九年级上学期数学第三次月考试卷(I)卷
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是()A.(2,1)B.(﹣2,1)C.(﹣1,2)D.(﹣2,﹣1)3.⊙O的半径为3,点P在⊙O外,点P到圆心的距离为d,则d需要满足的条件()A.d>3B.d=3C.0<d<3D.无法确定4.将一元二次方程x2+6x+3=0化为(x+h)2=k的形式,则k的值为()A.3B.6C.9D.125.关于二次函数y=﹣(x+1)2+3的图象,下列说法错误的是()A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=36.如图,AB为⊙O的直径,过圆上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=22.5°,⊙O的半径为2,则BD的长为()A.1B.2C.2﹣2D.3﹣2二、填空题(共18分)7.已知x=﹣1是方程x2﹣ax+1=0的一个根,则a的值为.8.一个不透明的盒子里,装有除颜色外无其他差别的白珠子2颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.2左右,则盒子中黑珠子可能有颗.9.一个圆锥的母线长为5,侧面展开图的面积是20π,则该圆锥的底面半径为.10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度至少为°.11.东汉时期的数学家赵爽在注解《周髀算经》时,给出的“赵爽弦图”是我国古代数学的瑰宝,如图1,四个直角三角形是全等的,且直角三角形的长直角边与短直角边之比为2:1,现连接四条线段得到图2的新的图案.若随机向该图形内掷一枚针,则针尖落在图2中阴影区域的概率为.12.如图,已知点A从原点O出发,以每秒2个单位长度的速度沿着x轴的正方向运动,经过t(t≥1.5)秒后,以O,A为顶点作菱形OABC,使点B,C都在第一象限内,且∠AOC=60°.若以点P(0,2)为圆心,PC为半径的圆恰好与菱形OABC某一条边所在的直线相切,则t的值为.三、解答题(共84分)13.(1)解方程:x2﹣4x+1=0.(2)如图,E是正方形ABCD的边DC上一点,把△ADE绕点A旋转一定角度后与△ABF重合.若四边形AECF的面积为16,求AD的长.14.如图,抛物线y=ax2+x+c与x轴交于点A(﹣1,0),且对称轴为直线x=1.求抛物线的解析式.15.已知AB是⊙O的直径,DE与⊙O相切于点D,且DE⊥BE,设BE交⊙O于点C,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,作∠ABC的平分线.(2)在图2中,找出BC边上的中点G.16.已知关于x的一元二次方程x2﹣(m+1)x+m=0.(1)求证:无论m为何值,方程总有实数根.(2)设方程的两根均为等腰△ABC的边长,且△ABC的周长为5,求m的值.17.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD.(1)若∠BAD=20°,求∠ACB的度数.(2)若BC平分∠ABD,AD=2,求AC的长.18.江西可谓物华天宝,山清水秀.寒假期间小尹打算去领略江西四大名山的风采,分别为A.明月山;B.武功山;C.庐山;D.三清山.由于时间原因,只能选择其中两个景点,于是小尹决定通过抽签的方式选择,将四张小纸条分别写上四个景点的名字,做出四个签(外表完全相同),然后从中随机抽出两张,每张签抽到的机会均等.(1)抽到“明月山”是事件,抽到“井冈山”是事件(填“不可能”或“必然”或“随机”).(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求“小尹抽到明月山和庐山”的概率.19.如图,△ABC的顶点坐标分别为A(﹣3,5),B(﹣4,2),C(2,3).(1)画出△ABC关于点O中心对称的△A1B1C1.(2)画出△ABC绕点C顺时针旋转90°后的△A2B2C,当点A旋转到A2时,求点A所经过的路径长.20.桑葚被称为“民间圣果”,其营养价值是苹果的5~6倍,是葡萄的4倍,具有降压降脂,健脾养胃等功效.今年某采摘园喜获丰收,经市场调研发现,当桑葚的售价为30元/千克时,每天可销售200千克,若单价每降价1元,销售量可增加50千克.已知该品种的桑葚成本价为15元/千克.(1)若该采摘园每天获利3500元,且尽量增加销售量,桑葚售价应降低多少元?(2)设桑葚售价降低a元,当a为何值时,该采摘园每天的利润最大.21.如图,以△ABC的边BC上一点O为圆心,OB为半径的圆,经过点A,且与边BC交于点E,D为⊙O上一点,连接AE,AD,其中∠CAE=∠ABC.(1)求证:AC是⊙O的切线.(2)若∠ADB=60°,⊙O的半径为3,求阴影部分的面积.(结果保留根号)22.函数图象在探究函数的性质时有非常重要的作用,某同学根据学习函数的经验,探究了函数y=x2﹣2|x|+1的图形和性质.(1)如表给出了部分x,y的取值:x…﹣3﹣2﹣10123…y…m10n014…则m=,n=.(2)在如图所示的平面直角坐标系中画出函数y=x2﹣2|x|+1的图象.(3)根据画出的函数图象,写出该函数的一条性质.(4)若点M(m,y1)在图象上,且y1≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,请直接写出k的取值范围.23.【操作发现】如图1,在等边△ABC中,点B,C在直线MN上,E为BC边上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,则线段CF与BE 的数量关系是,线段CF与直线MN所夹锐角的度数是.【类比探究】如图2,在等边△ABC中,点B,C在直线MN上,若E为BC延长线上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,上述两个结论还成立吗?请说明理由.【拓展应用】如图3,在正方形ABCD中,点B,C在直线MN上,E为直线MN上的任意一点,连接AE,并把线段AE绕点E顺时针旋转90°得到线段EF,连接CF.(1)试探究线段BE与CF的数量关系及线段CF与直线MN所夹锐角的度数,并说明理由.(2)若正方形的边长为2,连接DF,当DF=时,求线段BE的长.参考答案一、单项选择题(共18分)1.解:A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意;故选:A.2.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故选:B.3.解:∵点P在⊙O外,∴d>3.故选:A.4.解:方程x2+6x+3=0,移项得:x2+6x=﹣3,配方得:x2+6x+9=6,即(x+3)2=6,则k=6,故选:B.5.解:∵二次函数y=﹣(x+1)2+3,∴a=﹣1<0,函数的图象开口向下,故选项A正确,不符合题意;对称轴是直线x=﹣1,故选项B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故选项C正确,不符合题意;当x=﹣1时,函数有最大值y=3,故选项D错误,符合题意;故选:D.6.解:连接OC,∵∠A=22.5°,∴∠COD=2∠A=45°,∵CD是⊙O的切线,∴∠OCD=90°,∴△OCD是等腰直角三角形,∵OC=2,∴OD=,∴BD=OD﹣OB=2﹣2,故选:C.二、填空题(共18分)7.解:由题意得:把x=﹣1代入方程x2﹣ax+1=0中,则(﹣1)2﹣a•(﹣1)+1=0,∴1+a+1=0,∴a=﹣2,故答案为:﹣2.8.解:设有黑色珠子n颗,由题意可得,,解得n=8.故估计盒子中黑珠子大约有8个.故答案为:8.9.解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=20π,∴R=4.故答案为:4.10.解:紫荆花图案可以被中心发出的射线分成5个全等的部分,则旋转的角度至少为360÷5=72度,故答案为:72.11.解:如图2,设直角三角形的长直角边与短直角边分别为2x和x,则AC=x,BD=x,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=5x2,△ADC面积=•x•x=x2,阴影部分的面积S=5x2﹣4×x2=3x2,∴针尖落在阴影区域的概率为=.故答案为:.12.解:∵已知A点从(0,0)点出发,以每秒2个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=2t,∵四边形OABC是菱形,∴OC=2t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=t,∵∠AOC=60°,∴∠POC=30°,∵A(0,2),∴PE=,∴OE==6,∴t=6.故答案为:6.三、解答题(共84分)13.解:(1)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴x﹣2=±,∴x1=+2,x2=﹣+2;(2)∵把△ADE绕点A旋转一定角度后与△ABF重合,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积等于正方形的面积,∴AD2=16,∴AD=4.14.解:由已知可得:,解得,∴抛物线解析式为y=﹣x2+x+.15.解:(1)如图1,BD为所作;(2)如图2,点G为所作.16.(1)证明:∵a=1,b=﹣(m+1),c=m,∴Δ=b2﹣4ac=[﹣(m+1)]2﹣4×1×m=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有实数根;(2)解:∵x2﹣(m+1)x+m=0,即(x﹣1)(x﹣m)=0,解得:x1=1,x2=m.当关于x的一元二次方程x2﹣(m+1)x+m=0有两个相等的实数根时,m=1,∴△ABC的三条边长分别为1,1,3,∵1+1=2<3,∴1,1,3不能组成三角形,∴m=1不符合题意,舍去;当关于x的一元二次方程x2﹣(m+1)x+m=0有两个不相等的实数根时,m==2,∴△ABC的三条边长分别为1,2,2,∵1+2=3>2,∴1,2,2能组成三角形.∴m的值为2.17.解:(1)∵AD是⊙O的直径,∴∠ABD=90°,∵∠BAD=20°,∴∠D=90°﹣20°=70°,∴∠ACB=∠D=70°;(2)连接OC,∵BC平分∠ABD,∴∠ABC=ABD=45°,∴∠AOC=2∠ABC=90°,∵AD=2,∴AO=1,∴AC=AO=.18.解:(1)抽到“明月山”是随机事件,抽到“井冈山”是不可能事件,故答案为:随机,不可能;(2)画树状图如下:这次抽签所有等可能的结果共有12种,其中“小尹抽到明月山和庐山”的结果有2种,即AC、CA,∴“小尹抽到明月山和庐山”的概率为=.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C即为所求,∵AC==,∴弧长AA2==.20.解:设桑葚售价应降低x元,则每天可售出(200+50x)千克,由题意得,(30﹣15﹣x)(200+50x)=3500,解得x1=1,x2=10,∵采摘园尽量增加销售量,∴x=10,答:桑葚售价应降低10元;(2)设采摘园每天的利润为w元,根据题意得:w=(30﹣15﹣a)(200+50a)=﹣50a2+550a+3000=﹣50(a﹣)2+4512,∵﹣50<0,∴当a=时,w有最大值,最大值为4512.5,答:当a=时,该采摘园每天的利润最大.21.(1)证明:如图,连接OA,∵BE是⊙O的直径,∴∠BAE=90°,∴∠OAB+∠OAE=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠CAE=∠ABC,∴∠CAE=∠OAB,∴∠CAE+∠OAE=90°,∴OA⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:∵∠ADB=60°,∴∠AEB=∠ADB=60°,∵OA=OE,∴△OAE为等边三角形,∴∠AOC=60°,∴AC=OA=3,∴S阴影部分=S△OAC﹣S扇形AOE=×3×3﹣=﹣π.22.解:(1)将x=﹣3,x=0分别代入函数y=x2﹣2|x|+1,得m=9﹣6+1=4,n=1,故答案为:4,1;(2)画出函数图象如图:(3)该函数的一条性质:函数图象关于y轴对称;(4)由图象得,若点M(m,y1)在图象上,且y1≤1,则﹣1≤m≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,则m+k≤﹣3或m+k≥3,∴k≤﹣3﹣m或k≥3﹣m,∴k的取值范围为k≤﹣4或k≥4.23.解:【操作发现】如图1中,过点E作EK∥AC交AB于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEC=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠ECF=120°,∵BE=EK,∴CF=BE,∠FCN=60°,故答案为:CF=BE,60°;【类比探究】如图2中,结论成立.理由:过点E作EK∥AC交BA的延长线于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEN=∠AEF+∠FEN=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAB=∠FEN,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=60°,∵BE=EK,∴CF=BE;【拓展应用】(1)结论:CF=BE,线段CF与直线MN所夹锐角的度数为45°.理由:在BA上取一点K,使得BK=BE.∵四边形ABCD是正方形,∴∠ABC=90°,∵BK=BE,∴∠BKE=∠BEK=45°,∴∠AKE=135°,∵∠AEN=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=90°,∴∠EAB=∠FEN,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=135°,∴∠FCN=180°﹣135°=45°;(2)如图4﹣1中,过点D作DH⊥CF于点H.当点F在点H上方时,∵△DCH是等腰直角三角形,CD=2,∴CH=DH=,∵DF=,∴FH===2,∴CF=BE=3.如图4﹣2中,当点F在点H的下方时,同法可得FH=2,∴CF=BE=FH﹣CH=,综上所述,BE的长为或3.。
2023-2024学年辽宁省铁岭市部分学校九年级(上)第三次月考数学试卷+答案解析
2023-2024学年辽宁省铁岭市部分学校九年级(上)第三次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图所示的几何体的俯视图是()A.B.C.D.2.红丝带是关注艾滋病防治问题的国际性标志,如图,红丝带重叠部分形成的图形是()A.正方形B.等腰梯形C.菱形D.矩形3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人4.对于反比例函数,下列说法不正确的是()A.点在它的图象上B.它的图象在第一、三象限C.当时,y随x的增大而增大D.当时,y随x的增大而减小5.若一元二次方程有两个不相同的实数根,则实数m的取值范围是()A. B. C. D.6.点D是线段AB的黄金分割点,若,则()A. B. C. D.7.如图,点A是反比例函数的图象上的一点,过点A作轴,垂足为点C为y轴上的一点,连接AC,若的面积为4,则k的值是()A.4B.C.8D.8.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.169.如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,于点H,,,,,则DF长是()A. B. C. D.10.如图,在正方形ABCD和正方形CEFG中,点D在CG上,,,连接AF交CG于M点,则()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.已知菱形的两条对角线长分别为8和6,则边长为______.12.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在,那么可以推算出n的值大约是______.13.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得,,这个三角尺的周长与它在墙上形成影子的周长比是______.14.如图,已知一次函数和反比例函数的图象相交于、两点,则不等式的解集为______.15.如图,在中,点D在BC上,BD::2,点E在AB上,AE::2,AD,CE相交于F,则AF:______.16.如图,AB和DE是直立在地面上的两根立柱,,某一时刻AB在阳光下的投影,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,则DE的长为______.17.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,取AD中点M,连接AF,GM,AF、GM交于点H,若,,则______.18.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x、y轴上,反比例函数的图象与正方形的两边AB、BC分别交于点M、N,轴,垂足为D,连接OM、ON、下列结论:①≌;②;③四边形DAMN与面积相等;④若,,则点C的坐标为其中正确结论的有______.三、计算题:本大题共1小题,共12分。
