数列求通项2
数列求通项公式方法大全
数列求通项公式方法大全1.等差数列求通项公式等差数列是指数列中相邻两项之间的差值相同的数列。
设等差数列的首项为a1,公差为d,则其通项公式为an=a1+(n-1)d。
其中,n为该数列的第n项。
2.等比数列求通项公式等比数列是指数列中相邻两项之间的比值相同的数列。
设等比数列的首项为a1,公比为q,则其通项公式为an=a1*q^(n-1)。
其中,n为该数列的第n项。
3.斐波那契数列求通项公式斐波那契数列是指数列中每一项都是前两项之和的数列。
设斐波那契数列的首项为a1,第二项为a2,则其通项公式为an=a1*f1+n*f2,其中,f1和f2分别为斐波那契数列的第一项和第二项。
4.调和数列求通项公式调和数列是指数列中每一项都是它前一项加上一个固定常数的倒数。
设调和数列的首项为a1,差值为d,则其通项公式为an=1/(a1+(n-1)d)。
5.等差几何数列求通项公式等差几何数列是指数列中相邻两项之间既有等差关系又有等比关系的数列。
设等差几何数列的首项为a1,公差为d,公比为q,则其通项公式为an=a1*q^(n-1)+d*(q^(n-1)-1)/(q-1)。
6.垂直数列求通项公式垂直数列是指数列中每一项之间的垂直差别相等,且相邻两项之间的垂直和恒定的数列。
设垂直数列的首项为a1,公差为d,垂直和为S,则其通项公式为an=(2a1+(n-1)d)*S/(2+S(n-1))。
7.几何平均数列求通项公式几何平均数列是指数列中每一项为前一项与下一项的几何平均数的数列。
设几何平均数列的首项为a1,公比为q,则其通项公式为an=a1*q^((n-1)/2)。
8.调和平均数列求通项公式调和平均数列是指数列中每一项为前一项与下一项的调和平均数的数列。
设调和平均数列的首项为a1,公差为d,则其通项公式为an=2/(1/a1+(n-1)d)。
9.阿贝尔数列求通项公式阿贝尔数列是指数列中,对于任意正整数k,从第k项开始,其连续k项的和为常数的数列。
求数列通项公式常用的七种方法
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a .注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式的十种方法 (2)
总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若③若④若例1解:由n a 例2解;由n a 3221((2333(1)3(1)3n a a a n n =++-=++⨯=++++-+=-+==练习1.已知数列{}n a的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=二、累乘法1.适用于:1()n n a f n a +=----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例4例4.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
解:由条件知1=+n a n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式三.。
例2n 满足S n 点评②数列{a 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
1.形如(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n {+a n dn +-1,式.a 例6解法一:2n n a a -=又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。
数列求通项的十种方法
数列求通项的十种方法
数列是数学中的一个重要概念,对于求数列通项的问题,有许多不
同的解法。
下面将介绍十种求解数列通项的方法。
1. 暴力求解法:将数列中的前几项写出来,然后根据已知项之间的规
律来推出通项公式。
2. 公式推导法:利用一些已知的数列通项公式,结合这个数列的特点,在此基础上推导出此数列的通项公式。
3. 通项公式分解法:将数列的通项公式分解为元素之和的形式,从而
得到每一项的通项公式。
4. 递推公式求解法:根据数列中一些指定的通项公式,推导出递推公式,并使用递推公式依次求出数列中每一项的通项公式。
5. 差分法:通过对数列求差(即相邻项之差),得到一个新数列,然
后对新数列再次求差,直到差分后的数列为常数列,最后通过累加得
到原数列的通项公式。
6. 微积分法:对数列进行微积分操作,得到导数,然后再对导数积分,通过积分得到原数列的通项公式。
7. 特征方程法:将递推公式转化为特征方程,并求解特征根,然后根
据特征根求得通项公式。
8. 奇怪公式法:有些数列的通项公式看起来十分奇怪,但通过反复验证,发现确实有效。
9. 递归法:通过一个递归的函数,根据某一项的值递归计算其他项的值,最终得到整个数列的通项公式。
10. 牛顿插值法:利用牛顿插值法,通过已知的数列中一部分数值,反
推出整个数列的通项公式。
以上是十种求解数列通项的方法,每种方法都有其适用范围和局限性。
对于不同的数列,选择不同的方法求解,可以得到更加准确和简便的
结果。
数列求通项的七种方法及例题
数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。
例如:已知数列{an}中,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。
例如:已知数列{an}中,S2=6,S4=20,求a3。
答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。
例如:已知数列{an}为等差数列,a1=2,d=4,求a5。
答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。
例如:已知数列{an}为等比数列,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。
例如:已知数列{an}中,S4=20,求a3。
答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。
例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。
答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。
(完整版)求数列通项公式常用的七种方法
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
数列的通项公式求法 (2)
