整式加减知识点归纳及练习

合集下载

《好题》七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含答案解析)

《好题》七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含答案解析)

一、解答题1.若关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项,求2m+3n的值.解析:-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m、n的值后代入进行计算即可.【详解】my3+3nx2y+2y3-x2y+y=(m+2)y3+(3n-1)x2y+y,∵此多项式不含三次项,∴m+2=0,3n-1=0,∴m=-2,n=1,3∴2m+3n=2×(-2)+3×1=-4+1=-3.3【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m、n的值.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条x,分别回答下列的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求P的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)解析:(1) x<5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x.解答:解:(1)由折纸过程可知0<5x<26,∴0<x<5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.5.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 6.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系.(3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析.【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系. (2)选择如下图的九宫格,验证他们的关系即可.(3)设九宫格中央这个数为a ,列等式进行验证即可.【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍.理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=.即四个角上的四个数之和等于九宫格中央这个数的4倍.【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.7.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 解析:8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.8.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知,左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.9.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.10.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19=;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n+;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=2n;1+3+5+…+19的个数为:191102+=,∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.11.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.12.一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.13.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+--22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.14.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 15.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.16.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式;(2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0.【分析】(1)根据B =4a 2b ﹣3ab 2+4abc -2A 列出关系式,去括号合并即可得到B ;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值.【详解】解:(1)∵2A+B=4a2b﹣3ab2+4abc,∴B=4a2b﹣3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc;(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc) =6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2;(3)对,由(2)化简的结果可知与c无关,将a=18,b=15代入,得8a2b-5ab2=8×218⎛⎫⎪⎝⎭×15-5×18×21()5=0.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a,个位数字为b,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a,个位数字为b,则原来两位数为10a+b,交换后的新两位数为10b+a,(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知多项式-13x2y m+1+12xy2-3x3+6是六次四项式,单项式3x2n y2的次数与这个多项式的次数相同,求m2+n2的值.解析:13【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.20.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 21.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.22.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 24.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.25.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.26.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 27.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.28.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.29.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;∴所挡的二次三项式为x2﹣8x+4.(2)当x=﹣2时,x2﹣8x+4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.30.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.。

