浙江省台州温岭市第三中学八年级数学 平行四边形练习(无答案) 人教新课标版

合集下载

新人教版初中数学八年级数学下册第三单元《平行四边形》测试题(有答案解析)(1)

新人教版初中数学八年级数学下册第三单元《平行四边形》测试题(有答案解析)(1)

一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个3.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠4.下列命题为假命题的是( ) A .直角三角形斜边上的中线等于斜边的一半. B .两边及其一边的对角对应相等的两个三角形全等. C .等边三角形一边上的高线与这边上的中线互相重合. D .到线段两端点距离相等的点在这条线段的垂直平分线上. 5.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形.6.如图,在123A A A △中,160A ∠=︒,230A ∠=︒,131A A =,3+n A 是1(1,2,3)n n A A n +=⋅⋅⋅的中点,则202120222023A A A △中最短边的长为( )A .100912 B .101012 C .101112 D .1021127.顺次连接矩形ABCD 各边的中点,所得四边形是( ) A .平行四边形B .正方形C .矩形D .菱形8.下列命题中,正确的命题是( ) A .菱形的对角线互相平分且相等 B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形9.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( ) A .()8,2- B .()7,3- C .()8,3- D .()14,0 10.下列结论中,菱形具有而矩形不一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .对边相等且平行11.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则CP 的最小值是( )A .1.2B .1.5C .2.4D .2.512.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5 B .若∠ACP=∠B ,则CP=5 C .若∠ACP=45°,则CP=245 D .若∠ACP=∠B ,则CP=245二、填空题13.如图,四边形ABCD 为菱形,以AD 为斜边的Rt AED △的面积为3,2DE =,点E ,C 在BD 的同侧,点P 是BD 上的一动点,则PE PC +的最小值是_____________.14.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .15.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BECCEFSS<中,一定成立的是_________.(请填序号)16.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.17.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.18.如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ',折痕为DE .若将∠B 沿EA '向内翻折,点B 恰好落在DE 上,记为B ',则AB =_______.19.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.20.如图,在正方形ABCD 中,AB=6,E 是CD 上一点,BE 交AC 于点F ,连接DF .过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G .∠ABE 的平分线交AD 于点M ,当满足四边形AGDF 面积2BCE S =△时,线段AM 的长度是_______.三、解答题21.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 分别为OB ,OD 的中点,连接AM 并延长至点E ,使EM AM =,连接CE ,CN . (1)求证:ABM CDN ≌;(2)当AB 与AC 满足什么数量关系时,四边形MECN 是矩形?请说明理由;(3)连接AN ,EN .当ANE 满足什么条件时,四边形MECN 是正方形?请说明理由.22.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.23.如图,菱形ABCD 的对角线,AC BD 相交于点,O E 是AD 的中点,点,F G 在AB 上,,//EF AB OG EF ⊥.(1)判断四边形OEFG 的形状;(2)若8,6AC BD ==,求菱形ABCD 的面积和EF 的长.24.如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,A F ∠=∠,12∠=∠.(1)求证:BC DE =.(2)已知2DE =,连接BN ,若N 平分DBC ∠,求CN 的长.25.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形 CMAN 是平行四边形; (2)已知4,3DE FN ==.求BN 的长.26.如图,AD 为ABC ∆的中线,BE 为ABD ∆的中线. (1)15ABE ∠=︒,40BAD ∠=︒,求 BED ∠的度数;(2)若ABC ∆的面积为40,5BD =,则E 到BC 边的距离为多少.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解. 【详解】解:∵四边形ABCD 为菱形,∴AD=AB , ∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°, 故选:A . 【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.D解析:D 【分析】求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②. 