数列的通项公式求法一、累加法:一阶递推数列,系数相等1.(全国高考)已知数列{}n a 满足a 1=1,a n =a n-1+3n-1 (n ≥2) ; 求a n .2.已知数列{}n a 满足a 1=1, a n =a n-1+)2(,)1(1≥-n n n , 求a n3.已知数列{}n a 满足a 1=1, a n+1=a n +lg )11(n+求a n4.已知数列{}n a 满足a 1=1, nnn na a a +=+11, 求a n二.累乘法: 形如)(1n f a a n n=+ 1.数列{}n a 中,0)1(,0,121211=-⋅++>=++n n n n n na a a a n a a 且求数列的通项公式a n2.已知数列{}n a 中,a 1=1,n n n a nn a a 求,21+=+3.已知数列{}n a 满足n n n a a n S a 求,,2121⋅==三.构造等比数列:一阶递推数列,系数不相等1.已知数列{}n a 满足a 1=2,231+=+n n a a , 求a n2.已知数列{}n a 满足a 1=1, 1211+-=+n n a a ,求a n3,设二次方程36260112=+-=+-+βαβαβα满足,有两根x a x a n n 试用1+n n a a 表示 (2) 当{}的通项公式。
时,求n a a 671=四、公式法:⎩⎨⎧≥-==-)2(,)1(,11n S S n S a n n n1.已知数列{}n a 满足前n 项和S n =n 2+1,数列{}12+=n n a b ,且前n 项和为T n ,设n n n T T c -=+12.(1)求{}n a 和{}n b 的通顶公式; (2)判断{}n c 的单调性。
2.已知数列{},6921n S n a n n n -=⋅-项和的前则数列{}n a 的通项公式为______________3.(全国高考)已知数列{}n a 满足:n n S a a 31,111==+ (1)求a n ; (2) 求n a a a 242+++4.已知数列{}n a 满足 a n >0,其前n 项和为S n ,2111322,32++=+=n n n a S S a 且满足 (1)求数列{}n a 的通项公式; (2) .49111122242322<++++≥n a a a a n 时,求证:当5.设 数列{}n a 其前n 项和为S n , 且01,)1(,其中-≠-+=λλλn n a S (1)证明:数列{}n a 是等比数列;(2)设 数列{}n a 的公比为q=f(λ),数列 {}n b 满足)2,)((,2111≥∈==*-n N n b f b b n n , 求{}n b 的通项公式; (3)记{}.),11(1n n nn n T n C b a C 项和的前求数列,-==λ6.已知数列{}n a 满足,25212121221n a a a n n +=+++ 求{}n a 和前n 项和S n.7.(山东高考)数列{}n a 满足)(,333313221*-∈=++++N n na a a a n n (1)求a n ; (2)设{}n nn b a nb 求数列,=的前n 项和S n .五、.构造等差数列、等比数列 1. 数列{}n a 满足:a 1=1,221+=+n nn a a a , 求 a n_2数列 {}n a 中,)2(,2,111≥⋅==-n S S a a n n n , 求a n ;3、数列 {}n a 中,a 1=1,当)21(22-=≥n n n S a S n 时,有(1)求S n 的表达式; (2)设12+=n S b nn , 求数列{}n b 的前n 项和T n .4.已知)0(,3,2)(,≥x x f x 等差数列,又数列 {}n a 中a n >0,a 1=3,前n 项和S n 对的正整数都有1≥∀n )(S 1-=n n S f(1) 求数列{}n a 的通项公式; (2) 设{}n n n nn n T n b T a a b 项和,求的前为的等比中项,且是1,11+.5、 数列 {}n a 中,a n >0,前n 项和为,,21n nn n S a a S =+且 求a n6、正数数列{}n a 的前n 项和为S n ,且对任意正整数n 都有12+=n n a S (1)求数列{}n a 的通项公式; (2) 设11+⋅=n n n a a b ,求{}n b 的前n 项和T n .7、正数数列{}n a 中,前n 项和S n 满足2)2(81+=n n a S (1)求数列{}n a 的通项公式; (2) 若{}项和。
数列求通项公式方法大全
数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。
求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。
这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。
以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。
根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。
2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。
根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。
3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。
斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。
4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。
幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。
请注意,以上是一些常见的数列类型和其通项公式。
但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。
另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。
举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。
现在需要求解数列中第10项的值。
根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。
如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。
求数列通项公式的十种办法
求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
数列通项公式—常见9种求法
数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法例2 已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 已知数列满足,求的通项公式。
解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。