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)【知识点1:合并同类项】1. 同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.1.1 判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.1.2 同类项与系数无关,与字母的排列顺序无关.1.3 一个项的同类项有无数个,其本身也是它的同类项.2. 合并同类项2.1 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.2 法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.2.3 合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项时,只把系数相加减,字母、指数不作运算,照抄即可.【知识点2:去括号与添括号】1. 去括号法则:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2. 去括号法则诠释:2.1 去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.2.2 去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.2.3 对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.2.4 去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.3. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.4. 添括号法则诠释:4.1 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.4.2 去括号和添括号是两种相反的变形,因此可以相互检验正误:如:a +b −c 添括号→ a +(b −c) a −b +c 添括号→ a −(b −c)【知识点3:整式的加减运算法则】1. 运算顺序: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式的加减运算法则诠释:2.1 整式加减的一般步骤是:①先去括号;②再合并同类项.2.2 两个整式相加减时,减数一定先要用括号括起来.2.3 整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点1:同类项的概念】1. 下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a)5与(-3)5⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C【解析】所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.2. 判断下列各组是同类项的有 ( ) .①0.2x 2y 和0.2xy 2;②4abc 和4ac ;③-130和15;④-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组【答案】B【解析】 ①0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.②4abc 和4ac 所含字母不同.③-130和15都是常数,是同类项.④-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.3. 如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C【解析】根据题意得:a+1=2,b=3,则a=1.4. 若﹣2a m b 4与3a 2b n+2是同类项,则m+n= .【答案】4.【解析】∵﹣2a m b 4与3a 2b n+2是同类项,∴{m =2n +2=4解得:{m =2n =2则m+n=4.故答案为:4.5. 如果单项式﹣xy b+1与12x a ﹣2y 3是同类项,那么(a ﹣b )2015= .【答案】1.【解析】由同类项的定义可知,a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.6. 指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)3x 2y 3与-y 3x 2;(2)2x 2yz 与2xyz 2;(3)5x 与xy ;(4)-5与8【答案】(1)(4)是同类项;(2)不是同类项,因为2x 2yz 与2xyz 2所含字母x ,z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【解析】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.7. 若单项式13a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.【答案】8【解析】解:由13a 3b n+1和2a 2m ﹣1b 3是同类项,得{2m −1=3n +1=3, 解得{m =2n =2. 当m=2,n=2时,3m+n=3×2+2=6+2=8.8. 如果单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2021的值;(2)若5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,求(5m ﹣5n )2022的值.【答案】(1)-1;(2)0【解析】(1)由单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项,得a=2a ﹣3,解得a=3;∴(7a ﹣22)2021=(7×3﹣22)2021=(﹣1)2021=﹣1;(2)由5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,得5m ﹣5n=0,解得m=n ;∴(5m ﹣5n )2022=02022=0.9. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A.6 B.d C.c D.e【答案】D【解析】题中“?”所表示的单项式与“5e”是同类项,故“?”所代表的单项式可能是e,故选D.【考点2:“去括号”与“添括号”】1.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n【答案】C【解析】原式=m﹣n﹣m﹣n=﹣2n.故选C.2.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y);(3)8m-(3n+5);(4)n-4(3-2m);(5)2(a-2b)-3(2m-n).【答案】(1)d-6a+4b-6c;(2)xy+1-x+y【解析】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.(3)8m-(3n+5)=8m-3n-5.(4)n-4(3-2m)=n-(12-8m)=n-12+8m.(5)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.3.在各式的括号中填上适当的项,使等式成立.(1).2x+3y-4z+5t=-( )=+( )=2x-( )=2x+3y-( );(2).2x-3y+4z-5t=2x+( )=2x-( )=2x-3y-( )=4z-5t-( );(3).a-b+c-d=a-( );(4).x+2y-z=-( );(5)a2-b2+a-b=(a2-b2)+( );(6).a2-b2-a-b=a2-a-( ). 【答案】(1)-2x-3y+4z-5t,2x+3y-4z+5t,-3y+4z-5t,4z-5t(2)-3y+4z-5t,3y-4z+5t,-4z+5t,-2x+3y.(3)b-c+d (4)-x-2y+z (5)a-b (6)b2+b【解析】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.(1) 2x+3y-4z+5t=-(-2x-3y+4z-5t)=+( 2x+3y-4z+5t)=2x-(-3y+4z-5t)=2x+3y-(4z-5t)(2)2x-3y+4z-5t=2x+(-3y+4z-5t)=2x-(3y-4z+5t)=2x-3y-(-4z+5t)=4z-5t-(-2x+3y)(3)a-b+c-d=a-(b-c+d);(4)x+2y-z=-(-x-2y+z);(5)a2-b2+a-b=(a2-b2)+(a-b);(6)a2-b2-a-b=a2-a-(b2+b).4.按要求把多项式3a-2b+c-1添上括号:(1)把含a、b的项放到前面带有“+”号的括号里,不含a、b的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】(1) 3a-2b+c-1=(3a-2b)-(-c+1);(2) 3a-2b+c-1=(3a+c)-(2b+1).【考点3:整式加减】1.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0D. 5a2﹣4a2=1 【答案】C【解析】3a和2b不是同类项,不能合并,A错误;2a3和3a2不是同类项,不能合并,B错误;3a2b﹣3ba2=0,C正确;5a2﹣4a2=a2,D错误,故选:C.2.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是( ).A.十四次多项式 B.七次多项式C.不高于七次的多项式或单项式 D.六次多项式【答案】C【解析】根据多项式相加的特点,多项式次数不增加,项数增加或减少可得:A+B 一定是不高于七次的多项式或单项式.故选C.3.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( ) A.-5x-1 B.5x+1 C.-13x-1 D.13x+1【答案】A【解析】 (3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.4.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=1x2+x﹣1,C=x2+2x,那么A﹣B=2()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【答案】C.x2+x﹣1)﹣(x2+2x)【解析】根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(12=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.5.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,则代数式|a|-|c-a|+|c-b|-|-b|的值为().A.-2c B .0 C.2c D.2a-2b+2c【答案】A【解析】由图可知:a<c<0<b,所以|a|-|c-a|+|c-b|-|-b|=-a-(c-a)+(b-c)-b=-2c.6.如图所示,阴影部分的面积是( ).A.112xy B.132xy C.6xy D.3xy【答案】A【解析】S阴=2x×3y-0.5y×x=6xy-12xy=112xy7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为( ) .A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n-10)厘米【答案】C.【解析】观察上图,可知n块石棉瓦重叠的部分有(n-1)处,则n块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.8.若23a2b m与−0.5a n b4的和是单项式,则m=,n=.【答案】4,2.【解析】23a2b m与−0.5a n b4的和是单项式,∴23a2b m与−0.5a n b4是同类项,即可得:m=4,n=29.若5a|x|b3与-0.2a3b|y|可以合并,则x= ,y= .【答案】±3;±3【解析】∵5a|x|b3与-0.2a3b|y|可以合并∴5a|x|b3与-0.2a3b|y|为同类项即可得|x|=3.|y|=3解得:x=±3,y=±310.如图所示,长方形内有两个相邻的正方形,面积分别为9和a2(a>0).那么阴影部分的面积为________.【答案】3a-a2【解析】由图形可知阴影部分面积=长方形面积-a2-9,而长方形的长为3+a,宽为3,∴S阴=3(3+a)-9-a2=3a-a211.任意一个三位数,减去它的三个数字之和所得的差一定能被______整除. 【答案】9【解析】设任意一个的三位数为a×102+b×10+c.其中a是1~9的正整数,b,c分别是0~9的自然数.∵(a×102+b×10+c)-(a+b+c)=99a+9b=9(11a+b)=9m. (用m表示整数11a+b) . ∴任意一个三位数,减去它的三个数字之和所得的差一定能被9整除.12.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5【答案】(1)-7x2-4y2-6xy ;(2)8x2y-2xy2+2【解析】①所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;②在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+213.合并同类项:(1)3x-2x2+4+3x2-2x-5(2)6a2-5b2+2ab+5b2-6a2(3)-5yx2+4xy2-2xy+6x2y+2xy+5(4)3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3(注:将“x-1”或“1-x”看作整体)【答案与解析】(1)原式=(3-2)x+(-2+3)x2+(4-5)=x+x2-1(2)原式=(6-6)a2+(-5+5)b2+2ab=2ab(3)原式=(-5+6)x2y+(-2+2)xy+4xy2+5=x2y+4xy2+5(4)原式=(3-5)(x-1)2+(-2-4)(x-1)3=-2(x-1)2-6(x-1)314.一个多项式加上4x3-x2+5得3x4-4x3-x2+x-8,求这个多项式.【答案】3x4-8x3+x-13【解析】在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.(3x4-4x3-x2+x-8)-(4x3-x2+5)=3x4-4x3-x2+x-8-4x3+x2-5=3x4-8x3+x-1315.已知2a3+m b5-pa4b n+1=-7a4b5,求m+n-p的值.【答案】-4【解析】两个单项式的和仍是单项式,这就意味着2a3+m b5与pa4b n+1是同类项.可得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴ m+n-p=1+4-9=-4.【考点4:化简求值】1.若m2-2m=1则2m2-4m+2020的值是________.【答案】2024【解析】2m2-4m+2008=2(m2-2m)+2008=2×1+2022=20242.已知a=-(-2)2,b=-(-3)3,c=-(-42),则-[a-(b-c)]的值是________.【答案】15【解析】因为a=-(-2)2=-4,b=-(-3)3=27,c=-(-42)=16,所以-[a-(b-c)]=-a+b-c=15.3.有理数a,-b在数轴上的位置如图所示,化简|1-3b|-2|2+b|+|2-3a|= .【答案】b+3a-7【解析】-b<-3,b>3,所以原式=3b-1-2(2+b)+(3a-2)=b+3a-7.4.当p=2,q=1时,分别求出下列各式的值.(1)(p−q)2+2(p−q)−13(q−p)2−3(p−q);(2)8p2−3q+5q−6p2−9【答案】(1)−123;(2)1【解析】(1)把(p−q)当作一个整体,先化简再求值:(p−q)2+2(p−q)−13(q−p)2−3(p−q)=(1−13)(p−q)2+(2−3)(p−q)=−23(p−q)2−(p−q)又p−q=2−1=1;∴原式=−23(p−q)2−(p−q)=−23×12−1=−123(2)先合并同类项,再代入求值.8p2−3q+5q−6p2−9=(8−6)p2+(−3+5)q−9=2p2+2q−9当p=2,q=1时,原式=2p2+2q−9=2×22+2×1−9=1 5.先化简,再求值:(1)3x2-8x+x3-12x2-3x3+1,其中x=2;(2)4x2+2xy+9y2-2x2-3xy+y2,其中x-2,y=1.【答案】(1)-67;(2)16【解析】(1)原式=-2x3-9x2-8x+1,当x=2时,原式=-2×23-9×22-8×2+1=-67.(2)原式=2x2-xy+10y2,当x=2,y=1时,原式=2×22-2×1+10×12=16.6. 先化简,再求各式的值:12x +(−32x +13y 2)−(2x −23y 2),其中x =−2,y =23; 【答案与解析】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?原式=12x −32x +13y 2−2x −23y 2=−3x +y 2当x =−2,y =23时,原式=−3×(−2)+(23)2=6+49=649.7. 先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案与解析】(-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.8. 化简:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2.【答案】-a 2-3b 2【解析】a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2=(a 2﹣2a 2)+(﹣2ab+2ab )+(b 2﹣4b 2)=﹣a 2﹣3b 2.9. 化简求值:(1)当a =1,b =−2时,求多项式5ab −92a 3b 2−94ab +12a 3b 2−114ab −a 3b −5的值.(2)若|4a +3b |+(3b +2)2=0,求多项式2(2a+3b)2-3(2a+3b)+8(3a+3b)2-7(2a+3b)的值.【答案与解析】(1)先合并同类项,再代入求值:原式=(−92+12)a 3b 2+(5−94−114)ab −a 3b −5=−4a 3b 2−a 3b −5 将a =1,b =−2代入,得:−4a 3b 2−a 3b −5=-4×13-(-2)2-13×(-2)-5=-19(2)把(2a+3b )当作一个整体,先化简再求值:原式=(2+8)(2a+3b)2+(-3-7)(2a+3b )=10(2a+3b)2-10(2a+3b )由|4a +3b |+(3b +2)2=0可得:4a +3b =0,3b +2=0两式相加可得:4a +6b =−2,所以有2a +3b =−1代入可得:原式=10×(-1)2-10×(-1)=2010. 已知3x a+3y 4与-2xy b-2是同类项,求代数式3b 2-6a 3b-2b 2+2a 3b 的值.【答案】228【解析】∵3x a+3y 4与-2xy b-2是同类项∴a+3=1,b-2=4.∴a=-2,b=6.∵3b 2-6a 3b-2b 2+2a 3b=(3-2)b 2+(-6+2)a 3b=b 2-4a 3b∴当a=-2,b=6时,原式=62-4×(-2)3×6=22811. 先化简,再求值:3(y+2x )-[3x-(x-y )]-2x ,其中x ,y 互为相反数.【答案与解析】3(y+2x )-[3x-(x-y )]-2x=3y+6x-3x+x-y-2x=2(x+y) 因为x ,y 互为相反数,所以x+y=0所以3(y+2x )-[3x-(x-y )]-2x=2(x+y)=2×0=012. 已知代数式3y 2-2y+6的值为8,求32y 2-y+1的值.【答案】2【解析】∵3y 2-2y+6=8,∴3y 2-2y=2.当3y 2-2y=2时,原式=12(3y 2-2y )+1=12×2+1=2 13. 已知xy=-2,x+y=3,求整式(3xy+10y )+[5x-(2xy+2y-3x )]的值.【答案】22【解析】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看 成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.原式=3xy+10y+(5x-2xy-2y+3x )=3xy+10y+5x-2xy-2y+3x=8x+8y+xy=8(x+y )+xy 把xy=-2,x+y=3代入得,原式=8×3+(-2)=24-2=2214. 先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=12,且xy <0.【答案与解析】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=12,且xy <0,∴x=﹣2,y=12,则原式=﹣52﹣8=﹣212.15. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案】(1)-45;(2)-10【解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【考点5:“无关”与“不含”型问题】1. 代数式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关【答案】B【解析】合并同类项后的结果为-3x 3-2,故它的值只与x 有关.2. 多项式x 2﹣3kxy ﹣3y 2+xy ﹣8化简后不含xy 项,则k 为( )A .0B .−13C .13D .3【答案】C【解析】原式=x 2+(1﹣3k )xy ﹣3y 2﹣8,因为不含xy 项,故1﹣3k=0,解得:k=13.故选C .3. 如果对于某一个特定范围内x 的任意允许值,P=|1-2x|+|1-3x|+…+|1-10x|的值恒为一个常数,则此值为 ( ).A. 2B. 3C. 4D. 5【答案】B【解析】P 值恒为一常数,说明原式去绝对值后不含x 项,由此得:P =(1-2x )+(1-3x )+…+(1-7x )+(8x-1)+(9x-1)+(10x-1)=34. 当k = 时,代数式x 2−3kxy −3y 2−13xy −8中不含xy 项. 【答案】−19【解析】合并同类项得:x 2+(−3k −13)xy −3y 2−8.由题意得−3k −13=0. 故k =−19.5. 李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y-4x 3+2x 3y-2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案与解析】解:6x 3-2x 3y-4x 3+2x 3y-2x 3+15=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.6. 已知关于x ,y 的代数式x 2−3kxy −3y 2−13xy −8中不含xy 项,求k 的值.【答案】k =−19【解析】x 2−3kxy −3y 2−13xy −8=x 2+(−3k −13)xy −3y 2−8 因为不含xy 项,所以此项的系数应为0,即有:−3k −13=0,解得:k =−19.7. 试说明多项式x 3y 3-12x 2y+y 2-2x 3y 3+0.5x 2y+y 2+x 3y 3-2y-3的值与字母x 的取值无关.【答案】5【解析】根据题意得:m﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.8.要使关于x,y的多项式mx3+3nxy2+2x3-xy2+y不含三次项,求2m+3n的值.【答案】-3【解析】原式=(m+2)x3+(3n-1)xy2+y要使原式不含三次项,则三次项的系数都应为0,所以有:m+2=0,3n-1=0,即有:m=-2,n=13所以2m+3n=2×(-2)+3×13= -3.9.已知:ax2+2xy-x与2x2-3bxy+3y的差中不含2次项,求a2-15ab+9b2的值. 【答案】28【解析】(ax2+2xy-x)-(2x2-3bxy+3y)=ax2+2xy-x-2x2+3bxy-3y=(a-2)x2+(2+3b)xy-x-3y. ∵此差中不含二次项,∴a-2=0,2+3b=0解得:a=2,3b=-2当a=2且3b= -2时,a2-15ab+9b2=a2-5a(3b)+(3b)2=22-5×2×(-2)+(-2)2=4+20+4=28.10.若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd. 【答案】-27【解析】由已知 ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴{a=2b−1=−78=−2(c+1)−2=3a+7解得:{a=2b=−6c=−5d=−3∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.11.若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.【答案】2【解析】 -2x2+mx+nx2+5x-1=(n-2)x2+(m+5)x-1∵此多项式的值与x的值无关,∴{n−2=0m+5=0解得:{n=2m=−5当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n有最小值为2.12.若关于x,y的多项式:x m-2y2+mx m-2y+nx3y m-3-2x m-3y+m+n,化简后是四次三项式,求m+n的值.【答案】4【解析】分别计算出各项的次数,找出该多项式的最高此项:因为x m-2y2的次数是m,mx m-2y的次数为m-1,nx3y m-3的次数为m,-2x m-3y的次数为m-2,又因为是三项式 ,所以前四项必有两项为同类项,显然x m-2y2与nx3y m-3是同类项,且合并后为0,所以有m=5,1+n=0 m+n=5+(-1)=4.13.有一道题目:当a=2,b=-2时,求多项式:3a3b3-2a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

