LMX331-LMX393中文资料

合集下载

lm393

lm393

1POST OFFICE BOX 655303 •DALLAS, TEXAS 75265(LM193)D Low Input Offset Voltage ...2mV Typ D Common-Mode Input Voltage Range Includes GroundD Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage ...±36 V D Low Output Saturation VoltageDOutput Compatible With TTL, MOS, and CMOSdescription/ordering informationThese devices consist of two independent voltage comparators that are designed to operate from asingle power supply over a wide range of voltages.Operation from dual supplies also is possible as long as the difference between the two supplies is2 V to 36 V, and V CC is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achievewired-AND relationships.The LM193 is characterized for operation from −55°C to 125°C. The LM293 and LM293A are characterized foroperation from −25°C to 85°C. The LM393 and LM393A are characterized for operation from 0°C to 70°C. The LM2903 is characterized for operation from −40°C to 125°C.PRODUCTION DATA information is curre nt as of publication date .Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.3212019910111213456781817161514NC 2OUT NC 2IN−NCNC 1IN−NC 1IN+NCLM193...FK PACKAGE(TOP VIEW)N C 1O U T N C 2I N +N CV N CN C G N D N C C CNC − No internal connection On products compliant to MIL-PRF-38535, all parameters are tested unl ss oth rwis not d. On all oth r products, production processing does not necessarily include testing of all parameters.LM193, LM293, LM293ALM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORSSLCS005W − JUNE 1976 − REVISED JULY 20102POST OFFICE BOX 655303 •DALLAS, TEXAS 75265ORDERING INFORMATION {T AV IOmax AT 25°CMAX V CCPACKAGE }ORDERABLEPART NUMBER TOP-SIDE MARKING PDIP (P)Tube of 50LM393P LM393P Tube of 75LM393D Reel of 2500LM393DR SOIC (D)Reel of 2500LM393DRG3LM393SOP (PS)Reel of 2000LM393PSR L3935 mV30 VTube of 150LM393PW Reel of 2000LM393PWR °°TSSOP (PW)Reel of 2000LM393PWRG3L3930C to 70CMSOP/VSSOP (DGK)Reel of 2500LM393DGKR M9_§PDIP (P)Tube of 50LM393AP LM393AP SOIC (D)Tube of 75LM393AD 2mV 30V SOIC (D)Reel of 2500LM393ADR LM393A 2 mV30 VSOP (PS)Reel of 2000LM393APSR L393A TSSOP (PW)Reel of 2000LM393APWR L393A MSOP/VSSOP (DGK)Reel of 2500LM393ADGKR M8_§PDIP (P)Tube of 50LM293P LM293P Tube of 75LM293D Reel of 2500LM293DR 25°C to 85°C5 mV30 VSOIC (D)Reel of 2500LM293DRG3LM293−25C to 85MSOP/VSSOP (DGK)Reel of 2500LM293DGKR MC_§SOIC (D)Tube of 75LM293AD SOIC (D)Reel of 2500LM293ADR LM293A 2 mV30 VMSOP/VSSOP (DGK)Reel of 2500LM293ADGKR MD_§PDIP (P)Tube of 50LM2903P LM2903P Tube of 75LM2903D Reel of 2500LM2903DR 7V 30V SOIC (D)Reel of 2500LM2903DRG3LM29037 mV30 VSOP (PS)Reel of 2000LM2903PSR L290340°C to 125°CTSSOP (PW)Reel of 2000LM2903PWR −40C to 125TSSOP (PW)Reel of 2000LM2903PWRG3L2903MSOP/VSSOP (DGK)Reel of 2500LM2903DGKR MA_§7mV 32V SOIC (D)Reel of 2500LM2903VQDR L2903V 7 mV 32 V TSSOP (PW)Reel of 2000LM2903VQPWR L2903V 2mV 32V SOIC (D)Reel of 2500LM2903AVQDR L2903AV 2 mV32 VTSSOP (PW)Reel of 2000LM2903AVQPWR L2903AV CDIP (JG)Tube of 50LM193JG LM193JG −55°C to 125°C5 mV 30 V LCCC (FK)Tube of 55LM193FK LM193FK SOIC (D)Reel of 2500LM193DRLM193†For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at .‡Package drawings, thermal data, and symbolization are available at /packaging.§The actual top-side marking has one additional character that designates the wafer fab/assembly site.LM193, LM293, LM293ALM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORSSLCS005W − JUNE 1976 − REVISED JULY 20103POST OFFICE BOX 655303 •DALLAS, TEXAS 75265symbol (each comparator)IN+IN−OUTschematic (each comparator)Epi-FET Diodes Resistors TransistorsCOMPONENT COUNT12230absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†Supply voltage, V CC (see Note 1) 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input voltage, V ID (see Note 2) ±36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage range, V I (either input) −0.3 V to 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output voltage, V O 36 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current, I O 20 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duration of output short-circuit to ground (see Note 3) Unlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package thermal impedance, θJA (see Notes 4 and 5):D package 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . DGK package 172°C/W . . . . . . . . . . . . . . . . . . . . . . . . P package 85°C/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . PS package 95°C/W . . . . . . . . . . . . . . . . . . . . . . . . . . . PW package 149°C/W. . . . . . . . . . . . . . . . . . . . . . . . . Package thermal impedance, θJC (see Notes 6 and 7):FK package 5.61°C/W. . . . . . . . . . . . . . . . . . . . . . . . . JG package 14.5°C/W. . . . . . . . . . . . . . . . . . . . . . . . . Operating virtual junction temperature, T J 150°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Case temperature for 60 seconds: FK package 260°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C . . . . . . . . . . . . . . . . . . . . Storage temperature range, T stg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.NOTES: 1.All voltage values, except differential voltages, are with respect to GND.2.Differential voltages are at IN+, with respect to IN−.3.Short circuits from outputs to V CC can cause excessive heating and eventual destruction.4.Maximum power dissipation is a function of T J (max), θJA , and T A . The maximum allowable power dissipation at any allowableambient temperature is P D = (T J (max) − T A )/θJA . Operating at the absolute maximum T J of 150°C can affect reliability.5.The package thermal impedance is calculated in accordance with JESD 51-7.6.Maximum power dissipation is a function of T J (max), θJC , and T C . The maximum allowable power dissipation at any allowable casetemperature is P D = (T J (max) − T C )/θJC . Operating at the absolute maximum T J of 150°C can affect reliability.7.The package thermal impedance is calculated in accordance with MIL-STD-883.LM193, LM293, LM293ALM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORSSLCS005W − JUNE 1976 − REVISED JULY 20104POST OFFICE BOX 655303 •DALLAS, TEXAS 75265electrical characteristics at specified free-air temperature, V CC = 5 V (unless otherwise noted)LM193LM293LM393PARAMETERTEST CONDITIONS T A †MINTYP MAXMINTYP MAXUNITInput offset voltage V CC = 5 V to 30 V,14V 25°C 2525V IOInput offset voltageV O = 1.4 V,V IC = V IC(min)Full range 99mV Input offset current 14V 25°C 325550I IO Input offset current V O = 1.4 V Full range 100250nA Input bias current 14V 25°C −25−100−25−250I IBInput bias currentV O = 1.4 VFull range −300−400nACommon-mode25°C 0 toV CC − 1.50 toV CC − 1.5V ICRCommon mode input voltage range ‡Full range0 to V CC − 20 to V CC − 2VA VDLarge-signaldifferential-voltage amplification V CC = 15 V,V O = 1.4 V to 11.4 V,R L ≥ 15 k Ω to V CC 25°C 5020050200V/mV High-level V OH = 5 V,V ID = 1 V 25°C 0.10.150nA I OH High level output current V OH = 30 V,V ID = 1 V Full range 11µA Low-level4mA 1V 25°C 150400150400V OL Low level output voltage I OL = 4 mA,V ID = −1 V Full range 700700mV I OL Low-level output current V OL = 1.5 V,V ID = −1 V 25°C 66mA Supply current =∞V CC = 5 V 25°C 0.810.81I CCSupply currentR L = V CC = 30 VFull range2.52.5mA†Full range (MIN or MAX) for LM193 is −55°C to 125°C, for LM293 is 25°C to 85°C, and for LM393 is 0°C to 70°C. All characteristics are measuredwith zero common-mode input voltage, unless otherwise specified.‡The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V CC + − 1.5 V for the inverting input (−), and the non-inverting input (+) can exceed the V CC level; the comparator provides a proper output state. Either or both inputs can go to 30 V without damage.LM193, LM293, LM293ALM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORSSLCS005W − JUNE 1976 − REVISED JULY 20105POST OFFICE BOX 655303 •DALLAS, TEXAS 75265electrical characteristics at specified free-air temperature, V CC = 5 V (unless otherwise noted)LM293A LM393APARAMETERTEST CONDITIONST A †MINTYP MAXUNITInput offset voltage V 25°C 12V IO Input offset voltage CC = 5 V to 30 V, V O = 1.4 V,V IC = V IC(min)Full range 4mV Input offset current 14V 25°C 550I IO Input offset current V O = 1.4 V Full range 150nA Input bias current 14V25°C −25−250I IBInput bias currentV O = 1.4 V Full range −400nA Common-mode input voltage 25°C 0 toV CC − 1.5V ICRCommon mode input voltage range §Full range0 to V CC − 2VA VD Large-signal differential-voltage amplificationV CC = 15 V, V O = 1.4 V to 11.4 V,R L ≥ 15 k Ω to V CC 25°C 50200V/mV High level output current V OH = 5 V,V ID = 1 V 25°C 0.150nA I OH High-level output current V OH = 30 V,V ID = 1 V Full range 1µA Low level output voltage I 4mA 1V 25°C 150400V OL Low-level output voltage OL = 4 mA,V ID = −1 V Full range 700mV I OL Low-level output current V OL = 1.5 V,V ID = −1 V 25°C 6mA Supply current =∞V CC = 5 V 25°C 0.81I CCSupply currentR L = V CC = 30 VFull range2.5mA†Full range (MIN or MAX) for LM293A is 25°C to 85°C, and for LM393A is 0°C to 70°C. All characteristics are measured with zero common-modeinput voltage, unless otherwise specified.§The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V CC+ − 1.5 V, but either or both inputs can go to 30 V without damage.LM193, LM293, LM293ALM393, LM393A, LM2903, LM2903V DUAL DIFFERENTIAL COMPARATORSSLCS005W − JUNE 1976 − REVISED JULY 20106POST OFFICE BOX 655303 •DALLAS, TEXAS 75265electrical characteristics at specified free-air temperature, V CC = 5 V (unless otherwise noted)TEST CONDITIONS LM2903LM2903APARAMETERTEST CONDITIONS T A †MINTYP MAXMINTYP MAXUNITInput offset voltage V CC = 5 V to MAX ‡,14V 25°C 2712V IOInput offset voltageV O = 1.4 V,V IC = V IC(min)Full range 154mV Input offset current 14V 25°C 550550I IO Input offset current V O = 1.4 V Full range 200200nA Input bias current 14V25°C −25−250−25−250I IBInput bias currentV O = 1.4 V Full range −500−500nACommon-mode25°C 0 toV CC − 1.50 to V CC − 1.5V ICRCommon mode input voltage range §Full range0 to V CC − 20 to V CC − 2VA VDLarge-signaldifferential-voltage amplification V CC = 15 V,V O = 1.4 V to 11.4 V,R L ≥ 15 k Ω to V CC 25°C 2510025100V/mV High-level V OH = 5 V,V ID = 1 V25°C 0.1500.150nA I OH High level output current V OH = V CC MAX, V ID = 1 V Full range 11µA Low-level4mA 1V 25°C 150400150400V OL Low level output voltage I OL = 4 mA,V ID = −1 V Full range 700700mV I OL Low-level output current V OL = 1.5 V,V ID = −1 V 25°C 66mA Supply current =∞V CC = 5 V 25°C 0.810.81I CCSupply currentR L = V CC = MAXFull range2.52.5mA†Full range (MIN or MAX) for LM2903 is −40°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwisespecified.‡V CCMAX = 30 V for non-V devices and 32 V for V-suffix devices.§The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V CC+ − 1.5 V, but either or both inputs can go to 30 V (32 V for V-suffix devices) without damage.switching characteristics, V CC = 5 V, T A = 25°CPARAMETER TEST CONDITIONS LM193LM293, LM293A LM393, LM393ALM2903UNITTYPResponse time R Ω100-mV input step with 5-mV overdrive 1.3Response timeL connected to 5 V through 5.1 k ,C L = 15 pF ¶, See Note 8TTL-level input step0.3µs¶C L includes probe and jig capacitance.NOTE 8:The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.PACKAGING INFORMATIONOrderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)5962-9452601Q2A ACTIVE LCCC FK201TBD POST-PLATE N / A for Pkg Type Purchase Samples 5962-9452601QPA ACTIVE CDIP JG81TBD A42N / A for Pkg Type Purchase Samples JM38510/11202BPA ACTIVE CDIP JG81TBD A42N / A for Pkg Type Purchase Samples LM193DR ACTIVE SOIC D82500TBD CU NIPDAU Level-1-220C-UNLIM Request Free Samples LM193DRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM193FKB ACTIVE LCCC FK201TBD POST-PLATE N / A for Pkg Type Purchase Samples LM193JG ACTIVE CDIP JG81TBD A42N / A for Pkg Type Purchase Samples LM193JGB ACTIVE CDIP JG81TBD A42N / A for Pkg Type Purchase Samples LM2903AVQDR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903AVQDRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples LM2903AVQPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-250C-UNLIM Purchase Samples LM2903AVQPWRG4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903D ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903DE4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903DG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903DGKR ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903DGKRG4ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903DR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903DRE4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903DRG3ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU SN Level-1-260C-UNLIM Request Free SamplesAddendum-Page 1Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)LM2903DRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903P ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales Office LM2903PE4ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales OfficeLM2903PSR ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903PSRG4ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903PWLE OBSOLETE TSSOP PW8TBD Call TI Call TI Replaced by LM2903PWRLM2903PWR ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903PWRE4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903PWRG3ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU SN Level-1-260C-UNLIM Request Free SamplesLM2903PWRG4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM2903QD ACTIVE SOIC D875TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples LM2903QDG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903QDR ACTIVE SOIC D82500TBD CU NIPDAU Level-1-220C-UNLIM Purchase Samples LM2903QDRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free Samples LM2903QP OBSOLETE PDIP P8TBD Call TI Call TI Replaced by LM2903P LM2903VQDR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM2903VQDRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples LM2903VQPWR ACTIVE TSSOP PW82000TBD CU NIPDAU Level-1-250C-UNLIM Purchase Samples LM2903VQPWRG4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293AD ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeAddendum-Page 2Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)LM293ADE4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293ADG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293ADGKR ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293ADGKRG4ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293ADR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293ADRE4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293ADRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293D ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293DE4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293DG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293DGKR ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293DGKRG4ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293DR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM293DRE4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293DRG3ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU SN Level-1-260C-UNLIM Request Free SamplesLM293DRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM293P ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales OfficeLM293PE4ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales OfficeAddendum-Page 3Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)LM393AD ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393ADE4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393ADG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393ADGKR ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393ADGKRG4ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393ADR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393ADRE4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393ADRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393AP ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales Office LM393APE4ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales Office LM393APSR ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393APSRE4ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393APSRG4ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase Samples LM393APWLE OBSOLETE TSSOP PW8TBD Call TI Call TI Samples Not AvailableLM393APWR ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393APWRE4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393APWRG4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393D ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeAddendum-Page 410-Dec-2010Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)LM393DE4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393DG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393DGKR ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393DGKRG4ACTIVE MSOP DGK82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393DR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393DRE4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393DRG3ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU SN Level-1-260C-UNLIM Request Free SamplesLM393DRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesLM393P ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales OfficeLM393PE3ACTIVE PDIP P850Pb-Free (RoHS)CU SN N / A for Pkg Type Purchase Samples LM393PE4ACTIVE PDIP P850Pb-Free (RoHS)CU NIPDAU N / A for Pkg Type Contact TI Distributoror Sales OfficeLM393PSLE OBSOLETE SO PS8TBD Call TI Call TI Samples Not AvailableLM393PSR ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393PSRG4ACTIVE SO PS82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393PW ACTIVE TSSOP PW8150Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393PWE4ACTIVE TSSOP PW8150Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393PWG4ACTIVE TSSOP PW8150Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393PWLE OBSOLETE TSSOP PW8TBD Call TI Call TI Samples Not AvailableLM393PWR ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office10-Dec-2010Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)LM393PWRE4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeLM393PWRG3ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU SN Level-1-260C-UNLIM Request Free SamplesLM393PWRG4ACTIVE TSSOP PW82000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales Office(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.OTHER QUALIFIED VERSIONS OF LM2903, LM293 :•Automotive: LM2903-Q1•Enhanced Product: LM293-EP。

