湖北省襄阳市第四十七中学九年级数学《22.2.2 配方法》教案2 人教新课标版

合集下载

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)

人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)
2.通过分析二次函数图像,提升直观想象和数据分析的能力。
3.掌握一元二次方程的多种解法,培养问题解决和数学运算的能力。
4.将二次函数和一元二次方程应用于实际问题,增强数学建模和数学应用的意识。
5.在小组讨论和问题解决过程中,培养合作交流、批判性思维和创新意识。
三、教学难点与重点
1.教学重点
-二次函数与一元二次方程的关系:理解二次函数图像与一元二次方程解的关系,掌握二次函数标准形式及其图像特征。
-举例:求解x²-5x+6=0,展示不同解法并比较各自优劣。
-实际问题中的应用:学会将实际问题抽象为二次函数与一元二次方程模型,解决最值、交点等问题。
-举例:抛物线与直线的交点问题在实际情境中的应用,如物体抛掷的最高点问题。
2.教学难点
-图像与方程关系的理解:学生往往难以将二次函数图像与一元二次方程的解直观地联系起来。
在实践活动中,学生们的分组讨论进行得相当积极。他们能够将所学的理论知识应用到解决实际问题中去,这让我感到很欣慰。然而,我也观察到,在将实际问题抽象为数学模型的过程中,一些学生仍然感到困难。这告诉我,需要在后续的教学中加强对数学建模能力的培养。
在小组讨论环节,我尝试扮演了一个引导者和启发者的角色,鼓励学生们提出自己的观点和问题。我注意到,当他们被鼓励去探索和发现时,他们的思考变得更加深入。不过,我也发现时间管理上存在一些问题,有时候讨论可能会拖沓,影响到了课堂的整体进度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版数学九年级上册《22.2二次函数与一元二次方程(第2课时)》教案

人教版数学九年级上册《22.2二次函数与一元二次方程(第2课时)》教案

22.2二次函数与一元二次方程第2课时教学目标:1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解。

2.让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解。

重点难点:重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。

难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。

教学过程:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解。

(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解。

二、探索问题问题1:(问题4)育才中学初三(3)班学生在上节课的作业中出现了争论:求方程x2=错误!未定义书签。

x十3的解时,几乎所有学生都是将方程化为x2-错误!未定义书签。

x-3=0,画出函数y=x2-错误!未定义书签。

x-3的图象,观察它与x轴的交点,得出方程的解。

唯独小刘没有将方程移项,而是分别画出了函数y=x2和y=错误!未定义书签。

x+2的图象,如图(3)所示,认为它们的交点A、B的横坐标-错误!和2就是原方程的解.提问: 1. 这两种解法的结果一样吗?2.小刘解法的理由是什么?3.函数y=x2和y=bx+c的图象一定相交于两点吗?你能否举出例子加以说明?4,函数y=x2和y=bx+c的图象的交点横坐标一定是一元二次方程x2=bx+c的解吗?5.如果函数y=x2和y=bx+c图象没有交点,一元二次方程x2=bx+c的解怎样?三、做一做利用图4,运用小刘方法求下列方程的解,并检验小刘的方法是否合理。

(1)x2+x-1=0(精确到0.1); (2)2x2-3x-2=0。

四、综合运用已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m)。

新人教版九年级数学上册《 22.2.1配方法解一元二次方程》教案

新人教版九年级数学上册《 22.2.1配方法解一元二次方程》教案

新人教版九年级数学上册《22.2.1配方法解一元二次方程》教案二、自学指导:(阅读课本P32-33页,思考下列问题)1.阅读问题2及P32-33两个思考并总结配方法解一元二次方程的步骤及配方的技巧;2.在理解例1基础上,完成P34练习1、2三、效果检测:1、让学生通过阅读问题2自己归纳概念:通过配成完全平方形式来解一元二次方程的方法,叫做配方法。