整式加减知识点复习及练习

整式加减知识点复习及练习

整式的加减知识点归纳及练习一、代数式概念代数式:用基本的运算符号(包括加+、减-、乘×、除÷、乘方、开方等)把数、表示数的字母连结而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

代数式书写规范:① 数及字母、字母及字母相乘时乘号省略不写,数字要写在字母前面,如12ab ;数字因数是1或-1时,“1”省略不写,如-mn ;② 除号要改写成分数线,如:a ÷b 要写成ba ; ③ 带分数及字母相乘时,带分数要化成假分数;如:ab 211要写成ab 23的形式;④ 若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来,如(12ab +2R )平方米。

二、整式的相关概念:单项式:表示数及字母的乘积的代数式叫单项式。

单独的一个数或一个字母也是代数式。

单项式的系数:单项式中的数字因数。

说明:在单项式中,系数只及数字因数有关;单项式的次数:一个单项式中,所有字母的指数和.。

说明:在单项式中,次数只及字母有关注意:(1)单项式表示数及字母相乘时,通常把数放在字母的前面; (2)单项式的系数包括前面的符号;(3)当一个单项式的系数是1或-1时,“1”通常省略不写; (4)单项式的系数是带分数时,通常写成假分数; (5)单项式中不含有加减运算,分母中也不能有字母。

多项式:几个单项式的和叫做多项式。

说明:多项式是由几个单项式相加得到的多项式的项数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;不含字母的项叫做常数项。

说明:多项式的项,包括符号.如多项式5-3x 2中,二次项是-3x 2.多项式的次数:多项式里,次数最高项的次数叫多项式的次数;说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.常数项的次数为0。

多项式的命名:若多项式里次数最高项的次数是n次,并且有m项,那么它就是n次m项式。

整式的加减知识点总结(含例题)

整式的加减知识点总结(含例题)

整式的加减知识点总结及例题1.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放在一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.K知识参考答案:2.(1)合并同类项;(2)不变;(4)降幂;升幂3.(1)相同;相反一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是A.62和x2B.11abc和9bcC.3m2n3和–n3m2D.0.2a2b和ab2【答案】CA.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4【答案】C二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1【答案】B【解析】A、4a与3b不是同类项,不能直接合并,故本选项错误;B、4xy–3xy=xy,计算正确,故本选项正确;C、–2x+5x=3x,计算错误,故本选项错误;D、2y–y=y,计算错误,故本选项错误.故选B.【名师点睛】合并同类项是逆用乘法对加法的分配律,运用时应注意:(1)不是同类项的项不能合并;(2)同类项的系数相加,字母部分不变;(3)确定好每一项系数的符号.三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体. 【例4】下列去括号正确的是 A .–(a +b –c )=–a +b –c B .–2(a +b –3c )=–2a –2b +6c C .–(–a –b –c )=–a +b +cD .–(a –b –c )=–a +b –c【答案】B四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算. 3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m –(m –n )的结果是 A .2m –nB .n –2mC .–nD .n【名师点睛】整式加减的结果要最简: (1)不能有同类项;(2)含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数.(3)不再含括号.。

整式的加减知识点总结以及题型归纳

整式的加减知识点总结以及题型归纳

整式的加减知识点归纳一 用字母表示数1.字母和数一样可以参与运算2.在含有字母相乘的代数式子中,乘号可以写作“· ”或不写,并且数字写在字母前面。

3.数与字母或字母与字母相除时,应写为分数的形式。

4.如果字母前面的数字是带分数,要把它写成假分数。

5.实际问题中的和差形式且带单位时,应将和,差加括号。

二 单项式1.单项式定义:数字和字母的积的式子叫做单项式。

(单独的数字或字母也是单项式,π是数而不是字母)注:分子中含有字母,分母是数字的代数式也是单项式。

分母中含有字母的代数式叫分式,不是单项式。

2.单项式的系数与次数:单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数.三 多项式和整式1.多项式:几个单项式的和叫多项式.2.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:多项式的每一项包含它前面的符号。

3:常数项:多项式中不含字母的项3.整式:⎩⎨⎧多项式单项式整式 . 四 合并同类项与去括号1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.注:若合并同类项后的系数和为1或-1,可以省略“1”,若合并同类项后的系数和为0,则同类项九尾0.3.去(添)括号法则:去(添)括号时,若括号前边是正因数,括号里的各项都不变号;若括号前边是负因数,括号里的各项都要变号。

(注:注意运用乘法分配律,不要漏乘项)9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.整式的加减的步骤:(1)去括号(2)合并同类项11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语进行列式。

12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.整式的加减题型一:用字母表示数题型1:题型2:某商店经销一批衬衣,每件进价为a 元,零售价比进价高m %,后因市场变化,该商店把零售价调整为原来零售价的n %出售,那么调整后每件衬衣的零售价是( ) A. a (1+m %)(1-n %)元B. am %(1-n %)元C. a (1+m %)n %元D. a (1+m %·n %)元 二:单项式题型1. 找出下列代数式中的单项式,并写出各单项式的系数和次数. x -7,13x ,23a ,8a 3x ,-1,x +13. 题型2下列代数式中:)(61b a +-,,21+m x ,2332c ab -,5,xy x 232-,12+a b ,y 1, 单项式有 ,多项式有 , 整式有题型3:题型4:三:多项式题型1:题型2:若多项式5)4(3-+--x x x a b 是关于x 、y 的二次三项式,则a= ,b= ;.题型3. 如果多项式x 4-(a -1)x 3+5x 2-(b +3)x -1不含x 3和x 项,求a 、b 的值.四:合并同类项及整式的加减题型1: 32m b a 2-与1n ab 5+-是同类项,则=m ___________,n=___________。