人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共40分)1.下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.2.点P(2,﹣5)关于原点的对称点的坐标是()A.(﹣2,﹣5)B.(2,5)C.(﹣2,5)D.(﹣5,2)3.已知⊙O的半径为3,点M在⊙O上,则OM的长可能是()A.2B.3C.4D.54.如图所示,在⊙O中=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°5.平面上一点P与⊙O的点的距离的最小值是2,最大值是8,则⊙O的直径是()A.6或10B.3或5C.6D.56.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.90°B.60°C.45°D.30°7.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB 上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°8.下列说法:①弧长相等的弧是等弧;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的外心到三角形三个顶点的距离相等.其中不正确的有()个.A.1B.2C.3D.49.某数学兴趣小组研究二次函数y=x2+bx+c的图象时,得出如下四个结论:甲:图象与x轴的一个交点为(1,0);乙:图象与x轴的一个交点为(3,0);丙:图象与x轴的交点在原点两侧;丁:图象的对称轴为过点(1,0),且平行于y轴的直线;若这四个结论中只有一个是不正确的,则该结论是()A.甲B.乙C.丙D.丁10.如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.二、填空题(共24分)11.已知关于x的方程x2﹣3x﹣m=0的一个根是1,则m=.12.如图,若∠BOD=140°,则∠BCD=.13.在半径为10cm的⊙O中,圆心O到弦AB的距离为6cm,则弦AB的长是cm.14.如图,⊙O上三点A,B,C,半径OC=1,∠ABC=30°,⊙O的切线P A交OC延长线于点P,则PC的长为.15.在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P,若AB=6,BC=3,则下列结论:①F是CD的中点:②⊙O的半径是2;③AE=CE,其中正确的是.(写序号)三、解答题(共86分)17.解方程:x2﹣2x﹣5=0.18.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是;(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.19.已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,且n+2m=4,求n 的取值范围.20.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB 上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)21.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;22.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?23.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠CAB,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形;(2)判断直线DE与⊙O的位置关系并证明;(3)若AB=10,BC=8,求CE的长.24.如图,△ABC内接于⊙O,弦BD⊥AC,垂足为E,点D、点F关于AC对称,连结AF 并延长交⊙O于点G.(1)连结OB,求证:∠ABD=∠OBC;(2)求证:点F、点G关于BC对称.25.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)若点P的横坐标为1,点B的坐标为(3,6).①求抛物线的解析式;②若当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,求m的取值范围;(2)若点P在第一象限,且P A=PO,过点P作PD⊥x轴于D,将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,与x轴的另一个交点为C,试探究四边形OABC的形状,并说明理由.参考答案一、选择题(共40分)1.解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.解:因为点P(2,﹣5)关于原点的对称点的坐标特点:横纵坐标互为相反数,所以对称点的坐标是(﹣2,5),故选:C.3.解:∵点M在⊙O上,⊙O的半径为3,∴OM=3,故选:B.4.解:∵=,∴AB=AC,∴∠B=∠C,∵∠A=30°,∴∠B=∠C=×(180°﹣30°)=75°.故选:B.5.解:当点P在圆内时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为10,当点P在圆外时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为6.故选:A.6.解:当AP与⊙O相切时,∠OAP有最大值,连接OP,如图,则OP⊥AP,∵OB=AB,∴OA=2OP,∴∠P AO=30°.故选:D.7.解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.8.解:①弧长相等的弧是等弧,故该说法不正确;②不在同一直线的三点可以确定一个圆,故该说法不正确;③在同圆和等圆中,相等的圆心角所对的弧相等,故该说法不正确;④经过半径外端且垂直于这条半径的直线是圆的切线,故该说法不正确;⑤三角形的外心是三角形三边垂直平分线的交点,到三角形三个顶点的距离相等,故该说法正确.故选:D.9.解:若甲、乙成立,(1+3)÷2=1,∴图象的对称轴为过点(1,0),且平行于y轴的直线,图象与x轴的交点在原点右侧,故丁结论正确;图象与x轴的交点在原点右侧,故丙结论不正确,符合题意.故选:C.10.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.二、填空题(共24分)11.解:把x=1代入方程可得:1﹣3﹣m=0,解得m=﹣2.故答案为:﹣2.12.解:由圆周角定理得,∠A=∠BOD=70°,∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=110°,故答案为:110°.13.解:连接OB.在Rt△ODB中,OD=6cm,OB=10cm.由勾股定理得BD===8.∴AB=2BD=2×8=16cm.14.解:连接OA,∵AP是⊙O的切线,∴OA⊥AP,∵∠ABC=30°,∴∠AOP=2∠ABC=60°,∴∠APO=30°,∵OA=OC=1,∴OP=2OA=2,∴PC=OP﹣OC=1.故答案为:1.15.解:如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE=BE=,∴PE=2,∴DP===,故答案为.16.解:①∵AF是AB翻折而来,∴AF=AB=6,∵矩形ABCD,则,∴,∴DF=CF,∴F是CD中点;故①正确;②如图,连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴△APO∽△ADF,∴,设OP=OF=x,则,解得:x=2,故②正确;③∵Rt△ADF中,AF=6,DF=3,∴,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=∠B=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,故③错误;故答案为:①②.三、解答题(共86分)17.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.解:(1)∵小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小晗任意按下一个开关,正好楼梯灯亮的概率是:;(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.19.解:根据题意得Δ=(﹣2)2﹣4×(﹣m)>0,解得m>﹣1.∵n+2m=4,∴m=>﹣1,解得n<6,即n的取值范围为n<6.20.解:如图,⊙O为所作.证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.21.解:(1)旋转后的三角形ACP'如图所示:(2)由旋转可得,∠P AP'=∠BAC=50°,AP=AP',△ABP≌△ACP',∴∠APP'=∠AP'P=65°,∠AP'C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP'C,∴∠PP'C=∠AP'C﹣∠AP'P=95°﹣65°=30°.22.解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数关系式得:,解得:,故函数的关系式为:y=10x+100(0<x<20);(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.23.解:(1)如图1即为补全的图形.(2)直线DE是⊙O的切线.理由如下:证明:如图2,连接OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=6.∵∠BFO=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=2.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=2.答:CE的长为2.24.证明:(1)连接OC,∵BD⊥AC,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵,∴∠BOC=2∠BAC,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2∠BAC=180°,∴∠OBC+∠BAC=90°,∴∠OBC=∠ABE,即∠OBC=∠ABD,(2)连接BG,AD,GC,AG交BC于点H,∵点D,F关于AC对称,∴EF=ED,∵BD⊥AC,∴∠AEF=∠AED=90°,又∵AE=AE,∴△AEF≌△AED(SAS),∴∠EAF=∠EAD,∠AFE=∠ADE,即∠GAC=∠DAC,∵,∴∠DAC=∠DBC,∵,∴∠GAC=∠GBC,∴∠DBC=∠GBC,∵∴∠ADB=∠BGA,∵∠AFD=∠BFG,∴∠BFG=∠AGB,∴△BHF≌△BHG(AAS),∴FH=GH,∠BHF=∠BHG=90°,∴点F,点G关于BC对称.25.解:(1)①∵抛物线y=x2+bx+c的顶点P的横坐标为1,∴﹣=1,解得:b=﹣2.∴y=x2﹣2x+c,∵抛物线y=x2﹣2x+c经过点B(3,6),∴6=32﹣2×3+c,解得:c=3.∴抛物线的解析式为y=x2﹣2x+3;②由y=x2﹣2x+3=(x﹣1)2+2知,P(1,2).∴点(3,6)关于对称轴x=1的对称点B′的坐标为(﹣1,6),如图1,∵当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,∴﹣1≤m≤1;(2)如图2,由P A=PO,OA=c,可得PD=.∵抛物线y=x2+bx+c的顶点坐标为P(﹣,),∴=.∴b2=2c.∴抛物线y=x2+bx+b2,A(0,b2),P(﹣b,b2),D(﹣b,0).可得直线OP的解析式为y=﹣bx.∵点B是抛物线y=x2+bx+b2与直线y=﹣bx的图象的交点,令﹣bx=x2+bx+b2.解得x1=﹣b,x2=﹣.可得点B的坐标为(﹣b,b2).由平移后的抛物线经过点A,可设平移后的抛物线解析式为y=x2+mx+b2.将点D(﹣b,0)的坐标代入y=x2+mx+b2,得m=b.则平移后的抛物线解析式为y=x2+bx+b2.令y=0,即x2+bx+b2=0.解得x1=﹣b,x2=﹣b.依题意,点C的坐标为(﹣b,0).则BC=b2.则BC=OA.又∵BC∥OA,∴四边形OABC是平行四边形.∵∠AOC=90°,∴四边形OABC是矩形.。
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(满分40分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“两边及其夹角对应相等的两个三角形全等”是必然事件C.“概率为0.0001的事件”是不可能事件D.“长度分别是3cm,3cm,6cm的三根木条能组成一个三角形”是必然事件2.抛物线y=x2﹣6x+9的顶点坐标是()A.(3,0)B.(﹣3,0)C.(﹣3,9)D.(3,9)3.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A.B.C.D.4.从﹣1,1,2中任取两个不同的数,分别记为a和b,则a,b是方程x2﹣x﹣2=0的两个根的概率是()A.B.C.D.5.书架上有a本经济类书,7本数学书,b本小说,5本电脑游戏类书.现某人随意从架子上抽取一本书,若得知取到经济类或者数学书的机会为,则a,b的关系为()A.a=b﹣2B.a=b+12C.a+b=10D.a+b=126.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,点AB和C、D分别在以点O为圆心的两个同心圆上,若∠AOB=∠COD,∠C =m°,则∠D=()A.m°B.m°C.m°D.2m°8.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.9.一个盒子里有完全相同的小球,球上分别标有数字1,2,3,从中摸出一个数字记为a,则摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是()A.0B.C.D.110.如图,直角三角形的三边分别是a,b,c,且a<b<c,分别以三角形的三条边为边向外作正方形.若在该图形上做随机扎针试验,针头扎在三角形和三个正方形上的概率分别是P1,P2,P3,P4,则下列关系式一定成立的是()A.P3+P2=P4﹣P1B.P2+P3=P4C.P2+P3=P1+P4D.P1+P2+P3=P4二、填空题(满分20分)11.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是.12.如图,直线y=x+与y轴交于点P,将它绕着点P旋转90°所得的直线对应的函数解析式为.13.如图,AC是⊙O的直径,与弦BD交于E,连接BC,过点O作OF⊥BC于P,若BD =8cm,AE=2cm,则OF的长度是.14.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a.解答下列问题:(1)关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不等的实数根的概率是;(2)以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.三、解答题(满分90分)15.如图,过⊙O内一点P画弦AB使P是AB的中点.16.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成,现对由三个小正方形组成的“□□□”进行涂色,每个小正方形随机涂成黑色或白色,求恰好是两个黑色小正方形和一个白色小正方形的概率.17.如图,AB是⊙O的直径,C、D是半⊙O的三等分点,CE⊥AB于点E,求∠ACE的度数并指出AC与OD的关系.18.如图,在4×4的正方形网格中,小正方形的边长为1,△PMN绕某点旋转一定的角度,得到△P1M1N1.(1)指出旋转中心及旋转角的度数;(2)求MN1的长.19.新冠病毒的传染性极强,某地因1人患了新冠病毒没有及时隔离治疗,经过两天的传染后共有9人患了新冠病毒,每天平均一个人传染了几人?如果按照这个传染速度,再经过3天的传染后,这个地区一共将会有多少人患新冠病毒?20.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.设半径为1的圆的面积与其内接正n边形的面积差为△n,如图①,图②,若用圆的内接正八边形和内接正十二边形逼近半径为1的圆,求△8﹣△12的值.21.已知,如图,△ABC的顶点A,C在⊙O上,⊙O与AB相交于点D,连接CD.(1)若⊙O半径为5,∠A=30°,求弦CD的长;(2)在(1)的条件下,求图中阴影部分的面积;(3)若∠ACB+∠ADC=180°,求证:BC是⊙O的切线.22.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116295480601摸到白球的频率0.590.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中红球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?23.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.解答下列问题:(1)两根等长立柱AB,CD的高度是米;并求出绳子最低点离地面的距离.(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面2米,求MN的长.(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m米,抛物线F2的顶点离地面距离为k米,当2≤k≤时,求m的取值范围.参考答案一、选择题(满分40分)1.解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误,不符合题意;B、“两边及其夹角对应相等的两个三角形全等”是必然事件,选项正确,符合题意;C、“概率为0.0001的事件”是随机事件,选项错误,不符合题意;D、不能构成三角形,选项错误,不符合题意.故选:B.2.解:∵抛物线y=x2﹣6x+9=(x﹣3)2,∴该抛物线的顶点坐标为(3,0),故选:A.3.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是;故选:A.4.解:列表如下:﹣112﹣1(1,﹣1)(2,﹣1)1(﹣1,1)(2,1)2(﹣1,2)(1,2)由表知,共有6种等可能结果,其中a,b是方程x2﹣x﹣2=0的两个根的有(﹣1,2)、(2,﹣1)这两种结果,所以a,b是方程x2﹣x﹣2=0的两个根的概率为=,故选:D.5.解:由已知可得a+7=,解得a+2=b,即a=b﹣2.故选A.6.解:由题意可知:∠DOB=85°,由旋转得:△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠BOC=∠AOD,证明:在△COB和△DOA中,∴△COB≌DOA(SAS),∴∠C=∠D,∵∠C=m°,∴∠D=m°,故选:B.8.解:设正方形ABCD的边长为2a,针尖落在黑色区域内的概率==.故选:C.9.解:∵抛物线y=x2+ax+1与x轴没有交点,∴Δ=a2﹣4<0,而在1,2,3这3个数中,符合条件的只有1这1个数,∴摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是.