近景摄影测量09
使用近景摄影测量方法进行工程量测的技巧与注意事项
使用近景摄影测量方法进行工程量测的技巧与注意事项摄影测量是一种通过摄影设备来测量物体尺寸、形状和位置的技术方法。
在工程领域中,使用摄影测量来进行工程量测可以提高效率和精度。
而近景摄影测量方法作为一种常用的技术手段,具有简便、快速等优点。
本文将介绍使用近景摄影测量方法进行工程量测的技巧与注意事项。
近景摄影测量方法利用高精度的数码相机和相关软件,通过对物体的多个视角进行摄影,并在计算机软件中进行图像处理和测量,从而得到工程量测的结果。
具体而言,可以通过相机的定标来获得摄影位置和姿态的参数。
然后,通过对不同角度、不同高度的照片进行标定和配准,得到物体的三维坐标和形状信息。
最后,可以通过计算机软件对得到的数据进行分析,得到所需的工程量测结果。
在使用近景摄影测量方法进行工程量测时,有些技巧和注意事项需要特别注意。
首先,摄影设备的选择非常重要,要选择具有高像素和快速对焦功能的数码相机,以确保图像的清晰度和准确性。
其次,摄影的环境也需要注意,在室内拍摄时要注意光线的均匀性和稳定性,避免出现反射和阴影等问题。
在室外拍摄时,要注意天气条件,选择光线良好的日子进行拍摄,以减少阴影和光线扭曲的影响。
另外,摄影点的布置也是一个重要的技巧。
在进行近景摄影测量时,通常需要选择合适的摄影点,以获得足够的视角和覆盖范围。
摄影点的距离和角度应该根据被测物体的大小和形状进行合理的选择。
同时,需要注意摄影点的位置要稳定,尽量避免因为地震或者其他原因导致摄影点的移动,以确保测量结果的准确性和稳定性。
此外,数据处理的方法也是关键。
在得到一系列的照片后,需要通过计算机软件对图像进行处理和分析。
首先,对图像进行标定和配准,以获得摄影位置和姿态的参数。
然后,通过三维重建算法对图像进行处理,得到物体的三维坐标和形状信息。
最后,可以采用点云处理和模型拟合等方法,对数据进行分析和测量,得到所需的工程量测结果。
当然,在使用近景摄影测量方法进行工程量测时,也需要注意一些潜在的问题。
近景摄影测量的步骤和注意事项
近景摄影测量的步骤和注意事项导语:随着科技的发展和摄影技术的不断提高,近景摄影测量成为了测绘、工程建设等领域中不可或缺的一种测量手段。
近景摄影测量凭借其操作简便、成果精确等特点,逐渐取代传统的测量方法,成为测绘领域的主流技术,对于我们了解近景摄影测量的步骤和注意事项有着重要的意义。
第一部分:近景摄影测量的步骤1. 装置设备:首先,进行近景摄影测量需要准备一台高质量的数码相机,同时需要使用三脚架或其他稳定设备将相机固定在合适的位置。
此外,还需要使用测量标识物,以提供测量的参考对象。
2. 规划拍摄区域:在开始拍摄之前,需要对测量区域进行规划。
根据测量任务的要求,确定需要测量的区域,并制定拍摄路径和拍摄布局。
拍摄区域的规划对于后续数据处理和分析具有重要影响。
3. 进行拍摄:在确定好拍摄区域后,按照预定的路径和布局开始进行拍摄。
在拍摄过程中,需要注意保持相机的稳定,避免晃动或震动对图像质量的影响。
同时,要确保拍摄区域的光照条件良好,以确保拍摄到的图像质量较高。
4. 标定相机:在完成拍摄之后,需要进行相机的标定。
相机标定是指确定相机参数的过程,包括相机的焦距、畸变参数等。
相机标定可以通过特定的软件进行,也可以借助于一些测量仪器进行。
5. 图像处理:拍摄得到的图像需要经过图像处理的步骤,以达到测量的需求。
图像处理包括图像的配准、图像的校正、图像的分类等。
这些步骤可以通过使用专业的图像处理软件来完成。
6. 数据分析:在拍摄和图像处理完成后,得到的数据需要进行进一步的分析。
根据测量任务的要求,对数据进行分析,提取出需要的信息。
这个步骤可以借助于专业的测绘软件和分析工具来完成。
第二部分:近景摄影测量的注意事项1. 光照条件:光照条件对于近景摄影测量的成功与否具有重要影响。
在进行拍摄时,应尽量选择良好的光照条件,避免过暗或过亮的拍摄环境。
2. 校正畸变:相机镜头存在一定的畸变,这会影响到测量结果的准确性。
在进行图像处理时,应对图像进行畸变校正,以减小畸变对测量结果的影响。
近景摄影测量技术的原理与应用
近景摄影测量技术的原理与应用摄影术是人类记录和传达视觉信息的重要手段之一。
而近景摄影测量技术,则是通过摄影来实现对物体形态、尺寸等测量的一种方法。
它广泛应用于工程测量、建筑设计、文物保护等领域。
本文将介绍近景摄影测量技术的原理和应用。
近景摄影测量技术的原理是基于投影几何和相对定位原理。
在进行近景摄影测量时,需要摄影测量仪器和软件对摄影图像进行处理和分析。
首先,摄影测量仪器通过测量相机的内外方位元素,确定了摄影测量的几何参数。
其次,通过拍摄目标物体的多张照片,并用摄影测量软件进行特征点的匹配和图像配准,实现了照片的几何校正。
最后,通过测量图像上的特征点坐标,并进行三维坐标的计算和建模,即可得到目标物体的三维形态信息。
近景摄影测量技术的应用非常广泛。
首先,在工程测量领域,近景摄影测量可以用于工地勘察、施工监测和变形分析等工作。
例如,当测量建筑物的尺寸和形态时,可以使用近景摄影测量技术代替传统的测量方法,提高测量效率和精度。
其次,在建筑设计领域,近景摄影测量也被广泛应用于室内外环境的建模和渲染。
通过对建筑物外立面的摄影,可以生成真实感十足的虚拟模型,帮助设计师进行设计和效果展示。
此外,文物保护和文化遗产的研究也是近景摄影测量的一个应用领域。
