【推荐】临沂市沂南县九年级上期末数学试卷(有答案)
临沂市沂南县九年级上期末数学试卷(有答案)-精华版
山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A.B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A .两正面都朝上B .两背面都朝上C .一个正面朝上,另一个背面朝上D .三种情况发生的概率一样大7.(3分)若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5B .k <5,且k ≠1C .k ≤5,且k ≠1D .k >58.(3分)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( ) A .y 1<y 2<0 B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 210.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长为( )A .1B .C .2D .11.(3分)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=,则k 2的值是( )A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为 ℃.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分) 19.(7分)计算:+sin 245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D 处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.2016-2017学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(si nα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4.(3分)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A .B .2C .D .【解答】解:∵AH=2,HB=1, ∴AB=3, ∵l 1∥l 2∥l 3,∴==,故选:D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( ) A .y 1<y 2<0 B .y 1<0<y 2 C .y 1>y 2>0D .y 1>0>y 2【解答】解:∵y=﹣,∴k=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y 随x 的增大而增大,∵反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),x 1<0<x 2, ∴点P 1在第二象限,点P 2在第四象限, ∴y 1>0>y 2, 故选D .10.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长为( )A .1B .C .2D .【解答】解:∵∠DBC=∠A ,∠C=∠C ,∴△CBD ∽△CAB ,∴=,即=,∴CD=2,故选C .11.(3分)如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接BO .若S △OBC =1,tan ∠BOC=,则k 2的值是( )A .﹣3B .1C .2D .3【解答】解:∵直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,2),∴OC=2,∵S △OBC =1,∴BD=1,∵tan ∠BOC=,∴=,∴OD=3,∴点B 的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B ,∴k 2=1×3=3.故选D .12.(3分)如图,矩形ABCD 中,AB=3,BC=4,点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动.记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数大致图象是( )A .B .C .D .【解答】解:(1)当点P 在AB 上移动时,点D 到直线PA 的距离为:y=DA=BC=4(0≤x ≤3).(2)如图1,当点P 在BC 上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE ,在△PAB 和△ADE 中,∴△PAB ∽△ADE ,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是x1=0,x2=﹣1 .【解答】解:x(x+1)=0,x=0或x+1=0,所以x1=0,x2=﹣1.故答案为x1=0,x2=﹣1.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是: =故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O 在格点上,则∠AED的正切值为 .【解答】解:由图可得,∠AED=∠ABC ,∵⊙O 在边长为1的网格格点上,∴AB=2,AC=1,则tan ∠ABC==,∴tan ∠AED=.故答案为:.16.(3分)如图,点A 、B 是双曲线y=上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 8 .【解答】解:∵点A 、B 是双曲线y=上的点,∴S 矩形ACOG =S 矩形BEOF =6,∵S 阴影DGOF =2,∴S 矩形ACDF +S 矩形BDGE =6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为 ﹣1 ℃.【解答】解:设 l=at 2+bt+c (a ≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l 与t 之间的二次函数解析式为:l=﹣t 2﹣2t+49,当t=﹣=﹣1时,l 有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为.(用含n的代数式表示,其中n为正整数)【解答】解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM :S△ABE1=(n+1):(2n+1),∴S△ABM: =(n+1):(2n+1),∴Sn=.故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin245°﹣tan60°.【解答】解:原式=+﹣=+﹣=.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y 平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为x米时,另一边长为(16﹣x)米,根据题意,得:y=x(16﹣x)=﹣x2+16x(0<x<16);(2)∵y=﹣x2+16x=﹣(x﹣8)2+64,∴当x=8时,y取得最大值,最大值为64,答:当x为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D 处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE ⊥x 轴,∴∠AEO=90°.在Rt △AEO 中,AO=5,sin ∠AOC=,∠AEO=90°,∴AE=AO •sin ∠AOC=3,OE==4, ∴点A 的坐标为(﹣4,3).∵点A (﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B (m ,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B 的坐标为(3,﹣4).设直线AB 的解析式为y=ax+b ,将点A (﹣4,3)、点B (3,﹣4)代入y=ax+b 中得:,解得:,∴一次函数解析式为y=﹣x ﹣1.令一次函数y=﹣x ﹣1中y=0,则0=﹣x ﹣1,解得:x=﹣1,即点C 的坐标为(﹣1,0).S △AOB =OC •(y A ﹣y B )=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt △ABC 中,∠ACB=90°,∠B=60°;在Rt △DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+bx+c得,解得b=,c=4;(2)作MN⊥x轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥x轴,∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线x=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.。
2019 2020临沂市沂南县九年级上期末数学试卷有答案推荐
2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)sinA=AA13等于(.(分)已知∠,那么∠为锐角,且)A15°B30°C45°D60°....y=k02123))的图象过点((,则这个函数的图象一定过点≠.(,分)若反比例函数()A21 B12 C21 D21),﹣))(﹣,﹣.(.(﹣,﹣.),(.PB1A33O是的弧交坐标轴于.(,分)如图,以原点上一点为圆心,半径为两点,POPPOB=αAB)(不与,则点,重合),连接的坐标是(,设∠AsinαsinαBcosαcosαCcosαsinαDsinαcosα)),.((,)),.(.(,.43分)如图所示,该几何体的主视图是().(D CAB ....5ABOBCO3OBC=60°BAC的度数是(则∠的直径,是⊙)的弦.(分)如图,若∠,.是⊙A75°B60°C45°D30°....163分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是(().A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大24x1=0xk73xk1的取.(+分)若关于)的一元二次方程(+﹣有两个不相等的实数根,则值范围是()Ak5Bk5k1 Ck5k1 Dk5>≠..,且<,且≠.≤<.83lllAClllABCDF分别交分别交,,.(;直线分)如图,直线,∥,∥于点,直线323112 BC=5AH=2HB=1ACDFHlllDEF则的值为(于点,,,,.与)相交于点,,,且,312D2 CA B....PxyPxy=yx0x93,则下,图象上有两点(<,)),,若.(分)反比例函数(<﹣21121221列结论正确的是()Ayy0By0y Cyy0Dy0y><><...<.><>22121112BC=AACDBC=DAC=3CD103ABC,,边上一点,∠,则的为.(∠分)如图,在△中,长为()DC1 B2 A....113y=kx2xAy轴交于点+轴交于点与,与.(分)如图,在平面直角坐标系系中,直线1BOC=BBOStan=1Cy=,若连接∠,在第一象限内的图象交于点,与反比例函数,.OBC△k)则的值是(223D1 C2 A3 B....﹣A→B→CABC=4P312ABCDAB=3的方向在,点,.(分)如图,矩形点出发,按中,从xyPAyABBCPA=xD),点关于到直线的函数大致图象是的距离为(和,上移动.记则D CA B....18分)小题,每小题3分,满分二、填空题(共62x=0 133x.+ 的解是.(分)方程11143个、.(个、绿球分)一个不透明盒子内装有大小、形状相同的四个球,其中红球 2 .个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是白球O11153在格点上,则∠的小正方形构成的网格中,半径为.(的⊙分)如图,边长为AED .的正切值为yxy=ABA316B轴的垂线段,上的点,分别过点、是双曲线轴和作.(分)如图,点、 2 .若图中阴影部分的面积为,则两个空白矩形面积的和为3317分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同.(温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:t温242549464941l/mm植物高度增长量tl之间是二次函数关系.由此可以推测最适合这种植物生长科学家经过猜想、推测出与℃.的温度为ADBEBCAC2ABC1831相交于点、等分,,如图①,将边.(分别分)设△的面积为、11AOBADBEOAOBSBCAC3O,△的面积记为、;如图②将边、,△等分,分别相交于点111nn S …S的代数式表示,其中可表示为(用含的面积记为;.,依此类推,则n2为正整数)66分)7三、解答题(共小题,满分2tan60°719sin45°..(分)计算: +﹣x32820米,面积为米的篱笆围一个矩形养鸡场,设围成的矩形一边长为(.分)用长为y平方米.41yx的函数关系式;)求关于(2x为何值时,围成的养鸡场面积最大,最大面积是多少?()当218ACABABC在同一条直线上,在地分)如图,某建筑物顶部有一旗杆,,且点.(,DB30°DCEDEC三点在同一直线面之间选择一点处测得旗杆顶端,的仰角为,在(,,B60°DE20m,已知建筑物的高度,且之间的距离为,上),又测得旗杆顶端的仰角为 1.411.73AC=12mAB0.1.≈,求旗杆,的高度(结果精确到≈米).参考数据:2210ABOCDOCABD,的直径,,与与⊙的延长线交于点.(相切于点分)如图,是⊙DEADACE.且与的延长线交于点⊥1DC=DE;()求证:CAB=AB=3BDtan2的长.,求∠(,)若2310分)如图,在平面直角坐标系中,.(一次函数的图象与反比例函数的图象交于第二、ABxCyDBm4),点四象限内的,﹣,两点,与的坐标是(轴交于点,与,连轴交于点AOC=sinAOAO=5.接∠,,1)求反比例函数的解析式;(2OBAOB的面积.,求△()连接5EDF=90°DEFB=60°RtACB=90°2411RtABC,;在将一副三角尺(在中,△△中,∠,∠∠.(分)CDFACPE=45°DABDE.∠于点)如图①摆放,点为经过点的中点,,交ADE1的度数;()求∠60°0°α2DEFDα,此时的等腰直角三角)如图②,将△<绕点)顺时针方向旋转角<((αDF′MBCNDE′F′DE′AC的变化而变,交试判断尺记为△,于点交的值是否随着于点,的值;反之,请说明理由.化?如果不变,请求出y=12xOy25Abxc04﹣分)如图,在平面直角坐标系((中,抛物线,)和++.过点MPAPxt0M0C8P绕点,)是是线段轴正半轴上的一个动点,(的中点,将线段,),(yxBAP90°PB轴的垂线,两直线交于点轴的垂线,过点作顺时针旋转得线段作,过点D.cb1的值;、()求D2t落在抛物线上.)当为何值时,点(672019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)sinA=AA13等于(.(,那么∠分)已知∠)为锐角,且A15°B30°C45°D60°....sinA=A为锐角,【解答】解:∵,∠A=30°.∴∠B.故选y=k03212)分)若反比例函数)的图象过点((,则这个函数的图象一定过点≠.(,()A21 B12 C21 D21)(),﹣(﹣),﹣..((﹣,﹣.),.y=k=211=22,)代入得×【解答】解:把(,y=,所以反比例函数解析式为21=212=221=221=2,﹣因为,﹣×(﹣,﹣)×﹣,)×(﹣﹣)×(﹣y=12的图象上.,﹣)在反比例函数所以点(﹣D.故选PB1A33O是的弧交坐标轴于两点,(.,分)如图,以原点上一点为圆心,半径为POPPOB=αBA),则点(不与,重合),连接的坐标是(,设∠AsinαsinαBcosαcosαCcosαsinαDsinαcosα).((,),..(,).(,)PPQOBOBQ,于点【解答】解:过作⊥,交8RtOPQOP=1POQ=α,在中,△,∠cosα=PQ=sinαsinα=OQ=cosα,,,∴,即Pcosαsinα)则,的坐标为(,C.故选43分)如图所示,该几何体的主视图是(.()D AC B ....1个矩形,中间的轮廓线用虚线表示.【解答】解:该几何体为三棱柱,它的主视图是由D.故选5ABOBCO3OBC=60°BAC的度数是(()分)如图,若∠.则∠是⊙的直径,,是⊙的弦.A75°B60°C45°D30°....ABO的直径,【解答】解:∵是⊙ACB=90°,∴∠OBC=60°,又∵∠BAC=180°ACBABC=30°.﹣∠∴∠﹣∠9D.故选63分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是(.()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:411种,一个正面朝种等可能的结果数,其中两正面朝上的占种,两背面朝上的占共有2种,上,另一个背面朝上的占==;一个正面朝上,另一个背面朝上的概;两反面朝上的概率所以两正面朝上的概率==.率C.故选24x1=0xk37xk1的取.(+分)若关于)的一元二次方程(+﹣有两个不相等的实数根,则值范围是()Ak5Bk5k1 Ck5k1 Dk5>...<≠≤.<≠,且,且24xx1=0xk1有两个不相等的实数根,的一元二次方程(+【解答】解:∵关于﹣+),即,∴k5k1.且解得:≠<B.故选83lllAClllABCDF分别交,,,于点(.;直线分)如图,直线∥∥,,直线分别交331122 BC=5AH=2HHB=1DFFDlllEAC则的值为(且,,于点,,.与相交于点,,,,)31210DB2 CA ....HB=1AH=2,【解答】解:∵,AB=3,∴lll,∥∵∥312==,∴D.故选:x0xyx3y=xPyP9,则下,<﹣图象上有两点(),,若),<(.(分)反比例函数22111221)列结论正确的是(yy0yCy0DyAyy0 By0 >.<.><<.>.><21221112y=,﹣【解答】解:∵xk=30y的增大而增大,﹣随<∴,函数的图象在第二、四象限,并且在每个象限内,xyy=Px0xPyx,﹣图象上有两点(,,)∵反比例函数<(,),<22112211PP在第四象限,在第二象限,点∴点21y0y,>∴>21D.故选CDABC310DADBC=ACBC=AC=3的(.分)如图,在△中,为边上一点,∠∠,,,则)长为(DC2 1 AB....11DBC=AC=C,,∠【解答】解:∵∠∠∠CBDCAB,∴△∽△==,∴,即CD=2,∴C.故选113y=kx2xAy轴交于点+轴交于点.(分)如图,在平面直角坐标系系中,直线与,与1BOC=BBOy=tanS=1C,连接∠若在第一象限内的图象交于点,.,,与反比例函数OBC△k)则的值是(2A3 B1 C2 D3....﹣y=kx2xAyC,+与,与【解答】解:∵直线轴交于点轴交于点1C02),∴点,的坐标为(OC=2,∴S=1,∵OBC△BD=1,∴BOC=tan,∵∠=,∴OD=3,∴B13)∴点,的坐标为(,y=B,在第一象限内的图象交于点∵反比例函数3=3=1k.×∴2D.故选12A→B→CABC=4P123ABCDAB=3的方向在.(,点分)如图,矩形点出发,按中,从,xyyBCPA=xDPAAB)到直线的函数大致图象是的距离为,则和(上移动.记,点关于DC A B....ABP1上移动时,)当点【解答】解:(在PAD的距离为:到直线点3y=DA=BC=40x.≤)≤(BC21P,)如图上移动时,,当点在(BC=4AB=3,,∵AC=,∴DAE=90°PABDAE=90°ADE,+,∠+∠∵∠∠ADEPAB=,∠∴∠ADEPAB中,在△和△ADEPAB,∽△∴△13,∴,∴5y=x3.(≤∴<)综上,可得xy的函数大致图象是:关于.D.故选:18分)6小题,每小题3分,满分二、填空题(共21==0x=0x133xx.的解是﹣.(,分)方程 +21=01xx,【解答】解:+()1=0xx=0,+或1x=0=x.﹣,所以211x=x=0.故答案为,﹣2111143个、(.个、绿球分)一个不透明盒子内装有大小、形状相同的四个球,其中红球2.白球个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是【解答】解:画树状图得:212种情况,种等可能的结果,两次都摸到白球的有∵共有= ∴两次都摸到白球的概率是:.故答案为:1415311O在格点上,则∠(的小正方形构成的网格中,半径为分)如图,边长为的⊙.AED.的正切值为AED=ABC,∠【解答】解:由图可得,∠O1的网格格点上,在边长为∵⊙AB=2AC=1,,∴=ABC=tan,∠则AED=tan.∴∠故答案为:.y=ABx163ABy轴的垂线段,.(上的点,分别过点分)如图,点、轴和是双曲线、作28若图中阴影部分的面积为.,则两个空白矩形面积的和为y=BA上的点,、【解答】解:∵点是双曲线S=S=6,∴BEOFACOG矩形矩形S=2,∵DGOF阴影SS=6622=8,﹣﹣++∴BDGEACDF矩形矩形8故答案为:15317分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同.(温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:410℃t/﹣﹣温度242546494941l/mm物高度增长量植tl之间是二次函数关系.由此可以推测最适合这种植物生长与科学家经过猜想、推测出℃.1的温度为﹣2254460491 l=atbtc a0)代入后得方程组(,(++,(,≠,选()),,)【解答】解:设,,解得:249t2tltl=,+﹣所以与﹣之间的二次函数解析式为:501l=t=,时,﹣当﹣有最大值℃.1即说明最适合这种植物生长的温度是﹣1t=49t=14920时,植物﹣)可知抛物线的对称轴为直线﹣另法:由(﹣,(),,故当,生长的温度最快.1.故答案为:﹣ADBEAC1318ABCBC2相交于点、.(分)设△的面积为,如图①,将边、分别等分,1116OAOBSBCAC3BEADOAOB△分别相交于点等分,,△的面积记为,;如图②将边、、111nnS…S的代数式表示,其中.,依此类推,则可表示为(用含的面积记为;n2为正整数)DEADBEM,、【解答】解:如图,连接,设交于点1111AEAC=1n1)+:(,∵:1SS=1n1)+:∴(:,ABCABE1△△=S,∴ABE1△==,∵=,∴SS=n12n1)+(∴)::(,+ABE1ABM△△=n12n1S)+():,(∴:+ABM△=S.∴n故答案为:.三、解答题(共7小题,满分66分)245°719sintan60°..(分)计算: +﹣17=﹣【解答】解:原式+=﹣+=.20832x米,面积为分)用长为米的篱笆围一个矩形养鸡场,设围成的矩形一边长为.(y平方米.1yx的函数关系式;)求关于(2x为何值时,围成的养鸡场面积最大,最大面积是多少?()当1x16x)米,【解答】解:(米时,另一边长为()当矩形的一边长为﹣216x0x16y=x16x=x)(;﹣)(﹣<<根据题意,得:+2264xy=x816x=2,﹣﹣+)∵+)(﹣(x=8y64,∴当取得最大值,最大值为时,x864平方米.答:当米时,围成的养鸡场面积最大,最大面积是为218ACABABC在同一条直线上,在地分)如图,某建筑物,顶部有一旗杆,.(,且点DB30°DCEDEC三点在同一直线面处测得旗杆顶端(的仰角为,,在,,之间选择一点B60°DE20m,已知建筑物的高度,且上),又测得旗杆顶端,的仰角为之间的距离为 1.41AB0.11.73AC=12m.米),.参考数据:≈,求旗杆的高度(结果精确到≈BEC=60°BDE=30°,【解答】解:∵∠,∠DBE=60°30°=30°,﹣∴∠BE=DE=20m,∴RtBEC中,△在18=1017.3BC=BE?sin60°=20m)(≈×,AB=BCAC=17.312=5.3m)﹣,∴﹣(AB5.3m.答:旗杆的高度为2210ABOCDOCABD,的直径,,与.(与⊙分)如图,的延长线交于点是⊙相切于点DEADACE.且与⊥的延长线交于点1DC=DE;()求证:CAB=AB=3tanBD2的长.∠,(,求)若1OC,)证明:连接【解答】(CDO的切线,是⊙∵OCD=90°,∴∠ACODCE=90°,+∴∠∠EDADEDA=90°,又∵,∴∠⊥EADE=90°,∴∠∠+OC=OAACO=EAD,,∴∠∠∵DCE=E,故∠∠DC=DE,∴2BD=xAD=ABBD=3xOD=OBBD=1.5x,(,)解:设,则++++RtEAD中,△在AD=3ED=tanCAB=x)+∵,∠(,∴DC=3x1RtOCD中,△(+,在)由()知,222=DOCDOC,+19222x=3x1.51.5,((+])则)++[x=3x=1,﹣解得:(舍去),21BD=1.故2310分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、.(ABxCyDBm4),,点两点,与,﹣轴交于点,与的坐标是(轴交于点四象限内的,连AOC=AO=5sinAO.,接∠,1)求反比例函数的解析式;(2OBAOB的面积.)连接(,求△1AAExE,如图所示.⊥【解答】解:()过点轴于点作y=.设反比例函数解析式为AEx轴,⊥∵20AEO=90°.∴∠AOC=sinAEO=90°RtAEOAO=5,在∠△,中,,∠OE=AOC=3=4AE=AO?sin,,∠∴3A4.∴点,的坐标为(﹣)y=43A的图象上,,∵点)在反比例函数(﹣123=k=.﹣,解得:∴y=﹣.∴反比例函数解析式为y=42Bm﹣)∵点,﹣((的图象上,)在反比例函数m=34=,,解得:﹣∴﹣B34).,﹣∴点的坐标为(ABy=axb,的解析式为设直线+A43B34y=axb中得:将点((﹣)代入,,﹣)、点+,解得:,y=x1.∴一次函数解析式为﹣﹣y=x1y=00=x1,﹣,则﹣﹣中﹣令一次函数x=1C10)解得:的坐标为(﹣﹣.,即点,=31OC?yy4=S=.(﹣(﹣﹣)])×[×BAAOB△2411RtABCACB=90°B=60°RtDEFEDF=90°,中,;在∠.(分)将一副三角尺(在△△中,∠,∠E=45°DABDEACPDFC.的中点,交经过点于点,∠)如图①摆放,点为1ADE的度数;)求∠(212DEFDα0°α60°))如图②,将△<绕点<顺时针方向旋转角,此时的等腰直角三角((αBCNACMDF′DE′F′DE′的变化而于点于点,尺记为△,试判断,交交的值是否随着的值;反之,请说明理由.变化?如果不变,请求出1ACB=90°DAB的中点,,点【解答】解:(为)∵∠CD=AD=BD=AB,∴ACD=A=30°,∴∠∠ADC=180°30°2=120°,﹣×∴∠ADE=ADCEDF=120°90°=30°;∠∴∠﹣﹣∠2EDF=90°,()∵∠PDME′DF=CDNE′DF=90°,∠+∠+∴∠∠PDM=CDN,∠∴∠B=60°BD=CD,,∵∠BCD是等边三角形,∴△BCD=60°,∴∠CPD=AADE=30°30°=60°,+∵∠∠∠+CPD=BCD,∴∠∠DPMDCN中,在△和△,DPMDCN,∴△∽△=,∴==tanACD=tan30°∠∵,α的变化而变化,是定值的值不随着.∴4y=xOy1225bx0Ac)和(,(.分)如图,在平面直角坐标系中,抛物线﹣++过点C80Pt0xMAPMP绕点,(,)(,)是轴正半轴上的一个动点,是线段的中点,将线段22P90°PBBxAy轴的垂线,两直线交于点得线段轴的垂线,过点,过点作顺时针旋转作D.1bc的值;)求(、2tD落在抛物线上.)当(为何值时,点cy=bx804C01A得﹣)和+(,,【解答】解:()代入)把(+,b=c=4;解得,2MNxN,如图,)作轴于点(⊥MAP的中点,∵是线段MN=2,∴ADBEBEx轴,,∵⊥⊥BE=OA=4,∴MPP90°PB,∵线段顺时针旋转绕点得线段PM=PBMPB=90°,,∠∴MPNBPE=90°MPNPMN=90°,∠,∠∵∠++∠PMN=BPE,∴∠∠PMNBPE中在△和△,PMNBPE,≌△∴△PE=MN=2,∴OE=2t,∴+D2t4),∴(+,23=x=,﹣∵抛物线的对称轴为直线DA为对称点,而点、点45D,,点坐标为(∴)t=32t=5,∴,解得+D3t落在抛物线上.为时,点即当24。