【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒, ∴45BAD CAD ∠=︒=∠, ∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒, ∴67.5AFE BFD AEB ∠=∠=∠=︒, ∴AF AE =,AM BE ⊥, ∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠, 在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()FBD NAD ASA ≅,∴DF DN =,故①正确; 在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =, ∵AF AE =,∴AE CN =,故④正确; 在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==, ∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒, ∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒, ∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠, ∴DM MN =,∴DMN 是等腰三角形,故②正确. 故选:D . 【点睛】本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.3.B解析:B 【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可. 【详解】解:A 、∵AE CF =, ∴AO=CO ,由于四边形ABCD 是平行四边形,则BO=DO , ∴四边形DEBF 是平行四边形; B 、不能证明四边形DEBF 是平行四边形; C 、∵四边形ABCD 是平行四边形, ∴AD=BC ,∠DAE=∠BCF ,又∠ADE=∠CBF , ∴△DAE ≌△BCF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形; D 、同C 可证:△ABE ≌△CDF (ASA ), ∴AE=CF ,同A 可证四边形DEBF 是平行四边形; 故选:B . 【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.4.B解析:B 【分析】根据直角三角形斜边的中线的性质,三角形全等的判定,等边三角形的性质以及线段垂直平分线的性质对各选项分析判断即可得解.【详解】A 、直角三角形斜边上的中线等于斜边的一半,是真命题,不符合题意;B 、两边及其一边的对角对应相等的两个三角形全等,是假命题,符合题意.C 、等边三角形一边上的高线与这边上的中线互相重合,是真命题,不符合题意;D 、到线段两端点距离相等的点在这条线段的垂直平分线上,是真命题,不符合题意; 故选:B . 【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.A解析:A 【分析】根据正方形的判定逐项作出判断即可求解. 【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意; B. 对角线相等的菱形是正方形,判断正确,不合题意; C. 对角线互相垂直的矩形是正方形,判断正确,不合题意; D. 一组邻边相等的矩形是正方形,判断正确,不合题意. 故选:A 【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.6.B解析:B 【分析】根据已知条件和图形的变化可得前几个图形的最短边的长度,进而可得结论. 【详解】解:在△A 1A 2A 3中,∠A 1A 3A 2=90°,∠A 2=30°,A 1A 3=1,A n+3是A n A n+1(n=1、2、3…)的中点,可知:A 4A 5//A 1A 3,A 3A 4=A 2A 4,∴∠A 3A 5A 4=90°,∠A 4A 3A 2=∠A 2=30°, ∴△A 1A 2A 3是含30°角的直角三角形, 同理可证△A n A n+1A n+2是含30°角的直角三角形. △A 1A 2A 3中最短边的长度为A 1A 3=1=012, △A 3A 4A 5中最短边的长度为A 4A 5=12=112, △A 5A 6A 7中最短边的长度为A 5A 7=21142, …,所以△A n A n+1A n+2中最短边的长度为1212n -,则△A 2019A 2020A 2021中最短边的长度为120211221122n --==101012. 故选:B . 【点睛】本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律.也考查了直角三角形斜边的中线,三角形的中位线,平行线的性质,含30°角的直角三角形的性质,以及等腰三角形的性质等知识.7.D解析:D 【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可. 【详解】如图,设矩形ABCD 各边的中点依次为E ,F ,G ,H ,∴EF ,FG ,GH ,HE 分别是△ABC ,△BCD ,△CDA ,△DAB 的中位线, ∴EF=12AC ,FG=12BD ,GH=12AC ,EH=12BD , ∵四边形ABCD 是矩形, ∴AC=BD , ∴EF=FG=GH=HE , ∴四边形EFGH 是菱形, 故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.8.B解析:B 【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可. 【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B.【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.9.A解析:A【分析】以AC为对角线,可得AD∥BC,AD=BC;以AB为对角线,可得AD∥BC,AD=BC;以AD为对角线,可得AB∥CD,AB=CD.【详解】解:①以AD为对角线时,可得AB∥CD,AB=CD,∴A点向左平移6个单位,再向下平移3个单位得B点,∴C点向左平移6个单位,再向下平移3个单位得D₁(-4,-8);②以AC为对角线时,可得AD∥BC,AD=BC,∴B点向右平移6个单位,再向上平移3个单位得B点,∴C点向右平移6个单位,再向上平移3个单位得D₂(8,-2);③以AB为对角线时,可得AD∥BC,AD=BC,∴C点向右平移3个单位,再向上平移5个单位得A,∴B点向右平移3个单位,再向上平移5个单位得D₃(2,2);综上可知,D点的坐标可能为:D₁(-4,-8)、D₂(8,-2)、D₃(2,2),故选:A.【点睛】本题考查了坐标与图形的性质,利用平行四边形的判定:对边平行且相等的四边形是平行四边形,要分类讨论,以防遗漏.10.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.11.A解析:A【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【详解】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴2222345AC BC++=,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=12EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=12AB×CM=12AC×BC,∴CM=•AC BCAB=342.45⨯=,∴CP=12EF=12CM=1.2,故选:A.