LM331中文资料 中文手册 芯片中文资料 芯片中文手册

LM331中文资料 中文手册 芯片中文资料 芯片中文手册

电压-频率变换器LM331LM331是美国NS公司生产的性能价格比较高的集成芯片。

LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。

LM331为双列直插式8脚芯片,其引脚如图3所示。

LM331内部有(1)输入比较电路、(2)定时比较电路、(3)R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护点路等部分。

输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS 等不同的逻辑电路。

此外,LM331可采用单/双电源供电,电压范围为4~40V,输出也高达40V。

引脚1(PIN1)为电流源输出端,在f0(PIN3)输出逻辑低电平时,电流源IR输出对电容CL充电。

引脚2(PIN2)为增益调整,改变RS的值可调节电路转换增益的大小。

引脚3(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由Rt和Ct决定。

引脚4(PIN4)为电源地。

引脚5(PIN5)为定时比较器正相输入端。

引脚6(PIN6)为输入比较器反相输入端。

引脚7(PIN7)为输入比较器正相输入端。

引脚8(PIN8)为电源正端。

LM331频率电压转换器V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。

LM331压频变换器的原理及应用

LM331压频变换器的原理及应用

LM331压频变换器的原理及应用1. 概述LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

LM331的内部电路组成如图1所示。

由输入比较器、定时比较器、R-S触发器、输出驱动管、复零晶体管、能隙基准电路、精密电流源电路、电流开关、输出保护管等部分组成。

输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。

LM331可采用双电源或单电源供电,可工作在4.0~40V之间,输出可高达40V,而且可以防止Vcc短路。

2. 工作原理2.1 电压—频率变换器图2是由LM331组成的电压椘德时浠坏缏贰M饨拥缱鑂t、Ct和定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。

当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,Q输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时,电流开关打向右边,电流源IR对电容CL充电。

此时由于复零晶体管截止,电源Vcc也通过电阻Rt对电容Ct充电。

当电容Ct两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,Q输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容Ct通过复零晶体管迅速放电;电流开关打向左边,电容Cl对电阻RL放电。

当电容CL放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。

LM393资料-lm393中文资料-lm393 比较器参数-lm393是什么

LM393资料-lm393中文资料-lm393 比较器参数-lm393是什么

LM393 是双电压比较器集成电路。

该电路的特点如下:工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;消耗电流小,Icc=0.8mA;输入失调电压小,VIO=±2mV;共模输入电压范围宽,Vic=0~Vcc-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;输出可以用开路集电极连接“或”门;采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)LM393内部结构图LM393引脚功能排列表:引出端序号功能符号引出端序号.功能符号1输出端1OUT15正向输入端2 1N+(2)2反向输入端1 1N-(1)6反向输入端2 1N-(2)3正向输入端1 1N+(1)7输出端2OUT24地GND8电源VCCLM393主要参数表:参数名称符号数值单位电源电压VCC±18 或36V差模输入电压VID±36V共模输入电压VI-0.3~VCCV功耗Pd570mW工作环境温度Topr0 to +70℃贮存温度Tstg-65 to 150℃电特性(除非特别说明,VCC=5.0V,Tamb=25℃)参数名称符号测试条件最小典型最大单位输入失调电压VIOVCM=0 to VCC-1.5 VO(P)=1.4V, Rs=0-±1.0±5.0mV输入失调电流IIO--±5±50nA输入偏置电流Ib--65250nA共模输入电压VIC--VCC-1.5V静态电流ICCQ RL=∞-0.61.0mARL=∞,Vcc=30V-0.82.5mA电压增益AVVCC=15V, RL>15kΩ-200-V/mV灌电流lsinkVi(-)>1V, Vi(+)=0V, Vo(p)<1.5V616-mA输出漏电流IOLEVi(-)=0V, Vi(+)=1V, VO=5V-0.1-nA应用说明:LM393是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K 将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393偏置网络确立了其静态电流与电源电压范围2.0~30V无关.通常电源不需要加旁路电容。

LM331资料1

LM331资料1

摘要:本文主要介绍一种应用V/F转换器LM331实现A/D转换的电路,本电路价格低廉,外围电路简单, 适合应用在转换速度不太高的场合应用.本文包括硬件电路和软件程序的实现. 关键词:A/D转换器,V/F转换器, 高精度.引言:数据的采集与处理广泛地应用在自动化领域中,由于应用的场合不同,对数据采集与处理所要求的硬件也不相同.在控制过程中,有时要对几个模拟信号进行采集与处理,这些信号的采集与处理对速度要求不太高,一般采用AD574或ADC0809等芯片组成的A/D转换电路来实现信号的采集与模数转换,而AD574和ADC0809等A/D转换器价格较贵,线路复杂,从而提高了产品价格和项目的费用.在本文中,从实际应用出发,给出了一种应用V/F转换器LM331芯片组成的A/D转换电路,V/F转换器LM331芯片能够把电压信号转换为频率信号,而且线性度好,通过计算机处理,再把频率信号转换为数字信号,就完成了A/D转换。

它与AD574等电路相比,具有接线简单,价格低廉,转换精度高等特点,而且LM331芯片在转换过程中不需要软件程序驱动,这与AD574等需要软件程序控制的A/D转换电路相比,使用起来方便了许多。

一. 芯片简介LM331是美国NS公司生产的性能价格比比较高的集成芯片。

它是当前最简单的一种高精度V/F转换器、A/D转换器、线性频率调制解调、长时间积分器以及其它相关的器件。

LM331为双列直插式8引脚芯片,其引脚框图如图1所示。

图1 LM331逻辑框图LM331 各引脚功能说明如下:脚 1 为脉冲电流输出端,内部相当于脉冲恒流源,脉冲宽度与内部单稳态电路相同;脚 2 为输出端脉冲电流幅度调节,RS 越小,输出电流越大;脚 3 为脉冲电压输出端,OC 门结构,输出脉冲宽度及相位同单稳态,不用时可悬空或接地;脚4 为地;脚 5 为单稳态外接定时时间常数RC ;脚6 为单稳态触发脉冲输入端,低于脚7 电压触发有效,要求输入负脉冲宽度小于单稳态输出脉冲宽度Tw ;脚7 为比较器基准电压,用于设置输入脉冲的有效触发电平高低;脚8 为电源Vcc , 正常工作电压范围为4~40V。

1LM331_LM331工作原理及典型应用

1LM331_LM331工作原理及典型应用

电压-频率变换器LM331LM331是美国NS公司生产的性能价格比较高的集成芯片。

LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其他相关的器件。

LM331为双列直插式8脚芯片,其引脚如图3所示。

LM331内部有(1)输入比较电路、(2)定时比较电路、(3)R-S触发电路、(4)复零晶体管、(5)输出驱动管、(6)能隙基准电路、(7)精密电流源电路、(8)电流开关、(9)输出保护点路等部分。