山东省临沂市2022-2023学年九年级数学上册期末测试卷(附答案)
2022-2023学年九年级数学上册期末测试卷(附答案)一、选择题(共45分。
)1.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正七边形D.正八边形2.方程x2﹣2x﹣1=0实数根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 4.把抛物线y=﹣4x2向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式为()A.y=﹣4(x+2)2﹣3B.y=﹣4(x﹣2)2﹣3C.y=﹣4(x﹣3)2+2D.y=﹣4(x﹣3)2﹣25.关于抛物线y=x2﹣2x,下列说法错误的是()A.该抛物线经过原点B.该抛物线的对称轴是直线x=1C.该二次函数的最小值是0D.当x<0时,y随x增大而减小6.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y27.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠1B.m=1C.m>1D.m≠08.我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫,创造了又一个彪炳史册的人间奇迹!某贫困村从2018年开始大力发展乡村民宿旅游产业,据统计,该村2018年乡村民宿旅游收入约为2000万元,2020年该村乡村民宿旅游收入达到3380万元,则该村2018年到2020年乡村民宿旅游收入的年平均增长率约为()A.20%B.25%C.30%D.35%9.下列说法正确的是()A.“任意画一个三角形,其内角和是180°”是必然事件B.“购买1张彩票,中奖”是不可能事件C.抛掷一枚质地均匀的硬币10次,有3次正面朝上,说明正面朝上的概率是0.3 D.某射击运动员射击了九次都没有中靶,故他射击的第十次也一定不中靶10.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有()A.6个B.10个C.15个D.30个11.已知AB=12cm,过A,B两点画半径为8cm的圆,则能画的圆的个数为()A.0个B.1个C.2个D.无数个12.如图,A、B、C是⊙O上的三个点,∠ABC=45°,连接AO,过点O作OE⊥BC交BC于点D,交⊙O于点E.若点D是OE的中点,则∠AOE的度数为()A.120°B.135°C.140°D.150°13.已知一个圆锥的底面半径是5cm,侧面积是65πcm2,则圆锥的母线长是()A.6.5cm B.13cm C.15cm D.26cm14.如图,将△ABC绕着点B逆时针旋转45°后得到△A'BC′,若∠A=120°,∠C=35°,则∠A'BC的度数为()A.20°B.25°C.30°D.35°15.如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=5,CA=4,则⊙O的半径是()A.1B.C.2D.2二、填空题(共16分)16.在平面直角坐标系中,点A(﹣5,b)关于原点对称的点为B(a,6),则(a+b)2022=.17.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.18.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,若AB=3.5,则光盘表示的圆的半径r=.19.已知抛物线y=ax2+bx+c如图所示,它与x轴的两交点的横坐标分别是﹣1,5.对于下列结论:①abc>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=5;③9a﹣3b+c<0;④当x<2时,y随着x的增大而增大.其中正确的结论是(填写结论的序号).三、解答题(共59分。
【5套打包】临沂市初三九年级数学上期末考试检测试题及答案
九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A.B.C.D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A.B.﹣C.﹣D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③B.②③④C.①②④D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A.B.C.D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A.B.﹣C.﹣D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③B.②③④C.①②④D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.九年级(上)期末考试数学试题及答案一.选择题(满分42分,每小题3分)1.方程(x+1)2=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)3.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5)B.(3,﹣5)C.(5,3)D.(﹣3,﹣5)4.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定5.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=46.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.7.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°8.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)9.如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3 B.3:4 C.9:16 D.16:910.若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4 B.﹣4≤x<0或x≥2C.≤x<0或x D.x或011.如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7 B.10 C.14 D.2812.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C 三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π13.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为()A.2.2 B.2.5 C.2 D.1.814.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q二.填空题(共5小题,满分15分,每小题3分)15.若关于x的方程x2﹣x+cosα=0有两个相等的实数根,则锐角α为.16.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为.18.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.19.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为.三.解答题(共6小题,满分63分)20.(8分)有四张正面分别标有数字:﹣1,1,2,﹣2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=﹣上的概率.21.(9分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.22.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O 点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.23.(12分)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.24.(11分)如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.25.(13分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x 轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.参考答案一.选择1.方程(x+1)2=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根【分析】根据一元二次方程的解法即可求出答案.解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5)B.(3,﹣5)C.(5,3)D.(﹣3,﹣5)【分析】根据关于原点对称的点的坐标特点;两个点关于原点对称时,它们的坐标符号相反可得答案.解:点P(3,5)关于原点对称的点的坐标是9﹣3,﹣5),故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.4.如果⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是()A.相交B.相切C.相离D.不确定【分析】根据直线和圆的位置关系的内容判断即可.解:∵⊙O的半径为7cm,圆心O到直线l的距离为d,且d=5cm,∴5<7,∴直线l与⊙O的位置关系是相交,故选:A.【点评】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.5.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是=,故选:B.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.7.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°【分析】根据圆周角定理即可求出答案解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.【点评】本题考查圆周角定理,注意圆的半径都相等,本题属于基础题型.8.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)【分析】利用旋转的性质,旋转中心在各对应点的连线段的垂直平分线上,则作线段AD、BE、FC的垂直平分线,它们相点P(0,1)即为旋转中心.解:作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1),如图,所以△DEF是由△ABC绕着点P逆时针旋转90°得到的.故选:B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是利用旋转的性质确定旋转中心.9.(3分)如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC 的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3 B.3:4 C.9:16 D.16:9【分析】根据位似变换的概念得到△ABC∽△A′B′C′,根据相似三角形的面积比等于相似比的平方解答.解:∵△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,∴△ABC∽△A′B′C′,∵△ABC的面积与△A′B′C′的面积比是16:9,∴OA:OA′为4:3,故选:A.【点评】本题考查的是位似变换,掌握位似图形是相似图形、相似思想的面积比等于相似比的平方是解题的关键.10.若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4 B.﹣4≤x<0或x≥2C.≤x<0或x D.x或0【分析】根据图形找出点的坐标,利用待定系数法求出一次函数和反比例函数解析式,将一次函数图象向上移2个单位长度找出新的一次函数解析式,联立新一次函数解析式和反比例函数解析式成方程组,通过解方程组求出交点坐标,结合函数图象即可得出不等式的解集.解:将(﹣2,0)、(0,﹣2)代入y=kx+b,,解得:,∴一次函数解析式为y=﹣x﹣2.当x=2时,y=﹣x﹣2=﹣4,∴一次函数图象与反比例函数图象的一个交点坐标为(2,﹣4),∴k=2×(﹣4)=﹣8,∴反比例函数解析式为y=﹣.将一次函数图象向上移2个单位长度得出的新的函数解析式为y=﹣x.联立新一次函数及反比例函数解析式成方程组,,解得:,.观察函数图象可知:当﹣2<x<0或x>2时,新一次函数图象在反比例函数图象下方,∴不等式﹣x≤﹣的解集为﹣2≤x<0或x≥2.故选:C.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次(反比例)函数解析式以及一次函数图象与几何变换,根据图形中点的坐标利用待定系数法求出一次(反比例)函数解析式是解题的关键.11.如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7 B.10 C.14 D.28【分析】设出M点的坐标,可得出过M与x轴平行的直线方程为y=m,将y=m代入反比例函数y=﹣中,求出对应的x的值,即为A的横坐标,将y=m代入反比例函数y=中,求出对应的x的值,即为B的横坐标,用B的横坐标减去A的横坐标求出AB的长,根据DC=AB,且DC与AB平行,得到四边形ABCD为平行四边形,过B作BN垂直于x轴,平行四边形的底边为DC,DC边上的高为BN,由B的纵坐标为m,得到BN=m,再由求出的AB的长,得到DC的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积.解:设M的坐标为(0,m)(m>0),则直线AB的方程为:y=m,将y=m代入y=﹣中得:x=﹣,∴A(﹣,m),将y=m代入y=中得:x=,∴B(,m),∴DC=AB=﹣(﹣)=,过B作BN⊥x轴,则有BN=m,则平行四边形ABCD的面积S=DC•BN=•m=14.故选:C.【点评】此题属于反比例函数综合题,涉及的知识有:平面直角坐标系与坐标,反比例函数的性质,平行四边形的面积求法,以及一次函数与反比例函数的交点,利用了数形结合的思想,其中设出M的坐标,表示出过M与x轴平行的直线方程是本题的突破点.12.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C 三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【分析】根据弧长公式l=解答.解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.【点评】考查了弧长公式和等边三角形的性质,熟记弧长公式即可解答,属于基础题.13.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则DE的长为()A.2.2 B.2.5 C.2 D.1.8【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长.解:如图1,连接BD、CD,,∵AB为⊙O的直径,∴∠ADB=90°,∴BD===,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴,即,解得DE=.故选:A.【点评】此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD ∽△BED.14.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【分析】分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选:D.【点评】此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P 的位置不好排除,同学们要注意仔细观察.二.填空题(共5小题,满分15分,每小题3分)15.若关于x的方程x2﹣x+cosα=0有两个相等的实数根,则锐角α为60°.【分析】根据根的判别式,将原式转化为关于cosα的方程,然后根据特殊角的三角函数值解答.解:∵关于x的方程x2﹣x+cosα=0有两个相等的实数根,∴b2﹣4ac=(﹣)2﹣4×1×cosα=0,∴cosα=,∴α=60°.故答案为:60°.【点评】此题考查利用根的判别式b2﹣4ac来判定根的情况;注意特殊角的三角函数值.16.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为8 .【分析】由A,B为双曲线上的两点,利用反比例系数k的几何意义,求出矩形ACOG与矩形BEOF面积,再由阴影DGOF面积求出空白面积之和即可.解:∵点A、B是双曲线y=上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=8,故答案为:8【点评】此题考查了反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解本题的关键.17.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为.【分析】根据三角形内角和定理求出∠C,根据三角形的外角的性质求出∠BDE,根据扇形面积公式计算.解:∵∠A=60°,∠B=100°,∴∠C=20°,∵BD=DC=1,DE=DB,∴DE=DC=1,∴∠DEC=∠C=20°,∴∠BDE=40°,∴扇形BDE的面积==,故答案为:.【点评】本题考查的是扇形面积计算,三角形内角和定理,等腰三角形的性质,掌握扇形面积公式S扇形=πR2是解题的关键.18.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.19.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为y=﹣2x﹣3 .【分析】根据圆心坐标及圆的半径,结合图形,可得点A坐标为(﹣1,0),点B坐标为(3,0),利用待定系数法确定抛物线解析式,因为经过点D的“蛋圆”切线过D点,所以本题可设它的解析式为y=kx﹣3,因为相切,所以它们的交点只有一个,进而可根据一元二次方程的有关知识解决问题.解:∵AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,∴A(﹣1,0),B(3,0),∵抛物线过点A、B,∴设抛物线的解析式为y=a(x+1)(x﹣3),又∵抛物线过点D(0,﹣3),∴﹣3=a•1•(﹣3),即a=1,∴y=x2﹣2x﹣3,∵经过点D的“蛋圆”切线过D(0,﹣3)点,∴设它的解析式为y=kx﹣3,又∵抛物线y=x2﹣2x﹣3与直线y=kx﹣3相切,∴x2﹣2x﹣3=kx﹣3,即x2﹣(2+k)x=0只有一个解,∴△=(2+k)2﹣4×0=0,解得:k=﹣2,即经过点D的“蛋圆”切线的解析式为y=﹣2x﹣3.故答案为:y=﹣2x﹣3.【点评】本题考查了二次函数的综合,需灵活运用待定系数法建立函数解析式,并利用切线的性质,结合一元二次方程来解决问题,难度一般.三.解答题(共6小题,满分63分)20.(8分)有四张正面分别标有数字:﹣1,1,2,﹣2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=﹣上的概率.【分析】(1)利用树状图展示所有16种等可能的结果数;(2)利用反比例函数图象上点的坐标特征找出点(x,y)落在双曲线y=﹣上的结果数,然后根据概率公式求解.解:(1)画树状图为:两次抽出卡片上的数字的所有结果为(﹣1,1),(﹣1,2),(﹣1,﹣2),(﹣1,﹣1),(1,1)(1,﹣1),(1,2),(1,﹣2),(2,﹣1),(2,1),(2,﹣2),(2,2),(﹣2,﹣1),(﹣2,1),(﹣2,2),(﹣2,﹣2);(2)点(x,y)落在双曲线y=﹣上的结果数为4,所以点(x,y)落在双曲线y=﹣上的概率==.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了列表法与树状图.21.(9分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.【分析】应用圆切线的性质可得∠PAO=90°,再利用同弧所对的圆周角是圆心角的一半直接求出∠B的度数.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.【点评】这是一道应用圆切线的性质以及三角形外角的性质来建立的问题,这样的求稳定的同时,又有一些情景新颖考法常常能更好地考查学生的基础意识,以及简单的运用方程思想解决问题的能力.试题的特色和亮点:能直接利用性质进行必要的计算,属于中考容易得分的题目.22.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长;(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴OE=BC=;(2)连接OC,则易得△COE≌△AFE,故阴影部分的面积=扇形FOC的面积,S==π.扇形FOC即可得阴影部分的面积为π.【点评】本题考查了扇形的面积计算、含30°角的直角三角形的计算及圆周角定理及垂径定理的知识,综合考察的知识点比较多,难点在第二问,注意将不规则图形转化为规则图形.23.(12分)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n与k的值;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y>﹣2时,请直接写出自变量x的取值范围.【分析】(1)把A点坐标代入一次函数解析式可求得n,则可求得A点坐标,代入反比例函数解析式则可求得k的值;(2)由一次函数解析式可先求得B点坐标,从而可求得AB的长,则可求得C点坐标,利用平移即可求得D点坐标;(3)在y=中,当y>﹣2时可求得对应的x的值,结合图象即可求得x的取值范围.解:(1)把A点坐标代入一次函数解析式可得n=×4﹣3=3,∴A(4,3),∵A点在反比例函数图象上,∴k=3×4=12;(2)在y=x﹣3中,令y=0可得x=2,∴B(2,0),∵A(4,3),∴AB==,∵四边形ABCD为菱形,且点C在x轴正半轴上,点D在第一象限,∴BC=AB=,∴点C由点B向右平移个单位得到,∴点D由点A向右平移个单位得到,∴D(4+,3);(3)由(1)可知反比例函数解析式为y=,令y=﹣2可得x=﹣6,结合图象可知当y>﹣2时,x的取值范围为x<﹣6或x>0.【点评】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、菱形的性质、勾股定理、坐标的平移和数形结合思想等知识.在(1)中注意函数图象的交点坐标满足每一个函数解析式,在(2)中利用平移的知识更容易解决,在(3)中注意求得y=﹣2时对应的x的值是解题的关键,注意数形结合.本题考查知识点较多,综合性较强,难度适中.24.(11分)如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.【分析】(1)延长CD到N,使DN=BP,连接AN,根据正方形的性质和全等三角形的判定SAS证△ABP≌△ADN,推出AN=AP,∠NAD=∠PAB,求出∠NAK=∠KAP=45°,根。