通过对文物的摄影和三维建模,可以实现对文物的数字化保护与研究。
近景摄影测量技术的优点在于非接触性和高效性。
它不需要接触物体表面,不会对目标物体造成破坏,适用于对脆弱物体的测量和保护。
同时,近景摄影测量也具有高度的智能化和自动化。
现代的摄影测量软件已经可以实现自动化的摄影数据处理和三维重建,大大提高了测量的效率和准确度。
此外,近景摄影测量技术还具有数据量大、信息丰富等特点,可以为其他相关领域的研究和应用提供丰富的数据支持。
然而,近景摄影测量技术也存在一些挑战和限制。
首先,由于近景摄影测量依赖于摄影条件的限制,如光照、角度等因素,因此在某些特殊场景下,如低光照环境或目标物体表面无特征点时,可能会存在困难。
近景摄影测量
摄影时,像片对于两像片的主光轴S101域S202大体位于同一平面但彼此不平行,且不垂直与摄影基线B的摄影方式称之为交向摄影方式。
11.多摄站摄影测量:基于交向摄影方式,可实现对被测物的多重覆盖,乃至数十次的多重覆盖,即所谓的多摄站摄影测量。其主要目的是为了大幅度提高摄影测量的精度与可靠性。
28.检校内容: 主点位置与主距的测定;光学畸变系数的测定;压平装置以及像框坐标系的设定;调焦后主距变化的测定与设定;调焦后畸变差变化的测定;摄影机偏心常数的测定;立体摄影机内方位与外方位元素的测定;多台摄影机同步精度的测定。
近景摄影机得检校:检查和校正摄影机内方位元素和光学畸变系数的过程称之为近景摄影机得检校。
8.立体量测摄影机:在已知长度的摄影基线两端,配有两台主光轴平行且与基线垂直的量测摄影机的设备,即是立体量测摄影机。
9.非量测摄影机:不是专为测量目的而设计制造的摄影机称为非量测摄影机。其内方位元素不能记录,光学畸变颇大,未采取减少或改正底片变形的措施,并且不具备记载外部定向参数的功能。
10.近景摄影测量中基本的摄影方式有正直摄影方式和交向摄影方式两种。
1.近景摄影测量的定义:通过摄影手段以确定目标的外形和运动状态的学科分支称为近景摄影测量。
2.近景摄影测量的优点:a.可以瞬间获取被测物体大量物理信息和几何信息。b、可以在不伤及测量目标,不干扰被测物自然状态以及恶劣的环境下测量。c、适合于动态物体外形和运动状态测定的手段,适用于微观世界和较远目标的测量手段。d、基于严谨的理论和现代的硬软件,可提供相当高的的精度和可靠性的测量手段。e、是一种基于数字信息和数字影像技术以及自控技术的手段。f、可提供基于三维空间坐标的各种产品。
近景摄影测量原理
近景摄影测量原理近景摄影测量原理什么是近景摄影测量近景摄影测量是一种利用相机拍摄近距离物体的方法来测量其形状、尺寸和位置的技术。
它常用于建筑、工程、文物保护等领域,可以高效且准确地获取物体的三维信息。
摄影测量的基本原理摄影测量基于几何光学原理,通过相机拍摄的影像来还原物体的几何形态。
它的基本原理可以概括为以下几点:1.像素坐标系统摄影测量将相机传感器上的像素与物体的几何点相对应。
每个像素都有唯一的坐标,可以通过相机标定参数将其映射到物体空间中的三维坐标。
2.焦平面相机的像平面与镜头之间有一个均匀分布的焦平面。
焦平面以镜头中心为中心,平行于传感器,用于记录入射光线。
3.相机标定相机标定是摄影测量的基础,它通过测量相机的内外参数来建立像素与物体坐标之间的映射关系。
内参数包括焦距、主点位置等;外参数包括相机在物体坐标系中的位置和姿态。
4.立体视觉利用两个或多个相机同时拍摄同一物体的影像,可以通过立体视觉原理来推导出物体的三维坐标。
立体视觉基于两个影像的视差来还原物体的深度信息。
近景摄影测量流程近景摄影测量的流程可以简化为以下几个步骤:1.摄影计划在开始进行近景摄影测量之前,需要进行摄影计划,确定拍摄的位置、角度和距离等参数,以获得所需的影像内容。
2.相机标定利用相机标定板等工具,对摄影机进行标定,获取相机的内外参数,以建立像素与物体坐标之间的映射关系。
3.影像获取使用相机拍摄物体的多个影像,包括不同角度和距离的影像,以覆盖物体的全貌和细节。
4.立体匹配利用多个影像进行立体匹配,通过视差计算物体的三维坐标。
常用的方法有基于特征点匹配的立体视觉算法。
5.三维重建通过立体匹配得到的三维坐标,进行三维重建和点云生成,以获取物体的真实形态。
应用领域近景摄影测量技术在以下领域有广泛应用:•建筑和工程近景摄影测量可以在建筑和工程项目中用于生成数字模型、量测结构变形、检测施工质量等。
•文物保护近景摄影测量可以用于对文物进行三维数字化保护和虚拟展示,还原文物原貌并进行精细分析。
近景摄影测量技术介绍
近景摄影测量技术介绍摄影测量是一种通过摄影设备来获取地面上物体位置、形状和尺寸等信息的测量方法。
近景摄影测量技术,顾名思义,是指在短距离范围内进行摄影测量的一种方法。
本文将对近景摄影测量技术进行介绍,包括其原理、应用范围以及发展趋势。
一、近景摄影测量技术的原理近景摄影测量技术的原理基于摄影测量的基本原理,主要包括影像采集、像点匹配和三维坐标计算三个过程。
首先,影像采集是指使用摄影设备(如照相机或无人机)对目标区域进行拍摄,获取目标区域的影像数据。
这些数据可以通过摄影机的光学镜头或传感器捕获,并转化为数字图像。
其中,近景摄影测量技术常常使用高分辨率的数字相机或者已经预先标定的无人机。
其次,像点匹配是指对采集到的影像进行处理,找到其中的特征点并将其进行匹配。
这个过程需要使用计算机算法来进行,例如特征提取和特征匹配。