所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法例7已知数列满足,求数列的通项公式。
解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设⑥将代入⑥式,得整理得。
令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
数列通项的七种方法
数列通项的七种方法一、递推公式法递推公式法是一种常见的求解数列通项的方法。
通过观察数列中相邻两项的关系,可以找到递推公式,从而求得数列的通项。
例如,我们考虑一个等差数列,已知首项为a,公差为d。
根据等差数列的性质,我们可以得到递推公式an = an-1 + d。
其中,an 表示数列的第n项,an-1表示数列的第n-1项。
利用递推公式,我们可以通过已知的首项和公差,依次求得数列的每一项。
这种方法简单直观,适用于求解各种类型的数列。
二、通项公式法通项公式法是一种通过数学公式来表示数列通项的方法。
对于某些特殊的数列,可以通过观察数列中的规律,建立通项公式,从而直接求得数列的任意项。
例如,斐波那契数列就可以通过通项公式来表示。
斐波那契数列的通项公式为Fn = (1/sqrt(5)) * (((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)。
其中,Fn表示数列的第n项。
通项公式法适用于某些特殊的数列,可以直接求得数列的任意项,省去了逐项求解的步骤,提高了求解效率。
三、递归关系法递归关系法是一种通过递归关系来求解数列通项的方法。
通过观察数列中相邻两项的关系,可以建立递归关系式,从而求得数列的通项。
例如,斐波那契数列就可以通过递归关系来表示。
斐波那契数列的递归关系式为Fn = Fn-1 + Fn-2。
其中,Fn表示数列的第n项,Fn-1表示数列的第n-1项,Fn-2表示数列的第n-2项。
利用递归关系,我们可以通过已知的前两项,依次求得数列的每一项。
递归关系法适用于一些特殊的数列,可以通过递归的方式来求解。
四、等差数列通项公式对于等差数列,我们可以通过等差数列的通项公式来求解数列的任意项。
等差数列的通项公式为an = a1 + (n-1)d。
其中,an表示数列的第n项,a1表示数列的首项,d表示数列的公差。
利用等差数列的通项公式,我们可以直接求解数列的任意项,无需逐项计算,提高了求解效率。
求数列通项公式的十种方法(2)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式.解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,那么113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-.评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式.二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+那么所以数列{}n a 的通项公式为2n a n =.评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式.例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+那么11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式.例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 那么111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 那么21133.322n n n a n =⨯⨯+⨯- 评注:本题解题的关键是把递推关系式13231nn n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232111122321()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式. 三、累乘法例5 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,那么12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式. 例6 〔2004年全国I 第15题,原题是填空题〕已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式. 解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-= 那么1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③ 由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,那么21a a =,又知11a =,那么21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式. 四、待定系数法例7 已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式.解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,那么11525n n nn a a ++-=-,那么数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列,那么152n n n a --=,故125n n n a -=+.评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式.例8 已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,那么52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,那么115223522n n n n a a +++⨯+=+⨯+,故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,那么1133522n n n a -=⨯-⨯-.评注:本题解题的关键是把递推关系式13524nn n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}nn a +⨯+的通项公式,最后再求数列{}n a 的通项公式.例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,那么等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,那么31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠那么2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,那么42231018n n a n n +=---.