输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS 等不同的逻辑电路。

此外,LM331可采用单/双电源供电,电压范围为4~40V,输出也高达40V。

IR(PIN1)为电流源输出端,在f0(PIN3)输出逻辑低电平时,电流源IR输出对电容CL充电。

引脚2(PIN2)为增益调整,改变RS的值可调节电路转换增益的大小。

f0(PIN3)为频率输出端,为逻辑低电平,脉冲宽度由Rt和Ct决定。

引脚4(PIN4)为电源地。

引脚5(PIN5)为定时比较器正相输入端。

引脚6(PIN6)为输入比较器反相输入端。

引脚7(PIN7)为输入比较器正相输入端。

引脚8(PIN8)为电源正端。

LM331频率电压转换器V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。

LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。

同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。

图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。

lm331详解

lm331详解

Versatile Monolithic V/Fs can Compute as Well as Convert with High AccuracyThe best of the monolithic voltage-to-frequency (V/F)con-verters have performance that’s so good it equals or ex-ceeds that of modular types.Some of these ICs can be designed into quite a variety of circuits because they’re notably versatile.Along with versatility and high performance come the advantages that are characteristic of all V/F con-verters,including good linearity,excellent resolution,wide dynamic range,and an output signal that’s easy to transmit as well as couple through an isolator.One of the recently introduced monolithic types,the LM131,has both high performance and a design that’s rather flex-ible.For instance,it can compute and convert at the same time;the computation is a part of the conversion.Among other functions,it can provide the product,ratio and square root of analog inputs.This IC has an internal reference for its conversion circuitry that’s also brought out to a pin,so it’s available to external circuits associated with the converter.Not surprisingly,it turns out that any deviations of the reference,due to process variations and temperature changes have equal and oppo-site effects on the scale factors of the converter and the external circuitry.(This presumes,of course,that the scale factor of the external circuitry is a linear function of voltage.)Precision Relaxation OscillatorBefore looking at some applications,quickly take a look at the basic circuit of an LM131V/F converter (Figure 1).Basically,this IC,like any V/F converter,is a precision relax-ation oscillator that generates a frequency linearly propor-tional to the input voltage.As might be expected,the circuit has a capacitor,C L ,with a sawtooth voltage on it.Generally speaking,the circuit is a feedback loop that keeps this capacitor charged to a voltage very slightly higher than the input voltage,V IN .If V IN is high,C L discharges relatively quickly through R L ,and the circuit generates a high fre-quency.If V IN is low,C L discharges slowly,and the converter puts out a low frequency.When C L discharges to a voltage equal to the input,the comparator triggers the one-shot.The one-shot closes the current switch and also turns on the output transistor.With the switch closed,current from the current source recharges C L to a voltage somewhat higher than the input.Charging continues for a period determined by R T and C T .At the end of this period,the one-shot returns to its quiescent state and C L resumes discharging.Resistor R S sets the amount of current put out by the current source.In fact,the current in pin 1,with the switch on,is identical to the current in pin 2.The latter pin is at a constant voltage (nominally 1.90V),so a given resistor value can set the operating currents.When connected to a high imped-ance buffer,this pin provides a stable reference for external circuits.The open-collector output at pin 3permits the output swing to be different from the converter’s supply voltage,if the load circuit requires.The supplies don’t have to be separate,however,and both the converter and its load can use the same voltage.National Semiconductor Application Note D August 1980Versatile Monolithic V/Fs Can Compute as Well as Convert with High AccuracyAN-D©2002National Semiconductor Corporation Precision Relaxation Oscillator(Continued)Steady as She GoesBy far the simplest of the circuits that make use of the reference output voltage from the LM131is one that simply ties this output pin right back to the signal input.This con-nection is just a V/F converter with a constant input,which makes it a constant-frequency oscillator.Even with thissimple circuit (Figure 2),variations in the reference voltage have two opposite effects that cancel each other out,so the circuit is particularly stable.In this type of circuit,the temperature-dependent internal delays tend to cancel as well,which isn’t true of relaxation oscillators based on op amps or comparators.00874201FIGURE 1.A voltage-to-frequency converter such as this is a relaxation oscillator with a frequency proportional tothe input voltage.Current pulses keep C L ’s average voltage slightly greater than the input voltage.A N -D 2Steady as She Goes(Continued)Resistors R L and R S are best taken from the same batch.(R L must be larger than R S,so it’s made up of two resistors.)By doing this,the tempco tracking,which is the criticalparameter,is five to ten times better than it would be if R Lwere a single30.1kΩresistor.Although the reference output,pin2,can’t be loaded withoutaffecting the converter’s sensitivity,the comparator input,pin7,has a high impedance so this connection does no harm.Frequency stability is typically±25ppm/˚C,even with anLM331,which as a V/F converter is specified only to150ppm/˚C maximum.From20Hz to20kHz,stability is excel-lent,and the circuit can generate frequencies up to120kHz.Although the simplest way of using the reference output is totie it back to the input,the reference can also be bufferedand amplified to supply such external circuitry as a resistivetransducer,which might be a strain gauge or a pot(Figure3).As in the stable oscillator already described,deviations ofthe internal reference voltage from the ideal cause the trans-ducer’s and the converter’s sensitivities to change equally inopposite directions,so the effects cancel.In this circuit,op amp A2buffers and amplifies the constantvoltage at pin2of the converter to provide the5V excitationfor the strain gauge.Amplifier A1,connected as an instru-mentation amplifier,raises the output of the strain gauge to ausable level while rejecting common-mode pickup.A potentiometer-type transducer works just as well with thiscircuit.Its wiper output takes the place of A1’s output asshown at the X.The reference terminal is both a constant voltage output anda current programming input.So far,it’s been shown simplywith one or two resistors going to ground.It is,however,afull-fledged signal input that accepts a signal from a currentsource quite well.3Steady as She Goes(Continued)This extra input is what enables the LM131to compute while converting.For instance,it will convert the ratio of two volt-ages to a frequency proportional to the ratio (Figure 4).The circuit is still a V/F converter,but has two signal inputs,both of them going to rather unorthodox places at that.The in-puts,shown as voltages,are converted to currents by two current pumps (voltage-to-current converters).Of course,if currents of the proper ranges are available,the current pumps aren’t needed.The left current pump,which includes Q1and A1,determines how fast capacitor C L discharges between output pulses.The other pump sets the current in the reference circuit to control the amount of recharge cur-rent when the one-shot fires.Tying the comparator input,pin 7,to the reference pin sets the comparator’s trip point at a constant voltage.To get an idea of how the circuit works,consider first the effect of,for instance,tripling the input voltage,V1.This make C L discharge to the comparator trip point three times as fast,so the frequency triples.Next,consider a givenchange,such as doubling the voltage at the other input,V2.This doubles the recharge current to C L during the fixed-width output pulse,which means C L ’s voltage in-creases twice as much during recharging.Since the dis-charge into Q1is linear (for V1constant),it takes twice as long for C L to discharge —the frequency becomes half of what it was before.Although the current pumps in Figure 4must have negative inputs,rearranging the op amps according to Figure 5makes them accept positive inputs instead.Trimming out the offset in the op amp gives the ratio converter better linearity and accuracy.The trim circuit in Figure 5a needs stable positive and negative supplies for the offset trimmer,while the one in Figure 5b needs only a stable positive supply.Unmarked components in Figure 5b are the same as in Figure 5a .Note that the full-scale range of the current pumps can be changed by varying the value of the input resistor(s).If either of these pump circuits is used with a single positive supply,00874205R1,R2,R3:Stable components with low tempco Q1:β≥330a00874206bFIGURE 5.These current pumps adapt the converter circuits in Figure 4and Figure 6to positive input voltages.Optional offset trimming improves linearity and accuracy,especially with input signals that have awide dynamic range.A N -D 4Steady as She Goes(Continued)the op amp should be a type such as 1/2LM358or 1/4LM324,which has a common-mode range that includes the negative-supply bus.Computing Square Roots ImplicitlyAn analog divider computes the square root of a signal when the signal is fed to the divider’s numerator input,and the output is fed back to the divider’s denominator input.00874207This type of computation is called implicit,because the end result of the computation is only implied,not explicitly stated by the equation that defines the computation.In the implicit square root computing loop described in the text,a V/F converter serves as a divider.Since it’s a con-verter,its inputs are voltages (or currents),but its output is a frequency.To connect its output back to one of its inputs so it will compute a square root means that its output frequency must be converted back to a voltage.This is taken care of by the frequency-to-voltage converter.It’ll Take ReciprocalsTaking the ratio of two inputs —in other words,doing division —is only one of the mathematical operations thatcan be combined with converting.Another one is a special case of division,which is taking reciprocals.In this instance,the numerator (V1in Figure 4)is held constant,and the denominator,V2,changes over a wide range such as one or two decades.In this case,since the frequency is the recip-rocal of the input,the period of the output is proportional to the input.When operated this way,the V2current pump should have an offset trimmer.A constant current circuit is still needed to discharge capacitor C L .Nonlinearity (that is,deviation from the ideal law)with an LM331is a little better than 1%for 10kHz full-scale.Increas-ing C T to 0.1µF reduces the nonlinearity to below 0.2%while decreasing full-scale output to 1kHz.Two inputs can also be multiplied while converting to a frequency.The multiplying converter circuit (Figure 6)that does this has a more elaborate current pump than the ratio circuit of Figure 4.This pump is really two cascaded circuits;it includes op amps A2and A3as well as transistors Q2and Q3.Current from this pump goes to pin 5to control the one-shot’s pulse width.(This current ranges from 13.3µA to 1.33µA.)As in the ratio circuit,the left current pump controls the discharge rate of C L .The other pump,however,controls the one-shot’s pulse width to vary the amount that C L charges during the pulse.If the V2input is close to zero,the current from the pump into pin 5is small,and the one-shot develops a wide pulse.This allows C L to charge quite a bit.It takes a relatively long time for C L to discharge to the comparator threshold,so the resulting frequency is low.As V2goes negative (a greater absolute magnitude),the output fre-quency rises.Op amp A3must have a common-mode range that extends to the positive supply voltage,which the speci-fied types do.Multiplying,dividing and converting can all be done at the same time by combining the V2input current pump of Figure 4with the circuit of Figure 6.If a scale-factor trimmer is needed,R4in Figure 6is a good choice,better than input resistors such as R1or ing the latter as trimmers would make the input impedance of the circuit change with trim setting.Two V/F converter ICs along with some extra circuitry will take the square root of a voltage input.Square root functions are used mostly to simulate natural laws,but also to linearize functions that have a natural square-law relationship.One of the latter is converting differential pressure to flow,where flow is proportional to the square root of differential pressure.AN-D5It’ll Take Reciprocals(Continued)Versatile Pin Functions Give Design FlexibilityTwo features —the reference and the one-shot —of the LM131/LM331V/F converter deserve a closer look because they are the key to its versatility.The simplified schematic of the chip,shown here along with a transducer and the com-ponents needed for a basic V/F converter,will help to illus-trate how these features work.The reference circuit,connected to pin 2,is both a constant voltage output and a current setting,scale-factor control input.The constant voltage can supply external circuitry,such as the transducer,that feeds the converter’s input.One great advantage of using the converter’s internal refer-ence to supply the external circuitry is that any variation in the reference voltage affects the sensitivities of the converter and the external circuitry by equal and opposite amounts,so the effects of the variation cancel.While providing a constant voltage output,pin 2also pro-vides scale-factor,or sensitivity control for the converter.Current supplied to an external circuit by this terminal comes from the supply (V S )through the current mirror and the transistor.The op amp drives this transistor to hold pin 2at a constant voltage equal to the internal reference,which is nominally 1.9V.The current mirror provides a current to the switch that’s essentially identical to that in pin 2.This means that a resistor to ground or a signal from a current source will set the current that is switched to pin 1.In most circuits,a capacitor goes from pin 1to ground,and the switched cur-rent from this pin recharges the capacitor during the pulse from the one-shot.The one-shot circuit is somewhat like the well known 555timer’s circuit.In the quiescent state,the reset transistor is on and holds pin 5near ground.When pin 7becomes more positive than pin 6(or pin 6falls below pin 7),the input comparator sets the flip-flop in the one-shot.The flip-flop turns on the current limited output transistor (pin 3)and switches the current coming from the current mirror to pin 1.The flip-flop also turns off the reset transistor,and the timing capacitor C T starts to charge toward V S .This charge is exponential,and C T ’s voltage reaches 2/3of V S in about00874209FIGURE 6.The product of two input voltages becomes an equivalent frequency in this converter.A current pump thatincludes op amps A2and A3controls the pulse duration of the converter’s internal one-shot.A N -D 6Versatile Pin Functions Give Design Flexibility(Continued)1.1R T C T time constants.(The quantity1.1is−ln0.333...) When pin5reaches this voltage,the one-shot’s comparator resets the flip-flop which turns off the current to pin1,dis-charges C T,and turns off the output transistor.If the voltages at pins6and7still call for setting the flip-flopafter pin5has reached2/3V S,internal logic not shown inthis simplified diagram overrides the reset signal from theone-shot’s own comparator,and the flip-flop stays set.In thisinstance,C T continues charging past2/3V S. 7Root Loop Computes(Continued)As a sign of this condition,when the converter hangs up,the one-shot’s timing node,pin 5,continues to charge well be-yond its normal peak of 2/3V S .As soon as the comparator A2detects this rise,it pulls up voltage V X ,current I 1in-creases,and the loop catches its breath again.After all these nonlinear computations,this last circuit is about as linear as it can be.It’s a precision,ultralinear V/F converter based on an LM331A (Figure 8)that has several detail refinements over previous V/F converter circuits.Choosing the proper components and trimming the tempco give less than 0.02%error and 0.003%nonlinearity for a ±20˚C range around room temperature.This circuit has an active integrator,which includes the op amp and the integrating feedback capacitor,C F .The integra-tor converts the input voltage,which is negative,into a positive-going ramp.When the ramp reaches the converter IC’s comparator threshold,the one-shot fires and switches a pulse of current to the integrator’s summing junction.This current makes the integrator’s output ramp down quickly.When the one-shot times out,the cycle repeats.00874211FIGURE 7.Two converter ICs generate an output frequency proportional to the square root of the input voltage.Thecircuit is an implicit loop in which IC1serves as a divider and V/F converter.This IC’s output goes back to itsdenominator input through F/V converter IC2to make the circuit output equal the input’s square root.A N -D 8Root Loop Computes(Continued)There are several reasons this converter circuit gives high performance:•A feedback limiter prevents the op amp from driving pin7 of the LM331A negative.The limiter circuit arrangement bypasses the leakage through CR5to ground via R5,so it won’t reach the summing junction.Bypassing leakage this way is especially important at high temperatures.•The offset trimming pot is connected to the stable1.9V reference at pin2instead of to a power supply bus that might be unstable and noisy.•A small fraction(180µV,full-scale)of the input voltage goes via R4to the R S network,which improves the non-linearity from0.004%to0.002%.•Resistors R2and R3are the same value,so that resis-tors such as Allen-Bradley type CC metal-film types can provide excellent tempco tracking at low cost.(This track-ing is very good when equal values come from the same batch.)Resistor R1should be a low tempco metal-film or wirewound type,with a maximum tempco of±10ppm/˚C or±25ppm/˚C.In addition,C T should be a polystyrene or Teflon type.Poly-styrene is rated to80˚C,while Teflon goes to150˚C.Both types can be obtained with a tempco of−110±30ppm/˚C. Choosing this tempco for C T makes the tempco,due to C T, of the full-scale output frequency110ppm/˚C.Using tight tolerance components results in a total tempco between0ppm/˚C and220ppm/˚C,so the tempco will never be negative.The voltage at CR1and R X has a tempco of −6mV/˚C,which can be used to compensate the tempco of the rest of the circuit.Trimming R X compensates for the tempco of the V/F IC,the capacitor,and all the resistors.A good starting value for selecting R X is430kΩ,which will give the135µA flowing out of pin2a slope of110ppm/˚C.If the output frequency increases with temperature,a little more conductance should be added in parallel with R X. When doing a second round of trimming,though,note that a resistor of,say, 4.3MΩ,has about the same effect on tempco when shunted across a220kΩresistor that it does when shunted across one of430kΩ,namely,−11ppm/˚C. This technique can give tempcos below±20ppm/˚C or even ±10ppm/˚C.00874212FIGURE8.An ultraprecision V/F converter,capable of better than0.02%error and0.003%nonlinearity for a±20˚C range about room temperature,augments the basic converter with an external integrator.AN-D9Root Loop Computes(Continued)Some precautions help this procedure converge:1.Use a good capacitor for C T .The cheapest polystyrene capacitors will shift in value by 0.05%or more per tem-perature cycle.The actual temperature sensitivity would be indistinguishable from the hysteresis,and the circuit would never be stable.2.After soldering,bake and/or temperature-cycle the cir-cuit (at a temperature not exceeding 75˚C if C T is poly-styrene)for a few hours,to stabilize all components and to relieve the strains from soldering.3.Don’t rush the trimming.Recheck the room temperaturevalue,before and after the high temperature data aretaken,to ensure that hysteresis per cycle is reasonably low.4.Don’t expect a perfect tempco at −25˚C if the circuit istrimmed for ±5ppm/˚C between 25˚C and 60˚C.If it’s been trimmed for zero tempco while warm,none of its components will be linear to much better than 5ppm/˚C or 10ppm/˚C when it’s cold.The values shown in this circuit are generally optimum for ±12V to ±16V regulated supplies but any stable supplies between ±4V and ±22V would be usable,after changing a few component values.LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasEmail:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:ap.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507A N -DV e r s a t i l e M o n o l i t h i c V /F s C a n C o m p u t e a s W e l l a s C o n v e r t w i t h H i g h A c c u r a c yNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