故选:C.10.解:∵直角三角形的三边分别是a,b,c,且a<b<c,∴a2+b2=c2,∴根据几何概率的定义可知P2+P3=P4.故选:B.二、填空题(满分20分)11.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,故m+n=5.故答案为:5.12.解:∵y=x+,∴函数y=x+与x轴的交点是(﹣1,0),与y轴的交点是(0,).∴OA=1,OP=.设函数与x轴交于点A,新函数与x轴交于点B,∵∠APO+∠BPO=90°=∠BPO+∠PBO,∴∠APO=∠PBO,∵∠AOP=∠POB=90°,∴△POA∽△BOP,∴=,即=,∴OB=3,∴点B(3,0).设新函数解析式为y=kx+,把点B代入求得,k=﹣.∴新函数解析式为y=﹣x+,故答案为:y=﹣x+.13.解:连接AB,∵BD⊥AC,∴BE=ED=BD=4(cm),由勾股定理得,AB==2(cm),∵OF⊥BC,∴CF=FB,又CO=OA,∴OF=AB=(cm),故答案为:.14.解:(1)令Δ=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0,且a﹣3≠0,解得:a>﹣1且a≠3,∴a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的数有0,1,2,则a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的概率是,故答案为:;(2)∵二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0),∴a﹣(a2+2)+2=0,解得a=0或1,∵a≠0,∴a=1,∴以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.故答案为:.三、解答题(满分90分)15.解:连接OP,过点P作AB⊥OP,则弦AB即为所求.16.解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为.17.解:连接OC.∵AB是直径,弧AC=弧CD=弧BD,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°﹣60°=30°.∵△AOC是等边三角形,∴AC=OC=OD.18.解:(1)如图,连接BM、BN、BP、BM1、BN1、BP1,则BP1=BP=1,根据勾股定理得BM1=BM=,BN1=BN=2,∴点B是旋转中心,取格点E,连接BE、NE、N1E,∵BE=NE=N1E,∠BEN=∠BEN1=90°,∴∠EBN1=∠EN1B=45°,∠EBN=∠ENB=45°,∴∠NBN1=∠EBN1+∠EBN=90°,∴旋转角等于90°,(2)根据勾股定理得MN1==,∴MN1的长是.19.解:设每天平均一个人传染了x人,由题意,得x(x+1)+x+1=9,解得:x1=2,x2=﹣4(舍去),三天后共有(x+1)3个人患病,(2+1)3=27(人).故每天平均一个人传染了2人,在经过3天的传染后,这个地区一共将会有27人患病.20.解:如图,由题意,△8﹣△12=(S圆﹣S八边形)﹣(S圆﹣S十二边形)=S十二边形﹣S八边形=12××1×1×sin30°﹣8××1×1×sin45°=3﹣2.21.(1)解:连接OC、OD,如图所示:则OC=OD=5,∵∠A=30°,∴∠DOC=60°,∴△OCD是等边三角形,∴CD=OC=5;(2)解:由(1)得S阴影=S扇形COD﹣S△COD=﹣=﹣.(3)证明:连接CO并延长交⊙O于点M,连AM,如图2所示:则∠MAC=90°,∠M+∠ADC=180°,∴∠M+∠ACM=90°,∵∠ACB+∠ADC=180°,∴∠M=∠ACB,∴∠ACB+∠ACM=90°,即∠BCM=90°,且CM是⊙O的直径,∴BC是⊙O的切线.22.解:(1)当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)由(1)摸到白球的概率为0.6,则摸到红球的概率为1﹣0.6=0.4,所以可估计口袋中红球的个数为:5×0.4=2(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.23.解:(1)抛物线y=x2﹣x+3与y轴交与点A,∴A(0,3),∵两根等长立柱AB,CD,∴CD=3,∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:米;故答案为:3;米;(2)由(1)可知,对称轴为x=4,则BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,2),设F1的解析式为:y=a(x﹣2)2+2,将(0,3)代入得:4a+2=3,解得:a=0.25,∴抛物线F1为:y=0.25(x﹣2)2+2,当x=3时,y=0.25×1+2=2.25,∴MN的长度为:2.25米;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴F2的横坐标为:(8﹣m)+m=m+4,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(8﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=时,﹣(m﹣8)2+3=,解得:m1=8﹣2,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.。
九年级(上)第三次月考数学试卷(带答案)
九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。
人教版九年级上册数学第三次月考试题及答案
人教版九年级上册数学第三次月考试卷一、单选题1.下列图形是中心对称图形的是()A.B.C.D.2.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定3.如果-1是方程2x²-x+m=0的一个根,则m值()A.-1B.1C.3D.-34.如图,A,B,C是⊙O上的三个点,若∠C=35°,则∠AOB的度数为()A.35°B.55°C.65°D.70°5.在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.206.将抛物线y=(x-1)²+2先向右平移3个单位,再向下平移5个单位得到的抛物线解析式是()A.y=(x-4)²+7B.y=(x-4)²-3C.y=(x+2)²+7D.y=(x+2)²-37.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1﹣x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.68.如图,AB是OO的直径,弦CD⊥AB,垂足为P,若CD=8,PB=2,则⊙O直径()A.10B.8C.5D.39.已知二次函数y=ax²+bx+c(a≠0)图象的一部分如图所示,给出以下结论:①abc<0;②当x=-1时,函数有最大值;③方程ax²+bx+c=0的解是x1=1,x2=-3;④4a+2b+c>0,⑤2a-b=0,其中结论正确的个数是()A.1B.2C.3D.410.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD 运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题11.一个盒子内装有大小、形状相同的6个球,其中红球3个、绿球1个、白球2个,任意摸出一个球,则摸到白球的概率是______12.已知圆锥的底面直径为4cm ,母线长为6cm ,则此圆锥的侧面积为____.13.若关于x 的一元二次方程kx²-x-1=0有两个实数根,则k 的取值范围______14.在Rt ABC 中,∠C=90°,BC=3,AC=4,则ABC 的外接圆半径是______15.如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C=80°,则∠EAB=____________°.16.如图,正六边形ABCDEF 内接于圆O ,边长AB=2,则正六边形的面积是______17.如图,点C 在以O 为圆心的半圆内一点,直径AB =4,∠BCO=90°,∠OBC=30°,将△BOC 绕圆心逆时针旋转到使点C 的对应点C′在半径OA 上,则边BC 扫过区域(图中阴影部分)面积为______(结果保留π)三、解答题18.解方程:(1)x 2+2x =2(2)4(3x ﹣2)(x +1)=3x +319.某幢建筑物从10米高的窗户A 用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M 离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B 离墙的距离20.已知:在ABC 中,AB AC =.(1)求作:ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC 的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S = .21.为落实“垃圾分类”,环卫部门要求垃圾要按A 、B 、C 三类分别装袋投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾,甲、乙各投放了一袋垃圾.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求甲乙投放的垃圾恰好是同类垃圾的概率(要求画出树状图)22.已知关于x 的一元二次方程x²-(2k+1)x+k 2+k=0(1)求证:无论k 为任何实数,方程总有两个不相等的实数根;(2)若两个实数根x 1,x 2满足()()121130x x ++=,求k 值.23.如图,已知正方形ABCD 的边长为3,E 、F 分别是边BC 、CD 上的点,∠EAF=45°(1)求证:BE+DF=EF(2)当BE=1时,求EF 的长24.如图:以ABC 的边AB 为直径作⊙O ,点C 在OO 上,BD 是⊙O 的弦,∠A=∠CBD ,过点C 作CF ⊥AB 于点交于点G 过作C ∥BD 交AB 的延长线于点E(1)求证:CG=BG(2)∠BAD=30°,CG=4,求BE 的长25.如图,已知抛物线25y ax bx =++经过A(5-,0),B(4-,3-)两点,与x 轴的另一个交点为C ,顶点为D ,连接CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B ,C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC 的面积的最大值及点P 的坐标;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案1.A2.B3.D4.D5.D6.B7.A8.A9.C10.B11.1312.12π13.k≥14-且k≠0.14.52.15.20°.16.17.π18.(1)x 1=﹣1x 2=﹣1+(2)x 1=﹣1,x 2=1112.19.(1)210201033y x x =-++;(2)3米.20.(1)见解析;(2)25π21.(1)13;(2)13,作图见解析22.(1)见详解;(2)17k =-,24k =;23.(1)证明见解析;(2)52.24.(1)见解析;(2)25.(1)265y x x =++;(2)①278,P(52-,154-),②存在,P(32-,74-)或(0,5)。
2019-2020年九年级(上)第三次月考数学试卷(解析版)(I)
2019-2020年九年级(上)第三次月考数学试卷(解析版)(I)一、选择题:(1-10每小题2分,11-16每小题2分,共38分)1.在下列关于x的函数中,一定是二次函数的是()A.y=x2B.y=ax2+bx+c C.y=8x D.y=x2(1+x)2.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm3.如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.30°B.35°C.40°D.45°4.已知抛物线的解析式为y=(x﹣2)2+1,则这条抛物线的顶点坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(1,2)5.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外6.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=2+37.圆I是三角形ABC的内切圆,D,E,F为3个切点,若∠DEF=52°,则∠A 的度数为()A.68°B.52°C.76°D.38°8.抛物线y=﹣2(x﹣1)2上有三点A(﹣1,y1),B(,y2),C(2,y3),则y1,y2,y3从小到大是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y1<y3<y29.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P 到⊙O的切线长为8CM,则△PDE的周长为()A.16cm B.14cm C.12cm D.8cm10.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为()A.2.5 B.1.6 C.1.5 D.111.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B. C. D.12.有一个内角为120°的菱形的内切圆半径为,则该菱形的边长是()A.B.C.4 D.613.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③14.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的⊙C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤515.抛物线y=ax2+bx+c(a≠0)部分点的横坐标x,纵坐标y的对应值如下表x…﹣2﹣1012…y…04664…从上表可知,下列说法错误的是()A.抛物线与x轴的一个交点坐标为(3,0)B.函数y=ax2+bx+c的最大值为6C.抛物线的对称轴是直线x=D.在对称轴左侧,y随x增大而增大16.如图,等腰直角三角形ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为4cm,CA与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与N点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致为()A.B.C.D.二、填空题(每小题4分,共16分)17.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为.18.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,则AB的长是.19.将抛物线y=x2﹣4x+9向平移个单位,向平移个单位,得到抛物线y=x2﹣6x+5.20.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是.三、解答题21.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m 加设不锈钢管(如图)做成立柱.为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.(1)求该抛物线的表达式(2)计算所需不锈钢管的总长度.22.某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.(1)求日均销售量y与销售单价x的函数关系式;(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?23.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.24.如图,△ABC是一块铁皮余料.已知底边BC=160cm,高AD=120cm.在铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设HG=y cm,HE=x cm,试确定用x表示y的函数表达式.(2)当x为何值时,矩形EFGH的面积S 最大?25.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离S P的定义如下:若点P与圆心O重合,则S P为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则S P为线段AP的长度.图1为点P在⊙O外的情形示意图.(1)若点B(1,0),C(1,1),,则S B= ;S C= ;S D= ;(2)若直线y=x+b上存在点M,使得S M=2,求b的取值范围;(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且S T≥S R,直接写出满足条件的线段PQ长度的最大值.xx学年河北省石家庄二十二中九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题:(1-10每小题2分,11-16每小题2分,共38分)1.在下列关于x的函数中,一定是二次函数的是()A.y=x2B.y=ax2+bx+c C.y=8x D.y=x2(1+x)【考点】二次函数的定义.【分析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.【解答】解:A、y=x2是二次函数,故A符合题意;B、a=0时是一次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选:A.2.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm【考点】点与圆的位置关系.【分析】点P应分为位于圆的内部于外部两种情况讨论.当点P在圆内时,直径=最小距离+最大距离;当点P在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是 1.5cm.故选C.3.