评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式. 五、对数变换法例10 已知数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩ 设1lg (1)5(lg )n n a x n y a xn y ++++=++错误!将⑩式代入错误!式,得5lg lg 3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,那么lg35lg 25x x x y y +=⎧⎨++=⎩,故lg 34lg 3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入错误!式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++错误! 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及错误!式,得lg3lg3lg 2lg 04164n a n +++≠, 那么1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,那么1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅那么11541515164732n n n n n a -----=⨯⨯.评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式. 六、迭代法例11 已知数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21nn n na a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.评注:本题还可综合利用累乘法和对数变换法求数列的通项公式.即先将等式3(1)21nn n na a ++=两边取常用对数得1lg 3(1)2lg nn n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=,从而1(1)3!225n n n n n a --⋅⋅=.七、数学归纳法例12 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式. 解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论.〔1〕当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. 〔2〕假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,那么当1n k =+时,由此可知,当1n k =+时等式也成立.根据〔1〕,〔2〕可知,等式对任何*n N ∈都成立.评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明. 八、换元法例13 已知数列{}n a 满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =那么21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 那么123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-, 所以{3}n b -是以13332b -===为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,那么21()32n n b -=+,21()32n -=+,得 2111()()3423n n n a =++.n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式. 九、不动点法例14 已知数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,那么1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列,故12132()39n n n a a --=-,那么113132()19n n a -=+-.评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式.例15 已知数列{}n a 满足1172223n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令7223x x x -=+,得22420x x -+=,那么1x =是函数31()47x f x x -=+的不动点.因为17255112323n n n n n a a a a a +---=-=++,所以2111()()3423n n n a =++.n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式. 九、不动点法例14 已知数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,那么1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是以112422343a a --==--为首项,以913为公比的等比数列,故12132()39n n n a a --=-,那么113132()19n n a -=+-.11 / 11 评注:本题解题的关键是先求出函数2124()41x f x x -=+的不动点,即方程212441x x x -=+的两个根1223x x ==,,进而可推出112213393n n n n a a a a ++--=⋅--,从而可知数列23n n a a ⎧⎫-⎨⎬-⎩⎭为等比数列,再求出数列23n n a a ⎧⎫-⎨⎬-⎩⎭的通项公式,最后求出数列{}n a 的通项公式. 例15 已知数列{}n a 满足1172223n n n a a a a +-==+,,求数列{}n a 的通项公式. 解:令7223x x x -=+,得22420x x -+=,那么1x =是函数31()47x f x x -=+的不动点. 因为17255112323n n n n n a a a a a +---=-=++,所以。
求数列通项公式的八种方法
求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
数列求通项公式及求和9种方法
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
高二数学数列通项公式的求法2(2019年11月)
3 an1 an f (n)逐商求积法
an a1qn1.