lm393中文资料_数据手册_参数

lm393中文资料_数据手册_参数

万联芯城
万联芯城-电子元器件采购网,专为终端工厂 客户提供一站式电子元器件配套服务,万联芯城所售电子元器件 均为原装现货库存,提交 BOM 表立即报价。万联芯城代理长电, 顺络,先科 ST 等知名电子元器件品牌,价格有明显的优势,欢 迎广大客户咨询相关采购业务。点击进入万联芯城。
LM393系列由两个独立的精密voltagecomparators组成,其补偿电压规格低至2.0mVmax。用于两 个比较器,它们是专门设计用来在一个电源上工作的,电压范围很广。从劈开电源供应的操 作也是可能的,低功率电源电流的消耗与电源电压的大小无关。这些比较器还具有一个独特 的特性,即输入共模电压范围包括接地,即使是从一个电源电压操作。LM193系列直接与TTL 和cmos接口。当使用正负电源时,LM193系LM393列将直接与MOS逻辑接口,其低功耗比标准 比较器具有明显的优势。功能·单电源电压范围宽2.0 vdc 36 vdc或dualsupplies±1.0 vdc,±18 vdc·供应电流损耗非常低(0.8 ma)独立于supplyvoltage(LM3932.0 mw /比较器在5.0伏直流电)· 低输入偏置电流25 na·低输入偏置电流±5 na和补偿电压±2 mv·输入共模电压范围包括地面 ·差分输入电压范围等于电源电压·马低输出250 mv 4饱和电压输出电压与TTL兼容,迪泰,发射 极耦合逻 辑,mso - ascii - font - family: tahoma; mso - hansi - font - family: tahoma; mso - hansi - font - family: tahoma; mso - hansi - font - family: tahoma; mso - hansi - font - family: tahoma ' >, < / span > < span lang = en - us销ConfigurationEQUIVALENT CIRCUITV + 100 a3.5 a3.5 a100 aq1q2q3q4q8q7q6q5 -输入输出+输入(只有一个比较器)SL00080Figure 2。相当于CircuitORDERING INFORMATIONDESCRIPTIONTEMPERATURE RANGEORDER CODEDWG #产品有陶瓷双列 直插式组件(陶瓷浸渍)-55°C + 125°CLM193FE0580A8-Pin陶瓷双列直插式组件(陶瓷浸 渍)-25°C + 85°CLM293FE0580A8-Pin塑料双列直插式组件(DIP)-25°C + 85° CLM293NSOT97-18-Pin塑料小轮廓(所以)Package-25°C + 85°CLM293DSOT96-18-Pin塑料双列 直插式组件(DIP)-25°C + 85°CLM293ANSOT97-18-Pin陶瓷双列直插式组件(陶瓷浸渍)0到+ 70°CLM393AFE0580A8-Pin陶瓷双列直插式组件(陶瓷浸渍)0到+ 70°CLM393FE0580A8-Pin塑 料小轮廓(所以)Package0 + 70°CLM393DSOT96-18-Pin塑料双列直插式组件(DIP)0到+ 70° CLM393NSOT97-18-Pin塑料双列直插式组件(DIP)0到+ 70°CLM393ANSOT97-18-Pin塑料双列 直插式组件(DIP)-40°C + 125°CLM2903NSOT97-18-Pin塑料双列直插式组件(DIP)-40°C + 125°CLM2903DSOT97272年11月低功率双电压comparator1995绝对最大 RATINGSSYMBOLPARAMETERRATINGUNITVCCSupply voltage36或±18 vdcdifferential输入 voltage36VDCVINInput电压- 0.3 + 36 vdcpdmaximum功耗,TA = 25°C(静止空气)1 f packageN打 包package7801160780mWmWmWOutput短路ground2ContinuousIINInput当前(VIN < -0.3 vdc)350 mataoperating温度rangeLM193/193ALM293/293ALM393/393ALM2903-55 + 125 - 25 + 125 + 70 - 40+ 70°C°C°C°CTSTGStorage温度范围- 65+ 150°CTSOLDLead焊接温度(10秒max)300°把 cnot:1。减免超过25°C,在以下利率:F包在6.2 mw /°CN包在9.3 mw /°CD包在6.2 mw /°C2。 从输出到V+的短路会导致过度的加热和最终的破坏。最大输出电流约为20ma,与V+.3的大小 无关。这个输入电流只有在任何输入引线的电压为负时才会存在。这是由于输入PNP晶体管的 集电极-基极结正向偏压,从而充当输入二极管箝位。除了这个二极管的作用,还有横向npn 寄生晶体管作用在IC芯片上。这种晶体LM393管的作用可以导致比较器的输出电压在输入被驱 动为负的时间范围内转到V+ voltagelevel(或大的超速驱动)。这并不是破坏性LM393的,正常的值。