山东临沂九年级数学上学期期末考试卷(含答案)
山东临沂九年级数学上学期期末考试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.1.用配方法解方程2610x x -+=,方程应变形为 A .2(3)8x -=B .2(3)10x -=C .2(6)10x -=D .2(6)8x -=2.保护环境,人人有责.下列四个图形是生活中常见的垃圾回收标志,是中心对称图形的是3.点11(2,)P y -,22(2,)Py ,33(4,)P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是A .231y y y >>B .213y y y >=C .132y y y =>D .123y y y =>4.已知二次函数224y x x =++,下列说法正确的是 A .抛物线开口向下B .当3x >-时,y 随x 的增大而增大C .二次函数的最小值是2D .抛物线的对称轴是直线1x =-5.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是A. B. C. D.A .13B .23 C .19D .296.关于反比例函数2y x=-,下列说法中错误的是A .当0x <时,y 随x 的增大而增大B .图象位于第二、四象限C .点(2,1)-在函数图象上D .当1x <-时,2y >7.如图,在给出网格中,小正方形的边长为1,点A ,B ,O 都在格点上,则cos A ∠= A .55B .510C .255D .128.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE = A .103B .203C .52D .1529.如图,点A 、B 、C 在O 上,若35o A C ∠=∠=,则B ∠= A .65︒B .70︒C .55︒D .60︒10.二次函数224y x x =-++,当12x -时,则 A .14yB .5yC .45yD .15y11.如图,函数ky x=-与1(0)y kx k =+≠在同一平面直角坐标系中的图象大致是第8题第9题第7题A.B.C.D.12.如图,ABC∆中,90C∠=︒,3AC=,4BC=,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为A .95B.125C.185D.36513.如图,从地面竖直向上抛出一小球,小球的高度h(单位:)m与小球运动时间t(单位:)s之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;第12题第13题第14题③小球抛出3秒时,速度为0; ④当 1.5t s =时,小球的高度30h m =. 其中正确的是 A .①④B .①②C .②③④D .②④14.如图,等边OAB ∆的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把OAB ∆逆时针旋转90︒,则旋转后点A 的对应点A '的坐标是 A .(3-,1)B .(3,1)-C .(1,3)-D .(2,1)-二、填空题(本大题共4小题,每小题5分,共20分).15.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为_____.16.已知二次函数221y x mx =++,若1x >时,y 随x 的增大而增大,则m 的取值范围是________.17.如图,O 的直径2AB =,C 是半圆上任意一点,60BCD ∠=︒,则劣弧AD 的长为 .第17题第18题18.如图,正方形ABCD中,E为DC边上一点,且2DE=,将AE绕点E逆时针旋转90︒得到EF,连接AF、FC,则线段FC的长度是_________.三、解答题(共58分)19. (10分) 如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60︒方向上,航行12海里到达C点,这时测得小岛A在北偏东30︒方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?说明理由.≈)(参考数据:3 1.73220. (12分).如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分DAB∠;(2)若2CE=,求图中阴影部分的面积.BE=,2321.(12分) 如图,在ABC ∆中,90C ∠=︒,1AC BC ==,将ABC ∆绕点A 顺时针方 向旋转60︒到△AB C ''的位置. (1)画出旋转后的△AB C '';(2)连接BC ',求证:直线BC '是线段AB '的垂直平分线; (3)求线段BC '的长.22. (12分) 已知点1(x ,1)y 和2(x ,2)y 在反比例函数1y x=图象上. (1)如果12x x >,那么1y 与2y 有怎样的大小关系? (2)当10x >,20x >,且122x x -=时,求2112y y y y -的值;23. (12分) 如图,直线y x c =-+与x 轴交于点(3,0)B ,与y 轴交于点C ,过点B ,C 的抛物线2y x bx c =-++与x 轴的另一个交点为A . (1)求抛物线的解析式和点A 的坐标;(2)P 是直线BC 上方抛物线上一动点,PA 交BC 于D .设PDt AD=,请求出t 的最大值和此时点P 的坐标;参考答案【注】本答案供参考,由于证明(解题)方法的多样性,学生给出的方法只要合情合理即可按标准给分。
2022年山东省临沂市沂南县数学九上期末复习检测试题含解析
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.反比例函数(0)k y k x =≠的图象经过点()2,6-,若点(3,)n 在反比例函数的图象上,则n 等于( ) A .-4 B .-9 C .4 D .92.方程248x x =的解是( )A .2x =B .0x =C .10x =,22x =D .12x =-,22x =3.如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103πB .109πC .59π D .518π 4. 关于x 的一元二次方程x 2﹣2x ﹣m =0有实根,则m 的值可能是( )A .﹣4B .﹣3C .﹣2D .﹣15.如图,已知△ABC 中,∠C =90°,AC =BC ,把△ABC 绕点A 逆时针旋转60°得到△AB 'C ',连接C 'B ,则∠ABC '的度数是( )A .45°B .30°C .20°D .15°6.如图,已知点P 在反比例函数k y x=上,PA x ⊥轴,垂足为点A ,且AOP ∆的面积为4,则k 的值为( )A .8B .4C .8-D .4-7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.一元二次方程x 2﹣3x+5=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .只有一个实数根D .有两个不相等的实数根9.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )A .3cmB .6cmC .12cmD .24cm10.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( )A .13B .23C .29D .12二、填空题(每小题3分,共24分)11.反比例函数y =4a x+的图象如图所示,A ,P 为该图象上的点,且关于原点成中心对称.在△PAB 中,PB∥y 轴,AB∥x 轴,PB 与AB 相交于点B .若△PAB 的面积大于12,则关于x 的方程(a -1)x 2-x +14=0的根的情况是________________.12.在本赛季CBA 比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.13.计算:101(31)2-⎛⎫- ⎪⎝⎭=______. 14.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.15.若关于x 的一元二次方程 20x x k -+= 的一个根是0,则另一个根是________.16.在△ABC 中,AB =10,AC =8,B 为锐角且cos 45B =,则BC =_____. 17.计算:118()4sin 302--+=__________. 18.如图,在Rt △ABC 中,∠BAC=90°,且BA=9,AC=12,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为_______.三、解答题(共66分)19.(10分)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC 长为13米,它的坡度为i =1:2.4,AB ⊥BC ,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC =13°(此时点B 、C 、D 在同一直线上).(1)求这个车库的高度AB ;(2)求斜坡改进后的起点D 与原起点C 的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)20.(6分)解方程:(x +3)(x ﹣6)=﹣1.21.(6分)如图,在 Rt △ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于点 D ,O 为 AB 上一点,经过点 A 、D 的⊙O 分别交 AB 、AC 于点 E 、F ,(1)求证:BC 是⊙O 切线;(2)设AB=m,AF=n,试用含m、n 的代数式表示线段AD 的长.22.(8分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.图1图2材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10 m,间距AB为32 m,桥面AB水平,主索最低点为点P,点P距离桥面为2 m;图3为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P 为原点,平行于AB 的直线为x 轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C 的坐标,并求出主索抛物线的表达式; (2)距离点P 水平距离为4 m 和8 m 处的吊索共四条需要更换,则四根吊索总长度为多少米?23.(8分)孝感商场计划在春节前50天里销售某品牌麻糖,其进价为18元/盒.设第x 天的销售价格为y (元/盒),销售量为m (盒).该商场根据以往的销售经验得出以下的销售规律:①当130x ≤≤时,38y =;当3150x ≤≤时,y 与x 满足一次函数关系,且当36x =时,37y =;40x =时,35y =.②m 与x 的关系为330m x =+.(1)当3150x ≤≤时,y 与x 的关系式为 ;(2)x 为多少时,当天的销售利润W (元)最大?最大利润为多少?24.(8分)今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围;(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.25.(10分)如图,一次函数y kx b =+与反比例函数m y x=的图象交于(4,3)A ,点(2,)B n -两点,交x 轴于点C . (1)求m 、n 的值.(2)请根据图象直接写出不等式m kx b x+>的解集. (3)x 轴上是否存在一点D ,使得以A 、C 、D 三点为顶点的三角形是AC 为腰的等腰三角形,若存在,请直接写出符合条件的点D 的坐标,若不存在,请说明理由.26.(10分)解一元二次方程:22310x x -+=.参考答案一、选择题(每小题3分,共30分)1、A【分析】将点(-2,6)代入(0)k y k x =≠得出k 的值,再将(3,)n 代入(0)k y k x=≠即可 【详解】解:∵反比例函数(0)k y k x =≠的图象经过点()2,6-, ∴k=(-2)×6=-12,∴12y x=- 又点(3,n )在此反比例函数12y x =-的图象上, ∴3n=-12,解得:n=-1.故选:A【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【详解】∵248x x =,∴2480x x -=,∴220x x -=,∴()20x x -=,∴10x =,22x =.故选C.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.3、B【分析】直接利用等腰三角形的性质得出∠A 的度数,再利用圆周角定理得出∠BOC 的度数,再利用弧长公式求出答案.【详解】解:∵∠OCA=50°,OA=OC ,∴∠A=50°,∴∠BOC=2∠A=100°,∵AB=4,∴BO=2,∴BC 的长为:1002181900ππ⨯= 故选B .【点睛】此题主要考查了弧长公式应用以及圆周角定理,正确得出∠BOC 的度数是解题关键.4、D【分析】根据题意可得,24b ac =-△≥0,即可得出答案.【详解】解:∵关于x 的一元二次方程x 2﹣2x ﹣m =0有实根,∴△=(﹣2)2﹣4×1×(﹣m )≥0,解得:m≥﹣1.故选D .【点睛】本题考查的是一元二次方程的根的判别式,当240b ac =->时,有两个不等实根;当240b ac =-=时,有两个相等实根;当240b ac =-<时,没有实数根.5、B【分析】连接BB′,延长BC′交AB′于点M ;证明△ABC ′≌△B ′BC ′,得到∠MBB ′=∠MBA=30°.【详解】如图,连接BB ′,延长BC ′交AB ′于点M ;由题意得:∠BAB ′=60°,BA =B ′A ,∴△ABB ′为等边三角形,∴∠ABB ′=60°,AB =B ′B ;在△ABC ′与△B ′BC ′中,AC'B C AB B B ''''BC B 'C =⎧⎪=⎨⎪=⎩,∴△ABC ′≌△B ′BC ′(SSS ),∴∠MBB ′=∠MBA =30°,即∠ABC '=30°;故选:B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形是解题的关键.6、C【分析】根据反比例函数中的比例系数k 的几何意义即可得出答案.【详解】∵点P 在反比例函数k y x=,AOP ∆的面积为4 8k ∴=0k <8k ∴=-故选:C .【点睛】本题主要考查反比例函数中的比例系数k 的几何意义,掌握反比例函数中的比例系数k 的几何意义是解题的关键. 7、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,故A 不符合题意;B 、不是轴对称图形,故B 不符合题意;C 、不是轴对称图形,故C 不符合题意;D 、是轴对称图形,故D 符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、A【解析】Δ=b 2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程没有实数根,故选 A.9、C【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=,∴圆锥的底面半径为:()24π2π12cm ÷=.故答案为:C.【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.10、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:39=13. 故选:A .【点睛】 此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、没有实数根【解析】分析:由比例函数y=4a x+的图象位于一、三象限得出a+4>0,A 、P 为该图象上的点,且关于原点成中心对称,得出1xy >11,进一步得出a+4>6,由此确定a 的取值范围,进一步利用根的判别式判定方程根的情况即可. 详解:∵反比例函数y=4a x +的图象位于一、三象限, ∴a+4>0,∴a >-4,∵A 、P 关于原点成中心对称,PB ∥y 轴,AB ∥x 轴,△PAB 的面积大于11,∴1xy >11,即a+4>6,a >1∴a >1.∴△=(-1)1-4(a-1)×14=1-a <0,∴关于x 的方程(a-1)x 1-x+14=0没有实数根. 故答案为:没有实数根.点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a 的取值范围是解决问题的关键.12、5259. 【分析】先计算出这组数据的平均数,然后根据方差公式求解. 【详解】解:平均数=12(171521281219)1863+++++= 所以方差是S 2= 2222221222222[(1718)(1518)(2118)(2818)(1218)(1918)]6333333-+-+-+-+-+- =5259故答案为:5259.本题考查方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2= ()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 13、-1.【分析】由题意根据负整数指数幂和零指数幂的定义求解即可.【详解】解:1011)2-⎛⎫- ⎪⎝⎭ =1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查负整数指数幂和零指数幂的定义,熟练掌握实数的运算法则以及负整数指数幂和零指数幂的运算方法是解题的关键.14、不具有【分析】根据抽取样本的注意事项即要考虑样本具有广泛性与代表性,其代表性就是抽取的样本必须是随机的,以此进行分析.【详解】解:要估计全市九年级学生早读时间情况,应从该市所以学校九年级中随机抽取100人进行调查,所以在这个问题中调查的样本不具有代表性.故此空填“不具有”.【点睛】本题考查抽样调查的可靠性,解题时注意:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.15、1【解析】设x 1,x 2是关于x 的一元二次方程x 2−x+k=0的两个根,∵关于x 的一元二次方程x 2−x+k=0的一个根是0,∴由韦达定理,得x 1+x 2=1,即x 2=1,即方程的另一个根是1.故答案为1.16、8﹣【分析】分两种情况进行解答,即①∠ACB 为锐角,②∠ACB 为钝角,分别画出图形,利用三角函数解直角三角形【详解】过点A作AD⊥BC,垂足为D,①当∠ACB为锐角时,如图1,在Rt△ABD中,BD=AB•cosB=10×45=8,AD=22108-=6,在Rt△ACD中,CD=2286-=27,∴BC=BD+CD=8+27,②当∠ACB为钝角时,如图2,在Rt△ABD中,BD=AB•cosB=10×45=8,AD=22108-=6,在Rt△ACD中,CD=2286-=27,∴BC=BD﹣CD=8﹣27,故答案为:8+27或8﹣27.【点睛】考查直角三角形的边角关系,理解锐角三角函数的意义是正确解答的关键,分类讨论在此类问题中经常用到.17、2【分析】先计算根号、负指数和sin30°,再运用实数的加减法运算法则计算即可得出答案.【详解】原式=12224222+⨯=22【点睛】本题考查的是实数的运算,中考必考题型,需要熟练掌握实数的运算法则.18、18 5【分析】由勾股定理求出BC的长,再证明四边形DEAF是矩形,可得EF=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=9,AC=12,∴在Rt△ABC中,利用勾股定理得:=15,∵DE⊥AB,DF⊥AC,∠BAC=90°∴∠DEA=∠DFA=∠BAC=90°,∴四边形DEAF是矩形,∴EF=AD,GF=12EF∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=12AB×AC=12BC×AD,∴AD=BA ACBC⨯=91215⨯=365,∴EF=AD=365,因此EF的最小值为365;又∵GF=12EF∴GF=12×365=185故线段GF的最小值为:185.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、(1)这个车库的高度AB为5米;(2)斜坡改进后的起点D与原起点C的距离为9.7米.【解析】(1)根据坡比可得ABBC=512,利用勾股定理求出AB的长即可;(2)由(1)可得BC的长,由∠ADB的余切值可求出BD的长,进而求出CD的长即可.【详解】(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i=ABBC=512,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC=BD AB,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】此题主要考查了坡角的定义以、锐角的三角函数及勾股定理等知识,正确求出BC,BD的长是解题关键.20、x=5或x=﹣2.【分析】先把方程化为一元二次方程的一般形式,然后再运用因式分解法解方程即可解答.【详解】将方程整理为一般式,得:x2﹣3x﹣10=0,则(x﹣5)(x+2)=0,∴x﹣5=0或x+2=0,解得x=5或x=﹣2.【点睛】本题考查一元二次方程的解法,属于基础题,解题的关键是熟练掌握一元二次方程的四种解法.21、(1)见解析;(2)AD【分析】(1)连接OD,由AD为角平分线得到∠BAD=∠CAD,再由等边对等角得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,进而得到OD∥AC,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,结合角度的运算得出∠CDF=∠DAF,进而得到∠AFD=∠ADB,结合∠BAD=∠DAF得到△ABD∽△ADF,由相似得比例,即可表示出AD;【详解】(1)证明:如图,连接OD,则OD为圆O的半径,∵AD 平分∠BAC,∴∠BAD=∠CAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD ∥AC ,∴∠ODC=∠C=90°即OD ⊥BC ,∴BC 是⊙O 切线.