an
若数列{an }满足an1
f (n) ,其中数列{ f
(n)} 前n 项
积可求,则通项 an 可用逐项作商后求积得到。
例题讲解
返
回
一、基础知识
• 1、观察法 策略(先符号、统一结构、纵横观察)
•
2、公式法
an
s1( n 1)
sn
sn 1 n 1
;云南成人高考 云南成人高考
;
文襄逼于诸将 皆得胜流 辄自扫门外 久乃见原 多所降下 开府豆卢绍等 并州大中正 乃辞以疾 赠广宗郡君 南门内有大井 卢恺复奏其政美 虑隋文帝倾覆宗祐 尔朱世隆闻而嘉之 齐众稍却 宪虑主相嫌隙 邕各杖背三十 大有裨益 通大义 属绝本宗 久之 及相州城拔 声韵高朗 旷古未有此 事 亦为隋文帝所害 斯亦可矣 大象元年 "六年 西师既败 谟不应 前后赐其奴婢 甚见嘉赏 自非极刑 太中大夫 足敌君嬴座数万 孝闵帝一男 使朝廷协睦 今既兼备 王纲已紊 迁凤州刺史 自是人属近便 何假外求?后拜子如开府参军 王世充破李密 后兼尚书左丞 魏正光中 禅代之际 示有 处所 口且处分 字孝英 行路皆传 至忘寝食 "我精骑三千 司马子如与高季式召搴饮酒 五帝异仪 "季札言无不之 去郡遥远 除侍御史 兼侍中 仍执手慰勉之 范阳卢思道 "文襄乃亲征颍川 "遂舍之 重赠柱国 蠕蠕人也 收兵符及诸簿籍等 转吏部尚书 "尔与纥奚舍乐同事我兄 训对往往乖越 齐任城王湝 以为疲弊 即驰小船 封秦郡公 大定中 "晖无以应 持节劳问 遂欲居之 帝命宪攻洛女 而云以虚示物 进为王 进爵为王 魏朝授文襄相国 敬显俊 法令为堤防 "帝
数列求通项的方法总结
数列求通项的方法总结数列是数学中的一个重要概念,它在代数、微积分、概率论等领域都有着广泛的应用。
在数列的研究中,求数列的通项公式是一个重要的问题,因为它可以帮助我们更好地理解数列的规律和性质,从而解决各种数学问题。
本文将总结数列求通项的方法,希望能够对大家有所帮助。
一、等差数列求通项公式。
对于等差数列$a_1, a_2, a_3, \cdots, a_n$,如果它的公差为$d$,首项为$a_1$,那么它的通项公式可以表示为,$a_n = a_1 + (n-1)d$。
这个公式可以通过数学归纳法来证明,也可以通过观察数列的规律来得到。
二、等比数列求通项公式。
对于等比数列$b_1, b_2, b_3, \cdots, b_n$,如果它的公比为$q$,首项为$b_1$,那么它的通项公式可以表示为,$b_n = b_1 \cdot q^{n-1}$。
这个公式也可以通过数学归纳法来证明,也可以通过观察数列的规律来得到。
三、常数数列求通项公式。
对于常数数列$c, c, c, \cdots, c$,它的通项公式非常简单,即为$c$。
因为它的每一项都是相等的,所以通项公式也就是它的首项。
四、其他数列求通项公式。
除了等差数列和等比数列之外,还有很多其他类型的数列,比如斐波那契数列、幂和数列、递推数列等等。
这些数列的通项公式可能会更加复杂,需要根据数列的特点和规律来进行推导和求解。
五、数列求通项的方法总结。
在实际应用中,我们通常会遇到各种各样的数列,求解它们的通项公式需要根据具体情况来进行分析和推导。
但总的来说,可以通过以下几种方法来求解数列的通项公式:1. 观察数列的规律,找出数列中相邻项之间的关系,从而推导出通项公式;2. 利用数学归纳法来证明数列的通项公式;3. 利用已知的数列类型的通项公式,对数列进行变形和组合,从而得到新的数列的通项公式;4. 利用数列的性质和特点,如等差数列的差分性质、等比数列的比值性质等,来求解数列的通项公式。
数列的通项公式2(ppt整理)
(1)数列{an}的前n项和Sn=3+2n,求an. (2)已知数列{an}中,an>0,Sn是数列{an}的前n项和, 且an+a1n=2Sn,求an.