LMV393MMX中文资料

LMV393MMX中文资料

LMV331Single /LMV393Dual /LMV339QuadGeneral Purpose,Low Voltage,TinyPack ComparatorsGeneral DescriptionThe LMV393and LMV339are low voltage (2.7-5V)versions of the dual and quad comparators,LM393/339,which are specified at 5-30V.The LMV331is the single version,which is available in space saving SC70-5and SOT23-5packages.SC70-5is approximately half the size of SOT23-5.The LMV393is available in 8-pin SOIC and 8-pin MSOP .The LMV339is available in 14-pin SOIC and 14-pin TSSOP .The LMV331/393/339is the most cost-effective solution where space,low voltage,low power and price are the pri-mary specification in circuit design for portable consumer products.They offer specifications that meet or exceed the familiar LM393/339at a fraction of the supply current.The chips are built with National’s advanced Submicron Silicon-Gate BiCMOS process.The LMV331/393/339have bipolar input and output stages for improved noise perfor-mance.Features(For 5V Supply,Typical Unless Otherwise Noted)n Space Saving SC70-5Package (2.0x 2.1x 1.0mm)n Space Saving SOT23-5Package (3.00x 3.01x1.43mm)n Guaranteed2.7V and 5V Performance n Industrial Temperature Range −40˚C to +85˚C n Low Supply Current60µA/Channeln Input Common Mode Voltage Range Includes Groundn Low Output Saturation Voltage200mVApplicationsn Mobile Communications n Notebooks and PDA’sn Battery Powered Electronicsn General Purpose Portable DevicenGeneral Purpose Low Voltage ApplicationsConnection Diagrams5-Pin SC70-5/SOT23-5DS100080-1Top View 8-Pin SO/MSOPDS100080-2Top View14-Pin SO/TSSOPDS100080-3Top ViewAugust 1999LMV331Single /LMV393Dual /LMV339Quad General Purpose,Low Voltage,TinyPack Comparators©1999National Semiconductor Corporation Ordering InformationPackage Temperature Range PackagingMarkingTransportMediaNSCDrawing Industrial−40˚C to+85˚C5-pin SC70-5LMV331M7C131k Units Tape and Reel MAA05LMV331M7X C133k Units Tape and Reel 5-pin SOT23-5LMV331M5C121k Units Tape and Reel MA05BLMV331M5X C123k Units Tape and Reel 8-pin Small Outline LMV393M LMV393M RailsM08ALMV393MX LMV393M 2.5k Units Tape and Reel 8-pin MSOP LMV393MM LMV3931k UnitsTape and ReelMUA08ALMV393MMX LMV393 3.5k Units Tape and Reel 14-pin Small Outline LMV339M LMV339M RailsM14ALMV339MX LMV339M 2.5k Units Tape and Reel 14-pin TSSOP LMV339MT LMV339MT RailsMTC14LMV339MTX LMV339MT 2.5k Units Tape and Reel2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.ESD Tolerance(Note2)Human Body ModelLMV331/393/339800VMachine Model LMV331/339/393120V Differential Input Voltage±Supply Voltage Voltage on any pin(referred to V−pin)5.5V Soldering InformationInfrared or Convection(20sec)235˚C Storage Temp.Range−65˚C to+150˚C Junction Temperature(Note3)150˚C Operating Ratings(Note1)Supply Voltage 2.7V to5.0V Temperature RangeLMV393,LMV339,LMV331−40˚C≤T J≤+85˚CThermal Resistance(θJA)M Package,8-pin SurfaceMount190˚C/WM Package,14-pin SurfaceMount145˚C/WMTC Package,14-pinTSSOP155˚C/WMAA05Package,5-pinSC70-5478˚C/WM05A Package5-pinSOT23-5265˚C/WMM Package,8-pin MiniSurface Mount235˚C/W2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C,V+=2.7V,V−=0V.Boldface limits apply at the temperature extremes.Symbol Parameter Conditions Typ(Note4)LMV331/393/339Limit(Note5)UnitsV OS Input Offset Voltage1.77mV maxTCV OS Input Offset VoltageAverage Drift5µV/˚CI B Input Bias Current10250400nA maxI OS Input Offset Current550150nA maxV CM Input Voltage Range−0.1V2.0VV SAT Saturation Voltage I sink≤1mA200mVI O Output Sink Current V O≤1.5V235mA minI S Supply Current LMV33140100µA maxLMV393Both Comparators70140µA maxLMV339All four Comparators140200µA max Output Leakage Current.0031µA max 2.7V AC Electrical CharacteristicsT J=25˚C,V+=2.7V,R L=5.1kΩ,V−=0V.Symbol Parameter Conditions Typ(Note4)Unitst PHL Propagation Delay(High to Low)Input Overdrive=10mV1000nsInput Overdrive=100mV350nst PLH Propagation Delay(Low to High)Input Overdrive=10mV500nsInput Overdrive=100mV400ns35V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C,V+=5V,V−=0V.Boldface limits apply at the temperature extremes.Symbol Parameter Conditions Typ(Note4)LMV331/393/339Limit(Note5)UnitsV OS Input Offset Voltage 1.779mV maxTCV OS Input Offset VoltageAverage Drift5µV/˚CI B Input Bias Current25250400nA maxI OS Input Offset Current250150nA maxV CM Input Voltage Range−0.1V4.2VA V Voltage Gain5020V/mV minV sat Saturation Voltage I sink≤4mA200400700mV maxI O Output Sink Current V O≤1.5V8410mA I S Supply Current LMV33160120150µA maxLMV393Both Comparators 100200250µA maxLMV339All four Comparators 170300350µA maxOutput Leakage Current.0031µA max 5V AC Electrical CharacteristicsT J=25˚C,V+=5V,R L=5.1kΩ,V−=0V.Symbol Parameter Conditions Typ(Note4)Units t PHL Propagation Delay(High to Low)Input Overdrive=10mV600nsInput Overdrive=100mV200nst PLH Propagation Delay(Low to High)Input Overdrive=10mV450nsInput Overdrive=100mV300ns Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is in-tended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical characteristics.Note2::Human body model,1.5kΩin series with100pF.Machine model,200Ωin series with100pF.Note3:The maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any ambient temperature is P D=(T J(max) -T A)/θJA.All numbers apply for packages soldered directly into a PC board.Note4:Typical Values represent the most likely parametric norm.Note5:All limits are guaranteed by testing or statistical analysis.4Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚CSupply Current vsSupply Voltage Output High (LMV331)DS100080-34Supply Current vsSupply Voltage Output Low (LMV331)DS100080-33Output Voltage vsOutput Current at 5V SupplyDS100080-37Output Voltage vs Output Current at 2.7SupplyDS100080-38Input Bias Current vs Supply VoltageDS100080-36Response Time vs Input Overdrives Negative TransitionDS100080-42Response Time for Input Overdrive Positive TransitionDS100080-43Response Time vs Input Overdrives Negative TransitionDS100080-41Response Time for Input Overdrive Positive TransitionDS100080-405Simplified SchematicDS100080-47 6Application CircuitsBasic ComparatorA basic comparator circuit is used for converting analog sig-nals to a digital output.The LMV331/393/339have an open-collector output stage,which requires a pull-up resistor to a positive supply voltage for the output to switch properly.When the internal output transistor is off,the output voltage will be pulled up to the external positive voltage.The output pull-up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output.On the LMV331/393/339the pull-up resistor should range between 1k to 10k Ω.The comparator compares the input voltage (V in )at the non-inverting pin to the reference voltage (V ref )at the invert-ing pin.If V in is less than V ref ,the output voltage (V o )is at the saturation voltage.On the other hand,if V in is greater than V ref ,the output voltage (V o )is at V cc..Comparator with HysteresisThe basic comparator configuration may oscillate or produce a noisy output if the applied differential input voltage is near the comparator’s offset voltage.This usually happens when the input signal is moving very slowly across the compara-tor’s switching threshold.This problem can be prevented by the addition of hysteresis or positive feedback.Inverting Comparator with HysteresisThe inverting comparator with hysteresis requires a three re-sistor network that are referenced to the supply voltage V cc of the comparator.When Vin at the inverting input is less than V a ,the voltage at the non-inverting node of the com-parator (V in <V a ),the output voltage is high (for simplicity assume V o switches as high as V cc ).The three network re-sistors can be represented as R 1//R 3in series with R 2.The lower input trip voltage V a1is defined asWhen V in is greater than Va (V in V a ),the output voltage is low very close to ground.In this case the three network re-sistors can be presented as R 2//R 3in series with R 1.The up-per trip voltage V a2is defined asThe total hysteresis provided by the network is defined as∆V a =V a1-V a2To assure that the comparator will always switch fully to V cc and not be pulled down by the load the resistors values should be chosen as follow:R pull-up <<R loadand R 1>R pull-up .DS100080-26DS100080-4FIGURE 1.Basic Comparator7Application Circuits(Continued)Non-Inverting Comparator with HysteresisNon inverting comparator with hysteresis requires a two re-sistor network,and a voltage reference (V ref )at the inverting input.When V in is low,the output is also low.For the output to switch from low to high,V in must rise up to V in1where V in1is calculated byWhen V in is high,the output is also high,to make the com-parator switch back to it’s low state,V in must equal V ref be-fore V a will again equal V ref .V in can be calculated by:The hysteresis of this circuit is the difference between V in1and V in2.∆V in =V cc R 1/R 2DS100080-25FIGURE 2.Inverting Comparator with HysteresisDS100080-22DS100080-23 8Application Circuits(Continued)Square Wave OscillatorComparators are ideal for oscillator applications.This squarewave generator uses the minimum number of components.The output frequency is set by the RC time constant of thecapacitor C1and the resistor in the negative feedback R4.The maximum frequency is limited only by the large signalpropagation delay of the comparator in addition to any ca-pacitive loading at the output,which would degrade the out-put slew rate.To analyze the circuit,assume that the output is initially high.For this to be true,the voltage at the inverting input V c has tobe less than the voltage at the non-inverting input V a.For V cto be low,the capacitor C1has to be discharged and willcharge up through the negative feedback resistor R4.Whenit has charged up to value equal to the voltage at the positiveinput V a1,the comparator output will switch.V a1will be given by:If:R1=R2=R3Then:V a1=2V cc/3When the output switches to ground,the value of V a is re-duced by the hysteresis network to a value given by:V a2=V cc/3Capacitor C1must now discharge through R4towardsground.The output will return to its high state when the volt-age across the capacitor has discharged to a value equal toV a2.For the circuit shown,the period for one cycle of oscillationwill be twice the time it takes for a single RC circuit to chargeup to one half of its final value.The time to charge the ca-pacitor can be calculated fromWhere V max is the max applied potential across the capaci-tor=(2V cc/3)and V C=Vmax/2=V CC/3One period will be given by:1/freq=2tor calculating the exponential gives:1/freq=2(0.694)R4C1Resistors R3and R4must be at least two times larger thanR5to insure that V o will go all the way up to V cc in the highstate.The frequency stability of this circuit should strictly bea function of the external components.Free Running MultivibratorA simple yet very stable oscillator that generates a clock forslower digital systems can be obtained by using a resonatoras the feedback element.It is similar to the free running mul-tivibrator,except that the positive feedback is obtainedthrough a quartz crystal.The circuit oscillates when thetransmission through the crystal is at a maximum,so thecrystal in its series-resonant mode.The value of R1and R2are equal so that the comparator willswitch symmetrically about+V cc/2.The RC constant of R3and C1is set to be several times greater than the period ofthe oscillating frequency,insuring a50%duty cycle by main-taining a DC voltage at the inverting input equal to the abso-lute average of the output waveform.When specifying the crystal,be sure to order series resonantwith the desired temperature coefficientDS100080-8DS100080-24FIGURE5.Squarewave OscillatorDS100080-7FIGURE6.Crystal controlled Oscillator9Application Circuits(Continued)Pulse generator with variable duty cycle:The pulse generator with variable duty cycle is just a minor modification of the basic square wave generator.Providing a separate charge and discharge path for capacitor C 1gener-ates a variable duty cycle.One path,through R 2and D 2will charge the capacitor and set the pulse width (t 1).The other path,R 1and D 1will discharge the capacitor and set the time between pulses (t 2).By varying resistor R 1,the time between pulses of the gen-erator can be changed without changing the pulse width.Similarly,by varying R 2,the pulse width will be altered with-out affecting the time between pulses.Both controls will change the frequency of the generator.The pulse width and time between pulses can be found from:Solving these equations for t 1and t 2t 1=R 4C 1ln2t 2=R 5C 1ln2These terms will have a slight error due to the fact that V max is not exactly equal to 2/3V CC but is actually reduced by the diode drop to:DS100080-9FIGURE 7.Pulse GeneratorDS100080-17FIGURE 8.Positive Peak DetectorDS100080-18FIGURE 9.Negative Peak Detector10Application Circuits(Continued)Driving CMOS and TTLThe comparator’s output is capable of driving CMOS andTTL Logic circuits.AND GatesThe comparator can be used as three input AND gate.Theoperation of the gate is as follow:The resistor divider at the inverting input establishes a refer-ence voltage at that node.The non-inverting input is the sumof the voltages at the inputs divided by the voltage dividers.The output will go high only when all three inputs are high,casing the voltage at the non-inverting input to go above thatat inverting input.The circuit values shown work for a″0″equal to ground and a″1″equal to5V.The resistor values can be altered if different logic levels aredesired.If more inputs are required,diodes are recom-mended to improve the voltage margin when all but one ofthe inputs are high.OR GatesA three input OR gate is achieved from the basic AND gatesimply by increasing the resistor value connected from theinverting input to V cc,thereby reducing the reference volt-age.A logic″1″at any of the inputs will produce a logic″1″at theoutput.ORing the OutputBy the inherit nature of an open collector comparator,theoutputs of several comparators can be tied together with apull up resistor to V cc.If one or more of the comparators out-puts goes low,the output V o will go low.DS100080-5FIGURE10.Driving CMOSDS100080-6FIGURE11.Driving TTLDS100080-11FIGURE12.AND GateDS100080-10FIGURE13.OR Gate11Application Circuits(Continued)DS100080-12FIGURE14.ORing the OutputsDS100080-13rge Fan-In AND Gate12SC70-5Tape and Reel SpecificationDS100080-44 SOT-23-5Tape and Reel SpecificationTAPE FORMATTape Section#Cavities Cavity Status Cover Tape StatusLeader0(min)Empty Sealed(Start End)75(min)Empty SealedCarrier3000Filled Sealed250Filled SealedTrailer125(min)Empty Sealed(Hub End)0(min)Empty Sealed13SOT-23-5Tape and Reel Specification(Continued)TAPE DIMENSIONSDS100080-45 8mm0.1300.1240.1300.1260.138±0.0020.055±0.0040.1570.315±0.012(3.3)(3.15)(3.3)(3.2)(3.5±0.05)(1.4±0.11)(4)(8±0.3)Tape Size DIM A DIM Ao DIM B DIM Bo DIM F DIM Ko DIM P1DIM W14SOT-23-5Tape and Reel Specification(Continued)REEL DIMENSIONSDS100080-46 8mm7.000.0590.5120.795 2.1650.331+0.059/−0.0000.567W1+0.078/−0.039330.00 1.5013.0020.2055.008.40+1.50/−0.0014.40W1+2.00/−1.00 Tape Size A B C D N W1W2W315Physical Dimensions inches(millimeters)unless otherwise noted5-Pin SC70-5Tape and ReelOrder Number LMV331M7and LMV331M7XNS Package Number MAA05A 16Physical Dimensions inches(millimeters)unless otherwise noted(Continued)5-Pin SOT23-5Tape and ReelOrder Number LMV331M5and LMV331M5XNS Package Number MA05B17Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin Small OutlineOrder Number LMV393M and LMV393MXNS Package Number M08A18Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin MSOPOrder Number LMV393MM and LMV393MMXNS Package Number MUA08A19Physical Dimensions inches(millimeters)unless otherwise noted(Continued)14-Pin Small OutlineOrder Number LMV339M and LMV339MXNS Package Number M14A20Physical Dimensions inches (millimeters)unless otherwise noted (Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation Americas Tel:1-800-272-9959Fax:1-800-737-7018Email:support@ National Semiconductor Europe Fax:+49(0)180-5308586Email:europe.support@ Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax: 14-Pin TSSOPOrder Number LMV339MT and LMV339MTXNS Package Number MTC14LMV331Single /LMV393Dual /LMV339Quad General Purpose,Low Voltage,TinyPack Comparators National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。