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.单项式的概念 (2)2.多项式的概念 (3)3.整式的概念 (4)4.正确列代数式 (5)5.同类项的概念 (7)6.合并同类项 (8)7.去括号法则 (9)8.整式的加减(合并同类项) (10)三、重难点题型 (11)1.整式加法的应用 (11)2.待定系数法 (12)3.整式的代入思想 (13)4.整数的多项式表示 (14)5.与字母的取值无关的问题 (15)6.整式在生活中的应用 (16)二、基础知识点1.单项式的概念单项式:数或字母的积叫作单项式注:①分母中有字母,那就是字母的商,不是单项式②“或”单独的一个数字或单独一个字母也称为单项式例:5x;100;x;10ab等系数:单项式中的数字叫做单项式的系数单项式的次数:一个单项式中所有字母的指数的和例1.判断下列各式中那些是单项式,那些不是?如果是单项式,请指出它的系数和次数。

-13b;13xy2;2π;−ab;32a2b;13a−b;−5x2y33答案:单项式有:-13b,系数为-13,次数为11 3xy2,系数为13,次数为1+2=32π,系数为2π,次数为032a2b,系数为9,次数为2+1=3−5x2y33,系数为−53,次数为2+3=5例2.−xy2z3的系数是,次数是。

答案:系数为:-1,次数为1+2+3=62.多项式的概念多项式:几个单项式的和叫作多项式注:减单项式,实际是加该单项式的负数,也称作“和”项:每个单项式叫做多项式的项,有几项,就叫做几项式常数项:不含字母的项多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n次,就叫做n次式)x2y2按字母y作升幂排列。

例1.将多项式3xy3−4x4+15x2y2+3xy3答案:−4x4+15−4x4中y的次数为01x2y2中y的次数为253xy3中y的次数为3例2.指出下列多项式的项和次数,并说明每个多项式是几次几项式。

(完整版)整式的加减知识点总结及常考题提高难题压轴题练习(含答案及解析]

(完整版)整式的加减知识点总结及常考题提高难题压轴题练习(含答案及解析]

整式的加减知识点总结1. 单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2. 单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数。

3. 单项式的次数:单项式中所有字母的指数的和,叫单项式的次数。

4. 多项式:几个单项式的和叫做多项式。

5. 多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项,多项式里所含单项式的个数就是多项式的项数。

6. 多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0。

注意:若a 、b 、c 、p 、q 是常数,ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式。

7. 多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列;多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列.注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

8。

整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

9.整式分类:⎩⎨⎧多项式单项式整式 注意:分母上含有字母的不是整式.10。

同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变.12。

去括号的法则:(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“-"号去掉,括号里各项的符号都要改变。

13。

添括号的法则:(1)若括号前边是“+"号,括号里的各项都不变号;(2)若括号前边是“—"号,括号里的各项都要变号.14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

第二章 整式的加减(知识点+习题)

第二章 整式的加减(知识点+习题)

1.用字母表示数(1)用字母或含有字母的式子表示数或数量关系,为我们今后的学习和研究带来了极大的方便.从具体的数字抽象到用字母表示数,在认识上是一个重大飞跃.(2)同一问题中不同的数量要用不同的字母表示;不同的问题中不同的数量可以用相同的字母表示;一个字母表示的数往往不止一个,具有任意性,但要受实际问题的限制.2.单项式(1)单项式:由__________组成的式子叫做单项式.如12ab,m2,–x2y.特别地,单独的__________或__________也是单项式.单项式的系数:单项式中的__________.单项式的次数:一个单项式中,__________.(2)注意:①圆周率π是常数,单项式中出现π时,要将其看成系数.②当一个单项式的系数是“1”或“–1”时,“1”通常省略不写,如a2,–m2;次数为“1”时,通常也省略不写,如x.③单项式的系数包括它前面的符号,且只与数字因数有关.④单项式中的数与字母是乘积关系,如23a不是单项式.⑤单项式的次数与数字因数无关,只与字母有关,是单项式中所有字母的指数的和,如单项式b的次数是1,而不是0,常数–5的次数是0,9×103a2b3c 的次数是6,与103无关.3.多项式(1)多项式:几个__________的和叫做多项式.如x2+2xy+2,a2–2.在多项式中,每个单项式叫做多项式的项,不含字母的项叫做__________.多项式里,次数最高项的次数,叫做这个多项式的__________.(2)注意:①多项式的每一项都包括它前面的符号,且每一项都是单项式.②多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和.③一个多项式有几项,就叫它几项式.4.整式:单项式与多项式统称__________.如果一个式子既不是单项式,也不是多项式,那么它一定不是整式.一、用含字母的式子表示数或数量关系列式时要注意:1.数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写.2.数与字母相乘,数写在字母前面.3.数字因数为“1”或“–1”时,常省略“1”.4.当数字因数为带分数时,要写成假分数.5.除法运算要用分数线.6.式子后面有单位且式子是和或差的形式时,应把式子用括号括起来.【例1】用含字母的式子表示下列数量关系.(1)小雪买单价为a元的笔记本4本,共花_________元;(2)三角形的底为a,高为h,则三角形的面积是_________;(3)若正方体的棱长是a–1,则正方体的表面积为_________;(4)自来水每吨m 元,电每度n 元,则小明家本月用水8吨,用电100度,应交费_________元. 二、单项式(1)一个式子是单项式需具备两个条件:①式子中不含运算符号“+”号或“–”号;②分母中不含有字母. (2)确定单项式系数的方法是把式子中的所有字母及其指数去掉,剩余的为其系数.(3)计算单项式的次数时要注意:①没有写指数的字母,实际上其指数为1,计算时不能将其遗漏;②不能将系数的指数计算在内.【例2】指出下列各代数式中的单项式,并写出各单项式的系数和次数−5,−a ,21xy 2,πmn ,−c ab ,23ab ,2a +b ,4)(3n m .三、多项式一个式子是多项式需具备两个条件: (1)式子中含有运算符号“+”或“–”; (2)分母中不含有字母.【例3】多项式–5x 2–xy 4+26xy +3共有__________项,该多项式的次数为__________,最高次项的系数是__________.1.单项式2a 3b 的次数是( ) A .2B .3C .4D .52.在下列各式中,二次单项式是( ) A .x 2+1B .xy 2C .2xyD .(–)213123.单项式–2xy 3的系数和次数分别是( ) A .–2,4B .4,–2C .–2,3D .3,–24.下列说法正确的是( ) A .的系数是–3 B .2m 2n 的次数是2次C .是多项式D .x 2–x –1的常数项是15.下列关于多项式5ab 2–2a 2bc –1的说法中,正确的是( ) A .它是三次三项式B .它是四次两项式C .它的最高次项是–2a 2bcD .它的常数项是16.的系数、次数分别为( )A .,7B .,6 C .,8 D .5π,67.对于式子:,,,3x 2+5x –2,abc ,0,,m ,下列说法正确的是( )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式8.下列单项式中,次数为3的是( )A .B .m nC .3a 2D .9.下列关于单项式的说法中,正确的是( )A .系数是2,次数是2B .系数是–2,次数是3C .系数是,次数是2D .系数是,次数是335xy-23x y -245π6x y 565π65π622x y +2a b 122x y x +223x y-272ab c -223x y-23-23-10.下列关于单项式–的说法中,正确的是( )A .系数是1,次数是2B .系数是–,次数是2C .系数是,次数是3D .系数是–,次数是3 11.多项式x 2–2xy 3–y –1是( ) A .三次四项式 B .三次三项式C .四次四项式D .四次三项式12.下列说法正确的是( )A .的系数是–2B .32ab 3的次数是6次C .是多项式D .x 2+x –2的常数项为213.下列结论正确的是( )A .0不是单项式B .52abc 是五次单项式C .–x 是单项式D .是单项式 14.单项式2ab 2的系数是__________. 15.多项式2a 2b –ab 2–ab 的次数是__________.16.若单项式–2x 3y n 与4x m y 5合并后的结果还是单项式,则m –n =__________. 17.观察下面的一列单项式:2x ;–4x 2;8x 3;–16x 4,…根据你发现的规律,第n 个单项式为__________.18.已知多项式(m –1)x 4–x n +2x –5是三次三项式,则(m +1)n =__________. 19.将多项式a 3+b 2–3a 2b –3ab 2按a 的降幂排列为:__________.23π5x y35153π51223vt-5x y+1x20.指出下列多项式是几次几项式:(1)x 3–x +1; (2)x 3–2x 2y 2+3y 2.21.单项式–与–是次数相同的单项式,求m 的值.22.已知:关于x 的多项式(a –6)x 4+2x ––a 是一个二次三项式,求:当x =–2时,这个二次三项式的值.23.单项式的系数是( )A .B .–C .D .–258m a b 34117x y 12bx 32π3x y zπ3π3131324.单项式–ab 2的系数是( )A .1B .–1C .2D .325.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式26.下列说法中,正确的是( )A .单项式的系数是–2,次数是3B .单项式a 的系数是0,次数是0C .–3x 2y +4x –1是三次三项式,常数项是1D .单项式的次数是2,系数为 27.如果整式x n –3–5x 2+2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .628.一组按规律排列的式子:a 2,,,,…,则第2017个式子是( ) A .B .C .D .29.–的系数是__________,次数是__________.30.单项式2x 2y 的次数是:__________.31.已知多项式kx 2+4x –x 2–5是关于x 的一次多项式,则k =__________.32.单项式–22x y的系数是__________.33.多项式3x m +(n –5)x –2是关于x 的二次三项式,则m ,n 应满足的条件是__________.34.多项式a 3–3ab 2+3a 2b –b 3按字母b 降幂排序得__________.223x y-232ab-92-43a 65a 87a20172016a 20174033a 40344033a 40324031a 25xy35.观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.36.已知多项式x3–3xy2–4的常数是a,次数是b.(1)则a =__________,b =__________;并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数.37.单项式2xy 3的次数是( )A .1B .2C .3D .4A .B.π C .2 D .12π21.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是()A.62和x2B.11abc和9bcC.3m 2n 3和–n3m2D.0.2a2b和ab2A.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是()A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体.【例4】下列去括号正确的是()A.–(a+b–c)=–a+b–c B.–2(a+b–3c)=–2a–2b+6c C.–(–a–b–c)=–a+b+c D.–(a–b–c)=–a+b–c四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算.3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m–(m–n)的结果是()A.2m–n B.n–2m C.–n D.n1.下列去括号正确的是()A.–(3x–1)=–3x–1 B.–(3x–1)=3x–1C.–(3x–1)=–3x+1 D.–(3x–1)–3x+1 2.–a+b–c的相反数是()A.a–b–c B.a–b+c C.a+b–c D.a+b+c 3.计算–(a–1)–(–a+2)+3的结果是()A.6 B.2 C.0 D.–2a+2 4.化简2a–[3b–5a–(2a–7b)]的值为()A.9a–10b B.5a+4bC.–a–4b D.–7a+10b5.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.6.将下列各式去括号:(1)(a–b)–(c–d)=________;(2)–(a+b)+(c–d)=________;(3)–(a–b)–(c–d)=________;(4)(a+b)–3(c–d)=________.7.多项式–8ab2+3a2b与多项式–2ab2+5a2b的差为________.8.若m、n互为相反数,则(3m–2n)–(2m–3n)的值为________.9.化简:(1)2xy+3(4xy–2x)–2(xy–2x);(2)3x2–2(x+x2–3)+3(–2x–4+3x2).10.化简:(1)–(9x3–4x2+5)–(–3–8x3+3x2);(2)2(a2b+ab2)–2(a2b–1)–3(ab2+1).11.观察下列各式:(1)–a+b=–(a–b);(2)2–3x=–(3x–2);(3)5x+30=5(x+6);(4)–x–6=–(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1–b=–2,求-1+a2+b+b2的值.12.在修某县人民路的BRT (快速公交)时,需要对部分建筑进行拆迁,该县政府成立了拆迁工作组,他们步行去做拆迁产生的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km ):出发点,–0.7,+2.7,–1.3,+0.3,–1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处距离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们的步行速度为2km/h ,工作组早上九点出发,做完工作时是下午几点?13.不改变3a 2–2b 2–b+a+ab 的值,把二次项放在前面有“+”的括号内,一次项放在前面有“–”的括号内,下列各式正确的是( )A .+(3a 2+2b 2+ab)–(b+a)B .+(–3a 2–2b 2–ab)–(b –a)C .+(3a 2–2b 2+ab)–(b –a)D .+(–3a 2+2b 2+ab)–(b –a)14.下列各式中,去括号错误的是( )A .3x 2–(2x –y)=3x 2–2x+yB .C .5a+(–2a 2–b 2)=5a –2a 2–b 2D .(–a+3b)–(a 2+b 2)=–a+3b –a 2–b 2()22332244x x x x -+=--15.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a 2+3ab –b 2)–(–3a 2+ab+5b 2)=5a 2–6b 2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是________.16.先化简,再求值:,其中、满足3202x y -++=.17.计算3x 2–x 2的结果是( )A .2B .2x 2C .2xD .4x 2A .3B .6C .8D .919.化简:2x –x=( )A .2B .1C .2xD .x20.下列运算正确的是( ) A .3a+2a=5a 2B .3a+3b=3abC .2a 2bc –a 2bc=a 2bcD .a 5–a 2=a 321.下列式子正确的是( )A .7m+8n=8m+7nB .7m+8n=15mnC .7m+8n=8n+7mD .7m+8n=56mn22113124323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭x y。