如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.30°B.35°C.40°D.45°【考点】切线的性质.【分析】由于CD是切线,可知∠OCD=90°,而∠A=35°,利用圆周角定理可求∠COD,进而可求∠D.【解答】解:连接OC,∵CD是切线,∴∠OCD=90°,∵∠A=30°,∴∠COD=2∠A=60°,∴∠D=90°﹣60°=30°.故选:A.4.已知抛物线的解析式为y=(x﹣2)2+1,则这条抛物线的顶点坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(1,2)【考点】二次函数的性质.【分析】直接根据顶点式的特点写出顶点坐标.【解答】解:因为y=(x﹣2)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,1).故选B.5.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【考点】点与圆的位置关系.【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.6.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=2+3【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=﹣x2﹣x+3=﹣(x2+4x+4)+1+3=﹣(x+2)2+4故选C.7.圆I是三角形ABC的内切圆,D,E,F为3个切点,若∠DEF=52°,则∠A 的度数为()A.68°B.52°C.76°D.38°【考点】三角形的内切圆与内心.【分析】先利用切线的性质得∠IDA=∠IFA=90°,则根据四边形的内角和得到∠A+∠DIF=180°,再根据圆周角定理得到∠DIF=2∠DEF=104°,然后利用互补计算∠A的度数即可.【解答】解:∵圆I是三角形ABC的内切圆,∴ID⊥AB,IF⊥AC,∴∠IDA=∠IFA=90°,∴∠A+∠DIF=180°,∵∠DIF=2∠DEF=2×52°=104°,∴∠A=180°﹣104°=76°.故选C.8.抛物线y=﹣2(x﹣1)2上有三点A(﹣1,y1),B(,y2),C(2,y3),则y1,y2,y3从小到大是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质求出抛物线的对称轴,根据二次函数的增减性解答.【解答】解:∵抛物线y=﹣2(x﹣1)2的对称轴是x=1,∴x=﹣1时的函数值与x=3时的函数值相等,当x>1时,y随x的增大而减小,∵<2<3,∴y1<y3<y2,故选:D.9.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P 到⊙O的切线长为8CM,则△PDE的周长为()A.16cm B.14cm C.12cm D.8cm【考点】切线的性质.【分析】由切线长定理可知AD=CD、BE=CE,PA=PB,则可求得△PDE的周长=PA+PB,可求得答案.【解答】解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB=8cm,AD=CD,BE=CE,(cm),∴PD+DE+PE=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=8+8=16故选A.10.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为()A.2.5 B.1.6 C.1.5 D.1【考点】切线的性质.【分析】连结OD、OE,如图,先根据切线的性质得OD⊥AC,OE⊥BC,再判断四﹣AD=4﹣AD,接着证明Rt△AOD∽Rt△ABC,然边形ODCE为正方形得到OD=CD=AC后利用相似比计算AD的长.【解答】解:连结OD、OE,如图,∵以点O为圆心所作的半圆分别与AC、BC相切于点D、E,∴OD⊥AC,OE⊥BC,而∠ACB=90°,∴四边形ODCE为矩形,∵OD=OE,∴四边形ODCE为正方形,∴OD=CD=AC﹣AD=4﹣AD,∵∠OAD=∠BAC,∴Rt△AOD∽Rt△ABC,∴=,即=,∴AD=1.6.故选B.11.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B. C. D.【考点】二次函数的图象;一次函数的图象.【分析】根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.12.有一个内角为120°的菱形的内切圆半径为,则该菱形的边长是()A.B.C.4 D.6【考点】菱形的性质;勾股定理;切线长定理.【分析】根据菱形的内切圆半径为即可求菱形的高,菱形的一个内角为120°则其邻角为60°,在直角三角形ABE中即可求的AB即菱形的边的长.【解答】解:过A作AE⊥BC,∵内切圆半径为,∴AE的长度为2,∵∠BAD=120°,则∠ABC=60°,在Rt△ABC中,AE=2,∠ABC=60°,∴AB=4,故选 C.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.14.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的⊙C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤5【考点】直线与圆的位置关系;平行四边形的性质;解直角三角形.【分析】过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的情况.【解答】解:如图,过A作AM⊥BC于N,CN⊥AD于N,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴AM=CN,∵AB=5,cosB=,∴BM=4,∵BC=8,∴CM=4=BC,∵AM⊥BC,∴AC=AB=5,由勾股定理得:AM=CN==3,∴当以CE为半径的圆C与边AD有两个交点时,半径CE的取值范围是3<CE≤5,故选D.15.抛物线y=ax2+bx+c(a≠0)部分点的横坐标x,纵坐标y的对应值如下表x…﹣2﹣1012…y…04664…从上表可知,下列说法错误的是()A.抛物线与x轴的一个交点坐标为(3,0)B.函数y=ax2+bx+c的最大值为6C.抛物线的对称轴是直线x=D.在对称轴左侧,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的最值.【分析】根据表格的数据首先确定抛物线的对称轴,然后利用抛物线的对称性可以确定抛物线与x轴的另一个交点坐标,也可以确定抛物线的最大值的取值范围,也可以确定开口方向.【解答】解:根据表格数据知道:抛物线的开口方向向下,∵x=0,x=1的函数值相等,∴对称轴为x=,所以选项C正确,不符合题意;∴抛物线与x轴的另一个交点坐标为:(3,0),所以选项A正确,不符合题意;在对称轴左侧,y随x增大而增大,最大值大于6.所以选项D正确,不符合题意;选项B错误,符合题意;故选B.16.如图,等腰直角三角形ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为4cm,CA与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与N点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致为()A.B.C.D.【考点】动点问题的函数图象;二次函数的图象.【分析】首先确定每段与x的函数关系类型,根据函数的性质确定选项.【解答】解:当x≤4cm时,重合部分是边长是x的等腰直角三角形,面积y=x2,是一个开口向上的二次函数;当x>4时,重合部分是直角梯形,面积y=8﹣(x﹣4)2,即y=﹣x2+4x,是一个开口向下的二次函数.故选B.二、填空题(每小题4分,共16分)17.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为y=﹣x2+x或y=x2+x..【考点】待定系数法求二次函数解析式.【分析】设二次函数的解析式为y=ax2+bx+c(a≠0),由图象与x轴的另一交点到原点的距离为1可得到抛物线与x轴的另一交点坐标为(1,0)或(﹣1,0),然后分别把(0,0)、(1,0)、(﹣,﹣)或(0,0)、(﹣1,0)、(﹣,﹣)代入解析式中得到两个方程组,解方程组即可确定解析式.【解答】解:设二次函数的解析式为y=ax2+bx+c(a≠0),当图象与x轴的另一交点坐标为(1,0)时,把(0,0)、(1,0)、(﹣,﹣)代入得,解方程组得,则二次函数的解析式为y=﹣x2+x;当图象与x轴的另一交点坐标为(﹣1,0)时,把得,解方程组得,则二次函数的解析式为y=x2+x.所以该二次函数解析式为y=﹣x2+x或y=x2+x.18.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,则AB的长是 6 .【考点】切线的性质;垂径定理.【分析】环形的面积为9π,就是大圆面积﹣小圆的面积,根据圆的面积公式,可得π×OA2﹣π×OM2=9π,解得OA2﹣OM2=9,再根据勾股定理可知就是AM的平方,所以AM=3,AB=6.【解答】解:连接OA、OM,如图所示:∵大圆的弦AB切小圆于M,∴AB⊥OM,∴AM=BM,∵环形的面积为9π,根据圆的面积公式可得:π×OA2﹣π×OM2=9π,解得:OA2﹣OM2=9,根据勾股定理可知:AM2=OA2﹣OM2,∴AM=3,∴AB=2AM=6.19.将抛物线y=x2﹣4x+9向右平移 1 个单位,向下平移9 个单位,得到抛物线y=x2﹣6x+5.【考点】二次函数图象与几何变换.【分析】根据配方法,可得顶点式解析式,根据平移规律,可得到答案.【解答】解:y=x2﹣4x+9配方,得y=(x﹣2)2+5;y=x2﹣6x+5配方,得y=(x﹣3)2﹣4.抛物线y=x2﹣4x+9向右平移 1个单位,向下平移 9个单位,得到抛物线y=x2﹣6x+5,故答案为:右,1,下,9.20.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是30°或90°.【考点】切线的性质.【分析】OA与⊙O相切时,有两种情况:①切线在OB右侧;②切线在OB左侧;解法相同,都是连接圆心与切点,通过构建的直角三角形求解.【解答】解:如图;①当OA旋转到OE位置时,与圆M相切于点E,连接ME;则ME=2,∠MEO=90°;Rt△OEM中,sin∠MOE==,∴∠MOE=30°,∴∠AOE=∠AOB﹣∠MOE=30°;②当OA旋转到OF位置时,与圆M相切于点F,连接MF;则MF=2,∠MFO=90°;Rt△OFM中,sin∠MOF==,∴∠MOF=30°,∴∠AOF=∠AOB+∠FOB=90°;故OA旋转的角度为30°或90°.三、解答题21.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m 加设不锈钢管(如图)做成立柱.为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.(1)求该抛物线的表达式(2)计算所需不锈钢管的总长度.【考点】二次函数的应用.【分析】(1)根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出a,c的值得解析式;(2)根据对称性求B3、B4的纵坐标后再求出总长度.【解答】解:(1)由题意得B(0,0.5)、C(1,0)设抛物线的解析式为:y=ax2+c代入得a=﹣0.5,c=0.5,故解析式为y=﹣0.5x2+0.5;(2)如图1所示:∵当x=0.2时,y=0.48,当x=0.6时,y=0.32,∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)=1.6米∴所需不锈钢管的总长度为: 1.6×50=80米.22.某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.(1)求日均销售量y与销售单价x的函数关系式;(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?【考点】二次函数的应用.【分析】(1)设一次函数解析式为y=kx+b,把(60,90),(30,120)分别代入上式得到一次函数解析式;(2)根据题意得到W=(x﹣20)(﹣x+150)﹣200,配方后求最大值.【解答】解:(1)设一次函数解析式为设一次函数解析式为y=kx+b,把(60,90),(30,120)分别代入上式得,,解得.故y=﹣x+150,(30≤x≤80).(2)根据题意得W=(x﹣20)(﹣x+150)﹣200=﹣x2+170x﹣3200=﹣(x2﹣170x+852﹣852)﹣3200=﹣(x﹣85)2+852﹣3200=﹣(x﹣85)2+852﹣3200=﹣(x﹣85)2+4025.当x=80时取得最大值,为W最大值=﹣(80﹣85)2+4025=4000元.23.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.【考点】切线的判定.【分析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE 中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.【解答】证明:连接OA,(1)∵sinB=,∴∠B=30°,∠AOC=60°,又∵OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠OAD=60°+30°=90°,∴AD是⊙O的切线;(2)∵OC⊥AB,OC是半径,∴BE=AE,∴OD是AB的垂直平分线,∴∠DAE=60°,∠D=30°,在Rt△ACE中,AE=cos30°×AC=,∴在Rt△ADE中,AD=2AE=5.24.如图,△ABC是一块铁皮余料.已知底边BC=160cm,高AD=120cm.在铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设HG=y cm,HE=x cm,试确定用x表示y的函数表达式.(2)当x为何值时,矩形EFGH的面积S 最大?【考点】相似三角形的应用;二次函数的最值.【分析】(1)先表示出AM,再根据相似三角形对应高的比等于相似比列式整理即可;(2)根据矩形的面积公式列式整理,再根据二次函数的最值问题求解即可.【解答】解:(1)∵矩形EFGH,AD是高,∴MD=HE=x,HG∥BC,∴AM=AD﹣MD=120﹣x,△AHG∽△ABC,∴=,即=,∴y=﹣x+160;(2)矩形EFGH的面积S=xy=x(﹣x+160),=﹣x2+160x,=﹣(x2﹣120x+3600)+4800,=﹣(x﹣60)2+4800,所以,当x=60时,S取最大值4800.25.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P 到⊙O的距离S P的定义如下:若点P与圆心O重合,则S P为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则S P为线段AP的长度.图1为点P在⊙O外的情形示意图.(1)若点B(1,0),C(1,1),,则S B= 0 ;S C= ﹣1 ;S D= ;(2)若直线y=x+b上存在点M,使得S M=2,求b的取值范围;(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且S T≥S R,直接写出满足条件的线段PQ长度的最大值.【考点】圆的综合题.【分析】(1)根据点的坐标和新定义解答即可;(2)根据直线y=x+b的特点,结合S M=2,根据等腰直角三角形的性质解答;(3)根据T在⊙O内,确定S T的范围,根据给出的条件、结合图形求出满足条件的线段PQ长度的最大值.【解答】解:(1)∵点B(1,0),∴S B=0,∵C(1,1),∴S C=﹣1,∵,∴S D=,故答案为:0;﹣1;;(2)设直线y=x+b与分别与x轴、y轴交于F、E,作OG⊥EF于G,∵∠FEO=45°,∴OG=GE,当OG=3时,GE=3,由勾股定理得,OE=3,此时直线的解析式为:y=x+3,∴直线y=x+b上存在点M,使得S M=2,b的取值范围是﹣3≤b≤3;(3)∵T在⊙O内,∴S T≤1,∵S T≥S R,∴S R≤1,∴线段PQ长度的最大值为1+2+1=4.xx年3月10日。