【点睛】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.12.D解析:D【分析】四个选项,A、C选项CP为顶角的平分线, B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【详解】解:∵∠C=90°,点P在边AB上.BC=6,AC=8,∴22228610AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D.【点睛】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.二、填空题13.3【分析】根据菱形的轴对称性可得AC关于BD对称当APE三点共线时的值最小为AE 再根据三角形的面积即可得出答案【详解】解:∵四边形菱形∴AC 关于BD 对称∵点EC 在BD 的同侧∴当APE 三点共线时的值最 解析:3【分析】根据菱形的轴对称性可得A 、C 关于BD 对称,当A 、P 、E 三点共线时,PE PC +的值最小为AE ,再根据三角形的面积即可得出答案.【详解】解:∵四边形ABCD 菱形,∴A 、C 关于BD 对称,∵点E ,C 在BD 的同侧,∴当A 、P 、E 三点共线时,PE PC +的值最小,且最小值为AE ;∵以AD 为斜边的Rt AED △的面积为3, 2DE =, ∴112322⨯=⨯=AE DE AE , ∴AE=3,∴PE PC +的最小值是3故答案为:3.【点睛】 本题考查了菱形的性质、最短问题、面积法等知识,解题的关键是利用轴对称解决最值问题,是中考常考题型.14.【分析】如图连接OAOBOC 设平行四边形的面积为4S 求出S1S2(用s 表示)即可解决问题【详解】解:如图连接OAOBOC 设平行四边形的面积为4S ∵点O 是平行四边形ABCD 的对称中心∴S △AOB=S △解析:32【分析】如图,连接OA ,OB ,OC .设平行四边形的面积为4S .求出S 1,S 2(用s 表示)即可解决问题.【详解】解:如图,连接OA ,OB ,OC .设平行四边形的面积为4S .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =S , ∵EF=12AB ,GH=13BC , ∴S 1=12S ,S 2=13S , ∴12132123S S S S ==, ∴1232S S =; 故答案为:32. 【点睛】本题考查中心对称,平行四边形的性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 15.②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF,∴∠DFC=∠DCF=∠FCB,∵∠FCB>∠ECF,∴∠DCF>∠ECF,故①错误,∵FK∥AB,FD∥CK,∴四边形DFKC是平行四边形,∵AD=2CD,F是AD中点,∴DF=CD,∴四边形DFKC是菱形,∴∠DFC=∠KFC,∵AE∥FK,∴∠AEF=∠EFK,∵FE=FC,FK⊥EC,∴∠EFK=∠KFC,∴∠DFE=3∠AEF,故③正确,∵四边形EBCN是平行四边形,∴S△BEC=S△ENC,∵S△EHC=2S△EFC,S△EHC>S△ENC,∴S△BEC<2S△CEF,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16.5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG分别是的中点∴∵分别是BEBC的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF、GH的长度,根据勾股定理计算,即可得到答案.【详解】F,G分别是DE,BE的中点,∴142GF BD ==, ∵G ,H 分别是BE ,BC 的中点, ∴132GH CE ==, ∵∠FGH =90°,∴由勾股定理得,5FH ===,故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.18.【分析】利用矩形和折叠的性质证明∠ADE=∠ADE=∠ADC=30°∠C=∠ABD=90°推出△DBA ≌△DCA 那么DC=DB 设AB=DC=x 在Rt △ADE 中通过勾股定理可求出AB 的长度【详解】解:【分析】利用矩形和折叠的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',那么DC=DB',设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【详解】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=1×180°=60°,3∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴设AB=DC=x,则∵AE2+AD2=DE2,∴222(2x x+=+-解得,x1(负值舍去),x2,【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.19.【分析】根据题意可知最小时落在线段PD上利用勾股定理求出PD即可【详解】如图连接PD根据题意可知当落在线段PD上时最小且最小值为PD长在中综上可知最小值为故答案为:【点睛】本题考查翻折的性质结合题意【分析】根据题意可知PB DB ''+最小时,B '落在线段PD 上,利用勾股定理求出PD 即可.【详解】如图,连接PD ,根据题意可知当B '落在线段PD 上时,PB DB ''+最小,且最小值为PD 长.在Rt APD 中,2211617PD AP AD =+=+=.综上可知PB DB ''+最小值为17.17【点睛】本题考查翻折的性质,结合题意根据两点之间线段最短得出当B '落在线段PD 上时,PB DB ''+最小是解答本题的关键.20.【分析】根据正方形ABCD 得结合题意推导得通过证明得从而得到正方形面积结合四边形面积计算得到;过点M 作交BE 于点N 连接ME 根据正方形ABCD 通过计算即可完成求解【详解】∵正方形ABCD ∴∴∵过点D 且 解析:33【分析】根据正方形ABCD ,得90ADC BAD ∠=∠=,BAC ACD ∠=∠,6AB BC CD AD ====CDF ADG ∠=∠、FCD DAG ∠=∠,通过证明CDF ADG △≌△,得CDF ADG S S =△△,从而得到12ACD S =正方形ABCD 面积,结合四边形AGDF 面积2BCE S =△,计算得到CE ;过点M 作MN BE ⊥交BE 于点N ,连接ME ,根据ABM NBM BCE NME EDM SS S S S ++++=正方形ABCD ,通过计算即可完成求解.