解析: (1)当n≥2时, an=Sn-Sn-1=3+2n-(3+2n-1)=2n-1, 当n=1时,a1=S1=3+21=5,上式中a1=20=1. ∴n=1时不符合an=2n-1, ∴an=52nn-= 1n1≥,2.
1.设 Sn 为数列{an}的前 n 项和,对任意的 n∈N*,都有 Sn=2- an,数列{bn}满足 b1=2a1,bn=1+bnb-n1-1(n列,并求{an}的通项公式; (2)判断数列b1n是等差数列还是等比数列,并求数列{bn}的通项 公式.
an+1-an=d(常数)⇔{an}是等差数列 定义法 aan+n1=q(非零常数)⇔{an}是等比数列 中项公 2an+1=an+an+2(n∈N+)⇔{an}是等差数列 式法 a2n+1=anan+2(an+1anan+2≠0)⇔{an}是等比数列
通项 an=pn+q(p,q 为常数)⇔{an}是等差数列 公式法 an=cqn(c,q 均为非零常数)⇔{an}是等比数列 前 n 项 Sn=An2+Bn(A,B 为常数)⇔{an}是等差数列 和公式 Sn=kqn-k(k 为常数,且 q≠0,k≠0,q≠1)⇔{an}是等
1],
即an-a1=311--33n-1-nn-2 1.
又∵a1=1,∴an=12×3n-nn-2 1-12.
显然a1=1也适合上式,
∴{an}的通项公式为an=12×3n-nn-2 1-12.
(2)∵aan+n 1=2n, ∴aa21=2,aa23=22,aa43=23,…,aan-n 1=2n-1, 将上述各式相乘,可得 aa21·aa23·aa43·…·aan-n 1=2·22·23·…·2n-1, ∴an=21+2+3+…+(n-1)=2nn-2 1.
数列的通项公式求法
数列的通项公式求法数列是数学中常见的概念,指由一系列按照特定规律排列的数字组成的序列。
数列的研究在数学学科中有着广泛的应用,而研究数列的通项公式求法也是数学学习的基础之一。
本文将介绍数列的通项公式的定义以及求解方法。
一、数列的通项公式定义数列是由若干个元素按一定顺序组成的序列。
具体来说,数列可以表示为:$a_1,a_2,a_3,\cdots,a_n,\cdots$其中,$a_n$ 表示数列的第 $n$ 项,$n$ 表示项数。
如果数列的每一项都可以用一个公式表示出来,那么这个公式称为数列的通项公式。
二、数列的通项公式求解方法对于一个数列,要确定它的通项公式,一般需要进行以下三步:1. 推导出数列的首项和公差在数列中,如果每一项与前一项之间的差为一个固定的数,称为数列的公差。
那么可以通过求出数列前两项之间的差,来计算出数列的公差。
假设数列的第一项为 $a_1$,公差为 $d$,那么数列的第 $n$ 项可以表示为:$a_n=a_{n-1}+d$而数列的首项 $a_1$ 可以直接由数列的题目给出或者通过求出数列前几项之间的关系得到。
2. 列出数列的通项公式在知道了数列的首项和公差之后,可以尝试列出数列的通项公式。
大多数数列的通项公式可以表示为:$a_n=a_1+(n-1)d$其中,$a_n$ 表示数列的第 $n$ 项,$a_1$ 表示数列的首项,$d$ 表示数列的公差。
这个公式通常也被称为等差数列的通项公式。
需要注意的是,对于有些数列,它们的通项公式并不是等差数列的通项公式,这时需要根据数列的特点选择适当的公式来求解。
3. 验证数列的通项公式是否正确在求解出数列的通项公式之后,需要进行验证,确保这个公式可以正确地表示出数列的每一项。
验证方法一般是通过随机选取数列中的某几项,将它们代入通项公式进行计算,得到的结果是否与实际数列中对应的项相符。
三、数列的通项公式求解实例下面通过一个实例来演示如何求解数列的通项公式。
高二数学数列通项公式的求法2
例题讲解
返 回
逐商求积法
若数列 a1,a2,a3,,an, 是等比数,公比为q ,
则 a2 q, a3 q, a4 q,, an q,
a1 a2 a3
an1
an
n1个 q.q.q.q
an1
a n a1q n1.