沪科版2022-2023学年九年级数学上册第三次月考测试题(附答案)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(满分40分)1.如果α是锐角,且cosα=,那么sinα的值是()A.B.C.D.22.下列判断正确的是()A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形3.如图,点D在△ABC的边AC上,添加下列一个条件仍不能判断△ADB与△ABC相似的是()A.∠ABD=∠C B.∠ADB=∠ABC C.BC2=CD•AC D.AB2=AD•AC 4.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b 的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2 5.已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sin B=n,当∠B是最小的内角时,n的取值范围是()A.B.C.D.6.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c 在同一坐标系内的图象大致是()A.B.C.D.7.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连接AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于()A.2:3:5B.4:9:25C.4:10:25D.2:5:258.如图,在△ABC中,CD平分∠ACB,过D作BC的平行线交AC于M,若BC=m,AC =n,则DM=()A.B.C.D.9.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小10.如图,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°,动点P、Q 同时以每秒1cm的速度从点B出发,点P沿BA、AD、DC运动,点Q沿BC、CD运动,P点与Q点相遇时停止,设P、Q同时从点B出发x秒时,P、Q经过的路径与线段PQ 围成的图形的面积为y(cm2),则y与x之间的函数关系的大致图象为()A.B.C.D.二、填空题(满分20分)11.若点A(2,m)在函数y=x2﹣1的图象上,则A点的坐标是.12.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=.13.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上.设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为.14.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)三、解答题(满分90分)15.计算:+sin45°.16.已知线段a、b、c满足,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x.17.如图,Rt△ABC中,斜边AB上一点M,MN⊥AB交AC于N,若AM=3cm,AB:AC =5:4,求MN的长.18.如图,在矩形ABCD中,E是AD边上的一点,BE⊥AC,垂足为点F.求证:△AEF ∽△CAB.19.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD 之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】20.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.21.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.22.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.23.问题提出:数学课本上有这样一道题目:如图①,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?初步思考:(1)试计算出正方形零件的边长;深入探究:(2)李华同学通过探究发现如果要把△ABC按照图②加工成三个相同大小的正方形零件,△ABC的边BC与高AD需要满足一定的数量关系.则这一数量关系是:.(直接写出结论,不用说明理由);(3)若△ABC可以按照图③加工成四个大小相同的正方形,且∠B=30°,求证:AB=BC.参考答案一、选择题(满分40分)1.解:∵sin2α+cos2α=1,∴sinα===.故选:C.2.解:A,不正确,两个相似的三角形相似但不全等;B,正确,因为全等三角形是特殊的相似三角形,不相似即不构成全等的前提;C,不正确,因为相似三角形可以是全等三角形,全等三角形是特殊的相似三角形;D,不正确,因为全等三角形一定是相似三角形;故选:B.3.解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当=,即AB2=AC•AD时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当=,即BC2=CD•AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故选:C.4.解:用作图法比较简单,首先作出y=(x﹣a)(x﹣b)图象,任意画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是y=(x﹣a)(x﹣b)﹣1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2.故选:C.5.解:根据题意,知0°<∠B<45°.又sin45°=,∴0<n<.故选:A.6.解:观察二次函数图象可得出:a>0,﹣>0,c>0,∴b<0.∴反比例函数y=的图象在第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限.故选:A.7.解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:CE=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴=()2=,==,∴===(等高的三角形的面积之比等于对应边之比),∴S△DEF:S△ADF:S△ABF等于4:10:25,故选:C.8.解:∵CD平分∠ACB,过D作BC的平行线交AC于M,∴∠MDC=∠MCD,∴DM=MC,∴AM=AC﹣MC=n﹣DM,又∵DM∥BC,∴,即,解得DM=.故选:C.9.解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBE,设∠DCF=∠DBE=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B向C运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.面积法:S△ABC=•AD•CF+•AD•BE=•AD(CF+BE),∴CF+BE=,∵点D沿BC自B向C运动时,AD是增加的,∴CF+BE的值是逐渐减小.故选:C.10.解:过点P作PE⊥BC于E,设P、Q同时从点B出发x秒时,△BPQ的面积是y,∴PE=BP•sin B,∴当点P在AB上,即0<x≤10时,y=BQ•BP sin∠B=x2×=x2;∴当点P在AD上,即10≤x≤12时,y=梯形ABCD面积﹣△PDQ面积=36﹣PD•QD.而PD=12﹣x,QD=16﹣x,则y=﹣x2+14x﹣60;P到D之后,面积达到最大36cm2,且不变.故选:C.二、填空题(满分20分)11.解:把A(2,m)代入y=x2﹣1得m=4﹣1=3,所以A点坐标为(2,3).故答案为(2,3).12.解:作AB边的高CE.在Rt△ACE中,∵∠A=30°,AC=,∴CE=AC=.在等腰Rt△CBE中,BC=CE,故BC=.13.解:∵四边形ABCD为矩形,∴AD∥BC,∴△EAD∽△EBF,∴=,即=,解得,AD=12﹣x,∴y=x(12﹣x)=﹣x2+12x=﹣(x﹣)2+15,∴当x=时,长方形的面积最大,故答案为:.14.解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴S n=.故答案为:.三、解答题(满分90分)15.解:原式=+=1+=16.解:(1)设===k,则a=3k,b=2k,c=6k,所以,3k+2×2k+6k=26,解得k=2,所以,a=3×2=6,b=2×2=4,c=6×2=12;(2)∵线段x是线段a、b的比例中项,∴x2=ab=6×4=24,∴线段x=2.17.解:由题意得:△AMN∽△ACB∴AB:AC=AN:AM=5:4∴可知AN=,根据勾股定理得AM2+MN2=AN2∴MN=.18.证明:∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB.19.解:由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在Rt△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∴BE=≈15÷0.90=,在Rt△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36.7(m).答:两幢建筑物之间的距离BD约为36.7m.20.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.21.解:过B作BG∥AC交EF于G,∴△DBG∽△ADE,∴==,∵AE:EC=1:2,∴BG:CE=,∵BG∥AC,∴△BFG∽△CFE,22.解:①∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1,∴y=x2﹣3x,②假设存在点B,过点B做BD⊥x轴于点D,∵△AOB的面积等于6,∴AO•BD=6,当0=x2﹣3x,x(x﹣3)=0,解得:x=0或3,∴AO=3,∴BD=4即4=x2﹣3x,解得:x=4或x=﹣1(舍去).又∵顶点坐标为:(1.5,﹣2.25).∵2.25<4,∴x轴下方不存在B点,∴点B的坐标为:(4,4);③∵点B的坐标为:(4,4),∴∠BOD=45°,BO==4,当∠POB=90°,∴∠POD=45°,设P点横坐标为:x,则纵坐标为:x2﹣3x,即﹣x=x2﹣3x,解得x=2 或x=0,∴在抛物线上仅存在一点P(2,﹣2).∴OP==2,使∠POB=90°,∴△POB的面积为:PO•BO=×4×2=8.23.解:(1)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.(2)BC=AD,如图2由已知条件得:EF∥GH∥BC,在△GBN与△EGM中,,∴△GBN≌△EGM,∴EG=BG,∵△AEF∽△AGH,∴,∴AE=EG,∴AE=EG=GB,∴△AEF∽△ABC,∴,∵PD=2x,∴AD=3x,BC=3x,∴AD=BC,故答案为:AD=BC;(3)如图3,过点A作AD⊥BC于D,分别交EF、GH于点M、N,设每个正方形的边长为a,∵EF∥GH∥BC,∴△AEF∽△AGH∽△ABC,∴,∴,解得AD=2.5a,BC=5a,∴BC=2AD.∵∠B=30°,AD⊥BC,∴AB=2AD,∴AB=BC.。
九年级第三次月考数学试卷
密学校 班级姓名 学号密 封 线 内 不 得 答 题九年级数学(上)第三次月考测试卷(考试时间:120分钟 满分150分)一、选择题:(每小题4分,满分40分)1.抛物线y=-2x 2+12x+13的开口方向是……………………………………( )。
A 、向上 B.向下C.向左D.向右2.下列函数中,当x >0时,y 随x 的增大而减小的是………………………………( ) A.x y = B.xy 1=C.xy 1-= D.2x y =3. 一个斜坡的坡角为60°,则这个斜坡的坡度为……………………………………( )A . 1:2 B. 3 :2 C. 1: 3 D. 3 :1 4.已知锐角α满足2sin(α+20°)=1,则锐角α的度数为 ………………………( )A.10°B.25°C.40°D.45° 5. .已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定 6.抛物线y=x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为……………………………………………………………………………………( )A.y=x 2+4x+3B. y=x 2+4x+5C. y=x 2-4x+3D.y=x 2-4x -57.在Rt △ABC 中,∠C=90°,下列式子中不一定成立的是…………………………( )A .tanA=AA cos sinB .sin 2A+sin 2B=1C .sin 2A+cos 2A=1 D .sinA=sinB8.如图,在△ABC ,P 为AB 上一点,连结CP ,下列条件中不能判定△ACP ∽△ABC 的是( )A .∠ACP =∠B B .∠APC =∠ACB C .AC AP =AB AC D . AC AB =CP BC9.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②b >0; ③c >0;④b 2-4a c >0,其中正确的个数是………………( )A. 1个B. 2个C. 3个D. 4个 10.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且cos α=53,AB =4,则AD 的长为……………………………………………………………………………………………( )A .3B .316 C .320 D .516二、填空题:(每小题5分,满分20分)11.如果抛物线y=-2x 2+mx -3的顶点在x 轴正半轴上,则m= . 12.若锐角α满足tan(α+15°)=1,则cos α= . 13.如图4,点A 在反比例函数xk y =的图象上,AB 垂直于x 轴,若S △AOB =3,那么这个反比例函数的解析式为 . 14.如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .三、解答下列各题:(满分90分,其中15、16、17、18每题8分,19、20每题10分,21、22每题12分,23题14分)15.计算:∣-5∣+3sin30°-(-6)2+(tan45°)-116..如图,在Rt △ABC 中,∠B =900,AB =BE =EF =FC 。
2022-2023学年沪科版九年级数学上册第三次月考测试题(附答案)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(本大题共10小题,共40分)1.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.2.抛物线y=(x﹣1)2+2的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2 3.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2=B.(x+)2=C.(x﹣)2=D.(x﹣)2=4.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有()A.0个B.1个C.2个D.3个5.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定6.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.已知:如图,P A,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于()A.65°B.50°C.45°D.40°8.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(1,3)C.点(6,0)D.点(6,1)9.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为()A.πB.πC.2πD.4π10.已知二次函数y1=2x2﹣4x和一次函数y2=﹣2x,规定:当x任取一个值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较大值为M;若y1=y2,则M=y1=y2,下列说法错误的是()A.当x>2时,M=y1B.当x<0时,M随x的增大而减小C.M的最小值为﹣2D.若M=﹣1,则x=二、填空题(本大题共4小题,共20分)11.二次函数y=x2﹣2x﹣5的最小值是.12.如图,AB为直径,∠BED=40°,则∠ACD=度.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.14.已知:⊙O的半径1,弦AB、AC的长分别为1,,则△ABC的面积为.三、解答题(本大题共9小题,共90分)15.分类讨论在数学中既是一个重要的策略思想又是一个重要的数学方法.例如对于像x2+|x|﹣6=0这样含有绝对值符号的方程,可采用如下的分类讨论方法:解:当x≥0时,原方程可化为x2+x﹣6=0.解得:x1=﹣3,x2=2.∵x≥0,∴x=2.当x<0时,原方程可化为x2﹣x﹣6=0,解得:x1=3,x2=﹣2.∵x<0,∴x=﹣2.综上可得:原方程的解为x1=﹣2,x2=2.仿照上面的解法,解方程:x2+|2x﹣1|﹣4=0.16.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言可表达为:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为多少?17.某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.18.已知关于x的二次函数y=(m+6)x2+2(m﹣1)x+m+1的图象与x轴总有交点,求m 的取值范围.19.已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC 的中点.求证:直线EF是半圆O的切线.20.我们把1°的圆心角所对的弧叫做1°的弧.由此可知:命题“圆周角的度数等于其所对的弧的度数的一半”.是真命题,已知,的度数为α,的度数为β.(1)如图1,⊙O的两条弦AB、CD相交于圆内一点P,求证:;(2)如图2,⊙O的两条弦AB、CD延长线相交于圆外一点P.问题(1)中的结论是否成立?如果成立,给予证明;如果不成立,写出一个类似的结论,并证明.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.22.如图,⊙O为等边△ABC的外接圆,其半径为1,P为弧AB上的动点(P点不与A、B 重合),连接AP,BP,CP.(1)求证:P A+PB=PC.(2)求四边形APBC面积的最大值.23.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.参考答案一、选择题(本大题共10小题,共40分)1.解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选:D.2.解:∵y=(x﹣1)2+2,∴对称轴为直线x=1,故选:A.3.解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.4.解:①长度相等的弧是等弧,是假命题;②任意三点确定一个圆,是假命题;③相等的圆心角所对的弦相等,是假命题;④平分弦的直径垂直于弦,并且平分弦所对的两条弧,是假命题;真命题有0个,故选:A.5.解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.6.解:由二次函数y=ax2+bx+c的图象可得,a>0,b>0,c>0,∴一次函数y=﹣bx+a的图象经过第一、二、四象限,不经过第三象限,故选:C.7.解:连接OA,OB,∵P A、PB切⊙O于点A、B,∴∠P AO=∠PBO=90°,由圆周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠P AO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故选:B.8.解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O′(2,0),∵只有∠O′BD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,∴F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1)和(1,3).