【详解】∵正方形ABCD∴90ADC BAD ∠=∠=,//AB CD ,6AB BC CD AD ====∴90CDF ADF ∠+∠=,90BAC CAD ∠+∠=,BAC ACD ∠=∠∵过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G∴90FDG ADF ADG ∠=∠+∠=,90CAG CAD DAG ∠=∠+∠=∴CDF ADG ∠=∠,BAC DAG ∠=∠∴ACD DAG ∠=∠,即FCD DAG ∠=∠ ∴FCD DAG CDF ADG CD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CDF ADG △≌△∴CDF ADG S S =△△∵四边形AGDF 面积=12ADF ADG ADF CDF ACD S S S SS +=+==△△△△△正方形ABCD 面积 ∴四边形AGDF 面积=16632⨯⨯= ∵11622BCE S BC CE CE =⨯=⨯△,且满足四边形AGDF 面积2BCES =△ ∴12632CE ⨯⨯= ∴3CE =∴22633BE BC CE =+=+=如图,过点M 作MN BE ⊥交BE 于点N ,连接ME∵∠ABE 的平分线交AD 于点M∴ABM NBM ∠=∠∵BM BM =,90BAM BNM ∠=∠= ∴ABM NBM △≌△∴6BN AB ==,MN AM =设AM x =162ABM NBM S S AB x ==⨯=△△113632222BCE S BC CE =⨯==△()(1113222NME S NE MN BE BN MN x =⨯=-⨯=-△ ()())111222EDM S ED DM CD CE AD AM x =⨯=-⨯-=△ ∵ABM NBM BCE NME EDM S S S S S ++++=正方形ABCD∴()1123222x x x ⨯+=∴3x ==故答案为:3.【点睛】本题考查了正方形、全等三角形、一元一次方程、二次根式、三角形角平分线、勾股定理的知识;解题的关键是熟练掌握正方形、全等三角形、三角形角平分线的性质,从而完成求解.三、解答题21.(1)见解析;(2)AC=2AB ,理由见解析;(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形.【分析】(1)根据SAS 证明三角形全等即可.(2)先根据等腰三角形的性质可得∠NMA=90°,再根据有一个角是直角的平行四边形是矩形证明即可.(3)先根据直角三角形斜边上的中线等于斜边的一半得出MN=EM ,再根据有一个角是直角的菱形是正方形证明即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABM=∠CDN ,∵点M ,N 分别为OB ,OD 的中点, ∴11,22==BM OB DN OD ∴BM=DN ,在△ABM 和△CDN 中, AB CD ABM CDN BM DN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN .(2)当AC=2AB 时,四边形MECN 是矩形,理由如下:∵△ABM≌△CDN,∴AM=CN,∠AMB=∠CND,∴∠AMN=∠CNM,∴AM∥CN,∵EM AM=,=,∴EM CN∴四边形EMNC是平行四边形,∵四边形ABCD是平行四边形,∴AC=2OA,∵AC=2AB,∴AB=OA,∵M是OB的中点,∴AM⊥OB,∴∠NMA=90°,∴∠NME=90°,∴平行四边形MECN是矩形.(3)当AN=EN且∠ENA=90°时,四边形MECN是正方形;理由如下:连接AN、EN∵△ABM≌△CDN,∴AM=CN,∠AMB=∠CND,∴∠AMN=∠CNM,∴AM∥CN,=,∵EM AM=,∴EM CN∴四边形EMNC是平行四边形,=,∠ENA=90°∵EM AM∴MN=EM,∴平行四边形EMNC是菱形,∵AN=EN,AM=EM∴∠NME=90°,∴四边形EMNC是正方形.【点睛】本题考查了正方形的判定、平行四边形的性质和判定、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 23.(1)矩形;(2)24,125【分析】(1)先证明四边形OEFG 是平行四边形,再根据垂直即可得到结果;(2)根据菱形的面积求解和等面积法计算即可;【详解】解:()1四边形OEFG 是矩形.在菱形ABCD 中,,DO BO = E 是AD 的中点,,AE DE ∴=//,OE AB ∴//,OE FG ∴又//,OG EF∴四边形OEFG 是平行四边形.,EF AB ⊥90,EFG ∴∠=︒四边形OEFG 是矩形.()2菱形的面积11862422AC BD =⋅=⨯⨯=. 四边形ABCD 是菱形,11,4,322BD AC AO AC BO BD ∴⊥====, 5AB ∴=.由()1知,四边形OEFG 是矩形,,EF OG OG AB ∴=⊥.1122AO BO AB OG ∴⋅=⋅, 125AO BO OG AB ⋅∴==, 125EF ∴=. 【点睛】本题主要考查了矩形和菱形的判定和性质,准确计算是解题的关键.24.(1)见解析;(2)2【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【详解】解:(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.【点睛】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.25.(1)见解析;(2)5【分析】(1)只要证明CM∥AN,AM∥CN即可.(2)先证明△DEM≌△BFN得BN=DM,再在Rt△DEM中,利用勾股定理即可解决问题.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NBF (AAS ),∴ME =NF =3,在Rt △DME 中,∵∠DEM =90°,DE =4,ME =3,∴DM =222234DE ME +=+=5,∴BN =DM =5.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.26.(1)55︒;(2)4.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E 作BC 边的垂线即可得:E 到BC 边的距离为EF 的长,然后过A 作BC 边的垂线AG ,再根据三角形中位线定理求解即可.【详解】解:(1)BED ∠是ABE ∆的外角, 154055BED ABE BAD;(2)过E 作BC 边的垂线,F 为垂足,则EF 为所求的E 到BC 边的距离, 过A 作BC 边的垂线AG ,AD ∴为ABC ∆的中线,5BD =,22510BC BD ∴==⨯=,ABC ∆的面积为40,∴1402BC AG ,即110402AG ,解得8AG =,∵AD 为ABC ∆的中线,∴11402022ABD ABC S S , 又∵BE 为ABD ∆的中线, ∴11201022EBD ABD S S , 则有:1151022BD EFEF 4EF ∴=.即E 到BC 边的距离为4.【点睛】本题考查了三角形外角的性质、三角形中位线的性质及三角形的面积公式,添加适当的辅助线是解题的关键.。