2、归纳配方法解一元二次方程的解题步骤:移、化、配、开、解3、P27练习第1、2题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正4、通过阅读及训练之后,有上层学生归纳方法重点:方程二次项系数为1时,配方的关键是方程两边都加上一次项系数一半的平方四、当堂训练:1.P34练习2(1)(3)(5)中下层学生先板演,由同座的同学给予点评与纠正2.若x2+6x+a2是一个完全平方式,则a的值是________.±33.若(x2+y2-5)2=4,则x2+y2=_______.3或74.若2(x2+3)的值与3(1-x2)的值互为相反数,则x值为___________.±3五、归纳小结,鼓励评价:1.配方法解一元二次方程的解题步骤:移、化、配、开、解; 要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

2.方程二次项系数为1时,配方的关键是方程两边都加上一次项系数一半的平方.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

人教版数学九年级上册22.2.1《配方法》说课稿2

人教版数学九年级上册22.2.1《配方法》说课稿2

人教版数学九年级上册22.2.1《配方法》说课稿2一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,本节课的主要内容是让学生掌握配方法的原理和应用。

配方法是解一元二次方程的一种重要方法,它能把一般形式的一元二次方程转化为完全平方式,从而使方程的解法更加简单。

在初中数学中,配方法不仅是一元二次方程解法的基础,也是后续学习二次函数、一元二次不等式等知识的基础。

二. 学情分析九年级的学生已经学习过一元二次方程的基本概念和解法,对二次项、一次项、常数项有一定的了解。

但是,学生对于配方法的原理和推导过程可能还不太理解,对于如何运用配方法解决实际问题可能还存在困难。

因此,在教学过程中,我需要引导学生从已有的知识出发,逐步理解和掌握配方法,并能够运用配方法解决实际问题。

三. 说教学目标1.知识与技能目标:让学生掌握配方法的原理和步骤,能够运用配方法解一元二次方程。

2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:让学生体验数学的乐趣,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:配方法的原理和步骤,如何运用配方法解一元二次方程。

2.教学难点:配方法的推导过程,如何灵活运用配方法解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究和合作交流。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,为学生提供丰富的学习资源。