通过像点匹配,可以精确地确定同一个物体在不同影像中的位置,为三维坐标计算奠定基础。
最后,三维坐标计算是将匹配的像点转化为真实世界中的三维坐标。
这一过程涉及到摄影测量中的数学和几何转换,通过计算并解算一系列的几何方程,可以确定目标物体在三维坐标系中的位置和形态。
二、近景摄影测量技术的应用范围近景摄影测量技术在诸多领域具有广泛的应用。
下面介绍其中几个典型的应用领域。
1. 地质勘探与矿产资源评估:近景摄影测量技术可以用于对地质构造和地表地貌等进行测量和分析,以提供地质和矿产资源评估的依据。
通过高分辨率的影像数据,可以准确获取地质构造的信息,并研究矿产资源的分布情况和潜力。
2. 建筑与文化遗产保护:近景摄影测量技术可以对建筑物和文化遗产进行高精度的测量和保护。
利用三维坐标计算,可以获取建筑物的尺寸和形态等信息,辅助建筑设计和文物保护工作。
3. 城市规划与土地管理:近景摄影测量技术可以用于城市规划和土地管理。
通过获取城市区域的影像数据和三维信息,可以进行土地利用规划、道路设计和建筑物布局等工作,提高土地利用效率和城市规划的科学性。
近景摄影测量技术的应用指南
近景摄影测量技术的应用指南近景摄影测量技术是指利用计算机视觉和图像处理技术,对靠近摄像机的物体或场景进行测量和分析。
它广泛应用于建筑设计、文物保护、工程测量等领域。
本文将介绍近景摄影测量技术的基本原理和应用指南,希望能为读者提供有益的信息。
一、基本原理近景摄影测量技术的核心原理是基于图像间的几何关系和图像特征提取进行测量。
它利用摄像机的位置和姿态参数与照片中的物体在像素坐标系下的位置关系,通过三角测量和尺度标定,计算出物体的三维坐标。
近景摄影测量技术主要包括三个步骤:图像获取、图像处理和数据分析。
首先,需要通过摄像机获取一系列照片,确保照片中的物体有足够的细节和特征。
然后,将这些照片导入计算机,进行图像处理和特征提取。
最后,根据摄像机的内部参数和外部参数,结合物体在不同照片中的位置比较,计算出物体在三维空间中的位置坐标。
二、应用指南(一)建筑设计与文物保护近景摄影测量技术在建筑设计和文物保护中有着广泛的应用。
通过获取建筑物或文物的照片,并进行测量和分析,可以为设计师和保护者提供宝贵的参考数据。
例如,在建筑设计中,可以测量建筑物的尺寸、形状和位置,为后续的施工工作提供准确的基础。
而在文物保护中,可以通过对文物进行三维建模和仿真,推测出其原貌,并制定科学的保护方案。
(二)工程测量与土地调查近景摄影测量技术在工程测量和土地调查中也发挥着重要的作用。
它可以快速获取大量的测量数据,并且具有高精度和低成本的优势。
在工程测量中,可以对建筑物、道路、桥梁等进行测量和分析。
同时,在土地调查中,可以对地形地貌、水文特征等进行测量和分析。
这些数据可以用于工程设计、规划和环境保护等方面。
(三)无人机摄影测量近景摄影测量技术与无人机技术的结合,为测量工作带来了革命性的变化。
传统的测量工作需要人工进行,工作效率低下且存在安全隐患。
而无人机摄影测量技术可以实现全自动、高效率的测量工作。
通过搭载摄像机的无人机,可以快速获取照片,并进行三维重建和测量。
测绘技术中的近景摄影测量方法
测绘技术中的近景摄影测量方法近景摄影测量方法是测绘技术中一种重要的测量手段,它通过使用相机捕捉地物的图像,结合测量数据,计算地物的位置、形状和尺寸。
本文将介绍近景摄影测量方法的原理、应用以及未来发展方向。
一、原理近景摄影测量方法依赖于相机与地物之间的几何关系。
当相机拍摄地物图像时,相机光轴与地物交点确定了相机中心,而图像上的地物点与相机中心之间的距离则反映了地物的深度信息。
通过对相机光轴与地物交点的测量,以及对图像上地物点的测量,可以推导出地物的三维坐标。
在具体实施中,首先需要建立相机的内部和外部参数模型。
内部参数模型包括焦距、主点位置等相机内部参数,外部参数模型包括相机姿态和位置等相机外部参数。
然后,在地面上选择一些已知点,通过测量这些已知点在图像上的位置,以及相机和已知点之间的距离,就可以计算出相机的内外参数。
二、应用近景摄影测量方法在测绘领域有着广泛的应用。
首先,它可以用于地形测量。
通过拍摄地面图像,结合高程数据,可以实现对地形的准确测量。
这对于城市规划、环境保护等领域具有重要意义。
其次,近景摄影测量方法可以用于建筑测绘。
通过拍摄建筑物的图像,可以测量建筑物的尺寸、形状等参数。
这对于房地产开发、建筑设计等有着重要的作用。
此外,近景摄影测量方法还可以用于文物保护。
通过拍摄文物的图像,可以实现对文物的三维重建,包括形状、纹理等信息。
这对于文物保护、文物研究等具有重要的价值。
三、未来发展方向近景摄影测量方法在近年来得到了快速的发展,但仍然存在一些挑战和改进的空间。
首先,精度问题是一个需要解决的关键问题。
随着测量需求的增加,对于测量精度的要求也越来越高。
因此,需要研究更精确的参数估计方法,以提高近景摄影测量方法的精度。
其次,数据处理的效率也是一个需要改进的方面。
近景摄影测量方法产生的数据量庞大,需要进行大规模的数据处理。
因此,需要研究高效的数据处理算法,以提高数据处理的速度和效率。
此外,近景摄影测量方法还可以与其他测量技术结合,以实现更全面的测量。
近景摄影测量的原理及其在工程测量中的应用
近景摄影测量的原理及其在工程测量中的应用摄影测量是指利用照相机对地面目标进行影像获取和处理,通过测量影像中的对象形状、位置和尺寸等参数,从而获得目标的三维空间坐标和形状信息的方法。