新人教版初中数学八年级数学下册第三单元《平行四边形》测试(答案解析)(2)

新人教版初中数学八年级数学下册第三单元《平行四边形》测试(答案解析)(2)

一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .104.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形6.下列命题中,错误的是( )A .一组对边平行的四边形是梯形;B .两组对边分别相等的四边形是平行四边形;C .对角线相等的平行四边形是矩形;D .一组邻边相等的平行四边形是菱形.7.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形8.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .69.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③ 10.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .411.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( )A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=24512.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC 3D 3 二、填空题13.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.14.如图,在菱形ABCD 中,13cm AB =,24cm AC =,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为________cm .15.如图,正方形ABCD 的边长为2,O 是对角线BD 上一动点(点O 与端点B ,D 不重合),OM ⊥AD 于点M ,ON ⊥AB 于点N ,连接MN ,则MN 长的最小值为_____.16.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm . 17.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.18.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.19.如图,90MON ∠=︒,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当点B 在边ON 上移动时,点A 随之在边OM 上移动,2AB =,1BC =,运动过程中,点D 到点O 的最大距离为______.20.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.三、解答题21.如图,过ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC .CD 、DA 于点P 、M 、Q 、N .(1)求证:PBE QDE ≅△△;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.22.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 23.如图,已知点D 在ABC 的BC 边上,//DE AC 交AB 于E ,//DF AB 交AC 于F .(1)求证:AE DF =;(2)若AD 平分BAC ∠,试判断四边形AEDF 的形状,并说明理由.24.如图,ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,并且AE CF =,连接DE ,BF .(1)求证:△≌△DOE BOF ;(2)若BD EF =,连接EB ,DF ,判断四边形EBFD 的形状,并说明理由. 25.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.26.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形CMAN 是平行四边形; (2)已知4,3DE FN ==.求BN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∵BD=DE ,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2.D解析:D【分析】连接HF ,过点G 作GI HF 交HF 于点I ,根据甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD ,可得EFH △是等腰直角三角形,则可求得45GFI ,30GHI ,根据勾股定理,可得:1GI =,3HI,则有1FI GI ,31EF HF HI FI ,根据正方形的对角线2AC EF =可求出答案.【详解】解:如图示,连接HF ,过点G 作GI HF 交HF 于点I ,∵甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .∴根据题意,根据对称性可得EFH △是等腰直角三角形,则有:90EFH,45EHF HEF ∵45GFE ,15EHG , ∴45GFI ,30GHI ,又∵GI HF ,2MN =,∴根据勾股定理,可得:1GI =,3HI, 则有1FIGI , ∴31EF HF HI FI , ∴正方形的对角线2231232ACEF ,故选:D .【点睛】 本题考查了正方形的性质,勾股定理,直角三角形的性质,熟悉相关性质是解题的关键. 3.C解析:C【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=6, ∵DE=3DF ,∴EF=4,∵∠AFC=90°,E 是AC 的中点,∴AC=2EF=8,故选:C .【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.5.D解析:D【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当=时,它是菱形,故本选项不符合题意;AB BC⊥时,四边形ABCD是菱B、根据对角线互相垂直的平行四边形是菱形知:当AC BD形,故本选项不符合题意;C、根据有一个角是直角的平行四边形是矩形知:当90∠=时,四边形ABCD是ABC矩形,故本选项不符合题意;=时,它是矩形,不是正方D、根据对角线相等的平行四边形是矩形可知:当AC BD形,故本选项符合题意;综上所述,符合题意是D选项;故选:D.【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.6.A解析:A【分析】根据梯形,平行四边形,矩形,菱形的判定进行判断即可.【详解】解:A、一组对边平行,另一组对边不平行的四边形是梯形,故错误,符合题意;B、两组对边分别相等的四边形是平行四边形,正确,不符合题意;C、对角线相等的平行四边形是矩形,正确,不符合题意;D、一组邻边相等的平行四边形是菱形,正确,不符合题意;故选:A.【点睛】主要考查梯形,平行四边形,矩形,菱形的判定,注意梯形的定义应从两组对边的不同位置关系分别考虑.7.B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B.