(2)连接DF ,OF ,由(1)知BC 为圆O 的切线,∴∠ODC=90°,∴∠ODF+∠CDF=90°,∴∠ODF=90°-∠CDF , ∵OD=OF ,∴∠ODF=∠OFD=11(180)9022DOF DOF ︒-∠=︒-∠, 又∵∠DAF=12DOF ∠, ∴∠ODF=90DAF ︒-∠∴∠CDF=∠DAF又∵∠CDF+∠CFD=90°,∠DAF+∠CDA=90°,∴∠CDA =∠CFD ,∴∠AFD =∠ADB ,∵∠BAD =∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,则2AD AB AF = ∵AB=m ,AF=n ,∴2AD mn = ∴AD mn =【点睛】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.22、(1)甲,C (16,0),主索抛物线的表达式为21832y x =-;(2)四根吊索的总长度为13m ; 【分析】(1)利用待定系数法求取解析式即可;(2)利用抛物线对称性进一步求解即可.【详解】(1)甲,C (16,0)解:设抛物线的表达式为2(0)y ax c a =+≠由题意可知,C 点坐标为(16,0),P 点坐标为(0,-8)将C (16,0),P (0,-8)代入2(0)y ax c a =+≠,得 21608a c c ⎧⨯+=⎨=-⎩解得1328a c ⎧=⎪⎨⎪=-⎩. ∴主索抛物线的表达式为21832y x =- (2)x =4时,211548322y =⨯-=-,此时吊索的长度为1551022-=m. 由抛物线的对称性可得,x =-4时,此时吊索的长度也为52m. 同理,x =8时,2188632y =⨯-=-,此时吊索的长度为1064-=m x =-8时,此时吊索的长度也为4m.∴四根吊索的总长度为13m【点睛】本题主要考查了抛物线解析式的求取与性质,熟练掌握相关概念是解题关键.23、(1)1552y x =-+;(2)32, 2646元.【分析】(1)设一次函数关系式为(0)y kx b k =+≠,将“当36x =时,37y =;40x =时,35y =”代入计算即可;(2)根据利润等于单件利润乘以销售量分段列出函数关系式,再根据一次函数及二次函数的性质得出最大利润即可.【详解】解:(1)设一次函数关系式为(0)y kx b k =+≠∵当36x =时,37y =;40x =时,35y =,即37363540k b k b =+⎧⎨=+⎩,解得:1255k b ⎧=-⎪⎨⎪=⎩ ∴1552y x =-+ (2)(18)W y m =-∴当130x ≤≤时,(3818)(330)60600W x x =-+=+ ∵60>0∴当x=30时,W 最大=2400(元)当3150x ≤≤时1(5518)(330)2W x x =-+-+ 239611102x x =-++ 23(32)26462x =--+ ∴当x=32时,当天的销售利润W 最大,为2646元.2646>2400∴故当x=32时,当天的销售利润W 最大,为2646元.【点睛】本题考查了二次函数的实际应用,根据题意列出函数关系式并熟知函数的基本性质是解题关键.24、(1)y=﹣2x+340(20≤x≤40);(2)5200【解析】试题分析:(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.试题解析:(1)设y 与x 的函数关系式为y=kx+b ,根据题意,得:,解得:, ∴y 与x 的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x ﹣20)(﹣2x+340)=﹣2x 2+380x ﹣6800=﹣2(x ﹣95)2+11250,∵﹣2<0, ∴当x≤95时,W 随x 的增大而增大, ∵20≤x≤40,∴当x=40时,W 最大,最大值为﹣2(40﹣95)2+11250=5200元.考点:二次函数的应用25、 (1)12m =,6n =-;(2)4x >或20x -<<;(3)存在,点D 的坐标是(6,0)或(213,0)或(213,0).【分析】(1)先把点A(4,3)代入m y x=求出m 的值,再把A(-2,n)代入求出n 即可; (2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象上方的自变量的取值范围即可;(3)先求出直线AB 的解析式,然后分两种情况求解即可:①当AC=AD 时,②当CD=CA 时,其中又分为点D 在点C 的左边和右边两种情况.【详解】解:(1)∵反比例函数m y x =过点点A(4,3), ∴43m =, ∴12m =,12y x=, 把2x =-代入12y x =得6y =-, ∴6n =-;(2)由图像可知,不等式m kx b x+>的解集为4x >或20x -<<; (3)设直线AB 的解析式为y=kx+b ,把A(4,3),B(-2,-6),代入得4326k b k b +=⎧⎨-+=-⎩, 解得323k b ⎧=⎪⎨⎪=-⎩, ∴332y x =-, 当y=0时,3032x =-, 解得x=2,∴C(2,0),当AC=AD 时,作AH ⊥x 轴于点H ,则CH=4-2=2,∴CD 1=2CH=4,∴OD 1=2+4=6,∴D 1(6,0),当CD=CA 时,∵AC=()22423-+=13,∴D 2(2+13,0),D 3(2-13,0),综上可知,点D 的坐标是(6,0)或130)或130).【点睛】本题考查了待定系数法求反比例函数和一次函数解析式,利用函数图象解不等式,等腰三角形的性质,坐标与图形的性质,勾股定理,以及分类讨论的数学思想.熟练掌握待定系数法和分类讨论的数学思想是解答本题的关键. 26、11x =,212x =. 【分析】根据因式分解法即可求解.【详解】解:()()1210x x --=∴x-1=0或2x-1=0解得11x =,212x =. 【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.。
2022-2023学年山东省临沂市沂南县数学九年级上册期末达标检测模拟试题含解析
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.“2020年的6月21日是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件2.下列调查中,适合采用全面调查(普查)方式的是( )A.了解重庆市中小学学生课外阅读情况B.了解重庆市空气质量情况C.了解重庆市市民收看重庆新闻的情况D.了解某班全体同学九年级上期第一次月考数学成绩得分的情况3.如图,△ABC中∠A=60°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的三角形与△ABC不相似的是()A.B.C.D.4.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.5.在Rt△ABC中,∠C=90°,3A的度数是( )A.30°B.45°C.60°D.90°6.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A .6<t≤8B .6≤t≤8C .10<t≤12D .10≤t≤127.已知3是方程x 2﹣33x +c =0的一个根,则c 的值是( )A .﹣6B .6C .3D .238.关于x 的一元二次方程x 2+bx ﹣10=0的一个根为2,则b 的值为( )A .1B .2C .3D .79.从1,2,3,5这四个数字中任取两个,其乘积为偶数的概率是( )A .14B .38C .12D .3410.如图,一段公路的转弯处是一段圆弧AB ,则AB 的展直长度为( )A .3πB .6πC .9πD .12π11.如图,在四边形ABCD 中,AD BC ∕∕,点,E F 分别是边,AD BC 上的点,AF 与BE 交于点O ,2,1AE BF ==,则AOE ∆与BOF ∆的面积之比为( )A .12B .14C .2D .412.下列图形中,是相似形的是( )A .所有平行四边形B .所有矩形C .所有菱形D .所有正方形 二、填空题(每题4分,共24分)13.如图,在半径为3的O 中,AB 的长为π,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.14.已知在反比例函数图象1kyx-=的任一分支上,y都随x的增大而增大,则k的取值范围是______.15.“蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)16.下列投影或利用投影现象中,________是平行投影,________是中心投影.(填序号)17.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________.18.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,BC与y轴交于点E,且tan∠OAD=12,y轴平分∠BAC,反比例函数y=kx(x>0)的图象经过点C.(1)求点B,D坐标;(2)求y=kx(x>0)的函数表达式.20.(8分)如图1,将边长为2的正方形OABC如图放置在直角坐标系中.(1)如图2,若将正方形OABC 绕点O 顺时针旋转30时,求点A 的坐标;(2)如图3,若将正方形OABC 绕点O 顺时针旋转75︒时,求点B 的坐标.21.(8分)A ,B ,C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B ,C 两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。
沂南县九年级期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题4分,共20分)1. 下列选项中,不是实数的是()A. -3.14B. 2C. √-1D. 02. 如果 a + b = 5 且 ab = 6,那么a² + b² 的值为()A. 17B. 25C. 35D. 363. 在平面直角坐标系中,点 A(2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)4. 已知函数 y = 2x - 1,那么当 x = 3 时,y 的值为()A. 5B. 6C. 7D. 85. 下列选项中,不属于等差数列的是()A. 2,5,8,11,14B. 1,3,5,7,9C. 4,7,10,13,16D. 0,1,-1,2,-2二、填空题(每题5分,共20分)6. 若 a,b,c 成等差数列,且 a + b + c = 12,那么a² + b² + c² 的值为_______。
7. 已知一次函数 y = kx + b,其中k ≠ 0,且当 x = 1 时,y = 3;当 x = 2 时,y = 5,则该函数的解析式为 y = _______。
8. 在△ABC中,∠A = 60°,∠B = 45°,那么∠C 的度数为 _______。
9. 若等比数列的首项为 2,公比为 3,那么该数列的前5项之和为 _______。
10. 圆的方程为x² + y² - 4x + 6y - 12 = 0,那么该圆的半径为 _______。
三、解答题(每题10分,共30分)11. (10分)已知函数 y = -2x + 3,求:(1)当 x = 4 时,y 的值;(2)函数的增减性。
12. (10分)已知数列 {an} 是等差数列,且 a1 = 3,d = 2,求:(1)数列的前5项;(2)数列的通项公式。
九年级沂南期末数学试卷
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. √0.012. 已知二次函数y=ax^2+bx+c的图象开口向上,且a≠0,则下列说法正确的是()A. a>0,b>0,c>0B. a>0,b<0,c>0C. a<0,b>0,c>0D. a<0,b<0,c>03. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°4. 若等差数列{an}的前三项分别为1,2,3,则该数列的通项公式是()A. an=2n-1B. an=nC. an=3n-2D. an=n^25. 下列函数中,定义域为实数集R的是()A. y=1/xB. y=√xC. y=x^2D. y=|x|6. 已知函数y=kx+b(k≠0)的图象与x轴、y轴分别交于点A、B,若点A、B的坐标分别为(-2,0)和(0,3),则该函数的解析式为()A. y=-3/2x+3B. y=3/2x+3C. y=-3/2x-3D. y=3/2x-37. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则ac>bc(c>0)C. 若a>b,则a-c>b-cD. 若a>b,则ac>bc(c<0)8. 已知一次函数y=kx+b(k≠0)的图象经过点(2,3),且该函数的斜率k大于0,则b的取值范围是()A. b>0B. b<0C. b≥0D. b≤09. 在平面直角坐标系中,点P(2,-3)关于y轴的对称点是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)10. 下列各数中,属于无理数的是()A. √25B. 3.14C. 0.1010010001...D. 1/3二、填空题(每题5分,共50分)11. 已知x^2-5x+6=0,则x的值为______。
2020-2021学年山东省临沂市沂南县九年级(上)期末数学试卷(含解析)
2020-2021学年山东省临沂市沂南县九年级第一学期期末数学试卷一、选择题(共12小题).1.tan45°的值为()A.2B.﹣2C.1D.﹣12.下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球3.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)4.如图是由5个相同的小正方体搭成的几何体,它的左视图是()A.B.C.D.5.李明参加的社区抗疫志愿服务团队共有A、B、C、D四个服务项目,其中每个服务项目又分为第一小组和第二小组,则李明分到A项目的第一小组的概率是()A.B.C.D.6.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°7.一元二次方程x2﹣4x=5的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.已知点A(x1,﹣4),B(x2,8)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x2<x1<0B.x1<0<x2C.x1<x2<0D.x2<0<x19.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°10.如图,A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.S=2B.S=4C.2<S<4D.S>411.某数学兴趣小组来到城关区时代广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1.5米,BP=2米,PD=52米,那么该大厦的高度约为()A.39米B.30米C.24米D.15米12.如图,在平面直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B 两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是()A.2B.3C.4.D.5二、填空题(共6小题).13.方程x2﹣x=6的解是.14.在双曲线y=的每一支上,y都随着x的增大而减小,则k的取值范围为.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则sin∠ABC的值为.16.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为.17.如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为.18.某幢建筑物,从10米高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图),如果抛物线的最高点M离墙1米,离地面米,则水流落地点B离墙的距离OB是.三、解答题(共7小题,共66分)19.计算:2cos60°+4sin60°•tan30°﹣6cos245°.20.你吃过拉面吗?在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的横截面积x(mm2)(x>0)的反比例函数,其图象如图所示.(1)请写出点P的实际意义;(2)求出y与x的函数关系式;(3)当面条的横截面积是1.6mm2时,求面条的总长度.21.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.5米,点B距地面10.5米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)22.某商城销售一种进价为10元1件的饰品,经调查发现,该饰品的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数表达式;(2)当销售单价定为多少元时,该商城获利最大?最大利润为多少?(3)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为多少?23.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.24.已知△ABC为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C逆时针旋转60°得到线段CE.连结DE、BE.(1)依题意补全图形并证明AD=BE.(2)过点A作AF⊥EB交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系并证明.25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.参考答案一、选择题(共12小题).1.tan45°的值为()A.2B.﹣2C.1D.﹣1解:tan45°=1,故选:C.2.下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球解:A、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件,不符合题意;B、任意买一张电影票,座位号是3的倍数,是随机事件,不符合题意;C、掷一枚质地均匀的硬币,正面向上,是随机事件,不符合题意;D、从一个只有白球的盒子里摸出一个球是白球,是必然事件,符合题意;故选:D.3.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.4.如图是由5个相同的小正方体搭成的几何体,它的左视图是()A.B.C.D.解:从左面看,第一层有2个正方形,第二层左侧有1个正方形.故选:A.5.李明参加的社区抗疫志愿服务团队共有A、B、C、D四个服务项目,其中每个服务项目又分为第一小组和第二小组,则李明分到A项目的第一小组的概率是()A.B.C.D.解:根据题意画图如下:共有8种等可能的情况数,其中分到A项目的第一小组的有1种,则李明分到A项目的第一小组的概率是.故选:A.6.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DCA=∠B=33°,∴∠DAC=180°﹣117°﹣33°=30°,∴∠BAD=∠BAC+∠DAC=147°,故选:B.7.一元二次方程x2﹣4x=5的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根解:原方程化为x2﹣4x﹣5=0,∵a=1,b=﹣4,c=﹣5,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣5)=36>0,∴方程有两个不相等的实数根.故选:B.8.已知点A(x1,﹣4),B(x2,8)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x2<x1<0B.x1<0<x2C.x1<x2<0D.x2<0<x1解:∵点A(x1,﹣4),B(x2,8)都在反比例函数y=﹣的图象上,∴﹣4x1=﹣5,8x2=﹣5,解得x1=,x2=﹣,∴x2<0<x1.故选:D.9.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°解:连接OB,如图,∵AB为切线,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣28°=62°,∴∠ACB=∠AOB=31°.故选:C.10.如图,A、B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.S=2B.S=4C.2<S<4D.S>4解:设A点的坐标是(a,b),则根据函数的对称性得出B点的坐标是(﹣a,﹣b),则AC=2b,BC=2a,∵A点在y=的图象上,∴ab=1,∴△ABC的面积S===2ab=2×1=2,故选:A.11.某数学兴趣小组来到城关区时代广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1.5米,BP=2米,PD=52米,那么该大厦的高度约为()A.39米B.30米C.24米D.15米解:根据题意,得到:△ABP∽△PDC.即,故CD=×AB=×1.5=39米;那么该大厦的高度是39米.故选:A.12.如图,在平面直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B 两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是()A.2B.3C.4.D.5解:过D、C分别作DE⊥x轴,CF⊥y轴,垂足分别为E、F,CF交反比例函数的图象于G,把x=0和y=0分别代入y=﹣4x+4得:y=4和x=1,∴A(1,0),B(0,4),∴OA=1,OB=4;由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS),∴DE=BF=OA=1,AE=CF=OB=4,∴D(5,1),F(0,5),把D(5,1),代入y=得,k=5,把y=5代入y=得,x=1,即FG=1,CG=CF﹣FG=4﹣1=3,即n=3,故选:B.二、填空题(每小题3分共18分)13.方程x2﹣x=6的解是x=﹣2或x=3.解:∵x2﹣x﹣6=0,∴(x+2)(x﹣3)=0,∴x=﹣2或x=3;14.在双曲线y=的每一支上,y都随着x的增大而减小,则k的取值范围为k<2.解:由题意得:2﹣k>0,解得:k<2,故答案为:k<2.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则sin∠ABC的值为.解:由题意得,AD⊥BC,在Rt△ADB中,AB===5,则sin∠ABC==,故答案为:.16.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为1.解:∵直角△ABC中,AC=,∠B=60°,∴AB===1,BC===2,又∵AD=AB,∠B=60°,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故答案是:1.17.如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为π﹣.解:连接DO,则OD=OA=OB=2.∵CD∥OA,∠AOB=90°,∴∠OCD=180°﹣∠AOB=90°,∵C为OB的中点,∴CO=OB=DO,∴cos∠COD==,∴∠COD=60°,则CD==,∴阴影部分的面积=﹣×1×=π﹣,故答案为:π﹣.18.某幢建筑物,从10米高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图),如果抛物线的最高点M离墙1米,离地面米,则水流落地点B离墙的距离OB是3.解:设抛物线的解析式为y=a(x﹣1)2+,由题意,得10=a+,a=﹣.∴抛物线的解析式为:y=﹣(x﹣1)2+.当y=0时,0=﹣(x﹣1)2+,解得:x1=﹣1(舍去),x2=3.OB=3.故答案为:3三、解答题(本大题共7小题,共66分)19.计算:2cos60°+4sin60°•tan30°﹣6cos245°.解:原式=2×+4××﹣6×()2=1+2﹣3=0.20.你吃过拉面吗?在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的横截面积x(mm2)(x>0)的反比例函数,其图象如图所示.(1)请写出点P的实际意义;(2)求出y与x的函数关系式;(3)当面条的横截面积是1.6mm2时,求面条的总长度.解:(1)由图象知,点P的实际意义是:当面条的横截面积是4mm2时,面条的总长度是32m;(2)设y与x的函数关系式为y=,∵反比例函数图象经过点(4,32),∴=32,解得k=128,∴y与x的函数关系式是y=(x>0);(3)当x=1.6时,y==80.答:面条的总长度是80m.21.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45°和65°,点A距地面2.5米,点B距地面10.5米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)解:如图作AH⊥CN于H.在Rt△ABH中,∵∠BAH=45°,BH=10.5﹣2.5=8(m),∴AH=BH=8(m),在Rt△AHC中,tan65°=,∴CH=8×2.1≈17(m),∴BC=CH﹣BH=17﹣8=9(m),22.某商城销售一种进价为10元1件的饰品,经调查发现,该饰品的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数表达式;(2)当销售单价定为多少元时,该商城获利最大?最大利润为多少?(3)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为多少?解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000;(2)由(1)知,W=﹣2x2+120x﹣1000=﹣2(x﹣30)2+800,∵﹣2<0,∴当x=30时,W有最大值即销售单价为30时,该商城获利最大,最大利润为800元.(3)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定为25元.23.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵,∴,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵,∴,∴,在Rt△ABF中,,∴,∴.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2﹣BH2,BD=BH,则BD2=98.∴.24.已知△ABC为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C逆时针旋转60°得到线段CE.连结DE、BE.(1)依题意补全图形并证明AD=BE.(2)过点A作AF⊥EB交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系并证明.解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.(2)结论:EB+DB=AF;理由:由(1)得:△ACD≌△BCE,∴AD=BE,∠CBE=∠CAD=60°,∴∠ABF=180°﹣∠ABC﹣∠CBE=60°,∵AF⊥EB,∴∠AFB=90°,在Rt△ABF中,=sin60°=,∴AB=AF=AF,∵AD+DB=AB,∴EB+DB=AB,∴EB+DB=AF.25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D 的四边形是平行四边形,求所有符合条件的P点坐标.解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1+或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).。