整式的加减知识点总结及习题

整式的加减知识点总结及习题

整式的加减【知识要点】一、 同类项:所含字母相同,相同字母的指数也相同的项注:①同类项与字母顺序无关;②几个常数也是同类项二、 合并同类项:1、 概念:把同类项合并成一项2、 方法:①同类项的系数相加;②字母和字母的指数不变3、 步骤:①准确找出同类项;②利用法则,把同类项系数相加;③利用有理数加法计算出各项系数的和,写出结果三、 去括号:1、 意义2、 法则:①括号前是“+”号,去括号后符号不变②括号前是“-”号,去括号后符号改变3、 方法:①由内到外②由外到内③内外同时【典型例题】【例1】 下列各题中的两项是不是同类项?为什么?(1)y x y x 2252与;(2)b a ab 3322与;(3)ab abc 44与;(4)nm mn 与3;(5)-5与+3.(1) 若括号前是数字因数时,应利用乘法分配律先将该数与括号内的各项相乘再去括号。

(2) 去括号前后项数不变。

【例2】 合并下列各式中的同类项。

(1)223x x +;(2)37328422++---a a a a ;(3)m n nm 222123- (4)ab a ab 342-+【例3】 在式子①)5(3y x x --,②mn m mn 7)46(2++-, ③)342(35252222xy y x xy y x +-+-,④)4(7)5(a b b a -+-中,需要先去括号,再合并同类项的有 。

【例4】 先去括号,再合并同类项。

(1))(528b a b a -++;(2))(26c a a --【例5】 下列计算结果正确的是( )。

A 、y x xy x 222253-=-B 、33332222y x xy y x =--C 、xy y x y x 4728324=+D 、m m m m 749)7()49(22-=-+-【例6】 先化简,再求值。

ab b a ab b a b a 4)84())((223÷-+-+,其中2=a ,1=b 。

整式的加减知识点总结及题型汇总

整式的加减知识点总结及题型汇总

整式的加减整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若 a、 b、 c、p、 q 是常数) ax2+bx+c 和 x2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:整式单项式. 多项式6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“ - ”号,括号里的各项都要变号 .9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列) . 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列 .11.列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了 .12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值 .13.列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。

第章整式的加减知识点总结及题型

第章整式的加减知识点总结及题型

第一章整式的加减知识点总结及题型一、整式的概念和性质整式是由有理数和字母的乘积与乘积之和(差)构成的代数式,其中字母表示未知数。

整式分为单项式、多项式和恒等式。

单项式只有一个项,多项式有多个项,恒等式左右两边恒等。

整式有以下性质:1. 与多项式的次数相同的整式称为同次项。

同次项之间可进行加减法运算。

2. 整式的次数是指各项次数中的最大值。

3. 同次项相加减后的结果还是同次项。

4. 多项式加减法满足交换律和结合律。

二、整式的加法整式的加法要求将同类项相加。

同类项是指字母部分相同的项,其系数可相同可不同。

例1:计算以下两个整式的和。

3x^2 + 4x - 2 和 -2x^2 - 3x + 1解:首先将同类项相加,得到:(3x^2 - 2x^2) + (4x - 3x) + (-2 + 1) = x^2 + x - 1例2:计算以下两个多项式的和。

2x^3 + 3x^2 - 5 和 -x^3 + 4x^2 + 1解:首先将同类项相加,得到:(2x^3 - x^3) + (3x^2 + 4x^2) + (-5 + 1) = x^3 + 7x^2 - 4三、整式的减法整式的减法同样要求将同类项相减。

可通过改变减数的符号,将减法转化为加法运算。

例3:计算以下两个整式的差。

4x^2 + 3x - 2 和 -2x^2 - 3x + 1解:首先将减数变为相反数,得到:(4x^2 + 3x - 2) + (-1)(-2x^2 - 3x + 1) = 4x^2 + 3x - 2 + 2x^2 + 3x - 1 = 6x^2 + 6x - 3例4:计算以下两个多项式的差。

2x^3 + 3x^2 - 5 和 -x^3 + 4x^2 + 1解:首先将减数变为相反数,得到:(2x^3 + 3x^2 - 5) + (-1)(-x^3 + 4x^2 + 1) = 2x^3 + 3x^2 - 5 + x^3 - 4x^2 - 1 = 3x^3 - x^2 - 6四、整式的题型1. 计算整式的和或差。