【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.A解析:A【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=12AB,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;故选:A.【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12 BD.9.D解析:D【分析】①设∠EDC=x,则∠DEF=90°-x从而可得到∠DBE=∠DEB=180°-(90°-x)-45°=45°+x,∠DBM=∠DBE-∠MBE=45°+x-45°=x,从而可得到∠DBM=∠CDE;③由△BDM≌△DEF,可知DF=BM,由直角三角形斜边上的中线的性质可知BM=12 AC;④可证明△BDM≌△DEF,然后可证明:△DNB的面积=四边形NMFE的面积,所以△DNB 的面积+△BNE的面积=四边形NMFE的面积+△BNE的面积;【详解】解:①设∠EDC=x,则∠DEF=90°-x,∵BD=DE,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x.∴∠DBM=∠CDE,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.10.C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC≌△DEF,∴EF=EC,DF=DC,∠CDE=∠FDE,∵DA=DF,DG=DG,∴Rt△ADG≌Rt△FDG,∴AG=FG,∠ADG=∠FDG,∴∠GDE=∠FDG+∠FDE=12(∠ADF+∠CDF)=45°,∵△BGE的周长=BG+BE+GE,GE=GF+EF=EC+AG,∴△BGE的周长=BG+BE+ EC+AG=AB+AC,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.11.D解析:D【分析】四个选项,A、C选项CP为顶角的平分线, B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【详解】解:∵∠C=90°,点P在边AB上.BC=6,AC=8,∴22228610AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D.【点睛】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.12.D解析:D【分析】首先证明△OBC是等边三角形,在Rt△EBC中求出CE即可解决问题;【详解】解:∵四边形ABCD是矩形,∴OB=OC,∠BCD=90°,由翻折不变性可知:BC=BO,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:3a,故选:D.【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC是等边三角形.二、填空题13.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB再以E为圆心EA为半径作圆与正方形的交点即为满足条件的P点分类讨论即可【详解】如图所示在正方形ABCD中∠AEB=105°∵点P在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB,再以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,分类讨论即可.【详解】如图所示,在正方形ABCD中,∠AEB=105°,∵点P在正方形的边上,且AE=EP,∴可以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,①当P在AD上时,如图,AE=EP1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP1=60°,△EAP1为等边三角形,∴此时∠AEP1=60°;②当P在CD上时,如图,AE=EP2,AE=EP3,由①可知∠DEP1=180°-105°-60°=15°,∴此时∠DEP1=∠DEP2=15°,∠CEP2=∠AEP1=60°,∴此时∠AEP2=60°+15°+15°=90°;∠AEP3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.14.10【分析】连接对角线BD交AC于点O证四边形BDEG是平行四边形得EG=BD利用勾股定理求出OD的长BD=2OD即可求出EG【详解】解:连接BD 交AC于点O如图:∵菱形ABCD的边长为13cm∴A解析:10【分析】连接对角线BD,交AC于点O,证四边形BDEG是平行四边形,得EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【详解】解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13cm,∴AB//CD,AB=BC=CD=DA=13cm,∵点E、F分别是边CD、BC的中点,∴ EF//BD,∵AC、BD是菱形的对角线,AC=24cm,∴AC⊥BD,AO=CO=1AC=12cm,OB=OD,2又∵AB//CD,EF//BD,∴DE//BG,BD//EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13cm,CO=12cm,∴OB=OD22-=cm,13125∴BD=2OD=10cm,∴EG=BD=10cm;故答案为:10.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.15.1【分析】连接AO可证四边形AMON是矩形可得AO=MN当AO⊥BD时AO有最小值即MN有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO∵四边形ABCD是正方形∴AB=AD=BD=AB=解析:1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD2BD2=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=1BD=1,2∴MN的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN的最小值转化为线段AO的最小值是解题的关键. 16.9【分析】根据梯形中位线的长等于上底与下底和的一半可求得其下底【详解】解:由已知得下底=2×7-5=9cm故答案为9【点睛】主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半解析:9【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其下底.【详解】解:由已知得,下底=2×7-5=9cm.故答案为9.【点睛】主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.17.5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG分别是的中点∴∵分别是BEBC的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF、GH的长度,根据勾股定理计算,即可得到答案.