2019-2020学年临沂市沂南县九年级上册期末数学试卷(有答案)-优质资料
2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A.B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A .75°B .60°C .45°D .30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A .两正面都朝上 B .两背面都朝上C .一个正面朝上,另一个背面朝上D .三种情况发生的概率一样大7.(3分)若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5B .k <5,且k ≠1C .k ≤5,且k ≠1D .k >58.(3分)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( ) A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 210.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长为( )A .1B .C .2D .11.(3分)如图,在平面直角坐标系系中,直线y=kx+2与x轴交于点A,与y轴交于1=1,tan∠点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC的值是()BOC=,则k2A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.16.(3分)如图,点A 、B 是双曲线y=上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 .17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:的温度为 ℃.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分)19.(7分)计算:+sin245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP 绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(si nα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4.(3分)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.8.(3分)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .【解答】解:∵AH=2,HB=1,∴AB=3,∵l 1∥l 2∥l 3,∴==,故选:D .9.(3分)反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 2【解答】解:∵y=﹣,∴k=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y 随x 的增大而增大,∵反比例函数y=﹣图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),x 1<0<x 2,∴点P 1在第二象限,点P 2在第四象限,∴y 1>0>y 2,故选D .10.(3分)如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.x+2与x轴交于点A,与y轴交于11.(3分)如图,在平面直角坐标系系中,直线y=k1=1,tan∠点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC的值是()BOC=,则k2A.﹣3 B.1 C.2 D.3x+2与x轴交于点A,与y轴交于点C,【解答】解:∵直线y=k1∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k=1×3=3.2故选D.12.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE ,在△PAB 和△ADE 中,∴△PAB ∽△ADE ,∴,∴,∴y=(3<x ≤5).综上,可得y 关于x 的函数大致图象是:.故选:D .二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x 2+x=0的解是 x 1=0,x 2=﹣1 .【解答】解:x (x+1)=0,x=0或x+1=0,所以x 1=0,x 2=﹣1.故答案为x 1=0,x 2=﹣1. 14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【解答】解:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC==,∴tan∠AED=.故答案为:.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为8 .【解答】解:∵点A、B是双曲线y=上的点,∴S矩形ACOG =S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF +S矩形BDGE=6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:的温度为﹣1 ℃.【解答】解:设l=at2+bt+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l 与t 之间的二次函数解析式为:l=﹣t 2﹣2t+49,当t=﹣=﹣1时,l 有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE 1:AC=1:(n+1),∴S △ABE1:S △ABC =1:(n+1),∴S △ABE1=,∵==,∴=,∴S △ABM :S △ABE1=(n+1):(2n+1),∴S △ABM :=(n+1):(2n+1),∴S n =.故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin 245°﹣tan60°.【解答】解:原式=+﹣=+﹣=.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为x 米时,另一边长为(16﹣x )米,根据题意,得:y=x (16﹣x )=﹣x 2+16x (0<x <16);(2)∵y=﹣x 2+16x=﹣(x ﹣8)2+64,∴当x=8时,y 取得最大值,最大值为64,答:当x 为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD 是⊙O 的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED ⊥AD ,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA ,∴∠ACO=∠EAD ,故∠DCE=∠E ,∴DC=DE ,(2)解:设BD=x ,则AD=AB+BD=3+x ,OD=OB+BD=1.5+x ,在Rt △EAD 中,∵tan ∠CAB=,∴ED=AD=(3+x ),由(1)知,DC=(3+x ),在Rt △OCD 中,OC 2+CD 2=DO 2,则1.52+[(3+x )]2=(1.5+x )2,解得:x 1=﹣3(舍去),x 2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO=5,sin ∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB 的解析式为y=ax+b ,将点A (﹣4,3)、点B (3,﹣4)代入y=ax+b 中得:,解得:,∴一次函数解析式为y=﹣x ﹣1.令一次函数y=﹣x ﹣1中y=0,则0=﹣x ﹣1,解得:x=﹣1,即点C 的坐标为(﹣1,0).S △AOB =OC•(y A ﹣y B )=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt △ABC 中,∠ACB=90°,∠B=60°;在Rt △DEF 中,∠EDF=90°,∠E=45°)如图①摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC 于点M ,DF′交BC 于点N ,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由. 【解答】解:(1)∵∠ACB=90°,点D 为AB 的中点,∴CD=AD=BD=AB ,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC ﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP 绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+bx+c得,解得b=,c=4;(2)作MN⊥x轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥x轴,∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线x=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.。
临沂市沂南县九年级上册期末数学试卷(有答案)
2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A.B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>58.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)反比例函数y=﹣图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y210.(3分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.11.(3分)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A. B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4﹣2014植物高度增长量l/mm4149494625科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.18.(3分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分)19.(7分)计算: +sin245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.2019-2020学年山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(si nα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.4.(3分)如图所示,该几何体的主视图是()A.B.C.D.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)反比例函数y=﹣图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【解答】解:∵y=﹣,∴k=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y随x的增大而增大,∵反比例函数y=﹣图象上有两点P1(x1,y1),P2(x2,y2),x1<0<x2,∴点P1在第二象限,点P2在第四象限,∴y1>0>y2,故选D.10.(3分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.11.(3分)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.3【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选D.12.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程x2+x=0的解是x1=0,x2=﹣1.【解答】解:x(x+1)=0,x=0或x+1=0,所以x1=0,x2=﹣1.故答案为x1=0,x2=﹣1.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【解答】解:由图可得,∠AED=∠ABC,∵⊙O 在边长为1的网格格点上,∴AB=2,AC=1,则tan ∠ABC==,∴tan ∠AED=. 故答案为:.16.(3分)如图,点A 、B 是双曲线y=上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为 8 .【解答】解:∵点A 、B 是双曲线y=上的点,∴S 矩形ACOG =S 矩形BEOF =6,∵S 阴影DGOF =2,∴S 矩形ACDF +S 矩形BDGE =6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃ ﹣4﹣2 0 1 4 植物高度增长量l/mm41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.【解答】解:设l=at2+bt+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l与t之间的二次函数解析式为:l=﹣t2﹣2t+49,当t=﹣=﹣1时,l有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)【解答】解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S △ABE1=, ∵==, ∴=, ∴S △ABM :S △ABE1=(n +1):(2n +1),∴S △ABM :=(n +1):(2n +1), ∴S n =. 故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin 245°﹣tan60°.【解答】解:原式=+﹣ =+﹣ =.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为x 米时,另一边长为(16﹣x )米,根据题意,得:y=x (16﹣x )=﹣x 2+16x (0<x <16);(2)∵y=﹣x2+16x=﹣(x﹣8)2+64,∴当x=8时,y取得最大值,最大值为64,答:当x为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系xOy中,抛物线y=﹣+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+bx+c 得,解得b=,c=4;(2)作MN⊥x轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥x轴,21∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线x=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.22。
沂南县期末数学试卷九年级
1. 已知一元二次方程ax^2+bx+c=0(a≠0)的根的判别式为Δ=b^2-4ac,则下列说法正确的是()A. Δ>0,方程有两个不相等的实数根B. Δ=0,方程有两个相等的实数根C. Δ<0,方程有两个不相等的实数根D. Δ=0或Δ>0,方程有两个实数根2. 已知等腰三角形ABC中,AB=AC,角BAC的度数为60°,则角ABC的度数为()A. 60°B. 120°C. 30°D. 45°3. 在△ABC中,∠A=45°,∠B=90°,∠C=45°,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形4. 已知一次函数y=kx+b的图象经过点A(1,2),则下列说法正确的是()A. k=2,b=1B. k=1,b=2C. k=2,b=0D. k=0,b=25. 已知函数f(x)=x^2-4x+4,则f(x)的最小值为()A. -4B. 0C. 4D. 86. 在△ABC中,若a=3,b=4,c=5,则sinA+sinB+sinC的值为()A. 3B. 4C. 5D. 67. 已知一元二次方程x^2-3x+2=0的解为x1和x2,则x1+x2的值为()A. 2B. 3C. 4D. 58. 在平面直角坐标系中,点P(2,3)关于y轴的对称点为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)9. 已知正方体ABCD-A1B1C1D1的棱长为a,则对角线AC1的长度为()A. √2aB. √3aC. √6aD. √8a10. 在△ABC中,若AB=AC,则下列说法正确的是()A. ∠B=∠CB. ∠BAC=∠ABCC. ∠BAC=∠BD. ∠BAC=∠C二、填空题(本大题共5小题,每小题4分,共20分)11. 已知一元二次方程x^2-5x+6=0的解为x1和x2,则x1•x2的值为______。
2023届山东省沂南县九年级数学第一学期期末检测试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.根据以上作图过程及所作图形,下列结论中错误的是()A.∠ABD=90°B.CA=CB=CD C.sinA=32D.cosD=122.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O'A'B',A的对应点A'是直线45y x上一点,则点B与其对应点B'间的距离为()A.3 B.4 C.5 D.63.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环 D.若a是实数,则|a|≥04.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为A.3 B.C.4 D.5.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD的长为43π,则图中阴影部分的面积为()A.4633π-B.8933π-C.33223π-D.8633π-6.下列命题中,是真命题的是A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形7.抛物线y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ab<0 B.a+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>08.电脑福利彩票中有两种方式“22选5”和“29选7”,若选中号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定9.要将抛物线2y x 平移后得到抛物线223y x x =++,下列平移方法正确的是( )A .向左平移1个单位,再向上平移2个单位B .向左平移1个单位,再向下平移2个单位C .向右平移1个单位,再向上平移2个单位D .向右平移1个单位,再向下平移2个单位10.用配方法解一元二次方程x 2﹣4x +2=0,下列配方正确的是( )A .(x +2)2=2B .(x ﹣2)2=﹣2C .(x ﹣2)2=2D .(x ﹣2)2=611.一元二次方程x 2﹣2x ﹣1=0的根是( )A .x 1=1,x 2=2B .x 1=﹣1,x 2=﹣2C .x 1=1+2,x 2=1﹣2D .x 1=1+3,x 2=1﹣312.下列事件中,属于必然事件的是( )A .明天我市下雨B .抛一枚硬币,正面朝上C .走出校门,看到的第一辆汽车的牌照的末位数字是偶数D .一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球二、填空题(每题4分,共24分)13.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得4CD m =,2DB m =,而且此时测得1m 高的杆的影子长2m ,则旗杆AC 的高度约为__________m .14.如图,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合连接CD ,则∠BDC 的度数为_____度.15.已知反比例函数3y x=的图像上有两点M 11(,)x y ,N 22(,)x y ,且10x <,20x >,那么1y 与2y 之间的大小关系是_____________. 16.如下图,圆柱形排水管水平放置,已知截面中有水部分最深为5cm ,排水管的截面半径为10cm ,则水面宽AB 是__________cm .17.如图,点B ,A ,C ,D 在⊙O 上,OA ⊥BC ,∠AOB=50°,则∠ADC= .18.如图AC ,BD 是⊙O 的两条直径,首位顺次连接A ,B ,C ,D 得到四边形ABCD ,若AD=3,∠BAC=30°,则图中阴影部分的面积是______.三、解答题(共78分)19.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC 于点E ,交AB 的延长线于点F .(1)求证:DE 与⊙O 相切;(2)若CD =BF ,AE =3,求DF 的长.20.