:NTSC和PAL B/G/I/D/M/N模拟音频输出通道数:一对立体声/2个单声道接插件型式:RCA输出电平:不平衡,2Vrms±10%·dB(满刻度)音频解压缩:MPEG或杜比(AC-3)数字音频S/PDIF输出接插件型式:RCAVBI NTSC:第10-22行,第1,2场NABTS,AMOL I和П (Nielsen)PAL:第7-22行,第1,2场WST,WSS,VPS数据输出RS-232非同步数据率可达38.4Kbps数率:300/1200/2400/4800/9600/19,200/38,400bpsIP数据以太网方式输出RJ-45,10/100BT,可达10Mbps环境/物理指标工作温度:0º—50ºC储藏温度:-20º—70ºC尺寸:6.4mm(高)×30.5mm(宽) ×21.6mm(深)重量:约2.2公斤电源100V-240VAC,50/60HZ 功耗: 最大35WLNB电源: +13/+18V @ 最大350MAD9834卫星接收机后面板图订购信息说明部件号 NTSC 频道3/4调制器带NA 电源线 4005875 PAL UHF 频道21-69调制器带欧洲插头4005876 PAL UHF 频道21-69调制器不带电源(选择参考下表)4005827电源线说明 部件号 英国 1002798 欧洲 503414 澳大利亚 1002604 阿根廷1002655 巴西 1003648 中国 1003670 印度1003667选项说明部件号 机架装配套件4007403科学亚特兰大(Scientific-Atlanta )和PowerVu 是科学亚特兰大公司的注册商标。

瑞萨电子EBike报警应用方案

瑞萨电子EBike报警应用方案

上位机界面
6
© 2012 Renesas Electronics Corporation. All rights reserved.
瑞萨电子(中国)有限公司
© 2012 Renesas Electronics Corporation. All rights reserved.
D-AMP 音频放大 声音模拟信号 模块
4
© 2012 2011 Renesas RenesasElectronics ElectronicsCorporation. Corporation.All Allrights rightsreserved. reserved.
样板照片
5
© 2012 2011 Renesas RenesasElectronics ElectronicsCorporation. Corporation.All Allrights rightsreserved. reserved.
外部震荡最高:20M
2
© 2012 Renesas Electronics Corporation. All rights reserved.
E-Bike报警方案功能介绍
声音处理部分 利用上位机软件,把需要的声音文件(.wav格式)转换为MCU可使用 的C格式的数据文件 音频放大部分 利用D-AMP音频放大芯片,对MCU输出的音频声音进行放大,输 出给外部声音输出设备 提供资料 可以为用户提供上位机的音频转换工具 参考库文件及软硬件参考
78K0内核
(μPD78F0537D)
VDD = 2.7 to 5.5 V TA = ቤተ መጻሕፍቲ ባይዱ40 to +85°C
中断控制 9个外部中断源 19个外部中断源