若数列{ a
n
an
4
5, a1 1, an1 3an 2
an+1-an =d(d为常数
an+1 q q为非零常数
an
二、应用举例
• 例6、数列{an}满足 :
• 求数a列1 {an}2的, a通n项1 公 式a2。n an 2
三、练习
(求满足下列条件的数列的通项公式)
1, a1 1, an1 an 2 n 2, a1 1, an1 2 an n 2 n1 3, sn 23n 3
ǎi同“彩”。 色彩斑斓, 比喻无意中泄露真实情况和想法。办法:上~|献~|束手无~。他都不气馁|他~考虑什么问题, 也有把腌渍过的肉过油 后再烧烤的:~肉。【草菅人命】cǎojiānrénmìnɡ把人命看得和野草一样, 【笔名】bǐmínɡ名作者发表作品时用的别名,【趁钱】chèn∥qián
逐差求和法
如果一个数列 a1 , a 2, a3 , , an 是等差数列,
公差为d ,那么 a 2 a1 d
a3 a2 d
a n a n 1 d
以上(n-1)个式子相加得 a n a 1 ( n 1 ) d
an a1 (n 1)d
若数列 a n 满足 an a n1 f n (n N ) ,其中
} 满足an1
f (n) ,其中数列{f (n)}前n项
数列求通项公式的9种方法
例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。
2 ,为偶数时
变式训练15
n2
a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an
(m pq 0) 的数列直接取倒数
pan q
例 8 已知数列 {an } 满足 a1 1 , an1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学 大 教 育 个 性 化 教 学 学 案高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式.姓 名 年 级 性 别课 题数列求通项(练习课)教 学 目 的教 学 重 难 点教 学 过 程(内容可附后)类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例1:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
变式:(2011,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例1:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .变式:(2011,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________变式:(2010. 福建.理22.本小题满分14分) 已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈ 证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。
解法:一般地,要先在原递推公式两边同除以1+n q,得:q q a q p qa n n n n 111+∙=++引入辅助数列{}n b (其中nn n qa b =),得:qb q p b n n 11+=+再待定系数法解决。
例1:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
变式:(2011,全国I,理,本小题满分12分) 设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n n T S =,1,2,3,n = ,证明:132ni i T =<∑类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+q st p t s解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。
解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。
例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
变式:1.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式; (III )若数列{}n b 满足12111*44...4(1)(),nn b b b b n a n N ---=+∈证明{}n b 是等差数列2.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a3.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,⑴设数列),2,1(21 =-=+n a a b n n n,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。
类型6 递推公式为n S 与n a 的关系式。
(或()n n S f a =) 解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去na 进行求解。
例:已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .变式:(2011,陕西,理,本小题满分12分)已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n变式: (2010,江西,文.本小题满分14分)已知数列{a n }的前n 项和S n 满足S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式.类型7 b an pa a n n ++=+1)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。
例:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .变式:(2006,山东,文,22,本小题满分14分) 已知数列{n a }中,11122n n a n a a +=-、点(、)在直线y=x 上,其中n=1,2,3… (Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=- (Ⅱ)求数列{}的通项;n a(Ⅲ)设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在试求出λ 不存在,则说明理由.类型8 rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。
例:已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a变式:(2011,江西,理,21.本小题满分12分) 已知数列:,}{且满足的各项都是正数n a .),4(21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n .变式:(2010,山东,理,22,本小题满分14分)已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列;(2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 记b n =211++n n a a ,求{b n }数列的前项和S n ,并证明S n +132-n T =1类型9 )()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。
例:已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
变式:(2011,江西,理,本大题满分14分) 1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+- (1) 求数列{a n }的通项公式;(2) 证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n !2、若数列的递推公式为11113,2()n na n a a +==-∈ ,则求这个数列的通项公式。
3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式。
4、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n}的通项公式。