故选:B.9.解:由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD﹣S△OAC﹣S扇形OCD=S扇形OAB﹣S扇形OCD=π×(9﹣1)=2π.故选:C.10.解:解方程2x2﹣4x=﹣2x,解得x1=0,x2=1,两函数图象的交点坐标为(0,0),(1,﹣2),当x>2时,M=y1,所以A选项的说法正确;当x<0时,M=y1,M随x的增大而减小,所以B选项的说法正确;当x≤0,M的最小值为0;当0<x≤1时,M的最小值为﹣2;当x≥1时,M的最小值为﹣2,所以M的最小值为﹣2,所以C选项的说法正确;当M=﹣1时,0<x<1,﹣2x=﹣1,解得x=;x>1,2x2﹣4x=﹣1,x=1+,所以D选项的说法错误.故选:D.二、填空题(本大题共40小题,共20分)11.解:∵原式可化为y=x2﹣2x+1﹣6=(x﹣1)2﹣6,∴最小值为﹣6.故答案为:﹣612.解:连接OD,∵∠BED=40°,∴∠BOD=80°,∵AB为直径,∴∠AOB=180°,∴∠AOD=100°,∴∠ACD=50°.故答案为50.13.解:圆锥的底面周长=2π×2=4πcm,则:=4π,解得l=6.故答案为:6.14.解:过O点OD⊥AB于D,OE⊥AC于E,如图,∴AD=BD=AB=,CE=AE=AC=,在Rt△OAD中,∵cos∠OAD===,∴∠OAD=60°,在Rt△AOE中,∵cos∠OAE===,∴∠OAE=30°,如图1,∠BAC=∠OAB+∠OAC=60°+30°=90°,∴S△ACB=×1×=;如图2,∠BAC=∠OAB﹣∠OAC=60°﹣30°=30°,过B点作BH⊥AC于H,∴BH=AB=,∴S△ACB=××=,综上所述,△ABC的面积为或.三、解答题(本大题共9小题,共90分)15.解:当2x﹣1≥0,即x≥时,原方程可化为x2+2x﹣5=0.解得:x1=﹣1+,x2=﹣1﹣.∵x≥0,∴x=﹣1+.当2x﹣1<0,即x<时,原方程可化为x2﹣2x﹣3=0,解得:x1=3,x2=﹣1.∵x<0,∴x=﹣1.综上可得:原方程的解为x1=﹣1+,x2=﹣1.16.解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵CE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).17.解:设南瓜亩产量的增长率为x,则种植面积的增长率为2x.根据题意,得10(1+2x)•2000(1+x)=60000.解得:x1=0.5,x2=﹣2(不合题意,舍去).答:南瓜亩产量的增长率为50%.18.解:关于x的二次函数y=(m+6)x2+2(m﹣1)x+m+1的图象与x轴总有交点,所以4(m﹣1)2﹣4(m+6)(m+1)≥0,解得,又因为该函数是关于x的二次函数,所以m+6≠0,所以m≠﹣6,所以m的取值范围是:.19.证明:连接OF,CF.∵AC是直径,∴∠AFC=90°,∴∠BFC=90°,又∵E是BC的中点,∴EF=EC,∴∠EFC=∠ECF,∵OC=OF,∴∠OFC=∠FCO,∵∠ACB=∠FCO+∠ECF=90°,∴∠EFC+∠OFC=90°,即∠EFO=90°,∴OF⊥EF,∴EF是⊙O的切线.20.(1)证明:如图1,连BC,∵∠PCB的度数等于的度数的一半,∠PBC的度数等于的度数的一半,的度数为α,的度数为β,∴∠PCB=β,∠PBC=α,∵∠APC=∠PBC+∠PCB,∴∠APC=α+β=(α+β);(2)解:问题(1)中的结论不成立,类似的结论为:∠BPC=(β﹣α),理由如下:证明:如图2,连接BC,∵∠APC+∠PBC=∠BCD,∴∠APC=∠BCD﹣∠PBC,∵∠BCD的度数等于的度数的一半,∠PBC的度数等于弧的度数的一半,的度数为α,的度数为β,∴∠APC=β﹣α=(β﹣α).21.解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).22.(1)证明:如图1,在线段PC上截取PF=PB,连接BF,∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵PF=PB,∠BPC=∠BAC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BP A=∠APC+∠BPC=120°,∴∠BP A=∠BFC,在△BP A和△BFC中,,∴△BP A≌△BFC(AAS),∴P A=FC,∴P A+PB=PF+FC=PC;(2)解:如图2,将△APC绕点C逆时针旋转60°,得到△BHC,∴CP=CH,∠P AC=∠HBC,∵四边形APBC是圆内接四边形,∴∠P AC+∠PBC=180°,∴∠PBC+∠HBC=180°,∴点P,点B,点H三点共线,∵PC=CH,∠CPH=60°,∴△PCH是等边三角形,∵四边形APBC的面积S=S△APC+S△BPC=S△CPH=CP2,∴当CP最大时,四边形APBC的面积最大,∴当CP为⊙O的直径时,CP的值最大,即CP=2,∴四边形APBC的面积的最大值为CP2=.23.解:(1)M(12,0),P(6,6)(2)∵顶点坐标(6,6)∴设y=a(x﹣6)2+6(a≠0)又∵图象经过(0,0)∴0=a(0﹣6)2+6∴∴这条抛物线的函数解析式为y=﹣(x﹣6)2+6,即y=﹣x2+2x;(3)设A(x,y)∴A(x,﹣(x﹣6)2+6)∵四边形ABCD是矩形,∴AB=DC=﹣(x﹣6)2+6,根据抛物线的轴对称性,可得:OB=CM=x,∴BC=12﹣2x,即AD=12﹣2x,∴令L=AB+AD+DC=2[﹣(x﹣6)2+6]+12﹣2x=﹣x2+2x+12=﹣(x﹣3)2+15.∴当x=3,L最大值为15∴AB、AD、DC的长度之和最大值为15米.。
2022-2023学年度第一学期第三次数学月考
九年级数学月考试卷 第 1 页,共 10 页 九年级数学月考试卷 第 2 页,共 10 页2022-2023学年第一学期12月份月考 九年级数学试卷(满分120分)3分,10小题,共计30分).下列四个图形中是中心对称图形但不是轴对称图形的是( ) A .B .C .D .关于二次函数y =(x +1)2的图象,下列说法正确的是( ) A .开口向下 B .经过原点C .对称轴右侧的部分是下降的D .顶点坐标是(﹣1,0) 抛物线y =(x ﹣3)2+4的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(3,4) 关于x 的方程2x 2+mx+n =0的两个根是﹣2和1,则n m 的值为( ) A .﹣8B .8C .16D .﹣16时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是 ( )A.30° B .60° C.90° D.9°如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA =50°,则∠C 的度数为( ) A .30°B .40°C .50°D .80°7.已知x =2是关于x 的方程x 2﹣(m +4)x +4m =0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长,则△ABC 的周长为( ) A.6 B.8 C.10D.8或108.已知⊙O 的面积是9πc ㎡。
点0到直线p 的距离为πcm ,则直线p 与⊙O 的位置关系是( ) A.相交B.相切C.相离D.无法确定9.某药品经过两次降价,每瓶零售价由112元降为63元.已知两次降价的百分率相同.要求每次降价的百分率,若设每次降价的百分率为x ,则得到的方程为( )A .112(1﹣x )2=63B .112(1+x )2=63C .112(1﹣x )=63D .112(1+x )=6310.已知二次函数)0(2≠++=acbx ax y 的图象如图所示,有下列4个结论,其中正确的结论是( )A.0>abcB.02=-b aC.c a b +>D.042<-ac b九年级数学月考试卷 第 3 页,共 10 页 九年级数学月考试卷 第 4 页,共 10 页----------------请---------------------二、填空题(共10小题,每小题3分,共30分)11.在平面直角坐标系中,点A (1,2)关于原点对称的点为B (a ,b ),则a +b = .12.如果关于x 的方程x 2﹣5x +k =0没有实数根,那么k 的值为 . 13.已知某抛物线向左平移4个单位,再向下平移2个单位后所得抛物线的解析式为y =3x 2那么原抛物线的解析式是 .14.若关于x 的一元二次方程(m +2)x 2+3x +m 2﹣4=0的一个根为0,则m 的值为= .15.如图,⊙O 的半径为10cm ,AB 是⊙O 的弦,OC ⊥AB 于D ,交⊙O 于点C ,且CD =4cm ,弦AB 的长为 cm .16.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为 17.我市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?若设应邀请x 支球队参赛,根据题意,可列出方程 。
人教版九年级上册数学第三次月考试题含答案
人教版九年级上册数学第三次月考试卷一、单选题1.下列标志中,可以看作是中心对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,P 的圆心坐标为(4,8),半径为5,那么x 轴与P 的位置关系是( )A .相离B .相切C .相交D .不能确定 3.对于二次函数y =(x -1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点 4.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧BC 的长是( )A .2πB .3πC .4πD .6π 5.如图,已知ADE ACB ,若AB=10,AC=8,AD=4,则AE 的长是( )A .4B .3.2C .20D .56.把抛物线y =2x 2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )A .y =2(x+3)2+4B .y =2(x+3)2﹣4C .y =2(x ﹣3)2﹣4D .y =2(x ﹣3)2+47.用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 8.二次函数2y ax b =+(b >0)与反比例函数a y x=在同一坐标系中的图象可能是( ) A . B . C . D . 9.如图是抛物线21y ax bx c =++ (0a ≠)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线2y mx n =+ (0m ≠)与抛物线交于A 、B 两点,下列结论:①20a b +=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④当14x <<时,有21y y <;⑤抛物线与x 轴的另一个交点是(-1,0),其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤ 10.如图,在O 中,AB 是直径,点D 是O 上一点,点C 是弧AD 的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P 、Q ,连接AC ,关于下列结论:①BAD ABC ∠∠=;②GP=GD ;③点P 是△ACQ 的外心,其中正确结论是( )A .①③B .②C .③D .②③二、填空题 11.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径5cm r =,该圆锥的母线长12cm l =,则扇形的圆心角θ度数为_______.12.如图,点A 在双曲线k y x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.13.如图,△COD 是△AOB 绕点O 顺时针旋转38︒所得到的图形,点C 恰好在AB 上,AOD 90∠=︒,则B ∠的度数是_____.14.若点A (1x ,1)、B (2x ,2)、C (33,x -)在双曲线1y x=-上,则1x 、2x 、3x 的大小关系为______. 15.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______.16.如图,由一个半圆与抛物线的一部分围成一个封闭图形,点A ,B ,C ,D 分别是该封闭图形与坐标轴的交点,抛物线的解析式为21382y x x =--,AB 为半圆的直径,点M 为半圆的圆心,点P 为x 轴正半轴上的一点,若COP CPD ~,则点P 的坐标是________.三、解答题17.解方程(1)2620x x +-=(2)()330x x x -+-=18.如图,已知AB 是⊙O 的弦,点C 在线段AB 上,OC=AC=4,CB=8.求⊙O 的半径.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-2,1),B (-1,4),C (-3,3).若△ABC 绕点B 逆时针旋转90︒后,得到△11A BC (A 和1A 是对应点)(1)写出点1A ,1C 的坐标;(2)求旋转过程中边AB 扫过的面积(结果保留π);(3)以原点O 为位似中心,位似比为1:2,在y 轴的左侧,画出△ABC 放大后的图形△222A B C ,并直接写出点2C 的坐标.20.如图,已知平行四边形ABCD ,点E 是边AB 的延长线上一点,DE 与BC 交于点F ,12BE AB =.(1)求证:ADE CFD ∆∆;(2)若BEF ∆的面积为1,求四边形ABFD 的面积.21.如图,△ABC 外切于⊙O ,切点分别为D 、E 、F ,BC =7,⊙O (1)∠A =60°,求△ABC 的周长.(2)若∠A =70°,点M 为⊙O 上异于F 、E 的动点,则∠FME 的度数为 °.22.在平面直角坐标系中,点A (6,0),点B (0,8),把△AOB 绕原点O 逆时针旋转,得△COD ,其中点C ,D 分别为点A ,B 旋转后的对应点,记旋转角为α(0α360︒<<︒) (1)如图,当α45=︒时,求点C 的坐标;(2)当CD//x轴时,求点C的坐标.23.我市某超市销售一种文具,进价为5元/件,售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x x ,且x是按0.5元的倍数上涨),当天销售利润为y元.元/件(6(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.24.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.25.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.抛物线的对称轴与x轴交于点E,点P在对称(1)求抛物线的解析式;(2)直线CM 与x 轴交于点D ,若DME APE ∠∠=,求点P 的坐标;(3)请探索:是否存在这样的点P ,使ANB 2APE ∠∠=?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案1.B2.A3.C4.B5.D6.A7.B8.B9.B10.D11.150°13.57°14.123x x x <<15.4-16.()17.(1)13x =-+23x =-(2)13x =,21x =-18.OA =19.(1)A 1(2,3),C 1(0,2);(2)52π;(3)作图见解析,C 2(-6,6) 20.(1)见解析;(2)821.(1)20;(2)55或125.22.(1);(2)(185,245))或(185-,245-). 23.(1)210210800=-+-y x x ;(2)每件文具售价为9元,最大利润为280元. 24.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.25.(1)y=-x 2+2x+3;(2)P (1,2)或(1,-2);(3)P (1)或(1,).。
2023-2024学年湖南师大附中高新学校九年级(上)第三次月考数学试卷及参考答案