六. 说教学过程1.导入新课:通过复习一元二次方程的基本概念和解法,引出配方法的概念和作用。

2.自主探究:让学生自主探究配方法的原理和步骤,引导学生发现配方法的规律。

3.合作交流:让学生分组讨论,分享各自的方法和经验,互相学习和借鉴。

4.讲解示范:通过讲解和示范,让学生理解和掌握配方法的具体操作步骤。

5.练习巩固:布置一些练习题,让学生运用配方法解一元二次方程,巩固所学知识。

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。

通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。

二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。

但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。

三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。

2.学会运用二次函数的性质解决实际问题。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。

2.如何运用二次函数的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。

2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。

3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。

4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的多媒体课件和教学素材。

2.准备一些实际问题,用于让学生运用二次函数解决。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。

例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。

2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。

九年级数学上册 22.2.2 配方法教案2 新人教版

九年级数学上册 22.2.2 配方法教案2 新人教版

22.2.2 配方法教案2第2课时教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-8x+7=0 (2)x2+4x+1=0老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9x-4=±3即x1=7,x2=1(2)x2+4x=-1 x2+4x+22=-1+22(x+2)2=3即x+2=±x1=-2,x2=--2二、探索新知像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:(1)移项,得:x2+6x=-5配方:x2+6x+32=-5+32(x+3)2=4由此可得:x+3=±2,即x1=-1,x2=-5(2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1配方x2+3x+()2=-1+()2(x+)2=由此可得x+=±,即x1=-,x2=--(3)去括号,整理得:x2+4x-1=0移项,得x2+4x=1配方,得(x+2)2=5x+2=±,即x1=-2,x2=--2三、巩固练习教材P39练习 2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=y+,x+1=y-依题意,得:y2(y+)(y-)=6去分母,得:y2(y+1)(y-1)=72y2(y2-1)=72, y4-y2=72(y2-)2=y2-=±y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x1=-,x2=-五、归纳小结本节课应掌握:配方法的概念及用配方法解一元二次方程的步骤.六、布置作业1.教材P45复习巩固3.2.作业设计一、选择题1.配方法解方程2x2-x-2=0应把它先变形为().A.(x-)2= B.(x-)2=0C.(x-)2= D.(x-)2=2.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0C.(2x+1)2+3=0 D.( x-a)2=a3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2二、填空题1.如果x2+4x-5=0,则x=_______.2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.三、综合提高题1.用配方法解方程.(1)9y2-18y-4=0 (2)x2+3=2x2.