【详解】F ,G 分别是DE ,BE 的中点, ∴142GF BD ==, ∵G ,H 分别是BE ,BC 的中点, ∴132GH CE ==, ∵∠FGH =90°,∴由勾股定理得,5FH ===,故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF 从而可求出∠DEH ∠CEF 的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【 解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF ,从而可求出∠DEH ,∠CEF 的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒, 故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键. 19.【分析】取AB 的中点E 则OE=1DE=利用三角形原理可确定最大值【详解】如图取AB 的中点E 连接OEDE ∵OE 是直角三角形ABO 斜边上的中线AB=2∴OE=1在直角三角形DAE 中根据勾股定理得DE==1【分析】取AB 的中点E ,则OE=1,.【详解】如图,取AB 的中点E ,连接OE ,DE ,∵OE 是直角三角形ABO 斜边上的中线,AB=2,∴OE=1,在直角三角形DAE 中,根据勾股定理,得DE=22DA AE +=2,∴当O ,D ,E 三点共线时,DO 最大, 且最大值为2+1,故应该填21+.【点睛】 本题考查了线段的最值,构造斜边上的中线,灵活运用三角形原理是解题的关键. 20.【分析】由题意和图示可知将两个边长为1的正方形沿对角线剪开将所得的四个三角形拼成一个大正方形大正方形的边长恰好是小正方形的对角线的长根据正方形的性质利用勾股定理求出小正方形对角线的长即可【详解】∵如 2【分析】由题意和图示可知,将两个边长为1的正方形沿对角线剪开,将所得的四个三角形拼成一个大正方形,大正方形的边长恰好是小正方形的对角线的长,根据正方形的性质,利用勾股定理求出小正方形对角线的长即可.【详解】∵如图是两个边长为1的小正方形,∴其对角线的长度22112=+=,∴22【点睛】本题主要考查正方形的性质和勾股定理,熟练运用和掌握以上两个知识点是解题的关键. 三、解答题21.(1)见解析;(2)见解析.【分析】(1)由ASA 证PBE QDE ≅△△即可;(2)由全等三角形的性质得出EP EQ =,同理可得EM EN =,根据对角线互相平分的四边形是平行四边形得四边形PMQN 是平行四边形,再由对角线互相垂直的平行四边形是菱形,即可得出结论.【详解】(1)证明:四边形ABCD 是平行四边形,EB ED ∴=,//AB CD ,EBP EDQ ∴∠=∠,在PBE △和QDE △中,EBP EDQ EB ED BEP DEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PBE QDE ASA ∴≅△△;(2)证明:如图所示:PBE QDE ≅△△,EP EQ ∴=,同理可得EM EN =,∴四边形PMQN 是平行四边形,PQ MN ⊥,∴四边形PMQN 是菱形.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析;(2)BC <AC【分析】(1)画射线BD ,以B 为端点取BC=a ,过点C 作BD 的垂线,再以点B 为圆心,c 为半径画弧,与该垂线交于点A 即可;(2)根据直角三角形的性质得到AB ,利用勾股定理求出AC ,再比较大小即可.【详解】解:(1)如图,△ABC 即为所作;(2)如图,直角三角形ABC中,∠C=90°,D为AB中点,则CD=5,BC=7,∴AB=10,∴AC=22=51,107∵7=49<51,∴BC<AC.【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.23.(1)见解析;(2)菱形,见解析【分析】(1)由DE∥AC交AB于E,DF∥AB交AC于F,可证得四边形AEDF是平行四边形,即可证得结论;(2)由AD平分∠BAC,DE∥AC,易证得△ADE是等腰三角形,又由四边形AEDF是平行四边形,即可证得四边形AEDF是菱形.【详解】(1)证明:∵DE∥AC,DF∥ AB,∴四边形AEDF是平行四边形,∴DE=AF;(2)若AD平分∠BAC,则四边形AEDF是菱形;理由:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠ADE=∠FAD,∴∠EAD=∠ADE ,∴AE=DE ,∵四边形AEDF 是平行四边形,∴四边形AEDF 是菱形.【点睛】此题考查了等腰三角形的判定与性质,菱形的判定与性质.注意熟练掌握菱形的判定方法是解此题的关键.24.(1)见解析;(2)矩形,见解析【分析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得OA =OC ,OB =OD ,由AE =CF 即可得OE =OF ,利用SAS 即可证明△BOE ≌△DOF ;(2)四边形BEDF 是矩形.由(1)得OD =OB ,OE =OF , 根据对角线互相平方的四边形为平行四边形可得四边形BEDF 是平行四边形, 再由BD =EF ,根据对角线相等的平行四边形为矩形即可判定四边形EBFD 是矩形.【详解】(1)证明:四边形ABCD 是平行四边形, OB OD ∴=,OA OC =. 又AE CF =,OA AE OC CF ∴-=-,即OE OF =,在DOE △和BOF 中,OE OF DOE BOF OD OB =⎧⎪∠=∠⎨⎪=⎩,∴△≌△DOE BOF .(2)四边形EBFD 是矩形,理由如下: BD ,EF 相交于点O ,OD OB =,OE OF =,∴四边形EBFD 是平行四边形.又BD EF =,∴四边形EBFD 是矩形.【点睛】本题考查了三角形全等的性质和判定,平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.25.(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=. (2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.26.(1)见解析;(2)5【分析】(1)只要证明CM ∥AN ,AM ∥CN 即可.(2)先证明△DEM ≌△BFN 得BN =DM ,再在Rt △DEM 中,利用勾股定理即可解决问题.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴CD ∥AB ,∵AM ⊥BD ,CN ⊥BD ,∴AM ∥CN ,∴CM ∥AN ,AM ∥CN ,∴四边形AMCN 是平行四边形.(2)∵四边形AMCN 是平行四边形,∴CM =AN ,∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴DM =BN ,∠MDE =∠NBF ,在△MDE 和△NBF 中,MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NBF (AAS ),∴ME =NF =3,在Rt △DME 中,∵∠DEM =90°,DE =4,ME =3,∴DM =222234DE ME +=+=5,∴BN =DM =5.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.。