(8分)已知12,x x 是关于x 的一元二次方程222(1)50x m x m -+++=的两个实数根. (1)求m 的取值范围;(2)若()()121128x x --=,求m 的值;21.(8分)如图, 已知抛物线2342y ax x =++的对称轴是直线x=3,且与x 轴相交于A ,B 两点(B 点在A 点右侧)与y 轴交于C 点 . (1)求抛物线的解析式和A 、B 两点的坐标;(2)若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),则是否存在一点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积;若不存在,试说明理由;(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN=3时,求M 点的坐标 .22.(10分)问题背景:如图1,在Rt ABC ∆中,90C ∠=︒,10AE =,6BE =,四边形CDEF 是正方形,求图中阴影部分的面积.(1)发现:如图2,小芳发现,只要将ADE ∆绕点E 逆时针旋转一定的角度到达A D E ∆''',就能将阴影部分转化到一个三角形里,从而轻松解答.根据小芳的发现,可求出图1中阴影部分的面积为______;(直接写出答案)(2)应用:如图3,在四边形ABCD 中,AD CD =,90ADC ABC ∠=∠=︒,90ADC ABC ∠=∠=︒于点E ,若四边形ABCD 的面积为16,试求出DE 的长;(3)拓展:如图4,在四边形ABDC 中,180B C ∠+∠=︒,DB DC =,120BDC ∠=︒,以D 为顶点作EDF ∠为60︒角,角的两边分别交AB ,AC 于E ,F 两点,连接EF ,请直接写出线段BE ,CF ,EF 之间的数量关系.23.(10分)平行四边形ABCD 中,点E 为BC 上一点,连接DE 交对角线AC 于点F ,点G 为DE 上一点,AH DE ⊥于H ,2BC AG =且ACE GAC ∠=∠,点M 为AD 的中点,连接MF ;若75DFC ∠=︒.(1)求MFD ∠的度数;(2)求证:3GF GH AH +=24.(10分)(1)解方程:2320x x -+=.(2)已知:关于x 的方程220x kx +-=①求证:方程有两个不相等的实数根;②若方程的一个根是1-,求另一个根及k 值.25.(12分)已知关于x 的一元二次方程2210x x k -++= 有实根.(1)求k 的取值范围;(2)求该方程的根.26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,弦PB 与CD 交于点F ,且FC =FB . (1)求证:PD ∥CB ;(2)若AB =26,EB =8,求CD 的长度.参考答案一、选择题(每题4分,共48分)1、D【分析】由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论.【详解】由作法得CA=CB=CD=AB,故B正确;∴点B在以AD为直径的圆上,∴∠ABD=90°,故A正确;∴点C是△ABD的外心,在Rt△ABC中,sin∠D=ABAD=12,∴∠D=30°,∠A=60°,∴sinA=32,故C正确;cosD=32,故D错误,故选:D.【点睛】本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.2、C【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【详解】解:如图,连接AA′、BB′,∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4,又∵点A的对应点在直线y=45x上一点,∴4=45x,解得x=1,∴点A′的坐标是(1,4),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、坐标与图形变化−−平移.根据平移的性质得到BB′=AA′是解题的关键.3、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.4、B【分析】首先分析得到当点E旋转至y轴正方向上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长.【详解】如图,当点E旋转至y轴正方向上时DE最小.∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC.∵AB=BC=2,∴AD=AB•sin∠B=3.∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,1),∴OA=1.∴D E OA AD OE43'=--'=-.故选B.5、D【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵BD的长为43π,∴604 1803Rππ=解得:R=4,∴AB=AD cos30°=43,∴BC =12AB =∴AC BC =6,∴S △ABC =12×BC ×AC =12×6= ∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =260483603ππ⨯= 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.6、A【解析】根据特殊四边形的判定方法进行判断.对角线相等的平行四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直的平行四边形是菱形;对角线互相垂直且相等的平行四边形是正方形7、D【解析】利用抛物线开口方向得到a >0,利用抛物线的对称轴在y 轴的左侧得到b >0,则可对A 选项进行判断;利用x =1时,y =2得到a +b =2﹣c ,则a +b +2c ﹣2=c <0,于是可对B 选项进行判断;利用抛物线与x 轴有2个交点可对C 选项进行判断;利用﹣1<﹣2b a<0可对D 选项进行判断. 【详解】∵抛物线开口向上,∴a >0,∵抛物线的对称轴在y 轴的左侧,∴a 、b 同号,即b >0,∴ab >0,故A 选项错误;∵抛物线与y 轴的交点在x 轴下方,∴c <0,∵x =1时,y =2,∴a +b +c =2,∴a +b +2c ﹣2=2+c ﹣2=c <0,故B 选项错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,故 C 选项错误;∵﹣1<﹣2b a<0, 而a >0, ∴﹣2a <﹣b ,即2a ﹣b >0,所以D 选项正确.故选:D .【点睛】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.8、A【解析】从22个号码中选1个号码能组成数的个数有22×21×20×19×18=3160080,选出的这1个号码能组成数的个数为1×4×3×2×1=120,这1个号码全部选中的概率为120÷3160080=3.8×10−1;从29个号码中选7个号码能组成数的个数为29×28×27×26×21×24×23= 7866331200,这7个号码能组成数的个数为7×6×1×4×3×2×1=1040,这7个号码全部选中的概率为1040÷7866331200=6×10−8,因为3.8×10−1>6×10−8,所以,获一等奖机会大的是22选1.故选A . 9、A【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度.故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.10、C【分析】按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【详解】解:x 2﹣4x +2=0,x 2﹣4x =﹣2,x 2﹣4x +4=﹣2+4,(x ﹣2)2=2,故选:C .【点睛】本题主要考查配方法,掌握完全平方公式是解题的关键.11、C【分析】利用一元二次方程的公式法求解可得.【详解】解:∵a =1,b =﹣2,c =﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,则x=2222=1±2,即x1=1+2,x2=1﹣2,故选:C.【点睛】本题考查了一元二次方程的解法,根据一元二次方程的特征,灵活选择解法是解题的关键.12、D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,故选:D.【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.二、填空题(每题4分,共24分)13、1【分析】作BE⊥AC于E,可得矩形CDBE,利用同一时刻物高与影长的比一定得到AE的长度,加上CE的长度即为旗杆的高度【详解】解:作BE⊥AC于E,∵BD⊥CD于D,AC⊥CD于C,∴四边形CDBE为矩形,∴BE=CD=1m,CE=BD=2m,∵同一时刻物高与影长所组成的三角形相似,∴12AE BE =,即142AE =, 解得AE=2(m ),∴AC=AE+EC=2+2=1(m ).故答案为:1.【点睛】本题考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.14、1【分析】根据△EBD 由△ABC 旋转而成,得到△ABC ≌△EBD ,则BC =BD ,∠EBD =∠ABC =30°,则有∠BDC =∠BCD ,∠DBC =180﹣30°=10°,化简计算即可得出15BDC ∠=︒.【详解】解:∵△EBD 由△ABC 旋转而成,∴△ABC ≌△EBD ,∴BC =BD ,∠EBD =∠ABC =30°,∴∠BDC =∠BCD ,∠DBC =180﹣30°=10°, ∴()1180150152BDC BCD ∠=∠=︒-︒=︒; 故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.15、12y y <【分析】根据反比例函数特征即可解题。
2022-2023学年山东省沂南县数学九年级第一学期期末联考试题含解析
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.等腰直角△ABC 内有一点P ,满足∠PAB=∠PBC=∠PCA ,若∠BAC=90°,AP=1.则CP 的长等于( )A .2B .2C .22D .322.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP的度数为( )A .40°B .35°C .30°D .45°3.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -= B .1(1)282x x += C .(1)28x x -= D .(1)28x x += 4.反比例函数y=16t x-的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( ) A .t <16 B .t >16 C .t≤16 D .t≥16 5.如果23x y =,那么x y的值为( ) A .23 B .25 C .32 D .536.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是( )A .1张B .4张C .9张D .12张7.如图,在⊙O 中,弦AB =6,半径OC ⊥AB 于P ,且P 为OC 的中点,则AC 的长是( )A .2 3B .3C .4D .2 28.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°9.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是( ) 书面家庭作业时间(分钟) 7080 90 100 110 学生人数(人)4 7 20 7 2 A .众数是90分钟B .估计全校每天做书面家庭作业的平均时间是89分钟C .中位数是90分钟D .估计全校每天做书面家庭作业的时间超过90分钟的有9人10.若抛物线y =x 2+ax+b 与x 轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x =2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点( ) A .(1,0) B .(1,8)C .(1,﹣1)D .(1,﹣6) 11.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .4 12.若反比例函数()110a y a x x-=><,图象上有两个点()()1122,,x y x y ,,设()1212()m x x y y =--,则 y mx m =-不经过第( )象限.A .一B .二C .三D .四二、填空题(每题4分,共24分)13.在双曲线3m y x+=的每个分支上,函数值y 随自变量x 的增大而增大,则实数m 的取值范围是________. 14.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C 1 ,它与x 轴交于两点O ,A ;将C 1绕点A 旋转180°得到C 2 , 交x轴于A 1;将C 2绕点A 1旋转180°得到C 3 , 交x 轴于点A 2 . .....如此进行下去,直至得到C 2018 , 若点P (4035,m )在第2018段抛物线上,则m 的值为________.15.已知直线y =kx (k≠0)与反比例函数y =﹣5x 的图象交于点A (x ₁,y ₁),B (x ₂,y ₂)则2x ₁y ₂+x ₂y ₁的值是_____. 16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为 .17.一张直角三角形纸片ABC ,90ACB ∠=,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为_____.18.把二次函数245y x x =+-变形为2()y x h k =++的形式,则h k +=__________.三、解答题(共78分)19.(8分)如图,四边形ABCD 内接于⊙O ,AB 是直径,C 为BD 的中点,延长AD ,BC 交于点P ,连结AC .(1)求证:AB =AP ;(2)若AB =10,DP =2,①求线段CP 的长;②过点D 作DE ⊥AB 于点E ,交AC 于点F ,求△ADF 的面积.20.(8分)已知反比例函数3k y x-=,(k 为常数,3k ≠). (1)若点(2,3)A 在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围.21.(8分)平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点.(1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标;(3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.22.(10分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).23.(10分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑. 位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方 法如下:如图所示,间接测得该塔底部点B 到地面上一点E 的距离为48m ,塔的顶端 为点A ,且 AB EB ⊥,在点E 处竖直放一根标杆,其顶端为 D DE EB ⊥,,在 BE 的延长 线上找一点 C ,使 C D A ,,三点在同一直线上,测得 2 CE m =.(1)方法 1,已知标杆 2.2 DE m =,求该塔的高度;(2)方法 2,测得47.5ACB ∠=︒,已知47.5 1.09tan ︒≈,求该塔的高度.24.(10分)如图,DC EF GH AB ,12AB =,6CD =,::3:4:5DE EG GA =.求EF 和GH 的长.25.(12分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的23,在网格内画出一个符合条件的111.A E F26.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.参考答案一、选择题(每题4分,共48分)1、B【分析】先利用定理求得2BC AB =,再证得~APB BPC ,利用对应边成比例,即可求得答案.【详解】如图,∵∠BAC=90°,AB=AC , ∴45ABC ACB ∠=∠=︒,222BC AB AC AB =+=,设PCA α∠=,则PAB PBC PCA α∠=∠=∠=,如图,∴1?2?45αα∠+=∠+=︒,∴12∠=∠,∴~APB BPC , ∴222PB PA AB AB PC PB BC AB====, ∵1AP =,∴2PB =, ∴22PC PB ==,故选:B【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,熟练运用相似三角形的判定和性质是本题的关键. 2、C【分析】连接DB ,即90ADB ∠=︒,又120BCD ∠=︒,故60DAB ∠=︒,所以30DBA ∠=︒;又因为PD 为切线,利用切线与圆的关系即可得出结果.【详解】解:连接BD ,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选C.【点睛】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.3、A【分析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2-=⨯x x即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.4、B【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=16tx-,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴2)2(4(16)0 160tt-⎧--⎨-⎩><解不等式组,得t>16.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.5、C【分析】由已知条件2x=3y,根据比例的性质,即可求得答案.【详解】解:∵2x=3y,∴xy=32.故选C.【点睛】本题考查比例的性质,本题考查比较简单,解题的关键是注意比例变形与比例的性质.6、D【分析】设箱中卡的总张数可能是x张,则绿卡有(x-3)张,根据抽到绿卡的概率稳定在75%附近,利用概率公式列方程求出x的值即可得答案.【详解】设箱中卡的总张数可能是x张,∵箱子中有3张红卡和若干张绿卡,∴绿卡有(x-3)张,∵抽到绿卡的概率稳定在75%附近,∴375% xx-=,解得:x=12,∴箱中卡的总张数可能是12张,故选:D.【点睛】本题考查等可能情形下概率的计算,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.7、A【分析】根据垂径定理求出AP,根据勾股定理求出OP,求出PC,再根据勾股定理求出即可.【详解】解:连接OA,∵AB=6,OC⊥AB,OC过O,∴AP=BP=12AB=3,设⊙O的半径为2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,(2R)2=R2+32,解得:R即OP=PC,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,AC2=32+2,解得:AC=故选:A.【点睛】考核知识点:垂径定理.构造直角三角形是关键.8、C【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.9、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即90902=90,正确;C、平均时间为:140×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.10、A【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【详解】∵某定弦抛物线的对称轴为直线x =2,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y =x (x ﹣2)=x 2﹣2x =(x ﹣2)2﹣2.将此抛物线向左平移2个单位,再向上平移3个单位,得到新抛物线的解析式为y =(x ﹣2+2)2﹣2+3=x 2﹣2.当x =2时,y =x 2﹣2=0,∴得到的新抛物线过点(2,0).故选:A .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.11、B【分析】根据(2, )n -和(4, )n 可以确定函数的对称轴=1x ,再由对称轴的2b x =即可求解; 【详解】解:抛物线24y x bx =-++经过(2, )n -和(4, )n 两点,可知函数的对称轴=1x , 12b ∴=, 2b ∴=;224y x x ∴=-++,将点(2, )n -代入函数解析式,可得=-4n ;故选B .【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.12、C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】解:∵()110a y a x x -=><,, ∴a-1>0,∴()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ∵图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负,∴m=(x 1-x 2)(y 1-y 2)<0,∴y=mx-m 的图象经过一,二、四象限,不经过三象限,故选:C .【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每题4分,共24分)13、m <﹣1【分析】根据在双曲线的每个分支上,函数值y 随自变量x 的增大而增大,可以得到m+1<0,从而可以求得m 的取值范围.【详解】∵在双曲线的每个分支上,函数值y 随自变量x 的增大而增大, ∴m+1<0,解得,m <﹣1,故答案为m <﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.14、-1【解析】每次变化时,开口方向变化但形状不变,则 ,故开口向上时a=1,开口向下时a=-1;与x 轴的交点在变化,可发现规律抛物线C n 与x 轴交点的规律是(2n-2,0)和(2n ,0),由两点式求得解析式,把x=4035代入解析式,即可求得m 的值.【详解】由抛物线C 1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得∴与x 轴的交点为O (0,0),A (2,0).抛物线C 2的开口向上,且与x 轴的交点为∴A (2,0)和A 1(4,0),则抛物线C 2:y= (x-2)(x-4);抛物线C 3的开口向下,且与x 轴的交点为∴A 1(4,0)和A 2(6,0),则抛物线C 3:y= -(x-4)(x-6);抛物线C 4的开口向上,且与x 轴的交点为∴A 2(6,0)和A 3(8,0),则抛物线C 4:y=(x-6)(x-8);同理:抛物线C 2018的开口向上,且与x 轴的交点为∴A 2016(4034,0)和A 2017(4036,0),则抛物线C 2018:y=(x-4034)(x-4036);当x=4035时,y= 1×(-1)-1. 故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式.15、1【分析】由于正比例函数和反比例函数图象都是以原点为中心的中心对称图形,因此它们的交点A 、B 关于原点成中心对称,则有x ₂=﹣x ₁,y ₂=﹣y ₁.由A (x ₁,y ₂)在双曲线y =﹣5x 上可得x ₁y ₁=﹣5,然后把x ₂=﹣x ₁,y ₂=﹣y ₁代入2x ₁y ₂+x ₂y ₁的就可解决问题.【详解】解:∵直线y =kx (k >0)与双曲线y =﹣5x 都是以原点为中心的中心对称图形, ∴它们的交点A 、B 关于原点成中心对称,∴x ₂=﹣x ₁,y ₂=﹣y ₁.∵A (x ₁,y ₁)在双曲线y =﹣5x 上, ∴x ₁y ₁=﹣5,∴2x ₁y ₂+x ₂y ₁=2x ₁(﹣y ₁)+(﹣x ₁)y ₁=﹣3x ₁y ₁=1.故答案为:1.【点睛】本题主要考查了反比例函数图象上点的坐标特征、正比例函数及反比例函数图象的对称性等知识,得到A 、B 关于原点成中心对称是解决本题的关键.16、0或-1.