LM393应用电路及LM393相关的应用资料

LM393应用电路及LM393相关的应用资料

LM393应用电路及LM393相关的应用资料2009-04-22 18:27LM393应用电路有以下几种:1、基本比较器电路2、LM393驱动CMOS的电路3、LM393驱动TTL的电路4、低频运算放大器5、换能放大器电路6、带失调调整的低频运算放大器7、过零检波器8、两阶高频压控振荡器9、极限比较器电路10、晶振控制振荡器11、双电源过零检测电路12、带负参考电压的比较器四电压比较器集成电路LM339资料-LM339/LM393应用电路lm339中文资料什么是lm339?LM339/LM393是四电压比较器集成电路。

该电路的特点如下:工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;消耗电流小,Icc=1.3mA;输入失调电压小,V IO=±2mV;共模输入电压范围宽,Vic=0~Vcc-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;输出可以用开路集电极连接“或”门;采用双列直插14 脚塑料封装(DIP14)和微形的双列14 脚塑料封装(SOP14)内部结构图1/4 的内部电路图LM339引脚功能排列表:引脚功能符号引引脚功能符号1 输出端2 OUT2 8 反向输入端31N-(32 输出端1OUT1 9正向输入端31N+(33 电源VCC + 10反向输入端41N-(44 反向输入端11N-(1) 11正向输入端41N+(45 正向输入端1 1N+(1) 12电源Vcc-6 反向输入端2 1N-(2) 13输出端4 OUT47 正向输入端2OUT2(2) 14输出端3 OUT3 LM339主要参数表:使用说明:LM393/339是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡.这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙.电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的.减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡.除非利用滞后,否则直接插入IC并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要.比较器的所有没有用的引脚必须接地.LM393/339偏置网络确立了其静态电流与电源电压范围2.0~30V无关. 通常电源不需要加旁路电容。

LM331中文资料_数据手册_参数

LM331中文资料_数据手册_参数
Product Folder
Sample & Buy
Technical Documents
Tools & Software
ቤተ መጻሕፍቲ ባይዱ
Support & Community
LM231, LM331
SNOSBI2C – JUNE 1999 – REVISED SEPTEMBER 2015
LMx31x Precision Voltage-to-Frequency Converters
1 Hz to 100 kHz • Low-Cost
2 Applications
• Voltage to Frequency Conversions • Frequency to Voltage Conversions • Remote-Sensor Monitoring • Tachometers
LM231, LM331
SNOSBI2C – JUNE 1999 – REVISED SEPTEMBER 2015

Table of Contents
1 Features .................................................................. 1 2 Applications ........................................................... 1 3 Description ............................................................. 1 4 Revision History..................................................... 2 5 Description continued ........................................... 3 6 Pin Configuration and Functions ......................... 4 7 Specifications......................................................... 4

lm393芯片

lm393芯片

lm393芯片LM393是一款常用的双比较器芯片。

它由德州仪器(Texas Instruments)公司研发和生产,并广泛用于模拟与数字电路之间的转换和信号处理电路中。

LM393芯片采用了低功耗CMOS工艺制造,具有工作电压范围广、低静态电流和宽输入电压范围等特点。

它是一种低成本、高性能的芯片,适用于各种电子设备和电路设计。

LM393芯片内部包含两个独立的比较器,每个比较器均有一个非反相输入端(IN-)和一个反相输入端(IN+)。

两个输入端之间的电压差将被比较器放大,并输出一个高或低电平,用以表示两个输入端的电压关系。

LM393芯片的输出端OUT可以直接驱动数字逻辑电路,也可以用于驱动功率器件或其他高电流负载。

输出端可以配置为开漏输出模式或放大器模式,具有很强的灵活性。

在常规电路设计中,LM393芯片常用于比较电压大小、检测信号的正负极性、实现阈值控制等。

它广泛应用于电源管理、电压检测、接近开关、控制系统等领域。

以电源管理为例,当电池电压低于某个阈值时,可以通过LM393芯片进行检测,并触发报警或切断电源,以保护电子设备或电路。

LM393芯片具有广泛的电压检测范围和低功耗特性,非常适合在电源管理中使用。

另外,LM393芯片还可以用于接近开关系统。

通过将传感器输出信号接入比较器的输入端,可以实现对接近物体的检测。

比如,当传感器检测到物体靠近时,输出信号会改变,可以通过LM393芯片实现触发控制行为,如报警或打开继电器。

此外,LM393芯片还可用于控制系统中的阈值控制。

通过设置比较器的参考电压和输入信号进行比较,可以实现高精度的阈值判定,从而驱动其他电路或设备的工作。

总结起来,LM393芯片是一款功能强大的双比较器芯片,广泛应用于模拟与数字电路之间的转换和信号处理电路。

它具有低功耗、宽电压范围、高性能等特点,适用于电源管理、电压检测、接近开关、控制系统等多个领域。

在实际应用中,只要根据具体的电路设计需求,合理配置芯片的输入和输出,就能有效利用LM393芯片的优势,并实现相应的功能。

lm393介绍及应用

lm393介绍及应用

Lm393介绍及应用作者:***引言随着电子技术的逐步应用,各类的芯片不断应用于各类电子产品当中,各种数据的迅速处理问题也随之出现,在很多场合我们的数据也许没有达到要求,但是这种数据已经的确在电路中产生了作用,这使得我们所设计的产品灵敏度问题也随之产生。

在简单电路中LM393就有了用武之地,通过详细介绍LM393的各种用途如,制作振荡器,信号发生器等为院校引导学生培养电子设计技能提供参考,从而为实验室节约经费,获得更好的教学和科研效果。

关键字:LM393 灵敏度振荡器信号发生器:LM393集成块采用C-14型封装,由于其使用灵活,所以应用广泛,主要由世界上各大IC生产厂和公司生产。

最低价格为0.12元,最高为10元,平均为0.65元。

我国在深圳等城市有专业生产该芯片的公司,如深圳市天鹰实业发展有限公司,对于零散使用客户,到当地电子市场一般都能买到,实物图如下。

Lm393是低电源双电压比较器,lm393内部包含两个独立的精确电压比较器通过比较电压(最低可达到2mv),芯片内部比较器通过统一供电,提供一个宽范围的比较电压区间。

芯片具有独特的双比较器共地的设计,即使这样通过统一供电并不影响精度。

Lm393拥有与TTL 和CMOSE直接相接的接口。

当接口在操作过程中,电压的增加或减少,lm393 直接输出逻辑比较电压。

芯片引脚图一:特性1:双路供电范围2.0VDC~36VDC。

2:最小工作电流0.8mA,5V供电最低功耗为2.0mW。

3:统一工作电压输入,双路共地。

4:电流与电压误差为正负5nA与正负2mV。

5:双路输入共地。

6:最小输出为250mv时对应4mA输出。

7:可以配以TTL,CMOSE,DTL,ELC,和MOS模式电压。

. 二:应用1:A/D转化。

2:宽范围电压控制振荡器,航向控制振荡器。

3:MOS时钟发生器。

4:产生高门限电压订单参考数据(如图1)。

(图1)三:引脚数据(如图2)(图2)注意事项:1:散热量2:短路将会导致芯片急剧增热,最终导致损毁。

LMX331AXK-T中文资料

LMX331AXK-T中文资料

General DescriptionThe LMX331/LMX393/LMX339 single/dual/quad com-parators are drop-in, pin-for-pin-compatible replace-ments for the LMV331/LMV393/LMV339. The LMX331H/LMX393H/LMX339H offer the performance of the LMX331/LMX393/LMX339 with the added benefit of inter-nal hysteresis to provide noise immunity, preventing out-put oscillations even with slow-moving input signals.Advantages of the LMX331/LMX393/LMX339 series include low supply voltage, small package, and low cost.The LMX331 is available in both 5-pin SC70 and SOT23packages, LMX393 is available in both 8-pin µMAX and smaller SOT23 packages, and the LMX339 is available in 14-pin TSSOP and SO packages. They are manufac-tured using advanced submicron CMOS technology.Designed with the most modern techniques, the LMX331/LMX393/LMX339 achieve superior performance over BiCMOS or bipolar versions on the market.The LMX331/LMX393/LMX339 offer performance advantages such as wider supply voltage range, wider operating temperature range, better CMRR and PSRR,improved response time characteristics, reduced off-set, reduced output saturation voltage, reduced input bias current, and improved RF immunity.ApplicationsMobile Communications Notebooks and PDAs Automotive Applications Battery-Powered ElectronicsGeneral-Purpose Portable DevicesGeneral-Purpose Low-Voltage ApplicationsFeatureso Guaranteed 1.8V to 5.5V Performanceo -40°C to +125°C Automotive Temperature Range o Low Supply Current (60µA/Comparator at V DD = 5.0V)o Input Common-Mode Voltage Range Includes Groundo No Phase Reversal for Overdriven Inputs o Low Output Saturation Voltage (100mV)o Internal 2mV Hysteresis(LMX331H/LMX393H/LMX339H)o 5-Pin SC70 Space-Saving Package (2.0mm ✕2.1mm ✕1.0mm)(LMX331/LMX331H)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators________________________________________________________________Maxim Integrated Products 1Pin Configurations19-1958; Rev 2; 1/02For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .Ordering InformationL M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS —2.7V OPERATIONStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V DD to V SS )...................................-0.3V to +6V All Other Pins..................................(V SS - 0.3V) to (V DD + 0.3V)Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 3.1mW/°C above +70°C)..............247mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW 8-Pin µMAX (derate 10.3mW/°C above +70°C)...........825mW14-Pin TSSOP (derate 9.1mW/°C above +70°C).........727mW 14-Pin SO (derate 8.3mW/°C above +70°C).............666.7mW Operating Temperature Range .........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CAC ELECTRICAL CHARACTERISTICS —2.7V OPERATION(V DD = 2.7V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.) (Note 1)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsDC ELECTRICAL CHARACTERISTICS —5.0V OPERATION(V = 5V, V = 0, V = 0, R = 5.1k Ωconnected to V . Typical values are at T = +25°C.) (Note 1)AC ELECTRICAL CHARACTERISTICS —5.0V OPERATION(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.) (Note 1)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 4_______________________________________________________________________________________DC ELECTRICAL CHARACTERISTICS —1.8V OPERATION(V DD = 1.8V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.)Note 2:Supply current when output is high.Note 3:Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.AC ELECTRICAL CHARACTERISTICS —1.8V OPERATION(V DD = 1.8V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators_______________________________________________________________________________________50302010405060708090100132456LMX331SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )40201008060160140120180132456LMX331SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )-1.0-0.50.51.01.5-4020-20406080100120INPUT OFFSET VOLTAGE vs. TEMPERATURETEMPERATURE (°C)I N P U T O F F S E T V O L T A G E (m V )040208060120100140OUTPUT LOW VOLTAGE vs. SINK CURRENTSINK CURRENT (mA)O U T P U T L O W V O L T A G E (m V )123460708090100110120-400-2020406080100120OUTPUT LOW VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L TA G E (m V )0200100400300500600040602080100120PROPAGATION DELAY vs. CAPACITIVE LOADCAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )0257550125150100175-4020-20406080100120PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )015010050200250300350400450500502575100125150PROPAGATION DELAY vs. INPUT OVERDRIVE (t PLH )INPUT OVERDRIVE (mV)P R O P A G A T I O N D E L A Y (n s )060402080100120140160180200502575100125150PROPAGATION DELAY vs. INPUT OVERDRIVE (t PHL )INPUT OVERDRIVE (mV)P R O P A G A T I O N D E L A Y (n s )Typical Operating Characteristics(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ω, C L = 10pF, overdrive = 100mV, T A = +25°C, unless otherwise noted.)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ω, C L = 10pF, overdrive = 100mV, T A = +25°C, unless otherwise noted.)00.51.01.52.02.53.0-40-2020406080100120LMX331H/LMX393H/LMX339H HYSTERESIS vs. TEMPERATUREL M X 331 t o c 10TEMPERATURE (°C)H Y S T E R E S I S (m V )13245132456LMX331H/LMX393H/LMX339H HYSTERESIS vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)H Y S T E R E S I S (m V )TIME (200ns/div)(IN-) - IN+100mV/divOUT 2V/divL M X 331 t o c 12PROPAGATION DELAY 100mV OVERDRIVETIME (200ns/div)(IN-) - IN+10mV/div OUT 2V/divL M X 331 t o c 13PROPAGATION DELAY 10mV OVERDRIVETIME (500ns/div)(IN-) - IN+100mV/divOUT 2V/divL M X 331 t o c 14500kHz RESPONSE 100mV OVERDRIVETIME (500ns/div)(IN-) - IN+10mV/divOUT 2V/divL M X 331 t o c 15500kHz RESPONSE 10mV OVERDRIVETIME (2µs/div)(IN-) - IN+100mV/div OUT 2V/divL M X 331 t o c 16100kHz RESPONSE 100mV OVERDRIVETIME (2µs/div)(IN-) - IN+10mV/divOUT 2V/divL M X 331 t o c 17100kHz RESPONSE 10mV OVERDRIVETIME (1µs/div)V DD 2V/divOUT 2V/divL M X 331 t o c 18POWER-UP RESPONSELMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators_______________________________________________________________________________________7Detailed DescriptionThe LMX331/LMX393/LMX339 are single/dual/quad,low-cost, general-purpose comparators. They have a single-supply operating voltage of 1.8V to 5V. The com-mon-mode input range extends from -0.1V below the negative supply to within 0.7V of the positive supply.They require approximately 60µA per comparator with a 5V supply and 40µA with a 2.7V supply.The LMX331H/LMX393H/LMX339H have 2mV of hys-teresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals. The LMX331/LMX393/LMX339 and LMX331H/LMX393H/LMX339H are ideal for automotive applications because they operate from -40°C to +125°C (see Typical Operating Characteristics ).Applications InformationHysteresisMany comparators oscillate in the linear region of oper-ation because of noise or undesired parasitic feed-back. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The LMX331H/LMX393H/LMX339H have internal hysteresis to counter parasitic effects and noise.The hysteresis in a comparator creates two trip points:one for the rising input voltage and one for the fallinginput voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other,thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy,slow-moving input signals.Additional hysteresis can be generated with two resis-tors, using positive feedback (Figure 2). Use the follow-ing procedure to calculate resistor values:Figure 1. Threshold Hysteresis Band (Not to Scale)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 8_______________________________________________________________________________________1)Find output voltage when output is high:V OUT(HIGH)= V DD - I LOAD ✕R L2)Find the trip points of the comparator using theseformulas:V TH = V REF + ((V OUT(HIGH)- V REF )R2) / (R1 + R2)V TL = V REF (1 - (R2 / (R1 + R2)))where V TH is the threshold voltage at which the com-parator switches its output from high to low as V IN rises above the trip point, and V TL is the threshold voltage at which the comparator switches its output from low to high as V IN drops below the trip point.3)The hysteresis band will be:V HYST = V TH - V TL = V DD (R2 / (R1 + R2))In this example, let V DD = 5V, V REF = 2.5V, I LOAD =50nA, R L = 5.1k Ω:V OUT(HIGH)= 5.0V - (50 ✕10-9✕5.1 ✕103Ω) ≈5.0VV TH = 2.5V + 2.5V(R2 / (R1 + R2))V TL = 2.5V(1 - (R2 / (R1 + R2)))Select R2. In this example, we will choose 1k Ω.Select V HYST . In this example, we will choose 50mV.Solve for R1:V HYST = V OUT(HIGH)(R2 / (R1 + R2)) V0.050V = 5(1000 / (R1 + 1000)) Vwhere R1 ≈100k Ω, V TH = 2.525V, and V TL = 2.475V.Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.The source current required is V REF / (R1 + R2).The sink current is (V OUT(HIGH)- V REF ) ✕(R1 + R2).Choose R L to be large enough to avoid drawing excess current, yet small enough to supply the necessary cur-rent to drive the load. R L should be between 1k Ωand 10k Ω.Board Layout and BypassingUse 0.1µF bypass capacitors from V DD to V SS . To max-imize performance, minimize stray inductance by putting this capacitor close to the V DD pin and reduc-ing trace lengths. For slow-moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN-to reduce high-frequency noise.Chip InformationLMX331/LMX331H TRANSISTOR COUNT: 112LMX393/LMX393H TRANSISTOR COUNT: 211LMX339/LMX339H TRANSISTOR COUNT: 411Figure 2. Adding Hysteresis with External ResistorsLMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsPackage InformationL M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsPackage Information (continued)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators ______________________________________________________________________________________11Package Information (continued)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsMaxim cannot assume responsibility f or use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2002 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。