2023-2024学年湖南师大附中高新学校九年级(上)第三次月考数学试卷一.选择题(每小题3分,10小题,共30分)1.(3分)如图交通标志是中心对称图形的为()A.B.C.D.2.(3分)下列函数中,y不是x的反比例函数的是()A.y=﹣B.C.D.3xy=23.(3分)若=,则ab=()A.6B.C.1D.4.(3分)下列说法正确的是()A.两个矩形一定相似B.两个菱形一定相似C.两个正方形一定相似D.两个直角三角形一定相似5.(3分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:投篮次数(n)50100150200250300500投中次数(m)286078104124153252估计这位同学投篮一次,投中的概率约是()(精确到0.1)A.0.4B.0.5C.0.55D.0.66.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°7.(3分)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.68.(3分)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长是6π,则正六边形的边长是()A.B.3C.6D.9.(3分)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为(6,0),将△ABO绕着点B顺时针旋转60°,得到△DBC,则点C的坐标是()A.(3,3)B.(3,3)C.(6,3)D.(3,6)10.(3分)如图,动点P在函数(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E、F,则AF•BE的值是()A.2B.1C.D.二.填空题(每小题3分,6小题,共18分)11.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=,当R=16Ω时,I的值为A.12.(3分)抛物线y=﹣(x+2)2+6顶点坐标是.13.(3分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.14.(3分)若一元二次方程x2﹣4x+a=0配方后为(x﹣2)2=1,则a=.15.(3分)如图,在矩形ABCD中,AB=1,(AD>AB)在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F,若四边形EFDC与原矩形相似,则AD的长度为.16.(3分)以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,则r=.三.解答题(9题,共72分)17.(6分)计算:3﹣2+﹣(π﹣1)0+|﹣1+|.18.(6分)如图,在平面直角坐标系xOy中,一次函数y1=﹣2x+6的图象与反比例函数的图象相交于A(a,4),B(b,2)两点.(1)求反比例函数的表达式及点B的坐标;(2)观察图象,直接写出y1>y2时x的取值范围.19.(6分)随着科技的进步,购物支付方式日益增多.为了解某社区居民支付的常用方式(A微信,B支付宝,C现金,D其他),某学习小组对红星社区部分居民进行问卷调查,根据查结果,绘制成如图统计图.根据统计图表中的信息,解答下列问题:(1)a=,b=,在扇形统计图中C种支付方式所对应的圆心角为度;(2)本次调查中用现金支付方式的居民里有2名男性,其余都是女性,现从该种支付方式中随机选2名居民参加线上支付方式培训,求恰好都是女性的概率.20.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.21.(8分)如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=3,BC=6,DE=4,求EF的长;(2)如果DE:EF=2:3,AC=25,求AB的长.22.(9分)随着国家乡村振兴政策的推进,凤凰村农副产品越来越丰富.为增加该村村民收入,计划定价销售某土特产,他们把该土特产(每袋成本10元)进行4天试销售,日销量y(袋)和每袋售价x(元)记录如下:时间第一天第二天第三天第四天x/元15202530y/袋25201510若试销售和正常销售期间,日销量y与每袋售价x的一次函数关系相同,解决下列问题:(1)求日销量y关于每袋售价x的函数关系式;(2)请你帮村民设计,每袋售价定为多少元,才能使这种土特产每日销售的利润最大?并求出最大利润.(利润=销售额﹣成本)23.(9分)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.24.(10分)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.25.(10分)若关于x的函数y,当t﹣1≤x≤t+1时,函数y的最大值为P,最小值为Q,令函数m=P﹣Q,我们不妨把函数m称之为函数y的“至善函数”.(1)若函数y=2023x,求函数y的“至善函数”m的值;(2)若函数,求函数y的“至善函数”m的解析式;(3)对于函数y=﹣x2+tx+a,若无论实数t为何值,函数y的最大值恒大于函数y的“至善函数”m的最小值,求出a的范围.2023-2024学年湖南师大附中高新学校九年级(上)第三次月考数学试卷参考答案与试题解析一.选择题(每小题3分,10小题,共30分)1.(3分)如图交通标志是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:选项B、C、D中的图形都不是中心对称图形,选项A中的图形是中心对称图形,故选:A.【点评】本题考查了中心对称图形的概念,解答本题的关键要明确:一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.(3分)下列函数中,y不是x的反比例函数的是()A.y=﹣B.C.D.3xy=2【分析】根据反比例函数解析式判断求解.【解答】解:根据反比例函数解析式,知A.,符合定义,本选项不符合题意;B.,符合定义,本选项不符合题意;C.,不符合定义,本选项符合题意;D.3xy=2,得,符合定义,本选项不符合题意.故选:C.【点评】本题考查反比例函数的定义,理解解析式的特征是解题的关键.3.(3分)若=,则ab=()A.6B.C.1D.【分析】直接利用比例的性质,内项之积等于外项之积即可得出答案.【解答】解:∵=,∴ab=6.故选:A.【点评】此题主要考查了比例的性质,正确将原式变形是解题关键.4.(3分)下列说法正确的是()A.两个矩形一定相似B.两个菱形一定相似C.两个正方形一定相似D.两个直角三角形一定相似【分析】利用相似图形的定义分别判断后即可确定正确的选项.【解答】解:A、两个矩形满足对应角相等但不满足对应边的比相等,故不相似,不符合题意;B、两个菱形满足对应边的比相等但不满足对应角相等,故不相似,不符合题意;C、两个正方形一定相似,正确,符合题意;D、两个直角三角形不一定相似,故原命题错误,不符合题意.故选:C.【点评】本题考查了相似图形的定义,解题的关键是了解相似图形的定义,难度不大.5.(3分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:投篮次数(n)50100150200250300500投中次数(m)286078104124153252估计这位同学投篮一次,投中的概率约是()(精确到0.1)A.0.4B.0.5C.0.55D.0.6【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【解答】解:根据题意得:28÷50=0.56,60÷100=0.6,78÷150=0.52,104÷200=0.52,124÷250=0.496,153÷300=0.51,252÷500=0.504,由此,估计这位同学投篮一次,投中的概率约是0.5,故选:B.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.6.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°【分析】根据圆周角定理解答即可,在同圆或等圆中,同弧所对的圆周角等于这条弧所对的圆心角的一半.【解答】解:∵∠A=∠BOC,∠BOC=66°,∴∠A=33°.故选:B.【点评】本题考查了圆周角定理,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.7.(3分)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3B.4C.5D.6【分析】根据圆锥的侧面积=底面周长×母线长÷2即可求出答案.【解答】解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=15π,∴R=3.故选:A.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长是6π,则正六边形的边长是()A.B.3C.6D.【分析】连接OB、OC,根据⊙O的周长等于6π,可得⊙O的半径OB=OC=3,而六边形ABCDEF 是正六边形,即知∠BOC==60°,△BOC是等边三角形,即可得正六边形的边长为3.【解答】解:连接OB、OC,如图:∵⊙O的周长等于6π,∴⊙O的半径OB=OC==3,∵六边形ABCDEF是正六边形,∴∠BOC==60°,∴△BOC是等边三角形,∴BC=OB=OC=3,即正六边形的边长为3,故选:B.【点评】本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60°,从而得到△BOC是等边三角形.9.(3分)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为(6,0),将△ABO绕着点B顺时针旋转60°,得到△DBC,则点C的坐标是()A.(3,3)B.(3,3)C.(6,3)D.(3,6)【分析】作CM⊥x轴于M,再利用旋转的性质求出BC=OB=6,根据直角三角形30°角所对的直角边等于斜边的一半求出BM,利用勾股定理列式求出CM,然后求出点C的横坐标,再写出点C的坐标即可.【解答】解:作CM⊥x轴于M,∵点B的坐标为(6,0),∴BC=OB=6,∵∠OBC=60°,∴BM=,CM==3,∴OM=OB﹣BM=6﹣3=3,∴C(3,3).故选:B.【点评】本题考查了坐标与图形变化﹣旋转,解直角三角形,求出OM、CM的长度是解题的关键.10.(3分)如图,动点P在函数(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E、F,则AF•BE的值是()A.2B.1C.D.【分析】由于P的坐标为,且PN⊥OB,PM⊥OA,那么N的坐标和M点的坐标都可以a 表示,那么BN、NF的长度也可以用a表示,接着F点、E点的也可以a表示,然后利用勾股定理可以分别用a表示AF、BE,最后即可求出AF⋅BE.【解答】解:作FG⊥x轴,∵P的坐标为,且PN⊥OB,PM⊥OA,∴N的坐标为,M点的坐标为(a,0),∴,令x=0,则y=1,令y=0,则x=1,则A(1,0),B(0,1),∴OB=OA=1,则△OAB是等腰直角三角形,∴∠NBF=45°,在Rt△BNF中,∠NBF=45°,∴,∴F点的坐标为,同理可得出E点的坐标为(a,1﹣a),∴,BE2=(a)2+(﹣a)2=2a2,∴,即AF•BE=1.故选:B.【点评】本题考查了反比例函数的性质、勾股定理,解题的关键是通过反比例函数上的点P坐标,来确定E、F两点的坐标,进而通过勾股定理求出线段乘积的值.二.填空题(每小题3分,6小题,共18分)11.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=,当R=16Ω时,I的值为3A.【分析】直接将R=16代入I=中可得I的值.【解答】解:当R=16Ω时,I==3(A).故答案为:3.【点评】此题考查的是反比例函数的应用,掌握反比例函数的点的坐标是解决此题的关键.12.(3分)抛物线y=﹣(x+2)2+6顶点坐标是(﹣2,6)..【分析】根据抛物线的顶点式直接求得顶点坐标.【解答】解:抛物线y=﹣(x+2)2+6的顶点坐标是(﹣2,6),故答案为:(﹣2,6).【点评】本题考查了求二次函数的性质,熟练掌握二次函数的图象与性质是解题关键.13.(3分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=9.【分析】根据红球的概率公式,列出方程求解即可.【解答】解:根据题意,,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.【点评】本题考查概率公式,根据公式列出方程求解则可.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)若一元二次方程x2﹣4x+a=0配方后为(x﹣2)2=1,则a=3.【分析】利用配方法求解可得a的值.【解答】解:x2﹣4x+a=0,x2﹣4x=﹣a,x2﹣4x+4=﹣a+4,(x﹣2)2=4﹣a,∴4﹣a=1,解得a=3.故答案为:3.【点评】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.(3分)如图,在矩形ABCD中,AB=1,(AD>AB)在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F,若四边形EFDC与原矩形相似,则AD的长度为.【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【解答】解:∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,即:,解得x1=,x2=(不合题意舍去),经检验x1=是原方程的解.故答案为:.【点评】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.16.(3分)以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,则r=2或.【分析】由以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,可得⊙P与x轴相切或⊙P过原点,然后分别分析求解即可求得答案.【解答】解:∵以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,∴⊙P与x轴相切(如图1)或⊙P过原点(如图2),当⊙P与x轴相切时,r=2;当⊙P过原点时,r=OP==.∴r=2或.故答案为:2或.【点评】此题考查了直线与圆的位置关系以及坐标与图形的性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.三.解答题(9题,共72分)17.(6分)计算:3﹣2+﹣(π﹣1)0+|﹣1+|.【分析】按照实数的运算法则依次计算,注意:3﹣2=,(π﹣1)0=1,|﹣1+|=.【解答】解:原式=+2﹣1+=2.【点评】本题需注意的知识点是:a﹣p=,任何不等于0的数的0次幂是1,负数的绝对值是正数.18.(6分)如图,在平面直角坐标系xOy中,一次函数y1=﹣2x+6的图象与反比例函数的图象相交于A(a,4),B(b,2)两点.(1)求反比例函数的表达式及点B的坐标;(2)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据两函数图象的交点情况确定a、b的值,进而确定A、B的坐标,然后代入反比例函数解析式即可解答;(2)直接根据函数图象即可解答.【解答】解:(1)∵一次函数y1=﹣2x+6的图象与反比例函数的图象相交于A(a,4),B(b,2)两点.∴4=﹣2a+6,2=﹣2b+6,∴a=1,b=2,∴A点坐标为(1,4)两点B点坐标为(2,2)两点.∴k=1×4=4,∴反比例函数.(2)∵一次函数y1=﹣2x+6的图象与反比例函数的图象相交于A(1,4),B(2,2)两点.∴当y1>y2时x的取值范围1<x<2.【点评】本题主要考查了反比例函数与一次函数的综合、求函数解析式、运用图象求不等式的解集的等知识点,掌握两函数图象的交点坐标必满足两函数解析式成为解题的关键.19.(6分)随着科技的进步,购物支付方式日益增多.为了解某社区居民支付的常用方式(A微信,B支付宝,C现金,D其他),某学习小组对红星社区部分居民进行问卷调查,根据查结果,绘制成如图统计图.根据统计图表中的信息,解答下列问题:(1)a=20人,b=18人,在扇形统计图中C种支付方式所对应的圆心角为36度;(2)本次调查中用现金支付方式的居民里有2名男性,其余都是女性,现从该种支付方式中随机选2名居民参加线上支付方式培训,求恰好都是女性的概率.【分析】(1)根据统计图中的信息列式计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)a=7÷14%×40%=20(人),b=7÷14%﹣5﹣7﹣20=18(人),在扇形统计图中C 种支付方式所对应的圆心角为360°×=36°,故答案为:20人,18人,36;(2)设男生为A,女生为B,画树状图得:∵共有20种等可能的结果,恰好抽到都是女性的有6种情况,∴恰好都是女性的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.【分析】(1)根据平移的性质可得△A1B1C1;(2)根据旋转的性质可得△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题主要考查了作图﹣平移变换,旋转变换,熟练掌握平移和旋转的性质是解题的关键.21.(8分)如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=3,BC=6,DE=4,求EF的长;(2)如果DE:EF=2:3,AC=25,求AB的长.【分析】(1)根据平行线分线段成比例定理得出=,再把AB=3,BC=6,DE=4代入,即可求出EF;(2)根据平行线分线段成比例定理得出=,再把DE:EF=2:3,AC=25代入,即可求出AB.【解答】解:(1)∵l1∥l2∥l3,∴=,∵AB=3,BC=6,DE=4,∴=,解得:EF=8;(2))∵l1∥l2∥l3,∴=,∵DE:EF=2:3,AC=25,∴=,解得:AB=10.【点评】本题考查了平行线分线段成比例定理,能正确根据平行线分线段成比例定理得出比例式是解此题的关键.22.(9分)随着国家乡村振兴政策的推进,凤凰村农副产品越来越丰富.为增加该村村民收入,计划定价销售某土特产,他们把该土特产(每袋成本10元)进行4天试销售,日销量y(袋)和每袋售价x(元)记录如下:时间第一天第二天第三天第四天x/元15202530y/袋25201510若试销售和正常销售期间,日销量y与每袋售价x的一次函数关系相同,解决下列问题:(1)求日销量y关于每袋售价x的函数关系式;(2)请你帮村民设计,每袋售价定为多少元,才能使这种土特产每日销售的利润最大?并求出最大利润.(利润=销售额﹣成本)【分析】(1)根据表格中的数据,利用待定系数法,即可求出日销售量y(袋)与销售价x(元)的函数关系式;(2)利用“每袋利润×日销量=总利润”列出函数解析式,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b,得,解得,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40;(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400,配方,得w=﹣(x﹣25)2+225,∵﹣1<0∴当x=25时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点评】本题考查一次函数的应用,二次函数的应用,理解题意,掌握待定系数法是解题的关键.23.(9分)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.【分析】(1)由垂径定理得到=,因此∠BOC=∠AOC=60°,得到∠AOB=∠AOC+∠BOC=120°,由圆周角定理即可求出∠CEB的度数;(2)由垂径定理,圆周角定理求出∠CEB的度数,得到∠C的度数,由三角形外角的性质求出∠EOG 的度数,由锐角的正切定义即可求出EG的长.【解答】解:(1)∵半径OC垂直于弦AB,∴=,∴∠BOC=∠AOC=60°,∴∠AOB=∠AOC+∠BOC=120°,∵∠CEB=∠BOC,∴∠CEB=30°;(2)如图,连接OE,∵半径OC⊥AB,∴=,∴∠CEB=∠AOC=30°,∵EF=EB,∴∠EFB=∠B=75°,∴∠DFC=∠EFB=75°,∵OE=OC,∴∠C=∠OEC=15°,∴∠EOG=∠C+∠OEC=30°,∵GE切圆于E,∴∠OEG=90°,∴tan∠EOG==,∵OE=OA=3,∴EG=.