近景摄影测量主要适用于小范围的工程测量任务,如建筑物、道路、桥梁、隧道等的设计、监测和评估等方面。
近景摄影测量的原理基于几何光学和影像处理的技术。
当光线从目标上折射或反射进入照相机镜头时,形成的影像可以通过相机的感光元件(如CCD)记录下来。
影像中的像素点位置和灰度值可以反映目标的形状和纹理特征。
通过对不同视角拍摄的影像进行匹配和分析,可以实现对目标三维空间坐标的计算和测量。
在近景摄影测量中,首先需要对摄影设备进行校准,包括相机的内外参数的测定和标定。
内参数包括焦距、主点位置和畸变等参数,外参数包括相机在空间中的位置和姿态。
校准后,可以采用多张影像拍摄同一目标的方式,通过影像匹配和几何关系恢复的方法,确定目标的三维坐标和形状信息。
近景摄影测量在工程测量中具有广泛的应用。
其中之一是建筑物测量。
传统的测量方法需要在施工过程中使用测量仪器对建筑物进行测量,工作量大且容易受到环境条件的限制。
而采用近景摄影测量可以在建筑物建成后,对其进行全面的测量和评估。
通过拍摄建筑物的影像并进行测量,可以获取建筑物的三维模型、立面图、平面图等信息,同时还可以对建筑物的变形和损坏进行监测和评估。
另外,近景摄影测量在道路和桥梁测量中也有重要的应用。
传统的道路和桥梁测量通常需要在现场布设测量控制点,并使用全站仪等仪器进行测量。
这种方法的精度高,但是工作量大且费时费力。
而采用近景摄影测量可以通过对道路和桥梁的影像进行处理,获取其形状和尺寸等信息。
这种方法不仅可以减轻测量人员的工作负担,还可以提高测量效率和精度。
此外,近景摄影测量还可以用于监测工程的变形和沉降等问题。
通过定期拍摄工程地点的影像,并进行形状和位置的测量比较,可以及时发现工程的变形和沉降等问题,并采取相应的措施进行修复和改进。
近景摄影测量
多基线数字近景摄影测量近景摄影测量传统把近到一米内远到100米以内的摄影测量称为近景摄影测量。
这样近当然不可能在飞机上,因此,近景又可以称为地面摄影测量。
近景摄影测量难点:航空摄影测量是平行摄影,摄影要求简单,摄影很规范化,基线不变,摄影关系不变.交会角不变,利于匹配。
它的照片也很规则,各单模型是固定基线、摄摄影关系及交会角,非常规范.因而当计算机技术高速发展时,它容易通过连续的空中三角测量实现各单模型的连接和点的匹配传递从而达到自动化.但是同样是双目视觉的近景摄影测量是交向摄影,它的摄影条件非常复杂,拍摄要求非常苛刻,拍的照片远没有航摄平行摄影那样规范.它本身的这些因素使它永远解决不了匹配,交会角,精度三者的三角矛盾.无法实现自动化.三者矛盾:从精度而言:交会角大,基线长,精度高;交会角小,基线短,精度低.从匹配而言:交会角大,变形大,匹配难;交会角小,变形小匹配易;能满足两张影像变形不超过匹配的许可,而又能满足起码的精度,这样的交会角在传统的近景摄影测量---即基于双目观测原理中的近景摄影测量的地面摄影条件几乎是不存在的.这便是近几十年来近景摄影测量无实质进展的根本原因.矛盾解决:张院士把从空间一个点由两条光线交会的摄影测量基本法则变化为空间一个点由多条光线交会而成的全新概念,彻底解决了数字近景发展的难题。
LensphotoLensphoto介绍:A.新的理论原理;传统摄影测量无论是模拟方式,解析方式或是数字化方式,都是基于人眼双目立体视觉的基本原理。
Lensphoto实现了从传统基于人眼双目视觉原理到真正基于计算机视觉原理完成摄影测量的跨越;从近景摄影测量技术上讲,这是一套实现了质的飞跃的崭新技术。
以计算机视觉原理(多基线)代替人眼双目视觉(单基线)传统摄影测量原理,从空间一个点由两条光线交会的摄影测量基本法则变化为空间一个点由多条光线交会而成的全新概念。
B.新的数据获取方式;旋转多基线摄影:一个模型可以由多张照片生成,不再是一条摄影基线.多条基线多张照片同时构成多个模型.多基线摄影又分旋转和平行两种摄影方式.这是一种全新的摄影机制.与它对应的软件新处理技术基础便是计算机视觉原理.它将原来按“单模型”处理的交向摄影,扩展为多个模型的区域;比常规的“交向摄影的单模型”,可大大的减少控制点。
近景摄影测量
1.近景摄影测量(Close-range Photogrammetry)是摄影测量与遥感(Photogrammetry & Remote Sensing)学科的一个分支,它通过摄影手段以确定(地形以外)目标的外形和运动状态。
主要包括古文物古建筑摄影测量、工业摄影测量和生物医学摄影测量三个部分2. 近景摄影测量与航空摄影测量的比较相同点:基本原理相同;模拟处理方法、解析处理方法、数字影像处理方法相同;某些内业摄影测量仪器的使用。
不同点:1)被测量目标物不同。
航空摄影测量目标物以地形、地貌为主;近景摄影测量目标物各式各样、千差万别,大到寺庙、飞机、海轮,中到汽车、脚印,小到青蛙、手腕骨、弹壳撞击孔甚至花粉。
2)测量目的不同。
航空摄影测量以测制地形、地貌为主,注重其绝对位置;近景摄影测量以测定目标物的形状、大小和运动状态为目的,并不注重目标物的绝对位置3)目标物纵深尺寸与摄影距离比不同。
4)摄影方式不同。
航空摄影为近似竖直摄影方式;近景摄影除正直摄影方式外,还有交向摄影方式(包括多重交向摄影方式)5)影像获取设备不同。
航空摄影以航摄仪为主;近景摄影除各种量测摄影机外,还有各类非量测摄影机,如X光机、普通相机、CCD相机等6)控制方式不同。