已知:x2+4x+y2-6y+13=0,求的值.3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.答案:一、1.D 2.B 3.B二、1.1,-5 2.正 3.x-y=三、1.(1)y2-2y-=0,y2-2y=,(y-1)2=,y-1=±,y1=+1,y2=1-(2)x2-2x=-3 (x-)2=•0,x1=x2=2.(x+2)2+(y-3)2=0,x1=-2,y2=3,∴原式=3.(1)设每件衬衫应降价x元,则(40-x)(20+2x)=1200,x2-30x+200=0,x1=10,x2=20(2)设每件衬衫降价x元时,商场平均每天赢利最多为y,则y=-2x2+60x+800=-2(x2-30x)+800=-2[(x-15)2-225]+800=-2(x-15)2+1250 ∵-2(x-15)2≤0,∴x=15时,赢利最多, y=1250元.答:略。

人教版九年级数学上22.2《二次函数与一元二次方程》参考教案

人教版九年级数学上22.2《二次函数与一元二次方程》参考教案

22.2 二次函数与一元二次方程教学任务分析教学目标知识技能了解一元二次方程的根的几何意义,掌握用二次函数图象求解一元二次方程的根.数学思考建立一元二次方程与二次函数的关系,通过图象,体会数与形的完美结合.解决问题1.通过实际问题,体会一元二次方程解的实际意义,发展数学思维.2.求解过程中,学会合作、交流.情感态度1.通过对小球飞行问题的分析,感受数学的应用,激发学生学习热情.2.在求解过程中,体会解决问题的方法,培养学生的合作交流意识和探索精神.重点利用二次函数图象解一元二次方程难点将方程转化为二次函数教学流程安排活动流程图活动内容和目的活动1 问题引入活动2方程与函数活动3巩固、应用活动4小结、布置作业通过对小球飞行问题的求解,激发学生对一元二次方程根的探索兴趣.观察、分析二次函数的图象,判断一元二次方程根的情况,发展学生分析问题的能力.通过例题巩固用函数图象判断方程根的情况,激发探索精神.回顾、反思、交流.布置课后作业,巩固、发展提高.教学过程设计问题与情境师生行为[活动1]问题:如图,以40 m /s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单出示问题,学生分析理解.注意学生对高度、时间的理解.分析:(1)h是t的二次函数;位: m)与飞行时间 t (单位: s)之间具有关系:2520t t h -=.(1)球的飞行高度能否达到15 m? 若能,需要多少时间?(2)球的飞行高度能否达到20 m? 若能,需要多少时间?(3)球的飞行高度能否达到20.5 m? 若能,需要多少时间?(4)球从飞出到落地要用多少时间?图22.2-1242010515O图22.2-1-1[活动2]问题:下列二次函数的图象与x 轴有没有公共点?若有,求出公共点的横坐标;当x 取公共点的横坐标时,函数的值是多少?参见教材图26.2-2.(2)当h 取具体值时,得到关于t 的一元二次方程;(3)如何求解一元二次方程的根呢? (4)如何理解一元二次方程与二次函数的关系?在本次活动中,教师应关注:(1)学生对问题从函数到方程的转换; (2)学生对根的理解;(3)方程的解与函数中自变量的关系. 解方程: 略.在本次活动中,教师应关注: (1)一元二次方程的解法; (2)函数图象的应用; (3)方程与函数的联系.教师展示问题,学生讨论合作完成: 分析:(1) 如何作出函数的图象; (2) 利用图象确定函数的值; (3) 由函数图象,能得出相应的 一元二次方程的根吗?图象法求解:(1)函数图象与x 轴的公共点的横坐标是-2,1,此时的函数值是0;(2)函数图象与x 轴的公共点的横坐1)3(96)2(2)1(222+-=+-=-+=x x y x x y x x y yx[活动3] 例:利用函数图象求方程的实数根(精确到0.1)图22.2-3练习:校运会上,某运动员掷铅球,铅球的飞行高度y (m)与水平距离x (m)之间的函数关系式为7.122.02++-=x x y ,则此运动员的成绩是多少?标是3,此时的函数值为0;(3)函数图象与x 轴没有公共点. (注:此题的上述解法也可以脱离图象,理解为代数法求解.)教师提出问题,学生在独立思考完成. 解:作 的图象(如下图),它与x 轴的公共点的横坐标大约是-0.7,2.7,所以方程 的实数根为 .在本次活动中,教师应关注: (1)与方程对应的二次函数; (2)由图象求得的根,因为存在误差,一般是近似的;(3)学生对二次函数图象的应用.分析:(1)在投掷的过程中,铅球的初始高度是多少? (2)如何建立直角坐标系? (3)如何计算成绩?本次活动中,教师应关注: (1)直角坐标系的建立; (2) 计算成绩.xy1O0222=--x x 7.2,7.021≈-≈x x 222--=x x y 0222=--x x[活动4]小结作业:师生共同总结:(1)利用二次函数的图象求一元二次方程的根.(数形结合)(2)由于作图或观察可能存在误差,由图象求得的根,一般都是近似的.课后习题.。