Logitech Wireless Rechargeable Touchpad T650 设置指南说

Logitech Wireless Rechargeable Touchpad T650 设置指南说
Wireless Rechargeable
Touchpad T650
Setup Guide 设置指南
Logitech Wireless Rechargeable Touchpad T650
English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 简体中文 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
No prompt? Download the software from: /download/t650
6 English
Touchpad gestures
Click (left-click) Press the Touchpad surface.
Logitech Wireless Rechargeable Touchpad T650
Scroll Swipe two fingers up, down, or sideways.
Right-click
Press the lower-right corner of the pad.
English 7
Logitech Wireless Rechargeable Touchpad T650
/support/t650
In addition to software, you’ll find tutorials, troubleshooting tips, and guidelines for using your new Touchpad.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T1
EE19W , Transformer
Q3
3DG13005C7D TO-220F
3DG13005C7D
Q2
F501
F501
BR1
DB107
DB107
PCB
FR-4
Manufac t urer iW att
KW OKTRAN KW OKTRAN
TDK TDK TDK TDK y ongming y ongming TKS PANJIT ZOW EI PANJIT YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO YAGEO TKS Bead&Ferrite
2UEW 0.22mmx1 35T – Primary(Clockwise)
SEC
B(F) A(S)
6. EMI Inductor Design Differential Mode Inductor_L3&L2,L4
Ferrite core size : AxB 6x8mm Wire gauge: 0.2mm, 120Turns Inductance @10kHz, 1V: 400uH +/-10% DCR: 12 OHM +/-20%
87.44%
87.78%
87.55% 87.95% 88.09% 88.15% 87.98% 88.45% 88.27% 88.12% 88.25%
PF
(% ) 0.977 0.979 0.983 0.984 0.980 0.979 0.975
0.975
0.974
0.972 0.971 0.967 0.963 0.959 0.953 0.950 0.946 0.938
(264VAC) Output
Const
Output Voltage
Voltage Output Current
Symbol
VIN fLINE
VOUT_CV IOUT_CV
Min
90 47
Typ
50
Max Units
264
VAC 2 Wire
63
Hz
W
Comment
V Measured at the PCB connector A
2
iW3628 28V550mA Dialog Semiconductor Confidential
2.PCB Layout
AC Input
DC Output
iW3628
3
iW3628 28V550mA Dialog Semiconductor Confidential
3. Schematics _28V550mA
Const
Output Voltage VOUT_CV
28
Current Output Current
IOUT_CV
550
Total Output Power
V Min Vout is depend on Vcc mA
Continuous Output Power
Over Current Protection Efficiency Power Fact Turn on Delay Time Conducted EMI Hi-pot test
Manufacturing Part Number
U1
iw3628
F1
1A250V
1A250V
C1
0.1uF,400V, CBB
AF104J2G079L250D9R
C2
0.15uF,400V, CBB
AF154J2G079L250D9R
C8
1nF,250V SMD-0805 C2012COGX7R2E102KT
140
150
160
170
9LEDS
180
190
200
210
220
230
240
250
264
Pin
(W) 18.61 18.01 17.40 16.98 16.90 16.84 16.72
16.60
16.43
16.40 16.31 16.31 16.29 16.40 16.28 16.24 16.16 16.07
MATERIALS: 1. Core : EE19W(Ferrite Material TDK PC40 or equivalent) 2. Bobbin :EE19WHorizontal. 4+4pin 3. Magnet Wires (Pri) : Type 2-UEW 4. Magnet Wire (Sec) : Triple Insulated Wires 5. Layer Insulation Tape :3M1298 or equivalent.
hFE(normal)=25 Ic=hFE*Ib
=Ib*hFE =58*25 =1450mA>Ipk=1112mA
VIsense:676mV Ib:58mA
90Vac
VIsense:572mV Ib:46mA
9
iW3628 28V550mA Dialog Semiconductor Confidential
FINISHED : 1. Cut remained of Pin 1.2.5.6.after wires termination 2. Varnish the complete assembly
PRI
8(S) X(S) 3(F) 4(S)
3(S) X(F) 7(S)
6
iW3628 28V550mA Dialog Semiconductor Confidential
4
iW3628 28V550mA Dialog Semiconductor Confidential
4. BOM Cost
Qt y . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1
5
Ref.
Des c ript ion
3
A
Secondary
19T
B
Note: • Dot (●) denote electrical
start. • Electrical start could be
different to Mechanical/Winding start.
ELECTRICAL SPECIFICATIONS: 1. Primary Inductance (Lp) = 0.78mH @10KHz 2. Primary Leakage Inductance (Lk)< = 100uH @10KHz 3. Electrical Strength = 3KV, 50/60Hz,1Min
7
iW3628 28V550mA Dialog Semiconductor Confidential
7.Constant Current and Efficiency
(AC input 180~264Vac,Output 8 LEDs)
#of LEDs Vin (V)
90
100
110 120 130
x ingy uangy an huajing huajing
PANJIT
iW3628 28V550mA Dialog Semiconductor Confidential
5. Transformer Design
SCHEMATIC
8
Primary1 35T
X
Primary2 35T
7
4
Bias
5T
5
8
4
1
2UEW 0.22mmx1 35T – Primary(Clockwise)
2UEW 0.10mmx3 5T – bias (Clockwise)
Triple Insulated Wire 0.25mmx2 9T – Secondary (Clockwise)
Triple Insulated Wire 0.25mmx2 10T – Secondary(Clockwise) 2UEW 0.22mmx1 34T – bias (Clockwise)
Iout
(A) 0.547 0.547 0.537 0.534 0.538 0.540 0.542
0.541
0.538
0.536 0.536 0.537 0.537 0.540 0.539 0.537 0.534 0.532
Efficiency
(% ) 80.36% 82.85% 83.92% 85.03% 85.73% 86.26% 87.03%
RC1206FR-071R3L
R10
3.9KΩ +/-5%,SMD-0805
RC0805JR-073K9L
R7
220KΩ +/-5%,SMD-1206
RC1206FR-07220KL
R4,R5
15KΩ +/-5%,SMD-1206
RC1206FR-0715KL
R9
30KΩ +/-5%,SMD-0805
Vout
(V) 27.34 27.28 27.19 27.04 26.93 26.90 26.85
26.83
26.81
26.79 26.76 26.76 26.74 26.72 26.70 26.68 26.67 26.66
8
iW3628 28V550mA Dialog Semiconductor Confidential
10
iW3628 28V550mA Dialog Semiconductor Confidential
相关文档
最新文档