航空摄影测量控制以绝对控制点方式为主,且多为明显地物、地貌点;近景摄影测量除控制点方式外,还有相对控制方式,常使用人工标志7)近景摄影测量适合动态目标。
3. 现有三维测量技术:1)基于测距测角的工程测量;2)基于全球定位系统GNSS的方法;3)三坐标量测仪;4)光截面摄影测量技术;5)基于磁力场的三维坐标测量技术;6)基于三维激光扫描技术的方法;7)基于光干涉原理的测量技术;8)全息技术;4. 近景摄影测量技术的优点:1)瞬间获取被测目标的大量几何和物理信息,适合于测量点数众多的目标;2)非接触测量手段,可在恶劣条件下作业;3)适合于动态目标测量。
5. 近景摄影测量技术的不足:1)技术含量高,需较昂贵的设备和高素质人员;2)对所有测量目标并非最佳技术选择;--不能获得质量合格的影像;--待测量点数稀少6. 近景摄影测量精度统计的方法:1)估算精度;2)内精度;3)外精度;7. 影响近景摄影测量精度的因素:1)像点坐标的质量(影像获取设备的性能、像点坐标量测精度、系统误差的改正程度等);2)摄影条件(照明、标志)、摄影方式、控制质量;3)图像处理与摄影测量处理的能力、水平,如人工量测与自动量测1. 近景摄影测量的摄像设备是各类固态摄像机,可以直接获取被测目标的数字影像。
近景摄影测量
1、近景摄影测量的定义、精度分类以及影响精度的因素定义:通过摄影手段以确定(地形以外)目标的外形和运动状态的学科分支称为近景摄影测量。
估算精度——是在现场工作之前,在近景摄影测量网的设计阶段,根据摄影、控制、网形、设备和一些设计参数的具体情况,按照理论的精度估算式获得。
内精度——是在摄影测量的数据处理阶段,按解算未知数的方程组的健康程度,直接计算而得。
① 内精度容易获取;② 内精度一般只与摄影测量的网形有关,它不能够客观反映测量成果的质量,大多数情况下其精度好于实际精度。
外精度——能给出客观精度的指标方法。
一般需要较大量的多余控制。
影响精度的因素1、摄影设备的性能2、摄影方式3、控制的质量4、被测物体照明状态、标志使用等5、后续处理的软件性能2、近景摄影测量应用领域(1)古建筑与古文物摄影测量(2)生物医学摄影测量(3)工业摄影测量3、近景摄影测量常用坐标系物方空间坐标系D-XYZ像空间坐标系S-xyz辅助空间坐标系S-XYZ像平面坐标系o-xy4、内、外方位元素像片的内外方位元素是确定像片(及光束)在物方空间坐标系D-XYZ 中的位置与朝向的要素。
像片内方位元素是恢复摄影时光束形状的要素;像片外方位元素时确定此光束在物方空间坐标系中位置与朝向的要素。
内方位元素由像主点在此框标坐标系内的坐标(x,y),以及主距f 构成。
- f -焦距,主光轴的长度- x0、 y0-主点在像面上的位置。
外方位元素有六个:三个外方位直线元素和三个外方位角元素三直线元素:在曝光瞬间投影中心S 在地面选定的空间直角坐标系(物方空间坐标系)中的坐标,常用(Xs ,Ys ,Zs ) 表示。
三个角元素:它是描述像片在摄影瞬间空间姿态的要素,其中两个角元素用以确定主光轴在物方空间的方向,另一个确定像片在像片面内的方位。
(κωϕ,,)ϕ表示航向角,也称偏角。
摄影方向So在ZSX平面上的投影同ZS轴之间的夹角。
ω表示旁向倾角,也称倾角。
近景摄影测量课件
总结词
利用近景摄影测量技术获取矿山地形数据, 为矿山的规划、开采和安全提供支持。
详细描述
通过无人机搭载高清相机对矿山区域进行航 拍,获取矿山地形的高清照片。利用近景摄 影测量算法处理照片,提取矿山的地形数据 ,如地形高程、坡度、地貌等。这些数据可 以帮助规划矿山开采方案、优化资源利用和 提高生产效率。同时,还可以监测矿山安全
人工智能与机器学习在近景摄影测量中的应用前景
• 人工智能与机器学习在近景摄影测量中具有广阔的应用前景。 通过人工智能和机器学习技术,可以实现自动化、智能化的数 据处理和分析,提高测量效率和精度。同时,还可以利用这些 技术进行图像识别、目标跟踪等应用,拓展近景摄影测量的应 用领域。
06
近景摄影测量案例分析
考虑相机畸变对图像的影 响,包括径向畸变和切向 畸变。
相机标定
通过已知三维控制点与对 应的图像坐标,求解相机 内外参数的过程。
图像坐标系与世界坐标系
图像坐标系
以像素为单位的图像平面坐标系 ,用于描述图像中像素的位置。
世界坐标系
用于描述真实世界中目标物体的位 置和姿态的坐标系,通常与某个固 定的参照物相关联。
起源
未来趋势
近景摄影测量起源于19世纪中叶的建 筑和地形测量领域。
随着数字化和智能化技术的不断发展 ,近景摄影测量将更加高效、精确和 自动化,应用领域也将更加广泛。
发展历程
随着摄影技术和计算机技术的不断发 展,近景摄影测量在20世纪后期开始 广泛应用于各个领域。
02
近景摄影测量的基本原理
摄影测量基本概念
特征匹配
将不同图像中的特征点进行匹配,建立特征点之 间的对应关系。
三维重建技术
三维点云生成
近景摄影测量技术的原理与方法
近景摄影测量技术的原理与方法摄影测量技术是一种利用摄影镜头和摄影基地进行测量的方法。
它广泛应用于测绘、建筑、地质、航空、水利和农林等领域。
目前,近景摄影测量技术在工程测量中得到了越来越广泛的应用。
下面将从原理和方法两个方面来探讨近景摄影测量技术。
一、原理近景摄影测量技术的原理主要包括相对定向和绝对定向两个方面。