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。

配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。

配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。

但是,对于配方法的原理和应用,他们可能还不太清楚。

因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。

三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。

2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。

六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。

例如,解决方程x^2 -5x + 6 = 0。

2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。

配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。

3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。

4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。

5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。

人教版数学九年级上册22.2.1《配方法》教案2

人教版数学九年级上册22.2.1《配方法》教案2

人教版数学九年级上册22.2.1《配方法》教案2一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的一部分,主要介绍了配方法的概念、意义和应用。

配方法是解一元二次方程的一种方法,通过将方程转化为完全平方形式,使方程的解变得简单。

这一节的内容是学生学习一元二次方程解法的重要基础,也是后续学习二次函数和一元二次方程组的基础。

二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解和运用一元一次方程、不等式的解法。

但是,对于一元二次方程,学生可能还存在一定的困难。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握配方法。

三. 教学目标1.让学生理解配方法的概念和意义。

2.引导学生掌握配方法的操作步骤。

3.培养学生运用配方法解决实际问题的能力。

四. 教学重难点1.配方法的概念和意义的理解。

2.配方法的操作步骤的掌握。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生主动探究;通过案例分析,使学生理解配方法的实际应用;通过小组合作,培养学生的合作意识和团队精神。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学PPT。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何解决这些问题。

例如,一个矩形的长比宽大3,已知矩形的面积为24,求矩形的长和宽。

2.呈现(10分钟)介绍配方法的概念和意义,讲解配方法的操作步骤。

通过PPT和案例,让学生直观地理解配方法的过程和效果。

3.操练(10分钟)让学生独立完成一些配方法的练习题。

在学生练习的过程中,教师进行个别辅导,解答学生的疑问。

4.巩固(10分钟)让学生分组讨论,总结配方法的操作步骤和注意事项。

每组派代表进行汇报,教师进行点评和总结。

5.拓展(10分钟)让学生运用配方法解决一些实际问题。

教师提供问题,学生分组讨论和解答。

6.小结(5分钟)教师引导学生总结本节课的主要内容和收获。

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。

配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。

本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。

但是,对于配方法的理解和应用还需要进一步的引导和培养。

学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。

三. 教学目标1.让学生掌握配方法的基本原理和应用。

2.培养学生解决二次方程问题的能力。

3.培养学生的逻辑思维能力和创新思维能力。

四. 教学重难点1.配方法的基本原理的理解和应用。

2.配方法在解决二次方程问题中的应用。

五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。

同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和教学素材。

七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。

让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。

呈现(10分钟)讲解配方法的基本原理和步骤。

通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。

同时,引导学生进行思考和讨论,巩固学生的理解。

操练(10分钟)让学生进行配方法的练习。

提供一些配方法的练习题,让学生独立完成。

在学生完成练习的过程中,进行巡视指导和解答学生的疑问。

巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。

引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。

人教版数学九年级上册22.2.2《公式法》教学设计

人教版数学九年级上册22.2.2《公式法》教学设计

人教版数学九年级上册22.2.2《公式法》教学设计一. 教材分析人教版数学九年级上册22.2.2《公式法》是二次函数章节的一部分,主要介绍了公式法在解决二次函数问题中的应用。