整式的加减知识点总结与题型训练

整式的加减知识点总结与题型训练

整式的加减知识点总结与题型训练知识点一 同类项的概念所含_________相同,并且相同字母的指数也_________的项,叫做同类项. 对同类项概念的理解(1)同类项的判断要注意“两相同,两无关”:“两相同”:一是____________相同,二是_____________________相同;“两无关”:一是与__________无关,二是与_________________无关.(2)几个常数项也是__________.(3)同类项都是__________.知识点二 合并同类项把几个同类项合并成__________,叫做合并同类项.合并同类项时,把同类项的__________相加,__________和____________不变. 不是同类项,则不能合并.知识点三 整式的加减整式的加减,实质就是将整式中的__________进行合并,如果有_________,应先_________,再____________.整式的加减的结果要求:(1)结果要最简,即结果中不再含有__________,不再出现__________;(2)一般按某一字母的升幂或降幂排列;(3)结果的系数不能出现带分数,带分数要化为__________.1. 下列单项式中,与是同类项的是【 】b a 2(A ) (B ) (C ) (D )22ba -22b a a b 24-ab 52. 下列各对单项式中,属于同类项的是【 】(A )与(B )与 ab -abc 4y x 231221xy (C )0与(D )3与 3-a 3. 下列说法正确的是【 】 (A )与是同类项 (B )和是同类项 xyz 32xy 3221x 21(C )和是同类项 (D )和是同类项235.0y x 227y x 25m 24m -4. 下列各组是同类项的是【 】(A )与(B )2与 a 2a x (C )与 (D )与xy yx 2a 2b 25. 若与是同类项,则的值是【 】m y x 3-32yx m (A ) (B )1 (C )2 (D )31-6. 单项式与单项式是同类项,则的值是【 】39y x m n y x 24n m +(A )2(B )3 (C )4 (D )5 7. 若与是同类项,则_________. 4y x m -n y x 341()=-4n m 8. 已知单项式与的和是单项式,那么_________,_________. 23b a m n b a 432-=m =n 9. 计算:__________.=-b a b a 22310. 当_________时,多项式中不含项.=k 6232-+-xy kxy x xy 11. 计算的结果是【 】223x x -(A )2 (B ) (C ) (D )22x x 224x 12. 下列计算正确的是【 】(A )(B ) 224=-a a 422422x x x =+(C )(D )b a b a b a 22232=-y x yx y x 222532-=--13. 计算【 】=-2253yx y x (A ) (B ) (C ) (D )不能运算 2-y x 22-xy 2-14. 多项式合并同类项后不含项,则的值是【 】 8313322-+--xy y kxy x xy k (A ) (B ) (D ) (D )0 31619115. 合并同类项: (1);(2). 2235213x x x x -+---222432132b ab a ab a -++-16. 合并同类项:(1);(2). 22224343b a ab b a --++722323222+++--ab b a ab ab ba17. 先化简,再求值: ,其中. 223215232323+--+--b a ab b a ab b a ab 2,1=-=b a18. 已知关于的多项式合并同类项后不含三次项,求y x ,y xy x nxy mx +-++32323的值.n m 32+19. 把下面各式的括号去掉:(1)_________________;()=+-+z y x 23(2)__________________.()=--z y x 32520. 已知,则的值是【 】2,3=+=-d c b a ()()c b d a --+(A )(B )1 (C ) (D )5 1-5-21. 已知( ),则在括号里所填的项是__________________.-1221y xy x -+-=22. 去括号并合并同类项:(1);(2).()22--a a ()()y x y x 3235--+-23. 先化简,再求值: ,其中. ⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22312331221y x y x x 32,2=-=y x24. 去括号,合并同类项:(1);(2); ()s s 6523+--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---42153x x x(3); (4).⎪⎭⎫ ⎝⎛+--ab a ab a 21244622()()642322-++--xy x xy x25. 已知,且。

《整式的加减》知识点及题型

《整式的加减》知识点及题型

单项式一.知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。

补充,单独一个 数 或一个 字母 也是单项式,如a ,π,5 。

应用:判断下列各式子哪些是单项式? (1)12x -;(2)35a b -;(3) 1y x +。

解:(1) 12x -不是单项式,因为含有字母与数的差; (2)35a b -是单项式,因为是数与字母的积; (3)1y x +不是单项式,因为含有字母与数的和,又含有字母与字母的商;练习:判断下列各式子哪些是单项式? (1)21+x ; (2) a bc ; (3) b 2; (4) -3a b 2; (5) y ; (6) 2-xy 2; (7) -0.5 ;(8) 11x +。

2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。

应用:指出各单项式的系数:(1) 31a 2h ,(2) 322r ,(3) a bc ,(4)-m ,(5) 223ab π-注意:π是数字而不是字母。

解:(1) 31a 2h 的系数是31,(2) 322r 的系数是32, (3) a bc 的系数是1 (4)-m 的系数是-1, (5) 223ab π-的系数是23π- 3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。

注意:π是数字而不是字母。

应用:1.指出各单项式的次数:(1)31a 2h ,(2)3232r h ,(3)423ab π- 解:(1)因为字母a 的指数是2,字母h 的指数是1,213+=,所以 31a 2h 的次数是3,(2) 3232328r h r h =,因为字母r 的指数是2,字母h 的指数是3,235+=,所以3232r h 的次数是5,(3) 442233ab ab ππ--=, 因为字母a 的指数是1,字母b 的指数是4,145+=, 所以423ab π-的次数是5。

(注意:π是数字而不是字母) 练习:填空(1)y 9的系数是____ 次数是 ; 单项式2125R π-的系数是 _____ ,次数是____。

初一数学——整式的加减知识点

初一数学——整式的加减知识点

初一数学——整式的加减知识点2、单项式或多项式都是整式。

一、代数式与有理式3、整式不一定是单项式。

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或4、整式不一定是多项式。

字母也是代数式。

5、分母中含有字母的代数式不是整式;而是今后将要研究的分式。

2、整式和分式统称为有理式。

3、含有加、减、乘、除、乘方运算的代数式叫做有理式。

四、整式的加减二、整式和分式1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里2、有除法运算并且除式中含有字母的有理式叫做分式。

各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里三、单项式与多项式各项都改动标记。

1、没有加减运算的整式叫做单项式。

(数字与字母的积---包孕零丁的一个数或字母)2、几个单项式的和,叫做多项式。

个中每一个单项式叫做多项式的项,不含字母的项2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

叫做常数项。

合并同类项:说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算。

1).合并同类项的概念:把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以把多项式中的同类项归并成一项叫做归并同类项。

变形后的代数式为对象。

划分代数式类别时,是从形状来看。

2).合并同类项的法则:单项式同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

1、都是数字与字母的乘积的代数式叫做单项式。

3).合并同类项步骤:2、单项式的数字因数叫做单项式的系数。

a.准确的找出同类项。

3、单项式中所有字母的指数和叫做单项式的次数。

b.逆用分配律,把同类项的系数加在一同(用小括号),字母和字母的指数不变。

4、零丁一个数或一个字母也是单项式。

一。整式的加减知识点总结及常考题提高难题压轴题练习[含答案及解析]

一。整式的加减知识点总结及常考题提高难题压轴题练习[含答案及解析]

整式的加减知识点总结1. 单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2. 单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数。

3. 单项式的次数:单项式中所有字母的指数的和,叫单项式的次数。

4. 多项式:|几个单项式的和叫做多项式。

5. 多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项,多项式里所含单项式的个数就是多项式的项数。

6. 多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0。

注意:若a 、b 、c 、p 、q 是常数,ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式。

7. 多项式的升幂排列:~把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列;多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排 列。