LM393功能简介

LM393功能简介

LM339功能简介LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。

LM339集成块采用C-14型封装,图1为外型及管脚排列图。

由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。

LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。

当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。

两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。

LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。

选不同阻值的上拉电阻会影响输出端高电位的值。

因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。

另外,各比较器的输出端允许连接在一起使用。

单限比较器电路图3为某仪器中过热检测保护电路。

它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。

UR=R2/(R1+R2)*UCC。

同相端的电压就等于热敏元件Rt的电压降。

德州仪器 LMV331-Q1 单,LMV393-Q1 双 通用低压比较器 数据表

德州仪器 LMV331-Q1 单,LMV393-Q1 双 通用低压比较器 数据表

123487651OUT 1IN–1IN+GND2OUT 2IN–2IN+LMV331...DBV PACKAGE(TOP VIEW)54IN+GND IN–V CC+OUT123V CC+LMV393...D PACKAGE(TOP VIEW)−OUTIN−IN++LMV331-Q1SINGLE,LMV393-Q1DUALSLOS468D –MAY 2005–REVISED AUGUST 2011GENERAL-PURPOSE LOW-VOLTAGE COMPARATORSCheck for Samples:LMV331-Q1SINGLE ,LMV393-Q1DUALFEATURES•Qualified for Automotive Applications • 2.7-V and 5-V Performance •Low Supply Current–LMV331...60μA Typ –LMV393...100μA Typ•Input Common-Mode Voltage Range Includes Ground•Low Output Saturation Voltage ...200mV Typ •Open-Collector Output for Maximum FlexibilityDESCRIPTION/ORDERING INFORMATIONThe LMV393-Q1device is a low-voltage (2.7V to 5.5V)version of the dual and quad comparators,LM393and LM339,which operate from 5V to 30V.The LMV331-Q1is the single-comparator version.The LMV331-Q1and LMV393-Q1are the most cost-effective solutions for applications where low-voltage operation,low power,space saving,and price are the primary specifications in circuit design for portable consumer products.These devices offer specifications that meet or exceed the familiar LM339and LM393devices at a fraction of the supply current.ORDERING INFORMATION (1)T APACKAGE (2)ORDERABLE PART NUMBER TOP-SIDE MARKING (3)Single SOT23-5–DBV Reel of 3000LMV331QDBVRQ1LADQ –40°C to 125°C DualSOIC –DReel of 2500LMV393QDRQ1V393Q1(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI web site at .(2)Package drawings,thermal data,and symbolization are available at /packaging .(3)DBV:The actual top-side marking has one additional character that designates the wafer fab/assembly site.Figure 1.SYMBOL (EACH COMPARATOR)Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasOUTLMV331-Q1SINGLE,LMV393-Q1DUALSLOS468D –MAY 2005–REVISED AUGUST 2011Figure 2.SIMPLIFIED SCHEMATICLMV331-Q1SINGLE,LMV393-Q1DUAL SLOS468D–MAY2005–REVISED AUGUST2011Absolute Maximum Ratings(1)over operating free-air temperature range(unless otherwise noted)MIN MAX UNIT V CC+Supply voltage(2) 5.5VV ID Differential input voltage(3)±5.5VV I Input voltage range(either input)0 5.5VD(8-pin)package97θJA Package thermal impedance(4)(5)D(14-pin)package86°C/WDBV package206T J Operating virtual junction temperature150°CT stg Storage temperature range–65150°C (1)Stresses beyond those listed under“absolute maximum ratings”may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under“recommended operating conditions”is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltage values(except differential voltages and V CC+specified for the measurement of I OS)are with respect to the network GND.(3)Differential voltages are at IN+with respect to IN–.(4)Maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any allowable ambienttemperature is P D=(T J(max)–T A)/θJA.Selecting the maximum of150°C can affect reliability.(5)The package thermal impedance is calculated in accordance with JESD51-7.Recommended Operating ConditionsMIN MAX UNITV CC+Supply voltage(single-supply operation) 2.7 5.5VV OUT Output voltage V CC++0.3VT A Operating free-air temperature–40125°CLMV331-Q1SINGLE,LMV393-Q1DUALSLOS468D–MAY2005–REVISED Electrical Characteristicsat specified free-air temperature,V CC+=2.7V,GND=0V(unless otherwise noted)PARAMETER TEST CONDITIONS T A MIN TYP MAX UNIT V IO Input offset voltage25°C 1.77mV Average temperature coefficientαV IO–40°C to125°C5μV/°C of input offset voltage25°C10250I IB Input bias current nA–40°C to125°C40025°C550I IO Input offset current nA–40°C to125°C150I O Output current(sinking)V O≤1.5V25°C523mA25°C0.003 Output leakage currentμA–40°C to125°C1–0.1V ICR Common-mode input voltage range25°C Vto2V SAT Saturation voltage I O≤1mA25°C200mVLMV33140100I CC Supply current LMV393(both comparators)25°C70140μALMV339(all four comparators)140200 Switching CharacteristicsT A=25°C,V CC+=2.7V,R L=5.1kΩ,GND=0V(unless otherwise noted)PARAMETER TEST CONDITIONS TYP UNITInput overdrive=10mV1000t PHL Propagation delay,high-to low-level output switching nsInput overdrive=100mV350Input overdrive=10mV500t PLH Propagation delay,low-to high-level output switching nsInput overdrive=100mV400LMV331-Q1SINGLE,LMV393-Q1DUAL SLOS468D–MAY2005–REVISED AUGUST2011Electrical Characteristicsat specified free-air temperature,V CC+=5V,GND=0V(unless otherwise noted)PARAMETER TEST CONDITIONS T A MIN TYP MAX UNIT25°C 1.77V IO Input offset voltage mV–40°C to125°C9Average temperature coefficientαV IO25°C5μV/°C of input offset voltage25°C25250I IB Input bias current nA–40°C to125°C40025°C250I IO Input offset current nA–40°C to125°C150I O Output current(sinking)V O≤1.5V25°C1084mA25°C0.003 Output leakage currentμA–40°C to125°C1–0.1V ICR Common-mode input voltage range25°C Vto4.2A VD Large-signal differential voltage gain25°C2050V/mV25°C200400V SAT Saturation voltage I O≤4mA mV–40°C to125°C70025°C60120LMV331–40°C to125°C15025°C100200I CC Supply current LMV393(both comparators)μA–40°C to125°C25025°C170300LMV339(all four comparators)–40°C to125°C350 Switching CharacteristicsT A=25°C,V CC+=5V,R L=5.1kΩ,GND=0V(unless otherwise noted)PARAMETER TEST CONDITIONS TYP UNITInput overdrive=10mV600t PHL Propagation delay,high-to low-level output switching nsInput overdrive=100mV200Input overdrive=10mV450t PLH Propagation delay,low-to high-level output switching nsInput overdrive=100mV300PACKAGING INFORMATION(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.Addendum-Page 1OTHER QUALIFIED VERSIONS OF LMV331-Q1, LMV393-Q1 :•Catalog: LMV331, LMV393NOTE: Qualified Version Definitions:•Catalog - TI's standard catalog productAddendum-Page 2TAPE AND REEL INFORMATIONA0B0K0W Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tapePitch between successive cavity centersDimension designed to accommodate the component width TAPE DIMENSIONSSprocket HolesP1*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1 (mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant LMV331QDBVRQ1SOT-23DBV53000179.08.43.23.21.44.08.0Q3*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length (mm)Width (mm)Height (mm) LMV331QDBVRQ1SOT-23DBV53000200.0183.025.0PACKAGE OUTLINESOT-23 - 1.45 mm max heightDBV0005ASMALL OUTLINE TRANSISTORNOTES:1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Refernce JEDEC MO-178.4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.5. Support pin may differ or may not be present.EXAMPLE BOARD LAYOUTSOT-23 - 1.45 mm max heightDBV0005ASMALL OUTLINE TRANSISTORNOTES: (continued)6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.EXAMPLE STENCIL DESIGNSOT-23 - 1.45 mm max heightDBV0005ASMALL OUTLINE TRANSISTORNOTES: (continued)8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.9. Board assembly site may have different recommendations for stencil design.PACKAGE OUTLINESOIC - 1.75 mm max heightD0008ASMALL OUTLINE INTEGRATED CIRCUITNOTES:1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.4. This dimension does not include interlead flash.5. Reference JEDEC registration MS-012, variation AA.EXAMPLE BOARD LAYOUTSOIC - 1.75 mm max heightD0008ASMALL OUTLINE INTEGRATED CIRCUITNOTES: (continued)6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.EXAMPLE STENCIL DESIGNSOIC - 1.75 mm max heightD0008ASMALL OUTLINE INTEGRATED CIRCUITNOTES: (continued)8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.9. Board assembly site may have different recommendations for stencil design.IMPORTANT NOTICE AND DISCLAIMERTI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.TI objects to and rejects any additional or different terms you may have proposed.Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2024, Texas Instruments Incorporated。