本节课的内容包括:二次函数的顶点式、对称轴公式、开口方向与判别式的关系等。

通过本节课的学习,学生能够掌握公式法在解决二次函数问题中的应用,提高解决问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本概念和性质,对二次函数的图像有一定的了解。

但是,学生在解决实际问题时,往往不知道如何运用公式法进行解答。

因此,在教学过程中,教师需要引导学生运用已学的知识解决实际问题,提高学生的解决问题的能力。

三. 教学目标1.理解二次函数的顶点式、对称轴公式、开口方向与判别式的关系。

2.学会运用公式法解决二次函数问题。

3.提高学生解决实际问题的能力。

四. 教学重难点1.二次函数的顶点式、对称轴公式、开口方向与判别式的关系的理解。

2.公式法在解决二次函数问题中的应用。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作交流,掌握公式法在解决二次函数问题中的应用。

六. 教学准备1.教学PPT。

2.练习题。

3.教学素材。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,引导学生思考如何解决这个问题。

例如:已知二次函数的图像经过点(1,2)和(3,4),求该二次函数的解析式。

2.呈现(10分钟)教师通过PPT呈现二次函数的顶点式、对称轴公式、开口方向与判别式的关系等知识点,引导学生自主学习。

3.操练(10分钟)教师给出几个例题,让学生运用公式法解决。

教师引导学生注意观察例题的解题步骤,总结解题方法。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成。

教师选取部分学生的作业进行讲评,指出解题中存在的问题,并进行解答指导。

5.拓展(10分钟)教师给出一些拓展问题,引导学生进行思考。

例如:如何运用公式法解决二次函数的最值问题?6.小结(5分钟)教师引导学生总结本节课所学的内容,巩固知识点。

初中数学 教案1:22.2.2 配方法

初中数学 教案1:22.2.2 配方法

配方法教学目标:知识技能目标1.正确理解并会运用配方法将形如x2+px+q=0(p2-4q≥0)的方程变形为(x+m)2=n(n ≥0)类型;2.会用配方法解形如ax2+bx+c=0(a≠0)中的数字系数的一元二次方程;3.培养学生准确、快速的计算能力以及观察、比较、分析问题的能力;过程性目标1.让学生经历配方法的推导形成过程,并能够熟练地运用配方法求解一元二次方程;2.让学生探索用配方法解形如ax2+bx+c=0(a≠0)数字系数的一元二次方程,并与形如x2+px+q=0的方程进行比较,感悟配方法的本质.情感态度目标通过本节课,继续渗透由未知向已知转化的思想方法,配方法是解决某些代数问的一个很重要的方法.重点和难点重点:掌握用配方法解一元二次方程;难点:把一元二次方程化为(x+m)2=n的形式.教学过程一、创设情境问题:怎样解下列方程:(1)x2+2x=5;(2)x2-4x+3=0.二、探究归纳思考能否经过适当变形,将它们转化为(x-m)2=n(n≥0)的形式,应用直接开平方法求解?分析对照公式:a2±2ab+b2=(a+b)2,对于x2+ax型的代数式,只需再加上一次项系数一半的平方,即可得到22222⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛++axaaxx完成转化工作.解(1)原方程化为x2+2x+1=5+1.即(x+1)2=6.两边开平方,得x+1=±6.所以x1=6-1,x2=-6-1.(2)原方程化为x 2-4x +4=-3+4即(x -2)2=1.两边开平方,得x -2=±1.所以x 1=3, x 2=1.归纳 上面,我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.运用配方法解一元二次方程的步骤:第一步是移项,将含有未知数的项移到方程的一边,不含有未知数的项移到方程的另一边;第二步是配方,方程的两边同时加上一次项系数一半的平方,进行这一步的依据是等式的基本性质和完全平方公式a 2±2ab +b 2=(a +b )2;第三步是用直接开平方法求解.三、实践应用例1 用配方法解下列方程:(1)x 2-6x -7=0;(2)x 2+3x +1=0.解 (1)移项,得x 2-6x =7 ……第一步方程左边配方,得x 2-2∙x ∙3+32=7+32……第二步即 (x -3)2=16.所以x -3=±4.原方程的解是x 1=7, x 2=-1.(2)移项,得x 2+3x =-1.方程左边配方,得x 2+2∙x ∙23+(23)2=-1+(23)2, 即(x +23)2=45. 所以x +23=±25. 原方程的解是x 1=-23+25,x 2=-23-25. 试一试 用配方法解方程:x 2+px +q =0(p 2-4q ≥0)解 移项,得x 2+px =-q , 方程左边配方,得2222222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+⋅⋅+p q p p x x即44222q p p x -=⎪⎭⎫ ⎝⎛+ 当p 2-4q ≥0时,得2422q p p x -±=+ 原方程的解是24242221q p p ,x q p p x ---=-+-= 例2 如何用配方法解方程:2x 2+3=5x .分析 这个方程化成一般形式后,二次项的系数不是1,而上面的几个方程二次项的系数都是1,只要将这个方程的二次项系数化为1,就变为上面的问.因此只要在方程的两边都有除以二次项的系数2就可以了.解 移项,得:2x 2-5x +3=0,把方程的各项都除以2,得023252=+-x x , 配方,得22245234525⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-x x , 即161452=⎪⎭⎫ ⎝⎛-x , 所以4145±=-x , 原方程的解是12321==x x ,. 说明 例2中方程的特点和例1不同的是,例2的二次项系数不是1.因此要想配方,必须化二次项系数为1.对形如一元二次方程ax 2+bx +c =0(a ≠0)用配方法求解的步骤是:第一步:化二次项系数为1;第二步:移项;第三步:配方;第四步:用直接开平方法求解.思考 怎样解方程9x 2-6x +1=0比较简单?解法(1) 化二次项的系数为1,得091962=+-x x , 移项,得91962-=-x x ,配方,得22231913196⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-x x , 所以,0312=⎪⎭⎫ ⎝⎛-x . 原方程的解是3121==x x . 解法(2) 原方程可整理为(3x -1)2=0. 原方程的解是3121==x x . 比较上面两种方法,让学生体会配方法是通用方法,但有时用起来麻烦;解法(2)是据方程的特点所采用的特殊的方法,较解法(1)简捷,明快.所以学习不要机械死板,在熟练掌握通法的基础上,可根据方程的结构特点灵活地选择简单的方法,培养灵活运用能力.四、交流反思.1.用配方法解二次项系数为1的一元二次方程,其步骤如下:(1)把二次项系数化为1;(2)移项,使方程左边为二次项,一次项,右边为常数项;(3)配方.依据等式的基本性质和完全平方公式,在方程的左右两边同时加上一次项系数一半的平方;(4)用直接开平方法求解.配方法的关键步骤是配方.配方法是解一元二次方程的又一种方法.2.对于二次项的系数不是1的一元二次方程,通常在方程的两边都除以二次项的系数,转化为二次项系数为1的方程,从而用配方法求解;3.通过观察、比较、分析去发现新旧知识的联系,以旧引新,学会化未知为已知的转化思想是学习数学常用策略;配方法是一种重要的方法,在后面的学习中经常会用到.五、检测反馈1.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2; (4)4x 2-6x +( )=4(x - )2=(2x - )2.2.用配方法解方程:(1)x2+8x-2=0;(2)x2-5x-6=0;(3)4x2-12x-1=0;(4)3x2+2x-3=0.六、布置作业习题22.2的4(1)\(2)\(3)\(4).。