注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

8.整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字 !母的代数式叫整式。

9.整式分类:⎩⎨⎧多项式单项式整式 注意:分母上含有字母的不是整式。

10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

11.合并同类项法:#各同类项系数相加,所得结果作为系数,字母和字母指数不变。

12.去括号的法则:(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。

13.添括号的法则:(1)若括号前边是“+”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号。

:14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在 去括号的基础上,把多项式的同类项合并。

>初整式的加减综合练习题一.选择题(共14小题)1.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.32.下面计算正确的是()【A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣+ba=03.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+14.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,75.下列各组中,不是同类项的是()A.52与25B.﹣ab与ba C.与﹣a2b D.a2b3与﹣a3b2¥6.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5 C.3a2b﹣3ba2=0 D.5a2﹣4a2=1 7.如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=28.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,39.下列各题运算正确的是()】A.3x+3y=6xy B.x+x=x2 C.﹣9y2+16y2=7 D.9a2b﹣9a2b=0 10.化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n11.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c)D.(﹣c)﹣(b﹣a)12.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣7a+413.化简﹣16(x﹣)的结果是():A.﹣16x﹣B.﹣16x+ C.16x﹣8 D.﹣16x+814.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是()A.2015x2015B.4029x2014C.4029x2015D.4031x2015二.填空题(共11小题)15.若单项式2x2y m与x n y3是同类项,则m+n的值是.16.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.、17.一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是.18.若﹣4x a y+x2y b=﹣3x2y,则a+b=.19.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.20.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=x2+y2,空格的地方被钢笔水弄污了,请你帮他补上.21.已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么m=,n=.22.计算:4(a2b﹣2ab2)﹣(a2b+2ab2)=.…23.小明在求一个多项式减去x2﹣3x+5时,误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则正确的答案是.24.小明、小亮、小强三个人在一起玩扑克牌,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张.”小亮给小明牌之后他手中还有张牌.25.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;~第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.三.解答题(共15小题)26.先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.、27.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少(2)若|a+1|+(b﹣2)2=0,求A的值.?…28.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.29.有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.?30.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.{31.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.<32.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2..33.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.'34.先化简,再求值:,其中x=﹣1,y=2.35.已知三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a,求这个三角形的周长.(36.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油:37.已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值."38.化简:(1);(2)3x2﹣[7x﹣(4x﹣3)﹣2x2]【(3)(2xy﹣y)﹣(﹣y+yx)(4)5(a2b﹣3ab2)﹣2(a2b﹣7ab2)}39.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.整式的加减综合练习题/参考答案与试题解析一.选择题(共14小题)1.(2015秋•龙海市期末)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母不是整式.故整式共有4个.故选:C.2.(2016秋•南漳县期末)下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣+ba=0【解答】解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;(C、3与x不可相加,故C错误;D、﹣+ba=0,故D正确.故选:D.3.(2009•太原)已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【解答】解:设这个多项式为M,则M=3x2+4x﹣1﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1.故选:A.4.(2016秋•黄冈期末)单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.…5.(2015•崇左)下列各组中,不是同类项的是()A.52与25B.﹣ab与ba C.与﹣a2b D.a2b3与﹣a3b2【解答】解:不是同类项的是a2b3与﹣a3b2.故选:D.6.(2015•玉林)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0 D.5a2﹣4a2=1【解答】解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.)7.(2013•凉山州)如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2【解答】解:根据题意得:,则a=1,b=3.故选:C.8.(2013•佛山)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,3【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.{9.(2014秋•南安市期末)下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+16y2=7 D.9a2b﹣9a2b=0【解答】解:A、3x+3y不是同类项不能合并,A错误;B、x+x=2x≠x2,故B错误;C、﹣9y2+16y2=7y2≠7,故C错误;D、9a2b﹣9a2b=0,故D正确.故选:D.10.(2008•咸宁)化简m+n﹣(m﹣n)的结果为()A.2m B.﹣2m C.2n D.﹣2n【解答】解:m+n﹣(m﹣n)=m+n﹣m+n=2n.故选C.11.(2013秋•通城县期末)下列各式中与a﹣b﹣c的值不相等的是()…A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c)D.(﹣c)﹣(b﹣a)【解答】解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.12.(2015秋•招远市)计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣7a+4【解答】解:(6a2﹣5a+3 )﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4.故选D.。

初一数学第二章整式的加减知识点归纳+练习

初一数学第二章整式的加减知识点归纳+练习

2021-2022学年度 秋季 七年级上学期 人教版数学第二章 整式的加减 知识点归纳2.1.1 单项式由 与 的积组成的式子叫做单项式。

单独一个数字或字母.......也是单项式,如5-,y 等。

(注意:分母中出现字母的,就不再是单项式。

如:x1) 系数:单项式中的 因数叫做这个单项式的系数。

(★:π属于数字,不是字母) 次数:单项式所有字母的 之和叫做这个单项式的次数。

注意:①数字次数是0;②系数和次数是1时,1通常省略不写;③若单项式中出现“-”号,则“-”号是系数的性质符号。

例:指出下列各单项式的系数和次数:(1)xy 5, (2)a 21-, (3)5a , (4)42bc a , (5)732y x π【练习】下列式子中,哪些是单项式?指出这些单项式的系数和次数。

x ,ab 21-,x1,b a +2,y x 25-,20-,2mn -2.1.2 多项式多项式:几个 的和.叫做多项式。

(注意:分母中出现字母的,就不是多项式。

如:a x+1) 多项式的项:多项式中的每个单项式,叫做多项式的 。

如b a +2中,a 2,b 都是项。

多项式的次数:多项式中,次数最高的项的 ,叫做这个多项式的次数。

(★最高次项是指多项式中次数最高的项,如:122+-a a 中最高次项是:2a ) 常数项:多项式中,不含 的项称为常数项。

例1:多项式232+-+-y x xy xπ的项分别是 ,次数是 ;最高次项是 ;常数项是 。

多项式的命名:多项式可以由项数及次数确定为 次 项式。

如:122+-a a ,共 项,次数为 ,故称为 次 项式。

例2:给下列多项式命名。

①6524252--+y y y : 次 项式 ②345567x x x +-: 次 项式多项式的排序:多项式可以按各项次数的高低进行排列,若从低到高为升幂排列;若从高到低,则为降幂排列。

如:122+-a a 为 排列;221a a +-为 排列。

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点常考(典型)题型重难点题型(含详细答案)一、目录二、知识点1.整式的加减定义2.整式的加减原则3.整式的加减步骤三、常考题型1.基础练题2.提高练题四、重难点题型1.含有分式的整式加减2.含有根式的整式加减3.含有绝对值的整式加减五、详细答案二、知识点1.整式的加减定义整式加减是指将同类项合并,最终得到一个简化的整式的过程。

整式是由各种数的积和和式构成,包括常数项、一次项、二次项等。

2.整式的加减原则在整式加减中,只有同类项才能相加减。

同类项是指变量的指数相同的项,例如2x^2和5x^2就是同类项,但2x^2和5x^3不是同类项。

3.整式的加减步骤整式加减的步骤如下:1.将同类项放在一起。

2.对同类项的系数进行加减运算。

3.将结果合并,得到简化后的整式。

三、常考题型1.基础练题例题:将3x^2+5x-2和2x^2-3x+1相加。

解题思路:将同类项放在一起,得到5x^2+2x-1,即为答案。

答案:5x^2+2x-12.提高练题例题:将4x^2+3x-1和2x^2-5x+3相减。

解题思路:将同类项放在一起,得到2x^2+8x-4,即为答案。

答案:2x^2+8x-4四、重难点题型1.含有分式的整式加减例题:将(2x^2+3)/(x+1)和(3x-1)/(x+1)相加。

解题思路:先将分式化简为同分母,得到(2x^2+3+3x-1)/(x+1),化简后得到(2x^2+3x+2)/(x+1),即为答案。

答案:(2x^2+3x+2)/(x+1)2.含有根式的整式加减例题:将3√2x+5和5√2x-2相减。

解题思路:将同类项放在一起,得到(3-5)√2x+7,化简后得到-2√2x+7,即为答案。

答案:-2√2x+73.含有绝对值的整式加减例题:将|2x+1|+|3x-2|和|4x-3|相减。

解题思路:考虑绝对值的取值范围,将式子拆分为两部分,得到(2x+1+3x-2)-(4x-3)和(4x-3)-(2x+1+3x-2),化简后得到5x-1和-x,即为答案。

《整式的加减》知识点归纳及典型例题分析

《整式的加减》知识点归纳及典型例题分析

整式的加减典型例题一、认识单项式、多项式1、下列各式中,书写格式正确的是 ( ) A.4·21 B.3÷2y C.xy ·3 D.ab2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 3、在整式5abc ,-7x 2+1,-52x ,2131,24y x -中,单项式共有 ( )A.1个 B.2个 C.3个 D .4个4、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是()A 、3 B、4 C 、5 D 、65、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

6、下列说法正确的是( )A、0不是单项式 B 、x 没有系数 C、37x x+是多项式 D、5xy -是单项式 二、整式列式.1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简;(2)当第1排座位数是A时,即n=A,座位总数是140;当第1排座位数是B,即n =B 时,座位总数是160,求A 2+B2的值.2、若长方形长是2a+3b,宽为a +b,则其周长是( )A.6a+8b ﻩ ﻩB.12a+16bﻩﻩ C.3a+8bﻩ D.6a+4b3、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( ) A .b+a B.10b+a C. 100b +a D. 1000b+a4、(1)某商品先提价20%,后又降价20%出售,现价为a元,则原价为 元。