LM393双电压比较器

LM393双电压比较器

LM393双电压比较器LM393 是双电压比较器集成电路。

该电路的特点如下:比较器数:2工作温度范围:0?C to +70?CSVHC(高度关注物质):No SVHC (18-Jun-2010)器件标号:393通道数:2逻辑功能号:393工作电源电压范围宽,单电源、双电源均可工作,单电源: 2, 36V,双电源:?1,?18V;消耗电流小, ICC=0.8mA;输入失调电压小, VIO=?2mV;共模输入电压范围宽, VIC=0,VCC-1.5V;输出与TTL,DTL,MOS,CMOS 等兼容;输出可以用开路集电极连接“或”门;采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)。

表面安装器件:表面安装LM393内部结构图:采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)应用说明:LM393是高增益,宽频带器件,象大多数比较器一样,如果输出端到输入端有寄生电容而产生耦合,则很容易产生振荡。

这种现象仅仅出现在当比较器改变状态时,输出电压过渡的间隙,电源加旁路滤波并不能解决这个问题,标准PC板的设计对减小输入—输出寄生电容耦合是有助的。

减小输入电阻至小于10K将减小反馈信号,而且增加甚至很小的正反馈量(滞回1.0~10mV)能导致快速转换,使得不可能产生由于寄生电容引起的振荡,除非利用滞后,否则直接插入IC(集成电路板integrated circuit,缩写:IC) 并在引脚上加上电阻将引起输入—输出在很短的转换周期内振荡,如果输入信号是脉冲波形,并且上升和下降时间相当快,则滞回将不需要。

比较器的所有没有用的引脚必须接地。

LM393偏置网络确立了其静态电流与电源电压范围 2.0~30V无关。

通常电源不需要加旁路电容。

差分输入电压可以大于Vcc并不损坏器件,保护部分必须能阻止输入电压向负端超过-0.3V。

LM393的输出部分是集电极开路,发射极接地的 NPN输出晶体管,可以用多集电极输出提供或OR ing主要功能:输出负载电阻能衔接在可允许电源电压范围内的任何电源电压上,不受 Vcc端电压值的限制.此输出能作为一个简单的对地SPS开路(当不用负载电阻没被运用),输出部分的陷电流被可能得到的驱动和器件的β值所限制.当达到极限电流(16mA)时,输出晶体管将退出而且输出电压将很快上升。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General DescriptionThe LMX331/LMX393/LMX339 single/dual/quad com-parators are drop-in, pin-for-pin-compatible replace-ments for the LMV331/LMV393/LMV339. The LMX331H/LMX393H/LMX339H offer the performance of the LMX331/LMX393/LMX339 with the added benefit of inter-nal hysteresis to provide noise immunity, preventing out-put oscillations even with slow-moving input signals.Advantages of the LMX331/LMX393/LMX339 series include low supply voltage, small package, and low cost.The LMX331 is available in both 5-pin SC70 and SOT23packages, LMX393 is available in both 8-pin µMAX and smaller SOT23 packages, and the LMX339 is available in 14-pin TSSOP and SO packages. They are manufac-tured using advanced submicron CMOS technology.Designed with the most modern techniques, the LMX331/LMX393/LMX339 achieve superior performance over BiCMOS or bipolar versions on the market.The LMX331/LMX393/LMX339 offer performance advantages such as wider supply voltage range, wider operating temperature range, better CMRR and PSRR,improved response time characteristics, reduced off-set, reduced output saturation voltage, reduced input bias current, and improved RF immunity.ApplicationsMobile Communications Notebooks and PDAs Automotive Applications Battery-Powered ElectronicsGeneral-Purpose Portable DevicesGeneral-Purpose Low-Voltage ApplicationsFeatureso Guaranteed 1.8V to 5.5V Performanceo -40°C to +125°C Automotive Temperature Range o Low Supply Current (60µA/Comparator at V DD = 5.0V)o Input Common-Mode Voltage Range Includes Groundo No Phase Reversal for Overdriven Inputs o Low Output Saturation Voltage (100mV)o Internal 2mV Hysteresis(LMX331H/LMX393H/LMX339H)o 5-Pin SC70 Space-Saving Package (2.0mm ✕2.1mm ✕1.0mm)(LMX331/LMX331H)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators________________________________________________________________Maxim Integrated Products 1Pin Configurations19-1958; Rev 2; 1/02For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .Ordering InformationL M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS —2.7V OPERATIONStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V DD to V SS )...................................-0.3V to +6V All Other Pins..................................(V SS - 0.3V) to (V DD + 0.3V)Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 3.1mW/°C above +70°C)..............247mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW 8-Pin µMAX (derate 10.3mW/°C above +70°C)...........825mW14-Pin TSSOP (derate 9.1mW/°C above +70°C).........727mW 14-Pin SO (derate 8.3mW/°C above +70°C).............666.7mW Operating Temperature Range .........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CAC ELECTRICAL CHARACTERISTICS —2.7V OPERATION(V DD = 2.7V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.) (Note 1)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsDC ELECTRICAL CHARACTERISTICS —5.0V OPERATION(V = 5V, V = 0, V = 0, R = 5.1k Ωconnected to V . Typical values are at T = +25°C.) (Note 1)AC ELECTRICAL CHARACTERISTICS —5.0V OPERATION(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.) (Note 1)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 4_______________________________________________________________________________________DC ELECTRICAL CHARACTERISTICS —1.8V OPERATION(V DD = 1.8V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.)Note 2:Supply current when output is high.Note 3:Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.AC ELECTRICAL CHARACTERISTICS —1.8V OPERATION(V DD = 1.8V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators_______________________________________________________________________________________50302010405060708090100132456LMX331SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )40201008060160140120180132456LMX331SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )-1.0-0.50.51.01.5-4020-20406080100120INPUT OFFSET VOLTAGE vs. TEMPERATURETEMPERATURE (°C)I N P U T O F F S E T V O L T A G E (m V )040208060120100140OUTPUT LOW VOLTAGE vs. SINK CURRENTSINK CURRENT (mA)O U T P U T L O W V O L T A G E (m V )123460708090100110120-400-2020406080100120OUTPUT LOW VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L TA G E (m V )0200100400300500600040602080100120PROPAGATION DELAY vs. CAPACITIVE LOADCAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )0257550125150100175-4020-20406080100120PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )015010050200250300350400450500502575100125150PROPAGATION DELAY vs. INPUT OVERDRIVE (t PLH )INPUT OVERDRIVE (mV)P R O P A G A T I O N D E L A Y (n s )060402080100120140160180200502575100125150PROPAGATION DELAY vs. INPUT OVERDRIVE (t PHL )INPUT OVERDRIVE (mV)P R O P A G A T I O N D E L A Y (n s )Typical Operating Characteristics(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ω, C L = 10pF, overdrive = 100mV, T A = +25°C, unless otherwise noted.)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ω, C L = 10pF, overdrive = 100mV, T A = +25°C, unless otherwise noted.)00.51.01.52.02.53.0-40-2020406080100120LMX331H/LMX393H/LMX339H HYSTERESIS vs. TEMPERATUREL M X 331 t o c 10TEMPERATURE (°C)H Y S T E R E S I S (m V )13245132456LMX331H/LMX393H/LMX339H HYSTERESIS vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)H Y S T E R E S I S (m V )TIME (200ns/div)(IN-) - IN+100mV/divOUT 2V/divL M X 331 t o c 12PROPAGATION DELAY 100mV OVERDRIVETIME (200ns/div)(IN-) - IN+10mV/div OUT 2V/divL M X 331 t o c 13PROPAGATION DELAY 10mV OVERDRIVETIME (500ns/div)(IN-) - IN+100mV/divOUT 2V/divL M X 331 t o c 14500kHz RESPONSE 100mV OVERDRIVETIME (500ns/div)(IN-) - IN+10mV/divOUT 2V/divL M X 331 t o c 15500kHz RESPONSE 10mV OVERDRIVETIME (2µs/div)(IN-) - IN+100mV/div OUT 2V/divL M X 331 t o c 16100kHz RESPONSE 100mV OVERDRIVETIME (2µs/div)(IN-) - IN+10mV/divOUT 2V/divL M X 331 t o c 17100kHz RESPONSE 10mV OVERDRIVETIME (1µs/div)V DD 2V/divOUT 2V/divL M X 331 t o c 18POWER-UP RESPONSELMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators_______________________________________________________________________________________7Detailed DescriptionThe LMX331/LMX393/LMX339 are single/dual/quad,low-cost, general-purpose comparators. They have a single-supply operating voltage of 1.8V to 5V. The com-mon-mode input range extends from -0.1V below the negative supply to within 0.7V of the positive supply.They require approximately 60µA per comparator with a 5V supply and 40µA with a 2.7V supply.The LMX331H/LMX393H/LMX339H have 2mV of hys-teresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals. The LMX331/LMX393/LMX339 and LMX331H/LMX393H/LMX339H are ideal for automotive applications because they operate from -40°C to +125°C (see Typical Operating Characteristics ).Applications InformationHysteresisMany comparators oscillate in the linear region of oper-ation because of noise or undesired parasitic feed-back. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The LMX331H/LMX393H/LMX339H have internal hysteresis to counter parasitic effects and noise.The hysteresis in a comparator creates two trip points:one for the rising input voltage and one for the fallinginput voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other,thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy,slow-moving input signals.Additional hysteresis can be generated with two resis-tors, using positive feedback (Figure 2). Use the follow-ing procedure to calculate resistor values:Figure 1. Threshold Hysteresis Band (Not to Scale)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 8_______________________________________________________________________________________1)Find output voltage when output is high:V OUT(HIGH)= V DD - I LOAD ✕R L2)Find the trip points of the comparator using theseformulas:V TH = V REF + ((V OUT(HIGH)- V REF )R2) / (R1 + R2)V TL = V REF (1 - (R2 / (R1 + R2)))where V TH is the threshold voltage at which the com-parator switches its output from high to low as V IN rises above the trip point, and V TL is the threshold voltage at which the comparator switches its output from low to high as V IN drops below the trip point.3)The hysteresis band will be:V HYST = V TH - V TL = V DD (R2 / (R1 + R2))In this example, let V DD = 5V, V REF = 2.5V, I LOAD =50nA, R L = 5.1k Ω:V OUT(HIGH)= 5.0V - (50 ✕10-9✕5.1 ✕103Ω) ≈5.0VV TH = 2.5V + 2.5V(R2 / (R1 + R2))V TL = 2.5V(1 - (R2 / (R1 + R2)))Select R2. In this example, we will choose 1k Ω.Select V HYST . In this example, we will choose 50mV.Solve for R1:V HYST = V OUT(HIGH)(R2 / (R1 + R2)) V0.050V = 5(1000 / (R1 + 1000)) Vwhere R1 ≈100k Ω, V TH = 2.525V, and V TL = 2.475V.Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.The source current required is V REF / (R1 + R2).The sink current is (V OUT(HIGH)- V REF ) ✕(R1 + R2).Choose R L to be large enough to avoid drawing excess current, yet small enough to supply the necessary cur-rent to drive the load. R L should be between 1k Ωand 10k Ω.Board Layout and BypassingUse 0.1µF bypass capacitors from V DD to V SS . To max-imize performance, minimize stray inductance by putting this capacitor close to the V DD pin and reduc-ing trace lengths. For slow-moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN-to reduce high-frequency noise.Chip InformationLMX331/LMX331H TRANSISTOR COUNT: 112LMX393/LMX393H TRANSISTOR COUNT: 211LMX339/LMX339H TRANSISTOR COUNT: 411Figure 2. Adding Hysteresis with External ResistorsLMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsPackage InformationL M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsPackage Information (continued)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators ______________________________________________________________________________________11Package Information (continued)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsMaxim cannot assume responsibility f or use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2002 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。

相关文档
最新文档