1. 相对定向相对定向是指通过在不同位置、不同方向上进行拍摄,将照片上的特征点通过观测量的方法确定相对于摄影基地的空间位置和方向。
这一过程主要涉及到几何学和成像原理。
首先,相机的光学系统会将三维空间中的点投影到二维照片上。
然后,在照片上选择一些特征点,通过观测其在不同照片中的位置变化,就可以确定这些点相对于摄影基地的空间位置和方向。
2. 绝对定向绝对定向是指通过在地面上布设一些控制点,利用这些控制点与照片上的同名点之间的空间关系来确定摄影基地的位置和方向。
为了实现绝对定向,可以使用全站仪、GPS等仪器来测量控制点的坐标。
然后,在照片上找出与这些控制点对应的同名点,并计算它们之间的像空间关系,从而实现摄影基地的定位。
二、方法近景摄影测量技术的方法包括影像预处理、像控制点测量、相对定向、绝对定向和数字表面模型(DSM)生成等步骤。
1. 影像预处理影像预处理是为了提高照片的质量,包括对照片进行几何校正、辐射校正和噪声去除等。
几何校正是通过对照片进行摄影几何校正,消除摄影机的摄影畸变,使得照片上的特征点能够准确地反映其在现实世界中的位置。
辐射校正是通过校正照片的辐射值,消除由于光照条件不同而导致的亮度差异。
噪声去除是通过采用滤波等方法,去除照片上的噪声点,提高照片的清晰度。
2. 像控制点测量像控制点测量是指在照片上标示出一些已知位置的控制点,并测量它们在照片上的像空间坐标。
为了提高像控制点的精度,可以使用高精度的测绘仪器进行测量,并结合地面控制点来进行验证。
3. 相对定向相对定向是通过在照片上选择一些特征点,并观测它们在不同照片中的位置变化,实现摄影基地的定位。
《近景摄影测量》
北京城市景实用观文(档 亚运村)
摄影测量:分类
按距离远近 按用途 按处理手段
航天摄影测量 航空摄影测量 地面摄影测量 近景摄影测量 显微摄影测量
地 形摄影测量 非地形摄影测量
模拟摄影测量 解析摄影测量 数字摄影测量
实用文档
摄影测量与遥感:平台
遥感平台 航天飞机 无线电探空仪 超高度喷气机 中低高度飞机
Revision GIS
Visualization
Image analysis
Classification
B&W
Color
MS
摄影测量:基本关系式
影像中的 模型重建 地物几何位置 表几达何像信点息与地几面何点量之测间关系
x y
X Y Z
实用文档
共线条件
z y
x S(Xs, Ys, Zs)
Z a (x,y)
实用文档
摄影测量基础:与其他课程关系
先修课程
1、测量平差原理 2、测量学 3、高等数学 4、线性代数 5、航空和航天摄影技术
后续课程
1、数字摄影测量 2、近景摄影测量 3、遥感原理与方法
实用文档
摄影测量作业流程
实用文档
上第一张航空影像 ❖ 1860年,美国人布莱克利用湿板拍摄了波士顿的航空像片 ❖ 1885年,法国人乘坐气球从2000英尺高空拍摄了巴黎的航空像片 ❖ 1903年,莱特兄弟发明了飞机使航空摄影和航空摄影测量成为可能 ❖ 1906年,美国人劳伦仕用17只风筝吊着巨型相机拍摄了旧金山大火 ❖ 第一次世界大战期间,首台航摄仪的问世、立体坐标量测仪和1318
光学 像片
光学机械 测图仪器
人工建立立 体模型
•单片测图 •分工法测图 •综合法测图
第十章近景摄影测量
第十章近景摄影测量§10.1 概述摄影测量学按照研究对象可分为地形摄影测量和非地形摄影测量,按照摄站所处的空间位置又可分为航天摄影测量、航空摄影测量、地面摄影测量和水中摄影测量。
近景摄影测量既属于非地形摄影测量,它不是以测绘地形图为主,而是通过摄影手段以确定(地形以外)目标的外形和运动状态为主;又属于地面摄影测量,有专家把摄影距离小于100米的摄影测量称之为近景摄影测量。
总之近景摄影测量是摄影测量学的一个分支。
近景摄影测量与航空摄影测量及地面摄影测量有许多相似之处,如:近景摄影测量在很多方面应用了航空摄影测量的基本理论,地面摄影测量采用的一些摄影方式也直接的应用于近景摄影测量。
但近景摄影测量本身又存在一些特点,如:以测定物体的外形为目的,常常不注重物体的绝对位置;产品形式多种多样;物空间坐标系选择较灵活,通常根据现场作业自由选择,目的使得计算更为简便;由于摄影距离较近,控制点和待定点可采用人工标志点,为系统误差的消除提供了有利条件;控制方式多样化,除了控制点的控制方式外,还可选择相对控制等;可使用各种非量测用摄影机;可测定动态目标;测量目标一般以单个像对为处理单位;可采用交向摄影、倾斜摄影等大角度大重叠度的多重摄影方式等。
与其他三维测量手段相比,近景摄影测量的优点为:它是一种能在瞬间获取被测物体大量信息的测量手段;它是一种非接触性量测手段,不伤及测量目标,不干扰被测物自然状态,可在恶劣条件下作业;它是一种适合于动态物体外形和运动状态测定的手段;它是一种基于严谨的理论和现代的硬软件,具有较高的精度与可靠性;它是一种基于数字信息和数字影像技术以及自控技术的手段;可提供基于三维空间坐标的各种产品。
当然,近景摄影测量也存在一些不足之处,如:技术含量较高,需要较昂贵的硬件设备投入和较高素质的技术人员,设备的不足、技术力量的欠缺均会导致不良的测量成果;当待测目标物不能获得质量合格的影像或目标上待测点数不多时,就不能采用近景摄影测量方案。
《近景摄影测量》课程教学大纲
《近景摄影测量》课程教学大纲一、基本信息注:“课程类别”和“课程性质”中用“√”标记选项。