22.2.2配方法数学教案

22.2.2配方法数学教案

22.2.2配方法数学教案**标题:22.2.2 配方法****一、课程目标**1. 学生能够理解配方法的概念。

2. 学生能够掌握如何使用配方法解决实际问题。

3. 学生能够通过配方法理解和掌握完全平方公式。

**二、教学内容**1. 配方法的基本概念2. 完全平方公式的推导过程3. 配方法的应用**三、教学步骤**1. 引入新课:通过生活中的实例引出配方法的重要性,激发学生的学习兴趣。

2. 讲解新课:- 配方法的基本概念:首先解释什么是配方法,然后给出一些简单的例子让学生理解。

- 完全平方公式的推导过程:通过图形的方式帮助学生理解完全平方公式的推导过程,使其更直观易懂。

- 配方法的应用:通过一系列的问题和练习,使学生掌握如何使用配方法解决实际问题。

3. 练习与讨论:组织学生进行小组讨论,解答他们在学习过程中遇到的问题。

4. 总结与反思:对本节课的内容进行总结,并引导学生自我反思,提出自己的疑问和思考。

**四、教学资源**1. 教材2. 多媒体设备(如投影仪、电脑等)3. 实物模型或教具**五、教学评价**1. 课堂观察:观察学生在课堂上的表现,包括他们的参与度、理解程度等。

2. 作业反馈:通过批改学生的作业,了解他们对知识的理解和应用情况。

3. 小组讨论:通过小组讨论,了解学生的思维过程和解决问题的能力。

**六、教学策略**1. 创设情境:通过创设生活情境,激发学生的学习兴趣。

2. 启发式教学:采用启发式教学法,引导学生主动思考,培养他们的创新意识。

3. 分层教学:针对不同层次的学生,提供不同的教学内容和教学方法,满足他们的学习需求。

配方法(2) 教案 初中数学教案 九年级数学教案

配方法(2) 教案 初中数学教案 九年级数学教案

原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况?
根据上述方程的根的情 况,学生思考并叙述
初步了解一元二 次方程的根的情
况,并为公式法 三、课堂训练 1.方程 4x2 4 3x 2 0化为x a2 b的形式,正确的是( A. x 3 2 5 )
2
学生先自主, 再合作交 流,总结经验,完成.教
的学习奠定基础 使学生自主探 究,进一步领会 配方思想,并熟 练进行配方.


4
B. x 3 2 5 4


C.
3 1 x 2 4
2
D.
3 x 3 师巡视指导,了解学生 2
2.配方法解方程 2x2A. (x-
法,教师组织学生讨
论,师生交流看法,肯 的能力
2 至○ 4 二次项系数不为 1.二次项系数化为 1 后,○ 2 的一次项系数为偶 2.○
定其可行性, 总结出一
3 的一次项系数为分数,○ 4 无解. 数.为后面做铺垫.○
般步骤. 让学生运用总结出的
3 一般步骤解方程 ○ 4 ,其中○ 3 需要先整理, 通过学生亲自解 ○
师生行为
设 计 意 图
回顾上节课内容 以得以衔接
或(mx+n) =p(p≥0)的一元二次方程,以及用配方法解二次项系数是 1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二 次方程. 二、探究新知 1.填空:
1 x2 8x ____ x ____ 2 x 2 x ____ x ____2 ○ 2 ○
教 学 时 间
课 题
21.2.1 配方法(2)
课 型
新授