(2)香蕉每千克售价3元,m 千克售价____________元。

ﻫ(3)温度由5℃上升t ℃后是__________℃。

ﻫ(4)每台电脑售价x元,降价10%后每台售价为____________元。

ﻫ(5)某人完成一项工程需要a 天,此人的工作效率为__________。

整式加减知识点加习题精选全文

整式加减知识点加习题精选全文

可编辑修改精选全文完整版七年级整式的加减1、单项式的概念:数与字母的积的代数式叫做单项式,单独的一个数或字母也是单项式。

(1)单项式中的数字因数叫做单项式的系数。

(2)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、几个单项式的和叫做多项式(1)在多项式中,每个单项式叫做多项式的项,其中不是字母的项叫做常数项。

(2)多项式里,次数最高的项的次数,叫做这个多项式的次数。

3、整式的意义:单项式和多项式统称为整式。

4、同类项:所含字母相同,相同字母的指数也相同的项,叫做同类项。

合并同类项:把同类项合并成一项叫做合并同类项。

5、应注意的问题:(1)系数(单项式或多项式的某项)包括前面的符号,特别地,在单项式中作为系数,如a π2-的系数为π2-。

(2)单项式只允许含有乘法以及数字为除数运算;多项中必须会有加法或减法运算,但不能有以字母为除式的除法运算。

(3)多项式重新排列时,各项要连同它前面的符号一起移动。

(4)多项式不含某一字母次数的项,表示此项的系数为0,如x 2+1π不含x的一次项,说明这样的一次项x的系数为0。

基本法则1、整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.2、合并同类项法则:合并同类项时,把系数相加,字母和字母指数不变.注意:a、系数相加时,一定要带上各项前面的符号。

b、合并同类项一定要完全、彻底,不能有漏项。

c、只有是同类项才能合并。

d、合并同类项的结果可能是单项式也可能是多项式。

重点难点解析1、本节的重点是整式的有关概念;难点是正确识别多项式的项和项的系数.2、关于单项式的系数,学习中要注意:①系数要包括前面的符号;②系数是1或-1时,通常省略不写.3、关于单项式的次数:①当字母的指数是1时,“1”通常省略不写;②对于不含字母的非0数,如-2,0.5等,叫“零次单项式”.4、关于多项式的项,每项必须包括它前面的符号.5、多项式的次数的概念要正确理解,是指最高次项的次数,而不是指多项式中所有字母指数的和,要与求单项式的次数区分开.练习:1多项式222332y y x x +-是一个 次 项式,它的项是2 若y x 57 与21+--m n y x 是同类项,则 m = ,n = . 3、在 中,次数 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、代数式概念
代数式:用基本的运算符号(包括加+、减-、乘×、除÷、乘方、开方、()等)把数、表示数的字母连结而成的式子叫做代数式,如n,-1,2n+500,abc 。

单独的一个数或一个字母也是代数式。

代数式书写规范:
① 数与字母、字母与字母相乘时乘号省略不写,数字要写在字母前面,如
1
2
ab ;数字因数是1或-1时,“1”省略不写,如-mn ; ② 除号要改写成分数线,如:a ÷b 要写成
b
a ; ③ 带分数与字母相乘时,带分数要化成假分数;如:a
b 2
11要写成
ab 2
3
的形式; ④ 若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来,如(
1
2
ab +2R )平方米。

⑤ 代数式的系数:在代数式中,每一项字母前的数字因数叫做这一项的系数。

说明:当系数是1或-1时,1省略不写,如-ab ,2
a 等。

二、整式的相关概念:
单项式:表示数与字母的乘积的代数式叫单项式。

单独的一个数或一个字母也是代数式。

单项式的系数:单项式中的数字因数。

说明:在单项式中,系数只与数字因数有关;
单项式的次数:一个单项式中,所有字母的指数和.。

说明:在单项式中,次数只与字母有关 注意:(1)单项式表示数与字母相乘时,通常把数放在字母的前面; (2)用字母表示数,用一个式子可以表示不同的含义; (3)单项式的系数包括前面的符号; (4)当一个单项式的系数是1或-1时,“1”通常省略不写; (5)单项式的系数是带分数时,通常写成假分数; (6)单项式中不含有加减运算,分母中也不能有字母。

多项式:几个单项式的和叫做多项式。

说明:多项式是由几个单项式相加得到的
多项式的项数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
不含字母的项叫做常数项。

说明:多项式的项,包括符号.如多项式5-3x 2
中,二次项是
-3x 2

多项式的次数:多项式里,次数最高项的次数叫多项式的次数;说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.常数项的次数为0。

多项式的命名:若多项式里次数最高项的次数是n 次,并且有m 项,那么它就是n 次m 项式。

多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 说明:把多项式按升幂或降幂排列时,一定要弄清是针对哪个字母的排列,排列时只看这个字母的指数,而后按照加法交换律交换项的位置.对于不同的字母,排列后的顺序往往不同,切记重新排列多项式时,各项一定要带着符号移动位置.
整式:单项式和多项式统称为整式。

说明:知道一个代数式,不论是单项式还是多项式,都一定是整式;反之,如果已知一个代数式是整式,那么它或者是单项式,或者是多项式,二
者必具其一.
注意:分母上含有字母的不是整式。

三、整式的加减 同类项
同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。

注意:(1)同类项与系数及字母的排列顺序无关;
(2)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

去括号的法则
(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变; (2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。

注意:(1)巧记规律:括号前是正号,去括号不变号;括号前是负号,去括号都变号。

(2)用字母表示法则:+(a-b )=a-b ;-(a-b)= -a+b=b-a
整式加减的运算法则:进行整式的加减运算时,如果有括号先去括号,再合并同类项,直到结果中没有同类项。

一找:(划线);二“+”(务必用+号开始合并)三合:(合并) 整式加减的步骤:(1)列出代数式;(2)去括号;(3)合并同类项。

练习
一、 填空题
1、用代数式表示:
(1)把温度是t ℃的水加热到100℃,水温升高了___________℃。

(2)一个两位数,个位数字是a ,十位数字是b ,则这个两位数可表示为___________。

(3)用字母表示两个连续奇数为___________。

(4)若正方体的棱长是a -1,则正方体的表面积为___________。

(5)如图,亮亮家装饰新家,他为自己的房间选了一款窗帘(上方阴影固定),请你
帮他计算可以射进阳光的面积为___________米2。

2、多项式练习
(1)多项式3x -23
是 次 项式;
(2)多项式a 2
b +2a -3b -4是 次 项式;
(3)因为2822+-x x =2
1x 2-x +4,所以多项式28
22+-x x 是 次 项式;
(4)因为(a 3-b 3+1)×35=35a 3-35b 3+35,所以多项式(a 3-b 3
+1)×3
5是 次
项式;
(5)多项式x 6
-x 5
+3x 2
-12x +a 是 次 项式; (6)因为2(xy +
31x 3-y +π4)=2xy +32x 3-2y +2π4,所以多项式2(xy +3
1
x 3-y +π4
)是 次 项式.
3、单项式练习 (1)1
22
3--
m y x 是五次单项式,则m=__________; (2)若3
12
z y x m +是五次单项式,则m=__________;
(3)若3
1z y
x n m +是五次单项式,则n m 22+=__________。

(4)如果2
5--m xy
为四次单项式,则m = .
(5)若-3axy m
是关于x 、y 的单项式,且系数为-6,次数为3,则a =________,m =________. 二、求值
1、若1
222355
9+--m m n a b 与2a b 是同类项,求m ,n 的值.
2、若25x a b 与30.9y a b 是同类项,求x ,y 的值.
3、若多项式4332531x ax x x bx x -+----不含x 的奇次项,求a b +的值
4、若多项式()22532m
x y n y +--是关于x y ,的四次二项式,求222m mn n -+的值
5、当m 取什么值时,2
123(2)3-+-m m x y xy 是五次二项式?
6、已知33
m
n a b 和33ab -是同类项,求m 、n 的值。

三、解答
1、找出下列各代数式中的单项式,并写出各单项式的系数和次数.
223xy ;-a ;a bc ;32+mn ;572t ;233-a b c ;2;-x π,2341523133
x xy
a b x abc x --+,,,,, 2、下列哪些是代数式,哪些不是代数式?
⑴21+x ⑵23ab ⑶0 ⑷10⨯n a ⑸+=+a b b a ⑹32> ⑺2πS R = ⑻347+= ⑼π
3、说出下列各多项式分别是几次几项式.
(1)3x -23

(2)a 2
b +2a -3b -4; (3)28
22+-x x ;
(4)(a 3
-b 3+1)×
3
5; (5)x 6-x 5+3x 2-12x +a ; (6)2(xy +3
1x 3-y +π4
).
4、如图,一块直径为a b +的圆形钢板,从中挖去直径分别为a 与b 的两个圆,求剩下钢板的面积.(φ表示圆的直径)。

相关文档
最新文档