二、教学目的与任务本课程的主要教学目的与任务是让学生正确理解近景摄影测量的理论,掌握内业处理和外业摄影(摄像)、控制的主要技术方法和手段,了解近景摄影测量学科的最新发展和应用状况,重点掌握利用近景摄影测量技术解决城市建设中的有关问题。
三、教学内容与要求基本教学内容(一)绪论学时:2主要内容:近景摄影测量的历史及其发展,该学科的技术特点、解析基础和应用现状等。
1、近景摄影测量技术的定义、任务与分类2、近景摄影测量的解析基础3、近景摄影测量技术的历史、发展与应用状况要求:掌握近景摄影测量的定义与特点,了解近景摄影测量的发展过程。
(二)近景摄影测量的摄影设备学时:2主要内容:量测摄影机与非量测摄影机的构成与主要技术特点。
1、量测摄影机2、格网量测摄影机3、半量测摄影机4、立体量测摄影机5、非量测摄影机要求:掌握量测摄影机的主要特点,了解其他类型摄影机的基本特征。
(三)近景摄影测量的摄像设备学时:2主要内容:固态摄像机的基本知识,CCD的一般知识及部分摄像机的构成与特点。
1、固态摄像机的基本知识2、CCD的一般知识3、CCD摄像机的分类4、固态摄像机的结构及性能指标5、几种摄像机的构成与使用特点要求:掌握数码摄影机的基本参数的定义,了解常用的摄像机的基本特点。
(四)近景摄影测量的摄影技术学时:6主要内容:基本摄影方式介绍,精度估算方法,摄影参数确定及有关技术要求。
1、两种基本摄影方式2、正直摄影方式的精度估算3、景深与曝光时间的确定4、摄影方案的确定5、人工标志要求:掌握近景摄影的两种摄影方式的定义与精度估算;了解摄影时间、参数的确定。
其中正直摄影的精度估算为本章的重点内容。
(五)近景摄影测量的控制学时:6主要内容:控制测量方法与精度分析,相对控制的应用。
1、近景摄影测量控制的一般概念2、控制点3、相对控制的应用要求:掌握控制点的布设、测量方法和精度估算,了解相对控制的定义。
《近景摄影测量》教学大纲
《近景摄影测量》教学大纲一、课程基本信息1.课程代码:205126002.课程中文名称:近景摄影测量课程英文名称:Close-range Photogrammetry3.面向对象:遥感科学与技术专业摄影测量方向4.开课学院(课部)、系(中心、室):信工学院遥感系5.总学时数:24讲课学时数:16 ,实验学时数:86.学分数: 1.57.授课语种:中文,考试语种:中文8.教材:《近景摄影测量》,武汉大学出版社,冯文灏编著,2003二、课程内容简介近景摄影测量是通过摄影(摄像)和随后的图像处理和摄影测量处理以获取被摄目标形状、大小和运动状态的一门技术。
凡可摄取其影像的目标,均可作为近景摄影测量的对象,以获得目标上点群的三维空间坐标,以及基于这些三维空间坐标的长度、面积、体积、等值线(剖面线)等。
在同时记载时间信号的情况下,还可获取运动目标的运动状态,即获取运动目标(点)的速度、加速度和运动轨迹等。
与其它测量手段相比,近景摄影测量的优点在于它兼有非结束性量测手段,不伤及被测物体,信息容量高,信息易于存储,可重复使用信息,精度高,速度快,特别适用于测量容有大批量点位的目标,躲避危险环境而远离摄影对象等众多特点。
本课程旨在使学生全面了解近景摄影测量的基本概念、方法及应用,内容涉及影像获取设备的基本知识、近景摄影测量中的摄影技术、近景摄影测量中的控制、解析处理方法、直接线性变换解法、相机检校的基本知识、工业测量方法简介等。
三、课程的地位、作用和教学目标本课程是遥感科学与技术专业摄影测量方向本科生的专业主干课程。
通过学习,使学生获得运用近景摄影测量的基础知识和基本方法获取静态目标形状和动态目标运动状态、运动轨迹的技能,并了解近景摄影测量技术和手段、工业测量的最新发展势态。
为学生毕业后能运用所学知识进行实际近景目标测量或从事相关的科研和教学工作打下坚实基础。
四、与本课程相联系的其他课程高等数学、摄影技术、测量学、空间数据误差处理、摄影测量基础五、教学基本要求(1)重点掌握的内容有:近景摄影测量常用坐标系统,像片内、外方位元素,正直摄影方式精度估算式,近景摄影测量的控制,共线条件方程误差方程一般式,基于共线条件方程的解析算法,直接线性变换解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.1
检校内容与方法
一、定义 检查和校正摄影机内方位元素 和光学畸变系数的过程称为近景 摄影机的检校。
二、内方位元素的检定精度要求
内方位元素的检定精度估算式
⎧ ⎪m ⎪ ⎨ ⎪m ⎪ ⎩
x
0
= m
y
0
f = ⋅m h
X ,Y
f
f = ⋅mh h
其中 mX,Y--- 被测目标物方空间平面坐标中误差 mh ---被测目标物方空间高程中误差 h --- 被测目标摄影方向深度 f --- 摄影机主距
常使用活动控制架
• 自检校法 无需物方控制点的检校方法。 计算机视觉界经常采用
• 恒星检校法 对恒星摄影,实施摄影机的检校 利用恒星的天球坐标作为参考坐标,量 测恒星的影像坐标,根据恒星成像的大 小和亮度选择恒星用于解算相机参数。
• 数字畸变模型 正在研究的数字畸变模型的方法,用于建 立相机的数字畸变模型,直接进行影像畸 变差的改正。 对二维的平面控制场摄影,假设四个角点 的畸变差为零,按二维直接线性变换解法 建立畸变模型。 相应数字畸变模型的主点、主距还需使用 其他方法解求。
* 数学表达
Δr = k1r + k 2 r + k3 r + L
3 5 7
r为向径, r = ( x − x0 ) + ( y − y0 )