【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则有两个相等的实数根,即()224k 10k 1∆=-⋅⋅-=⇒=-.综上所述,若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为0或-1.17、3或247【分析】依据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长【详解】分两种情况:①若90DEB ∠=,则90AED C ∠==∠, CD ED =,连接AD ,则()Rt ACD Rt AEAD HL ∆≅∆,6AE AC ∴==,1064BE =-=,设CD DE x ==,则8BD x =-,Rt BDE ∆中,222DE BE BD +=2224(8)x x ∴+=-,解得3x =,3CD ∴=;②若90BDE ∠=,则90CDE DEF C ∠=∠=∠=,CD DE =,∴四边形CDEF 是正方形,90AFE EDB ∴∠=∠=,AEF B ∠=∠,~AEF EBD ∴∆∆,AF EF ED BD∴=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-,68x x x x-∴=-, 解得247x =, 247CD ∴=, 综上所述,CD 的长为3或247, 故答案为3或247. 【点睛】此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形18、7-【分析】利用配方法将二次函数变成顶点式即可.【详解】22245449(2)9y x x x x x =+-=++-=+-,∴h=2,k=-9,即h+k=2-9=-7.故答案为:-7.【点睛】本题考查二次函数顶点式的性质,关键在于将一般式转换为顶点式.三、解答题(共78分)19、(1)见解析;(2)①PC ;②S △ADF =12815. 【分析】(1)利用等角对等边证明即可;(2)①利用勾股定理分别求出BD ,PB ,再利用等腰三角形的性质即可解决问题;②作FH ⊥AD 于H ,首先利用相似三角形的性质求出AE ,DE ,再证明AE=AH ,设FH=EF=x,利用勾股定理构建方程解决问题即可.【详解】(1)证明:∵BC =CD ,∴∠BAC =∠CAP ,∵AB 是直径,∴∠ACB =∠ACP =90°,∵∠ABC +∠BAC =90°,∠P +∠CAP =90°,∴∠ABC =∠P ,∴AB =AP .(2)①解:连接BD .∵AB 是直径,∴∠ADB =∠BDP =90°,∵AB =AP =10,DP =2,∴AD =10﹣2=8,∴BD =22-AB AD 22108-6,∴PB 22BD PD +2262+10,∵AB =AP ,AC ⊥BP ,∴BC =PC =12PB 10, ∴PC 10.②解:作FH ⊥AD 于H .∵DE ⊥AB ,∴∠AED =∠ADB =90°,∵∠DAE =∠BAD ,∴△ADE ∽△ABD , ∴AE AD =AD AB =DE BD, ∴8AE =810=6DE , ∴AE =325,DE =245, ∵∠FEA =∠FEH ,FE ⊥AE ,FH ⊥AH ,∴FH =FE ,∠AEF =∠AHF =90°,∵AF =AF ,∴Rt △AFE ≌Rt △AFH (HL ),∴AH =AE =325,DH =AD ﹣AH =85,设FH =EF =x , 在Rt △FHD 中,则有(245﹣x )2=x 2+(85)2, 解得x =3215, ∴S △ADF =12•AD •FH =12×8×3215=12815.故答案为①PC ;②S △ADF =12815. 【点睛】本题考查了圆周角定理,等腰三角形的判定与性质,解直角三角形,相似三角形的判定与性质等知识. 属于圆的综合题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20、(1)k=9;(2)k<3【分析】(1)根据反比例函数图象上点的坐标特征得到k-3=2×3,然后解方程即可;(2)根据反比例函数的性质得30k -<,然后解不等式即可;【详解】解:(1)∵点(2,3)A 在这个函数的图象上,323k ∴-=⨯,解得9k =;(2)∵在函数3k y x-=图象的每一支上,y 随x 的增大而增大, 30k ∴-<,得3k <.【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了反比例函数的性质.21、(1)2y x 2x 3=-++;(2)3(1,)2;(3)14m <≤或78m = 【分析】(1)根据题意可得出点B 的坐标,将点B 、C 的坐标分别代入二次函数解析式,求出b 、c 的值即可. (2)在对称轴上取一点E ,连接EC 、EB 、EA ,要使得EAB 的周长最小,即要使EB+EA 的值最小,即要使EA+EC 的值最小,当点C 、E 、A 三点共线时,EA+EC 最小,求出直线AC 的解析式,最后求出直线AC 与对称轴的交点坐标即可.(3)求出直线CD 以及射线BD 的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B 时,将点B 的坐标代入二次函数解析式,求出m 的值,写出m 的范围即可;②当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得关于x 的一元二次方程,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,即0∆=,列式求出m 的值即可.【详解】(1)矩形OABC ,∴OC=AB ,A(2,0),C(0,3),∴OA=2,OC=3,∴B(2,3),将点B ,C 的坐标分别代入二次函数解析式,4233b c c -++=⎧⎨=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线解析式为:2y x 2x 3=-++.(2)如图,在对称轴上取一点E ,连接EC 、EB 、EA ,当点C 、E 、A 三点共线时,EA+EC 最小,即EAB 的周长最小,设直线解析式为:y =kx +b ,将点A 、C 的坐标代入可得:203k b b +=⎧⎨=⎩, 解得:323k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:3=32y x -+.2y x 2x 3=-++=2(1)4x -+-,∴D(1,4),令x =1,y =332-+=32. ∴E(1,32).(3)设直线CD解析式为:y=kx+b,C(0,3),D(1,4),∴43k bb+=⎧⎨=⎩,解得13 kb=⎧⎨=⎩,∴直线CD解析式为:y=x+3,同理求出射线BD的解析式为:y=-x+5(x≤2),设平移后的顶点坐标为(m,m+3),则抛物线解析式为:y=-(x-m)2+m+3,①如图,当抛物线经过点B时,-(2-m)2+m+3=3,解得m=1或4,∴当1<m≤4时,平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得:-(x -m )2+m +3=-x +5,即x 2-(2m +1)x +m 2-m +2=0,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,∴22[(21)]4(2)0m m m ∆=-+⨯-+=-, 解得78m =. 综上所述,14m <≤或78m =时,平移后的抛物线与射线BD 只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.22、(1)12;(2)13【分析】(1)用标有奇数卡片的张数除以卡片的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出2张卡片标有数字之和大于5的结果数,然后利用概率公式计算即可.【详解】解:(1)标有奇数卡片的是1、3两张,所以恰好抽到标有奇数卡片的概率=2142=. 故答案为:12; (2)画树状图如下:由图可知共有12种等可能的结果,其中抽取的2张卡片标有数字之和大于5的结果数有4种,所以抽取的2张卡片标有数字之和大于5的概率=41123=. 【点睛】本题考查了利用画树状图或列表的方法求两次事件的概率,属于常考题型,掌握求解的方法是解题的关键.23、(1)55m ;(2)54.5m 【分析】(1)直接利用相似三角形的判定与性质得出AB BC DE CE =,进而得出答案;(2)根据锐角三角函数的定义列出AB tan ACB BC∠=,,然后代入求值即可. 【详解】解:1AB EB DE EB ⊥⊥(),90DEC ABC ∴∠=∠=︒ABC DEC ∴∽则AB BC DE CE= 即 4.822.22AB += 解得:55AB =答:该塔的高度为 55 m.()2在Rt ABC 中AB tan ACB BC∠=, 48247.554.5AB tan ∴=+⨯︒≈()答:该塔的高度为54.5 m【点睛】本题考查相似三角形的判定和性质及解直角三角形的应用,熟练掌握相似三角形对应边的比相等和角的正切值的求法是本题的解题关键.24、7.5EF =,9.5GH =.【分析】过C 作CQ ∥AD ,交GH 于N ,交EF 于M ,交AB 于Q ,则可判断四边形AQCD 为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB-AQ=6,再利用平行线分线段成比例定理得到DE :EG :GA=CF :HF :HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF :BQ=CF :CB=3:12,NH :BQ=CH :CB=7:12,则可计算出MF 和NH ,从而得到GH 和EF 的长【详解】解:过C 作CQ AD ,交GH 于点N ,交EF 于点M ,交AB 于Q ,如图,∵CD AB ,∴四边形AQCD 为平行四边形.∴6AQ CD ==,同理可得6GN EM CD ===.∴6BQ AB AQ =-=.∵DC EF GH AB ,∴::::3:4:5DE EG GA CF HF HB ==.∵MF NH BQ ,∴()::3:345MF BQ CF CB ==++,()()::34:345NH BQ CH CB ==+++.∴36 1.512MF =⨯=,76 3.512NH =⨯=.∴6 1.57.5EF EM MF =+=+=,6 3.59.5HG GN NH =+=+=.故答案为7.5EF =,9.5GH =.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.25、(1)图详见解析,E (3,3),F (3,﹣1);(2)详见解析.【分析】(1)利用网格的特点和旋转的性质,画出点O ,B 对应点E ,F ,再顺次连接可得到AEF ∆,然后写出E 、F 的坐标即可;(2)先连接OE 、OF ,然后分别取OA 、OE 、OF 的三等分点可得点111A E F 、、,再顺次连接可得到111A E F ∆.【详解】(1)利用网格的特点和旋转的性质,画出点O ,B 对应点E ,F ,再顺次连接可得到AEF ∆,如图AEF ∆即为所求,点E 、F 的坐标为(3,3),(3,1)E F -;(2)先连接OE 、OF ,然后分别取OA 、OE 、OF 的三等分点可得点111A E F 、、,再顺次连接可得到111A E F ∆,如图111A E F ∆即为所求.【点睛】本题考查了图形的旋转、位似中心图形的画法,掌握理解旋转的定义和位似中心的定义是解题关键.26、(1)见解析;(2)见解析【分析】(1)过点D 作DF ⊥AC 于F ,求出BD=DF 等于半径,得出AC 是⊙D 的切线;(2)根据HL 先证明Rt △BDE ≌Rt △DCF ,再根据全等三角形对应边相等及切线的性质得出AB=AF ,即可得出AB+BE=AC .【详解】证明:(1)过点D 作DF ⊥AC 于F ;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.。
沂南期末试卷初三数学
1. 已知函数f(x) = 2x + 1,则f(-3)的值为()A. -5B. -7C. -9D. -112. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°3. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an的值为()A. 23B. 24C. 25D. 264. 若等比数列{bn}的首项b1=2,公比q=3,则第5项bn的值为()A. 54B. 81C. 162D. 2435. 已知函数y = (x + 1)^2 - 2,则该函数的对称轴为()A. x = -1B. x = 1D. y = 26. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (3,2)B. (2,3)C. (3,3)D. (2,2)7. 已知函数y = x^2 - 4x + 4,则该函数的图像与x轴的交点为()A. (2,0)B. (-2,0)C. (0,2)D. (0,-2)8. 若a、b、c是等差数列,且a+b+c=12,则a^2+b^2+c^2的值为()A. 36B. 72C. 108D. 1449. 已知等比数列{an}的首项a1=1,公比q=-2,则该数列的前5项之和S5为()A. -31B. -32C. -33D. -3410. 在△ABC中,若∠A=30°,∠B=75°,则sinC的值为()B. 1/2C. √2/2D. 1二、填空题(每题4分,共20分)11. 若函数y = 2x - 3在x=2时的函数值为1,则该函数的解析式为__________。
12. 在△ABC中,若∠A=45°,∠B=60°,则cosC的值为__________。
13. 已知等差数列{an}的首项a1=5,公差d=2,则第n项an的通项公式为__________。
2022-2023学年山东省临沂市沂南县数学九上期末综合测试模拟试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.一次函数(0)y ax b a =+≠与二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( ). A . B . C . D .2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .7123.ABC ∆中,30A ∠=︒,BD 是AC 边上的高,若BD CD AD BD =,则ABC ∠等于( ) A .30 B .30或90︒ C .90︒D .60︒或90︒ 4.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有( )A .8个B .7个C .3个D .2个5.如图,AD ,BC 相交于点O ,//AB CD .若1AB =,2CD =,则ABO ∆与DCO ∆的面积之比为( )A .1:2B .1:4C .2:1D .4:16.在圆,平行四边形、函数2yx 的图象、1y x =-的图象中,既是轴对称图形又是中心对称图形的个数有( ) A .0 B .1 C .2 D .37.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )A .95sin α米B .95cos α米C .59sin α米D .59cos α米 8.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5 m ,则y 与x 的函数关系式为( )A .y =B .y =C .y =D .y =9.已知圆O 与点P 在同一平面内,如果圆O 的半径为5,线段OP 的长为4,则点P ( )A .在圆O 上B .在圆O 内C .在圆O 外D .在圆O 上或在圆O 内10.如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC 绕点B 顺时针旋转120到11A BC 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338B .47π338C .πD .4π33二、填空题(每小题3分,共24分) 11.二次函数2y x 2x m =-+的图象与x 轴只有一个公共点,则m 的值为________.12.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为__.13.一组数据:﹣1,3,2,x ,5,它有唯一的众数是3,则这组数据的中位数是__.14.正方形ABCD 的边长为4,点P 在DC 边上,且DP =1,点Q 是AC 上一动点,则DQ +PQ 的最小值为______.15.如图三角形ABC 是圆O 的内接正三角形,弦EF 经过BC 边的中点D ,且EF 平行AB ,若AB 等于6,则EF 等于________.16.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.17.已知0m ≥,0n ≥.且1m n +=,设22y m n =+,则y 的取值范围是______. 18.将一副三角尺如图所示叠放在一起,则BE EC的值是 .三、解答题(共66分)19.(10分)如图,我国海监船在A 处发现正北方向B 处有一艘可疑船只,正沿南偏东45︒方向航行,我海监船迅速沿北偏东30︒方向去拦裁,经历4小时刚好在C 处将可疑船只拦截,已知我海监船航行的速度是每小时35海里,求可疑船只航行的距离BC .20.(6分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图(1),在ABC ∆中,点O 在线段BC 上,30BAO ∠=︒,75OAC ∠=︒,3AO =,:1:3BO CO =,求AB 的长.经过社团成员讨论发现:过点B 作//BD AC ,交AO 的延长线于点D ,通过构造ABD ∆就可以解决问题,如图(2).请回答:ADB =∠______︒.(2)求AB 的长.(3)请参考以上解决思路,解决问题:如图(3),在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC AD ⊥,3AO =,75ABC ACB ∠=∠=︒,:1:3BO OD =,求DC 的长.21.(6分)如图,在△ABC 中,CD 平分∠ACB ,DE ∥BC ,若34AD DB =,且AC=14,求DE 的长.22.(8分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)23.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表:售价(元/千克)45 50 55销售量(千克)110 100 90(1)求与之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为(元),求与之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?24.(8分)已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B(1) 如图1,若AB=AC,求证:CE BD CD AC=;(2) 如图2,若AD=AE,求证:CE BD CD AE=;(3) 在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=12,则AB=____________.25.(10分)如图,在某建筑物AC上,挂着一宣传条幅BC,站在点F处,测得条幅顶端B的仰角为30°,往条幅方向前行20米到达点E处,测得条幅顶端B的仰角为60°,求宣传条幅BC的长.(3 1.732≈,结果精确到0.1米)26.(10分)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD⋅AO=AM⋅AP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD=24,AM=MC,求BPMD的值.参考答案一、选择题(每小题3分,共30分)1、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B. ∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.2、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为901= 3604,即转动圆盘一次,指针停在黄区域的概率是14,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.3、B【分析】根据题意画出图形,当△ABC中为锐角三角形或钝角三角形两种情况解答,结合已知条件可以推出△ABD∽△BCD,即可得出∠ABC的度数.【详解】(1)如图,当△ABC中为锐角三角形时,∵BD⊥AC,BD CD AD BD∴△ABD∽△BCD,∵∠A=30°,∴∠ABD=∠C=60°,∠A=∠CBD=30°,∴∠ABC=90°.(2)如图,当△ABC中为钝角三角形时,∵BD⊥AC,BD CD AD BD∴△ABD∽△BCD,∵∠A=30°,∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,∴∠ABC=30°.故选择B.【点睛】本题考查了相似三角形的判定与性质,将三角形分锐角三角形和钝角三角形分别讨论是解题的关键.4、A【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数.【详解】解:∵共摸了100次球,发现有80次摸到红球,∴摸到红球的概率估计为0.80,∴口袋中红球的个数大约10×0.80=8(个),故选:A.【点睛】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法是关键.5、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.6、C【分析】根据轴对称图形又是中心对称图形的定义和函数图象,可得答案.【详解】解:圆是轴对称图形又是中心对称图形;平行四边形是中心对称图形,不是轴对称图形;函数y=x2的图象是轴对称图形,不是中心对称图形;1yx=-的图象是中心对称图形,是轴对称图形;故选:C.【点睛】本题考查了反比例函数和二次函数的图象,利用了轴对称,中心对称的定义.7、B【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【详解】解:作AD⊥BC于点D,则BD=32+0.3=95,∵cosα=BD AB,∴cosα=95 AB,解得,AB=95cosα米,故选B.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.8、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=,由200度近视镜的镜片焦距是0.5米先求得k的值.【详解】由题意,设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为y=.故选:A.【点睛】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.9、B【分析】由题意根据圆O的半径和线段OP的长进行大小比较,即可得出选项.【详解】解:因为圆O的半径为5,线段OP的长为4,5>4,所以点P在圆O内.故选B.【点睛】本题考查同一平面内点与圆的位置关系,根据相关判断方法进行大小比较即可.10、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得437+=所以利用扇形面积公式可得()()2212012074360360BH BCπππ-⨯-==.故选C.【点睛】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.二、填空题(每小题3分,共24分)11、1【解析】根据△=b2-4ac=0时,抛物线与x轴有1个交点得到△=(-2)2-4m=0,然后解关于m的方程即可.【详解】根据题意得△=(-2)2-4m=0,解得m=1.故答案是:1.【点睛】考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12、1.【分析】根据题意,写出已知条件并画出图形,然后根据勾股定理即可求出AB,再根据圆周角为直角所对的弦是直径即可得出结论.【详解】如图,已知:AC=8,BC=6,由勾股定理得:AB22=1,AC BC∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是1;故答案为:1.【点睛】此题考查的是求三角形的外接圆的直径,掌握圆周角为直角所对的弦是直径是解决此题的关键.13、1【解析】先根据数据的众数确定出x的值,即可得出结论.