九年级数学上册 22.2.1配方法(2)精品教案 人教新课标版

九年级数学上册 22.2.1配方法(2)精品教案 人教新课标版

三、课堂训练
1.方程 4x2 4 3x 2 0化为x a2 b的形式,正确的是 ( )
A. x 3 2 5 4
x
3 2
2

3
B. x 3 2 5 4
C.
x
2
3 2

1 4
根据上述方程的根 的情况,学生思考并 D. 叙述
学生归纳,总结阐 述,体会,反思.并 做出笔记.
加强教学反 思,帮助学生 养成系统整理 知识的学 习惯
式后,若 n 为 0,原方程有两个相等的实数根;若 n 为正数,原
方程有两个不相等的实数根;若 n 为负数,则原方程无实数根. 五、作业设计 复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中
上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的 一些补充题目进行重复练习. 补充作业:本课无
二、探究新知
1.填空:
○1 x2 8x ____ x ____2 ○2 x2 x ____ x ____2
○3 x2 ___ 4 x ____2 ○4 x2 ___ 9 x ____2
4
2.填空: ○1 x2 8x a是完全平方式, a =
分析:
复习完全平方
式的,为下面用
配方法解方程
作铺垫
让学生独立完成
○1 ,复习巩固上节
课内容. 通过对比方程○1 ○2 温故知新,对比 结构,尝试解方程 探究,发现二次 ○2 ,探讨二次项系 项系数不是 1 数不是 1 的一元二 的一元二次方 次方程的解法,教 程的解法,培养 师组织学生讨论, 学生发现问题 师生交流看法,肯 的能力
学生先自主,再合 作交流,总结经验,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重难点关键
1.重点:讲清配方法的解题步骤.
2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)解下列方程:
(1)x2-8x+7=0 (2)x2+4x+1=0
老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9
x-4=±3即x1=7,x2=1
(2)x2+4x=-1 x2+4x+22=-1+22
(x+2)2=3即x+2=±3
x1=3-2,x2=-3-2
二、探索新知
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.解下列方程
(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.
解:(1)移项,得:x2+6x=-5
配方:x2+6x+32=-5+32(x+3)2=4
由此可得:x+3=±2,即x1=-1,x2=-5
(2)移项,得:2x2+6x=-2
二次项系数化为1,得:x2+3x=-1
配方x2+3x+(3
2
)2=-1+(
3
2
)2(x+
3
2
)2=
5
4
由此可得x+3
2

5
,即x1=
5
-
3
2
,x2=-
5
-
3
2
(3)去括号,整理得:x2+4x-1=0
移项,得x2+4x=1
配方,得(x+2)2=5
x+2=5x15,x25
三、巩固练习
教材P39练习 2.(3)、(4)、(5)、(6).
四、应用拓展
例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6
分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,
那么(6x+7)2=y2,其它的3x+4=1
2
(6x+7)+
1
2
,x+1=
1
6
(6x+7)-
1
6
,因此,方程就转化
为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y
则3x+4=1
2
y+
1
2
,x+1=
1
6
y-
1
6
依题意,得:y2(1
2
y+
1
2
)(
1
6
y-
1
6
)=6
去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72, y4-y2=72
(y2-1
2
)2=
289
4
y2-1
2

17
2
y2=9或y2=-8(舍)∴y=±3
当y=3时,6x+7=3 6x=-4 x=-2 3
当y=-3时,6x+7=-3 6x=-10 x=-5 3
所以,原方程的根为x1=-2
3
,x2=-
5
3
五、归纳小结
本节课应掌握:
配方法的概念及用配方法解一元二次方程的步骤.
六、布置作业
1.教材P45复习巩固3.
2.作业设计
一、选择题
1.配方法解方程2x2-4
3
x-2=0应把它先变形为().
A.(x-1
3
)2=
8
9
B.(x-
2
3
)2=0
C.(x-1
3
)2=
8
9
D.(x-
1
3
)2=
10
9
2.下列方程中,一定有实数解的是(). A.x2+1=0 B.(2x+1)2=0
C.(2x+1)2+3=0 D.(1
2
x-a)2=a
3.已知x 2+y 2+z 2
-2x+4y-6z+14=0,则x+y+z 的值是( ).
A .1
B .2
C .-1
D .-2
二、填空题
1.如果x 2+4x-5=0,则x=_______.
2.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数.
3.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.
三、综合提高题
1.用配方法解方程.
(1)9y 2-18y-4=0 (2)x 2+3=23x
2.已知:x 2+4x+y 2-6y+13=0,求22
2x y x y -+的值.
3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.
①若商场平均每天赢利1200元,每件衬衫应降价多少元?
②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.。

相关文档
最新文档