2
2
⎧ Δ x = ( x − x 0 )( k 1 r 2 + k 2 r 4 + L ) ⎪ ⎨ ⎪ Δ y = ( y − y 0 )( k 1 r 2 + k 2 r 4 + L ) ⎩
其中 D --- 调焦距
f --主距(对应调焦距D)
p1,p2--- 偏心畸变系数
⎧ Δ x D = p 1 [ r 2 + 2 ( x − x 0 ) 2 ] + 2 p 2 ( x − x 0 )( y − y 0 ) ⎪ ⎨ ⎪ Δ y D = p 2 [ r 2 + 2 ( y − y 0 ) 2 ] + 2 p 1 ( x − x 0 )( y − y 0 ) ⎩
所以,内方位元素的测定精度与被测目 标的测定精度有关
通常,内方位元素的检定精度要求为 mxo=myo=mf=±0.01mm
三、检校内容 1、摄影机主点位置(x0,y0)和主距f 的测定; 2、光学畸变系数的测定; 3、调焦后主距变化的测定; 4、调焦后畸变差变化的测定; 5、摄影机框标坐标系的测定;
dr (pixel)
y (pixel)
x (pixel)
向径r方向的数字畸ຫໍສະໝຸດ 模型dx (pixel)y (pixel)
x (pixel)
x方向的数字畸变模型
dy (pixel)
y (pixel)
x (pixel) y方向的数字畸变模型
V j = A j t + C j X 2 + D j X ad − L j
其中j代表控制点号
要求: --控制点不能分布在同一个平面上
--控制点的数量要求
当要求检校精度为±0.01mm时,为照顾精度 和工作效率,控制点选择在15~20个
• 多片空间后方交会
Vi , j = Ai , j ti + Ci , j X 2 + Di , j X ad − Li , j
6、摄影机偏心常数的测定; 7、立体摄影测量系统的检校; 8、摄影机同步精度的测定;
§9.2 差
近景摄影机的光学畸变
一、主距、主点、自准直主点 主距: 物镜系统摄影中心到影像平 面间的垂直距离,称为主距; 主点: 物镜系统摄影中心向影像平 面间作垂线,垂足称为主点; 自准直主点: 物镜系统与垂直此光轴 的理想像平面的交点。
f
二、光学畸变差的有关概念 摄影机物镜系统设计、制作和装 配中所引起的像点偏离其理想位置的 点位误差成为光学畸变差。 光学畸变差是影响像点坐标质量 的一项重要系统误差。
1、光学畸变差的构成 径向畸变差 光学畸变差 偏心畸变差
非对称径向 畸变差 切向畸变差
枕形畸变 引起
径向畸变使构像点 沿向径方向偏离其准 确理想位置。 根据系数的正负, 又可分为桶形畸变和 枕形畸变两类。
桶形畸变 引起
偏心畸变差引起径向和切向的像点位移
dt
dr径向畸变
a’
dr a
dt切向畸变
o
研究表明,偏心畸变所引起的误差大约 为径向畸变差的1/7~ 1/8【Juyang Weng , 1992】
2、径向畸变差的表达式 * 物理表达
Δr = r − f ⋅ tgα
不同像点的径向畸变差不同----与 入射角α有关,与主距有关,与 像点的位置有关;
解求出li系数后,分解得到内方位元素。
• 自检校光束法平差法
V = At + BX + CX 2 + DX ad − L
Vi , j = Ai , j ti + Bi , j X j + Ci , j X 2 + Di , j X ad − Li , j
其中i代表像片号,j代表控制点号
• 在任检校法 在完成摄影测量任务的同时,实施检 校。 也就是在解求待定点物方坐标的同 时,完成内外方位元素和畸变系数的 解算
3、偏心畸变
⎧ ⎪ Δ x D = (1 − ⎪ ⎨ ⎪ Δ y = (1 − D ⎪ ⎩ f ){ p 1 [ r 2 + 2 ( x − x 0 ) 2 ] + 2 p 2 ( x − x 0 )( y − y 0 )} D f ){ p 2 [ r 2 + 2 ( y − y 0 ) 2 ] + 2 p 1 ( x − x 0 )( y − y 0 )} D
其中i代表像片号,j代表控制点号 优点是避免参数间的相关性,特别是对主 点的解算
• 直接线性变换解法
l1 X + l2Y + l3 Z + l4 ⎧ ⎪x + l X + l Y + l Z + 1 = 0 ⎪ 9 10 11 ⎨ l4 X + l5Y + l6 Z + 1 ⎪y + =0 ⎪ l9 X + l10Y + l11Z + 1 ⎩
§9.3
检校方法
1、光学实验室检校法 —准直管
—精密测角仪器
2、试验场检校法---控制场
室内三维控制场
室外三维控制场
室内二维控制场
室内二维控制场
实验场检校的主要算法: • 单像空间后方交会 • 多片空间后方交会 • 直接线性变换解法 • 自检校光束法平差
• 单像空间后方交会
V = At + CX 2 + DX ad − L
畸变差的表达式
⎧ Δ x = ( x − x 0 )( k 1 r 2 + k 2 r 4 + L ) ⎪ + { p 1 [ r 2 + 2 ( x − x 0 ) 2 ] + 2 p 2 ( x − x 0 )( y − y 0 )} ⎪ ⎨ 2 4 ⎪ Δ y = ( y − y 0 )( k 1 r + k 2 r + L ) ⎪ + { p 2 [ r 2 + 2 ( y − y 0 ) 2 ] + 2 p 1 ( x − x 0 )( y − y 0 )} ⎩