【详解】∵一组数据:﹣1,1,2,x,5,它有唯一的众数是1,∴x=1,∴此组数据为﹣1,2,1,1,5,∴这组数据的中位数为1.故答案为1.【点睛】本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.14、1【分析】要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.【详解】解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴22435∴DQ+PQ的最小值是1.【点睛】本题考查轴对称-最短路线问题;正方形的性质.15、35【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG 是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=12AB=3;∵∠ACB=60°,BD=DC=12BC,AG=GC=12AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得-3+35-3-35;∴EF=3+2-3+35=35【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.16、1【解析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17、112y ≤≤ 【分析】先根据已知得出n=1-m ,将其代入y 中,得出y 关于m 的二次函数即可得出y 的范围【详解】解:∵1m n +=∴n=1-m , ∴22222211(1)2212()22y m n m m m m m =+-=+--=+=+ ∵0m ≥,0n ≥∴0m ≥,10m -≥∴01m ≤≤当m=12时,y 有最小值12, 当m=0时,y=1当m=1时,y=1 ∴112y ≤≤ 故答案为:112y ≤≤ 【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键18【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB ∥CD .∴△ABE ∽△DCE .∴BE AB EC CD=. ∵在Rt △ACB 中∠B=45°,∴AB=AC .∵在RtACD 中,∠D=30°,∴AC CD tan30==︒.∴BE AB AC 3EC CD 33AC ===.三、解答题(共66分)19、702海里.【分析】过C 作CD AB ⊥于点D ,分别利用三角函数解Rt ACD ∆和Rt CDB ∆,即可进行求解.【详解】过C 作CD AB ⊥于点D ,根据题意得:354140AC =⨯= (海里) ,在Rt ACD ∆中,1 30140702CD AC sin ︒==⨯= (海里) , 在Rt CDB ∆中,702sin 452CD BC ︒===(海里) , 答:可疑船只航行的距离BC 为2海里.【点睛】本题考查了解直角三角形的应用,用到的知识点是方向角含义、三角函数的定义,关键是根据题意画出图形,构造直角三角形.20、(1)75°;(2)33;(3)133. 【分析】(1)根据平行线的性质可得出∠ADB =∠OAC =75°;(2)结合∠BOD =∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD =75°=∠ADB ,由等角对等边可得出AB 的长;(3)过点B 作BE ∥AD 交AC 于点E ,同(1)可得出AE 的长.在Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】(1)∵BD ∥AC ,∴∠ADB =∠OAC =75°.(2)∵∠BOD =∠COA ,∠ADB =∠OAC ,∴△BOD ∽△COA , ∴13OD OB OA OC ==.又∵AO =∴OD 13=AO∴AD =AO +OD . ∵∠BAD =30°,∠ADB =75°,∴∠ABD =180°﹣∠BAD ﹣∠ADB =75°=∠ADB ,∴AB =AD . (3)过点B 作BE ∥AD 交AC 于点E ,如图所示.∵AC ⊥AD ,BE ∥AD ,∴∠DAC =∠BEA =90°.∵∠AOD =∠EOB ,∴△AOD ∽△EOB , ∴BO EO BE DO AO DA==. ∵BO :OD =1:3, ∴13EO BE AO DA ==.∵AO ,∴EO =,∴AE ∵∠ABC =∠ACB =75°,∴∠BAC =30°,AB =AC ,∴AB =2BE .在Rt △AEB 中,BE 2+AE 2=AB 2,即(433)2+BE 2=(2BE )2, 解得:BE =43, ∴AB =AC =83,AD =1. 在Rt △CAD 中,AC 2+AD 2=CD 2,即2228()43CD +=, 解得:CD =4133.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解答本题的关键是:(2)利用相似三角形的性质求出OD 的值;(3)利用勾股定理求出BE 、CD 的长度.21、DE =8.【分析】先根据角平分线的性质和平行线的性质证得DE CE =,再根据平行线分线段成比例即可得.【详解】如图,CD 平分ACB ∠12∠∠∴=//DE BC32∴∠=∠13∠∠∴=DE CE ∴=又//DE BC34AD AE DB EC ∴==,即34AC EC EC -= 44148347CE AC ∴=⋅=⨯=+ 8DE CE ∴==故DE 的长为8.【点睛】本题考查了角平分线的性质、平行线的性质、等腰三角形的性质、平行线分线段成比例,通过等角对等边证出DE CE 是解题关键.22、见解析【解析】分别作过乙,丙的头的顶端和相应的影子的顶端的直线得到的交点就是点光源所在处,连接点光源和甲的头的顶端并延长交平面于一点,这点到甲的脚端的距离是就是甲的影长.解:.23、(1);(2)售价为60元时每天销售该商品所获得最大利润,最大利润是1600. 【解析】(1)利用待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况;【详解】(1)设y=kx+b,将(50,100)、(55,90)代入,得:解得:,∴y=-2x+200 (40≤x≤60);(2)==∵开口向下∴当时,随的增大而增大, 当时,最大,答:售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【点睛】考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质. 24、655 【解析】分析:(1)180,B BAD ADB ∠+∠+∠=︒ 180,ADE CDE ADB ∠+∠+∠=︒ ∠ADE =∠B,可得,BAD CDE ∠=∠ ,AB AC = 根据等边对等角得到,B C ∠=∠△BAD ∽△CDE ,根据相似三角形的性质即可证明.(2) 在线段AB 上截取DB =DF ,证明△AFD ∽△DEC ,根据相似三角形的性质即可证明.(3) 过点E 作EF ⊥BC 于F ,根据tan ∠BAD =tan ∠EDF =12EF DF =,设EF =x ,DF =2x ,则DE =5x ,证明△EDC ∽△GEC ,求得410C 5G =,根据CE 2=CD ·CG ,求出CD =210, 根据△BAD ∽△GDE,即可求出AB 的长度.详解:(1) 180,B BAD ADB ∠+∠+∠=︒ 180,ADE CDE ADB ∠+∠+∠=︒∠ADE =∠B,可得,BAD CDE ∠=∠,AB AC =∴,B C ∠=∠∵△BAD ∽△CDE ,∴CE BD BD CD AB AC==; (2) 在线段AB 上截取DB =DF∴∠B =∠DFB =∠ADE∵AD =AE ∴∠ADE =∠AED ∴∠AED =∠DFB ,同理:∵∠BAD +∠BDA =180°-∠B ,∠BDA +∠CDE =180°-∠ADE ∴∠BAD =∠CDE∵∠AFD =180°-∠DFB ,∠DEC =180°-∠AED ∴∠AFD =∠DEC ,∴△AFD ∽△DEC ,∴CE DF BD CD AD AE== (3) 过点E 作EF ⊥BC 于F∵∠ADE =∠B =45°∴∠BDA +∠BAD =135°,∠BDA +∠EDC =135° ∴∠BAD =∠EBC (三等角模型中,这个始终存在) ∵tan ∠BAD =tan ∠EDF =12EF DF = ∴设EF =x ,DF =2x ,则DE 5x ,在DC 上取一点G ,使∠EGD =45°, ∴△BAD ∽△GDE ,∵AD =AE ∴∠AED =∠ADE =45°, ∵∠AED =∠EDC +∠C =45°,∠C +∠CEG =45°,∴∠EDC =∠GEC , ∴△EDC ∽△GEC ,∴CG EG CE CE DE CD == ∴245CG x x =,410CG = 又CE 2=CD ·CG , ∴42=CD ·410,CD =10, ∴41022105x x ++=,解得2105x = ∵△BAD ∽△GDE∴2DE DG AD AB ==∴AB ===. 点睛:属于相似三角形的综合题,考查相似三角形的判定于性质,掌握相似三角形的判定方法是解题的关键.25、宣传条幅BC 的长为17.3米.【解析】试题分析:先由∠F=30°,∠BEC=60°解得∠EBF=30°=∠F ,从而可得BE=FE=20米,再在Rt △BEC 中由sin ∠BEC=2BC BE =即可解得BC 的值.试题解析:∵∠BEC=∠F+∠EBF ,∠F=30°,∠BEC=60°,∴∠EBF=60°-30°=30°=∠F ,∴BE=FE=20(米).∵在Rt △BEC 中,sin ∠BEC=BC BE =,∴BC=BE×2(米).26、(1)证明见解析;(2)证明见解析;(3)2BP MD = 【分析】(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.(2)欲证明PD 是⊙O 的切线,只要证明OD ⊥PA 即可解决问题;(3)连接CD .由(2)可知:PC=PD ,由AM=MC ,推出AM=2MO=2R ,在Rt △AOD 中,222OD AD OA ,可得222249R R +=,推出R =OD =MC =,由23AD AM AP AO ==,可得12DP =,再利用全等三角形的性质求出MD 即可解决问题;【详解】(1)证明:连接OD 、OP 、CD . ∵AD AM AP AO=,A A ∠=∠, ∴ADM APO △∽△,∴ADM APO ∠=∠,∴MD PO ∥,(2)∴MD PO ∥,∴14∠=∠,23∠∠=,∵OD OM =,∴34∠=∠,∴12∠=∠,∵OP OP =,OD OC =,∴P ODP OC ∆∆≌,∴ODP OCP ∠=∠,∵BC AC ⊥,∴90OCP ∠=︒,∴OD AP ⊥,∴PD 是O 的切线.(3)连接CD .由(1)可知:PC PD =,∵AM MC =,∴22AM MO R ==,在Rt AOD △中,222OD AD OA , ∴222249R R +=, ∴62R =62OD =122MC =, ∵23AD AM AP AO ==, ∴12DP =,∵O 是MC 的中点, ∴12CO CP MC CB ==, ∴点P 是BC 的中点,∴12BP CP DP ===,∵MC 是O 的直径,∴90BDC CDM ∠=∠=︒,在Rt BCM △中,∵224BC DP ==,MC =∴BM =∵BCM CDM △≌△,∴MD MCMC BM ==,∴MD =∴BP MD = 【点睛】此题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质,解题关键在于构造辅助线,相似三角形解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省临沂市沂南县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°2.(3分)若反比例函数y=(≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1) B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)4.(3分)如图所示,该几何体的主视图是()A. B.C.D.5.(3分)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大7.(3分)若关于的一元二次方程(﹣1)2+4+1=0有两个不相等的实数根,则的取值范围是()A.<5 B.<5,且≠1 C.≤5,且≠1 D.>58.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)反比例函数y=﹣图象上有两点P1(1,y1),P2(2,y2),若1<0<2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y210.(3分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.11.(3分)如图,在平面直角坐标系系中,直线y=1+2与轴交于点A,与y轴交于点C,与=1,tan∠BOC=,则2反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC的值是()A.﹣3 B.1 C.2 D.312.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB 和BC上移动.记PA=,点D到直线PA的距离为y,则y关于的函数大致图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程2+=0的解是.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.17.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度为 ℃.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)三、解答题(共7小题,满分66分) 19.(7分)计算:+sin 245°﹣tan60°.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为米,面积为y 平方米.(1)求y 关于的函数关系式;(2)当为何值时,围成的养鸡场面积最大,最大面积是多少?21.(8分)如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B ,C 在同一条直线上,在地面D 处测得旗杆顶端B 的仰角为30°,在D ,C 之间选择一点E (D ,E ,C 三点在同一直线上),又测得旗杆顶端B 的仰角为60°,且D ,E 之间的距离为20m ,已知建筑物的高度AC=12m ,求旗杆AB 的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE ⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.25.(12分)如图,在平面直角坐标系Oy中,抛物线y=﹣+b+c过点A(0,4)和C(8,0),P(t,0)是轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.山东省临沂市沂南县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选B.2.(3分)若反比例函数y=(≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1) B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.3.(3分)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C .4.(3分)如图所示,该几何体的主视图是( )A .B .C .D .【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示. 故选D .5.(3分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦.若∠OBC=60°,则∠BAC 的度数是( )A .75°B .60°C .45°D .30°【解答】解:∵AB 是⊙O 的直径, ∴∠ACB=90°, 又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB ﹣∠ABC=30°. 故选D .6.(3分)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A .两正面都朝上 B .两背面都朝上C .一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大【解答】解:画树状图为:共有4种等可能的结果数,其中两正面朝上的占1种,两背面朝上的占1种,一个正面朝上,另一个背面朝上的占2种,所以两正面朝上的概率=;两反面朝上的概率=;一个正面朝上,另一个背面朝上的概率==.故选C.7.(3分)若关于的一元二次方程(﹣1)2+4+1=0有两个不相等的实数根,则的取值范围是()A.<5 B.<5,且≠1 C.≤5,且≠1 D.>5【解答】解:∵关于的一元二次方程(﹣1)2+4+1=0有两个不相等的实数根,∴,即,解得:<5且≠1.故选B.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)反比例函数y=﹣图象上有两点P1(1,y1),P2(2,y2),若1<0<2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【解答】解:∵y=﹣,∴=﹣3<0,函数的图象在第二、四象限,并且在每个象限内,y随的增大而增大,∵反比例函数y=﹣图象上有两点P1(1,y1),P2(2,y2),1<0<2,∴点P1在第二象限,点P2在第四象限,∴y1>0>y2,故选D.10.(3分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.11.(3分)如图,在平面直角坐标系系中,直线y=1+2与轴交于点A,与y轴交于点C,与=1,tan∠BOC=,则2反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC的值是()A.﹣3 B.1 C.2 D.3【解答】解:∵直线y=1+2与轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴2=1×3=3.故选D.12.(3分)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB 和BC上移动.记PA=,点D到直线PA的距离为y,则y关于的函数大致图象是()A.B.C.D.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<≤5).综上,可得y关于的函数大致图象是:.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)方程2+=0的解是1=0,2=﹣1.【解答】解:(+1)=0,=0或+1=0,所以1=0,2=﹣1.故答案为1=0,2=﹣1.14.(3分)一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=故答案为:.15.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【解答】解:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC==,∴tan∠AED=.故答案为:.16.(3分)如图,点A、B是双曲线y=上的点,分别过点A、B作轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为8.【解答】解:∵点A、B是双曲线y=上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF +S矩形BDGE=6+6﹣2﹣2=8,故答案为:817.(3分)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度为﹣1℃.【解答】解:设l=at2+bt+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以l 与t 之间的二次函数解析式为:l=﹣t 2﹣2t +49,当t=﹣=﹣1时,l 有最大值50,即说明最适合这种植物生长的温度是﹣1℃.另法:由(﹣2,49),(0,49)可知抛物线的对称轴为直线t=﹣1,故当t=﹣1时,植物生长的温度最快.故答案为:﹣1.18.(3分)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE 1:AC=1:(n +1),∴S △ABE1:S △ABC =1:(n +1),∴S △ABE1=,∵==,∴=, ∴S △ABM :S △ABE1=(n +1):(2n +1),∴S △ABM : =(n +1):(2n +1),∴S n=.故答案为:.三、解答题(共7小题,满分66分)19.(7分)计算: +sin245°﹣tan60°.【解答】解:原式=+﹣=+﹣=.20.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为米,面积为y平方米.(1)求y关于的函数关系式;(2)当为何值时,围成的养鸡场面积最大,最大面积是多少?【解答】解:(1)当矩形的一边长为米时,另一边长为(16﹣)米,根据题意,得:y=(16﹣)=﹣2+16(0<<16);(2)∵y=﹣2+16=﹣(﹣8)2+64,∴当=8时,y取得最大值,最大值为64,答:当为8米时,围成的养鸡场面积最大,最大面积是64平方米.21.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,在地面D处测得旗杆顶端B的仰角为30°,在D,C之间选择一点E(D,E,C三点在同一直线上),又测得旗杆顶端B的仰角为60°,且D,E之间的距离为20m,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20m,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(m),∴AB=BC﹣AC=17.3﹣12=5.3(m),答:旗杆AB的高度为5.3m.22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE ⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)解:设BD=,则AD=AB+BD=3+,OD=OB+BD=1.5+,在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+),由(1)知,DC=(3+),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+)]2=(1.5+)2,解得:1=﹣3(舍去),2=1,故BD=1.23.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【解答】解:(1)过点A作AE⊥轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=a+b,将点A(﹣4,3)、点B(3,﹣4)代入y=a+b中得:,解得:,∴一次函数解析式为y=﹣﹣1.令一次函数y=﹣﹣1中y=0,则0=﹣﹣1,解得:=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.24.(11分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°=,∴的值不随着α的变化而变化,是定值.25.(12分)如图,在平面直角坐标系Oy中,抛物线y=﹣+b+c过点A(0,4)和C(8,0),P(t,0)是轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上.【解答】解:(1)把A(0,4)和C(8,0)代入y=﹣+b+c得,解得b=,c=4;(2)作MN⊥轴于点N,如图,∵M是线段AP的中点,∴MN=2,∵AD⊥BE,BE⊥轴,∴BE=OA=4,∵线段MP绕点P顺时针旋转90°得线段PB,∴PM=PB,∠MPB=90°,∵∠MPN+∠BPE=90°,∠MPN+∠PMN=90°,∴∠PMN=∠BPE,在△PMN和△BPE中,∴△PMN≌△BPE,∴PE=MN=2,∴OE=2+t,∴D(2+t,4),∵抛物线的对称轴为直线=﹣=,而点A、点D为对称点,∴D点坐标为(5,4),∴2+t=5,解得t=3,即当t为3时,点D落在抛物线上.。