【点评】本题考查垂径定理,圆周角定理,切线的性质,等腰三角形的性质,直角三角形的性质,解直角三角形,三角形外角的性质,关键是由圆周角定理,等腰三角形的性质求出∠C=15°,由三角形外的性质求出∠EOG的度数,由锐角的正切定义即可求出EG的长.24.(10分)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.【分析】(1)由点A(,0)与点B(0,﹣),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC 是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.【解答】解:(1)∵⊙M经过O、A、B三点,且∠AOB=90°,∴AB为直径∵点A为(,0),点B为(0,﹣),∴OA=,OB=,∴AB==2,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE 是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°﹣∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA﹣AF=,∴点E的坐标为:(,).【点评】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.25.(10分)若关于x的函数y,当t﹣1≤x≤t+1时,函数y的最大值为P,最小值为Q,令函数m=P﹣Q,我们不妨把函数m称之为函数y的“至善函数”.(1)若函数y=2023x,求函数y的“至善函数”m的值;(2)若函数,求函数y的“至善函数”m的解析式;(3)对于函数y=﹣x2+tx+a,若无论实数t为何值,函数y的最大值恒大于函数y的“至善函数”m的最小值,求出a的范围.【分析】(1)直接根据“至善函数”的定义解答即可;(2)分k>0、k<0两种情况分别运用根据“至善函数”的定义解答即可;(3)先根据二次函数的性质求得对称轴,然后分、、三种情况,分别结合题意以及二次函数的最值求解即可.【解答】解:(1)∵在y=2023x中,2023>0,∴y随x的增大而增大,∵,∴函数y的最大值为P=2023(t+1),最小值为Q=2023(t﹣1),∴函数y的“至善函数”m的值为m=2023(t+1)﹣2023(t﹣1)=4046.(2)①当k>0时,∴y随x的增大而减小,∵,∴函数y的最大值为,最小值为,∴函数y的“至善函数”m的值为;②当k<0时,∴y随x的增大而增大,∵,∴函数y的最大值为,最小值为,∴函数y的“至善函数”m的值为;综上,函数y的“至善函数”m的解析式为或.(3)∵,∴函数的对称轴为直线,y的最大值为,①当时,即t≥2时,此时,函数y的最大值为,最小值为:,∴y的“至善函数”m的值为:m=(a﹣1+t)﹣(a﹣1﹣t)=2t,∵t≥2,∴当且仅当t=2时,m的最小值为4,∵无论实数t为何值,函数y的最大值恒大于函数y的“至善函数”m的最小值,∴a﹣1﹣t>4,即a>4+1+t=5+t>7;②当时,即t≤﹣2,此时,函数y的最大值为,最小值为:,∴y的“至善函数”m的值为:m=(a﹣1﹣t)﹣(a﹣1+t)=﹣2t,∵t≤﹣2,∴当且仅当t=﹣2时,m的最小值为4,∵无论实数t为何值,函数y的最大值恒大于函数y的“至善函数”m的最小值,∴a﹣1+t>4,即a>4+1﹣t=5﹣t>7;③当,即﹣2≤t≤2时,函数y的最大值为,当时,即0≤t≤2时,此时,函数y的最小值,∴y的“至善函数”m的值为:,∴当且仅当t=0时,m的最小值为1,∴,即,∵0≤t≤2∴0<a<1;当时,即﹣2≤t≤0时,此时,函数y的最小值,∴y的“至善函数”m的值为:,∴当且仅当t=0时,m的最小值为1,∴,即,∵0≤t≤2∴0<a<1.综上,a的取值范围为0<a<1或a>7.【点评】本题主要考查了新定义函数、二次函数的性质、二次函数的最值等知识点,理解“至善函数”的概念是解题的关键.。
湖北省十堰市实验中学2022-2023学年九年级上学期第三次月考数学试题
湖北省十堰市实验中学2022-2023学年九年级上学期第三次月考数学试题一、单选题1.﹣5的绝对值是( ) A .5B .﹣5C .15-D .152.如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .3.下列计算正确的是( ) A .248a a a ⋅= B .34a a a ÷= C .()32626a a -=-D .2235a a a +=4.下列说法错误..的是( ) A .对角线互相平分的四边形是平行四边形 B .同圆或等圆中,同弧所对的圆周角相等 C .对角线垂直且互相平分的四边形是菱形 D .对角线相等的四边形是矩形5.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个?如果设甲每小时做x 个零件,则所列方程为( ) A .90606x x =+ B .90606x x=+ C .90606x x=- D .90606x x =- 6.如图,ABC V 与DEF V 位似,点O 为位似中心,相似比为2:3,若ABC V 的周长为6,则D E F V 的周长是( )A.4 B.6 C.9 D.167.如图,小丽荡秋千,秋千链子的长为OA,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,秋千摆至最高位置时与最低位置时的高度之差(即CD)为0.5米.则秋千链子的长OA为()A.2米B.2.5米C.1.5米D.13米8.如图,在ABCV中,按以下步骤作图:①分别过点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若4AB ,则AM的长为()A .B .C .D .29.将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则252表示的有序数对是( ) A .()14,16B .()14,24C .()16,27D .()16,2910.已知,反比例函数()0ky k x=≠的图像经过点()4,2B -,如图,过点B 作直线AB 与函数ky x=的图像交于点A ,与x 轴交于点C ,且3A B B C =,过点A 作直线AF AB ⊥,交x 轴于点F ,则CF 的长为( )A .20B .C .D .二、填空题11.某市GDP 总量为429000000000元,将429000000000用科学记数法表示为. 12.不等式组21241x xx x ≥-⎧⎨+>-⎩的解集为.13.如图,在Rt ABC △中,CD 是斜边AB 上的中线,若4CD =,6AC =,则t a n B 的值是.14.如图,AB 是O e 的直径,弦CD 交AB 于点E ,连接AC ,AD .若28BAC ∠=︒,则D ∠=°15.如图,扇形纸片AOB 的半径为6,沿AB 折叠扇形纸片,点O 恰好落在»AB 上的点C 处,图中阴影部分的面积为.16.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,并与x 轴交于A ,B 两点,若5OA OB =,则下列结论中:①<0abc ;②()220a c b +-=;③90a c +<;④若m 为任意实数,则224am bm b a ++≥,正确的序号是.三、解答题170120222sin 60-+︒18.先化简,再求值:2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a =.19.已知关于x 的一元二次方程()222120x m x m -++-=有两个实数根1x ,2x .(1)求实数m 的取值范围;(2)若方程的两个实数根1x ,2x 满足221221x x +=,求m 的值. 20.为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的统计表和统计图.根据图表信息,回答下列问题:(1)表中=a ___________;扇形统计图中,C 等级所占的百分比是___________;D 等级对应的扇形圆心角为___________度;若全校共有1600名学生参加了此次知识竞赛活动,请估计成绩为A 等级的学生共有___________人;(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率. 21.海中有一小岛P ,在以P为圆心、半径为的圆形海域内有暗礁.一轮船自西向东航行,它在A 处时测得小岛P 位于北偏东60︒方向上,且A ,P 之间的距离为32nmile . (1)若轮船继续向正东方向航行,轮船有无触礁危险?请画出图形并计算说明.(2)如果有危险,求轮船自A 处开始至多沿南偏东多少度的方向航行,能安全通过这一海域? 22.如图,AB 是O e 的直径,点C ,D 为O e 上的两点,且BD 平分ABC ∠,连接AC ,与BD 交于点E ,过点A 作AF AE =交BD 的延长线于点F .(1)求证:直线AF 是O e 的切线; (2)若10AB =,6BC =,求BE 的长.23.李大爷在某单位的帮扶下,把一片地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()761202030mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩,为正整数,为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入−成本).(1)m =___________,n =___________.(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少元? (3)在销售蓝莓的30天中,当天利润不低于896元的共有多少天?24.(1)如图1,在正方形ABCD 中,E 是BC 的中点,AE EP ⊥,EP 与正方形的外角DCG ∠的平分线交于P 点.直接写出AE 与EP 的数量关系____________.(2)如图2,在正方形ABCD 中,E 为BC 边上一动点(点E ,B 不重合),AEP △是等腰直角三角形,90AEP ∠=︒,连接CP ,求DCP ∠的大小.(3)如图3,在正方形ABCD 中,E 为BC 边上一动点(点E ,B 不重合),AEP △是等腰直角三角形,90AEP ∠=︒,连接DP ,当AB =ADP △周长的最小值.25.在平面直角坐标系xOy 中,已知抛物线()20y ax bx c a =++≠与x 轴交于()1,0A 和()3,0B ,与y 轴正半轴交于点C ,且3OC OA =,点D 为抛物线的顶点.(1)求抛物线的解析式;(2)在线段BC 下方的抛物线上存在点P ,使34PBC BOC S S =△△,求P 点坐标. (3)若在抛物线上有一点Q ,使QAB BCD ∠=∠,求Q 点坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上学期数学第三次月考试卷(I)卷
一、单选题 (共12题;共24分)
1. (2分) (2016八上·江阴期末) 下列各数:,,0,-1中,无理数是()
A .
B .
C . 0
D . -1
2. (2分) (2018八上·江汉期末) 如图图形不是轴对称图形的是()
A .
B .
C .
D .
3. (2分) (2017八下·兴化期中) 如果点P(a,b)在的图像上,那么在此图像上的点还有()
A . (0,0)
B . (a,-b)
C . (-a,b)
D . (-a,-b)
4. (2分) (2019九上·磴口期中) 如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
A .
B .
C .
D .
5. (2分)(2018·普宁模拟) 已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()
A . ﹣1
B . 0
C . 1
D . 3
6. (2分) (2017九上·杭州月考) 下列说法正确的是()
A . “明天的降水概率为80%”,意味着明天有 80%的时间降雨
B . 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等
C . “某彩票中奖概率是1%”,表示买 100 张这种彩票一定会中奖
D . 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”
7. (2分)⊙O的直径为9,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()
A . 相交
B . 相切
C . 相离
D . 无法确定
8. (2分) (2018九上·桐乡期中) 如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()
A .
B .
C .
D .
9. (2分) (2019七下·台州月考) 在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位长度,其行走的路线如图所示,第1次移动到A1 ,第2次移动到A2……,第n次移动到An,则三角形OA2A2018的面积是()
A .
B .
C .
D .
10. (2分) (2017九上·黄石期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有()
A . 3个
B . 4个
C . 5个
D . 6个
11. (2分) (2018九上·西安期中) 某反比例函数的图象经过点(-2,3),则此函数图象也经过()
A . (2,-3)
B . (-3,3)
C . (2,3)
D . (-4,6)
12. (2分)(2018·萧山模拟) 如图,在等边三角形ABC中,点P是BC边上一动点(不与点B,C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
13. (1分) (2017九上·东台月考) 已知x=2是方程的一个根,则m的值是________.
14. (1分) (2019九上·东台期中) 设A(-2,y1),B(1,y2),C(2,y3)是抛物线y =(x+1)2+2上的三点,则y1 , y2 , y3的大小关系为________.(用>号连接).
15. (1分)如图,在平面直角坐标系中,点A、B均在函数y=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点A的坐标为(3,2),且⊙A的半径是⊙B 的半径的2倍,则点B的坐标为________.
16. (1分)(2019·封开模拟) 如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是________.(结果保留π)
17. (1分) (2019九上·河西期中) 抛物线y=x2-4x-10与x轴的两交点间的距离为________.
18. (1分) (2019七下·博兴期中) 已知二元一次方程,用含有的式子表示 ________
三、解答题 (共8题;共82分)
19. (10分)(2019·湖州模拟) 计算:
(1);
(2) x2-4x=-3
20. (10分) (2019八上·定安期末) 计算
(1) (x+y)2-2x(x+y);
(2) (a+1)(a-1)-(a-1)2;
(3)先化简,再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3, .
21. (11分)(2019·河池模拟) 我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了解析统计,制作了如下两幅不完整的统计图.
(1)李老师采取的调查方式是________(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共________件,其中B班征集到作品________,请把图2补充完整________.
(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是
女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出解析过程)
22. (10分) (2018九上·东河月考) 如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的表达式;
(2)求直线BC的表达式.
23. (10分) (2017九下·盐都期中) 某公司开发出一种高科技电子节能产品,投资2500万元一次性购买整套生产设备,此外生产每件产品需成本20元,每年还需投入500万广告费,按规定该产品的售价不得低于30元/件且不得高于70元/件,该产品的年销售量y (万件)与售价x(元/件)之间的函数关系如下表:
x(元/件)3031 (70)
y(万件)120119 (80)
(1)求y与x的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?冰球出当盈利最大或亏损最小时该产品的售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品定价,能否使两年盈利3500万元?若能,求第二年产品的售价;若不能,说明理由.
24. (10分) (2018九上·南京期中) 如图,已知等腰△ABC,AB=AC,⊙O是△ABC 的外接圆,点D是弧AC上一动点,连接CD并延长至点E,使得AE=AD.
(1)求证:①∠DAE=∠BAC;②EC=BD;
(2)若EC∥AB,判断AE与⊙O的位置关系.
25. (6分) (2018九上·东台期中) 已知关于x的方程x2+ax﹣2=0.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根;
(2)若x=2是方程的一个根,求a的值及该方程的另一根.
26. (15分) (2018九上·杭州期末) 如图,矩形窗户边框ABCD由矩形AEFD,矩形BNME,矩形CFMN组成,其中AE:BE=1:3.已知制作一个窗户边框的材料的总长是6米,设BC=x(米),窗户边框ABCD的面积为S(米2)
(1)①用x的代数式表示AB;
②求x的取值范围.
(2)求当S达到最大时,AB的长.
参考答案
一、单选题 (共12题;共24分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
11、答案:略
12、答案:略
二、填空题 (共6题;共6分)
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题 (共8题;共82分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略
第11 页共11 页。