初二平行四边形练习题含答案

初二平行四边形练习题含答案

初二平行四边形练习题含答案本篇文章将为初二学生提供一些关于平行四边形的练习题,并附带答案,帮助学生巩固对平行四边形的理解和应用。

以下是一些练习题,希望对同学们有所帮助。

练习题一:已知平行四边形ABCD中,点E、F分别为AB、CD的中点。

若AE的长度为8cm,求线段EF的长度。

解答:由平行四边形的性质可知,连结AC和BD两线段的中点为G,那么EG = GF。

由于AE的长度为8cm,AB和CD平行,所以AC的长度为16cm。

根据三角形EGC和GFC的相似性,可得EF与GF之比等于AC与CG之比,即EF/GF = AC/CG。

由于AC的长度为16cm,而CG的长度为8cm(CG为AC的中点),所以EF/GF = 16/8,即EF/GF = 2。

因此,EF的长度为GF的2倍,即EF = 2 * GF。

由于EG= GF,所以EF = 2 * EG。

代入已知条件,得到EF = 2 * 8 = 16。

因此,线段EF的长度为16cm。

练习题二:在平行四边形EFGH中,已知EF的长度为10cm,FG的长度为8cm,角EFG的度数为120°,求线段GH的长度。

解答:由平行四边形的性质可知,EF与GH的长度相同,FG与EH 的长度相同,且角EFG与角HGE互补(即两个角的度数之和为180°)。

已知EF的长度为10cm,FG的长度为8cm,所以GH的长度也为8cm。

又已知角EFG的度数为120°,根据平行四边形内角和定理,可得角HGE的度数为180° - 120° = 60°。

因此,线段GH的长度为8cm。

练习题三:已知平行四边形IJKL中,IJ的长度为12cm,KL的长度为20cm,角KJL的度数为110°,求角KIL的度数。

解答:由平行四边形的性质可知,角IJK与角KJL互补(即两个角的度数之和为180°),角IJK与角KIL互补。

已知角KJL的度数为110°,所以角IJK的度数为180° - 110° = 70°。

人教版八年级初二数学下学期平行四边形单元测试题试卷

人教版八年级初二数学下学期平行四边形单元测试题试卷

一、选择题1.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③仅有当∠DAP =45°或67.5°时,△APD 是等腰三角形;④∠PFE =∠BAP :⑤22PD =EC .其中有正确有( )个.A .2B .3C .4D .52.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =62+,则正方形的面积为( )A .5B .4C .3D .23.如图,在长方形ABCD 中,AD=6,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和为( )A .5B .6C .7D .84.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( )A .8 与 14B .10 与 14C .18 与 20D .4 与 28 5.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④6.如图,点E 是正方形ABCD 外一点,连接AE 、BE 和DE ,过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =3.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为7;④S 正方形ABCD =8+14.则正确结论的个数是( )A .1B .2C .3D .47.如图,矩形ABCD 中,4AB =,3AD =,折叠纸片使点D 落在AC 边上的D 处,折痕为AH ,则CH 的长为( )A .52B .2C .32D .18.下列命题中,真命题的个数有( )①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A .3个B .2个C .1个D .0个9.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE 55;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .510.在菱形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的一点(不与端点重合),对于任意的菱形ABCD ,下面四个结论中:①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形正确的结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.13.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.14.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (30),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.15.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)16.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.17.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+3BD 的长为___________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______; ②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______;23.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .24.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.25.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.26.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E在AB边(除两端点)上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.27.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN= °;(给出求解过程)(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)(4)图③中∠CPN= °;(直接写出答案)(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n 的代数式表示,直接写出答案).28.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD 的平分线,则线段AB,AD,DC之间的等量关系为;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.29.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由30.已知:如图,在ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,CF BA交PQ于点F,连接AF.过点C作//(1)求证:四边形AECF是菱形;AC ,AE=5,则求菱形AECF的面积.(2)若8【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE 后即可证明①AP=EF ;④∠PFE=∠BAP ;在此基础上,根据正方形的对角线平分对角的性质,在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,求得DP=2EC ,得出⑤正确,即可得出结论.【详解】过P 作PG ⊥AB 于点G ,如图所示:∵点P 是正方形ABCD 的对角线BD 上一点,∴GP=EP ,在△GPB 中,∠GBP=45°,∴∠GPB=45°,∴GB=GP ,同理:PE=BE ,∵AB=BC=GF ,∴AG=AB-GB ,FP=GF-GP=AB-GB ,∴AG=PF ,在△AGP 和△FPE 中,90AG PF AGP FPE PG PE ⎧⎪⎨⎪∠∠⎩︒====,∴△AGP ≌△FPE (SAS ),∴AP=EF ,①正确,∠PFE=∠GAP ,∴∠PFE=∠BAP ,④正确;延长AP 到EF 上于一点H ,∴∠PAG=∠PFH ,∵∠APG=∠FPH ,∴∠PHF=∠PGA=90°,∴AP ⊥EF ,②正确,∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45°,∴当∠PAD=45°或67.5°时,△APD 是等腰三角形,除此之外,△APD 不是等腰三角形,故③正确.∵GF ∥BC ,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴DP=2EC,即2PD=EC,⑤正确.∴其中正确结论的序号是①②③④⑤,共有5个.故选D.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.2.B解析:B【解析】【分析】过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=12CD,再利用勾股定理列式求出CE,根据正方形的性质求出OC=OD=2a,然后利用四边形OCED的面积列出方程求出2a,再根据正方形的面积公式列式计算即可得解.【详解】解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,在△COM 和△DON 中,==CMO=90COM DON N OC OD ∠∠⎧⎪∠∠⎨⎪=⎩,∴△COM ≌△DON (AAS ),∴OM=ON ,∴四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,则OC=OD=22a = ∵∠CED=90°,∠DCE=30°,∴DE=12CD=a , 由勾股定理得,== ,∴四边形OCED 的面积=21113(2)(2)222a a a a +=⨯, 解得21a =,所以,正方形ABCD 的面积=22(2)4414a a ==⨯=.故选B .【点睛】本题考查了正方形的性质和判定,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 3.C解析:C【分析】连接EG 、FH ,根据题意可知△AEF 与△CGH 全等,故EF=GH ,同理EG=FH ,再证四边形EGHF 为平行四边形,所以△PEF 和△PGH 的面积和是平行四边形的面积一半,平行四边形EGHF 的面积等于矩形ABCD 的面积减去四周四个小的直角三角形的面积即可求得.【详解】连接EG 、FH ,如图所示,在矩形ABCD 中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB-BE=4-1=3,CH=CD-DH=3,∴AE=CH,在△AEF 和△CGH 中,AE=CH,∠A=∠C=90°,AF=CG,∴△AEF ≌△CGH ,∴EF=GH,同理可得△BGE ≌△DFH ,∴四边形EGHF为平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=12⨯平行四边形EGHF的面积,求得平行四边形EGHF的面积=4⨯6--12⨯2⨯3-12⨯1⨯(6-2)-12⨯2⨯3-12⨯1⨯(6-2)=14,∴△PEF和△PGH的面积和=1142⨯=7.【点睛】此题主要考察矩形的综合利用.4.C解析:C【分析】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,在△BDF中,利用三角形三边关系可得到x+y与x-y的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,连接BD,DF根据题意,设AB=12,BD=x,DF=y则AF=AB=12,BF=24∴在△BDF中,BD+FD>BF,即:x+y>24在△BDF中,BD-FD<BF,即:x-y<24满足条件的只有C选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个5.A解析:A【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵AD CDADM CDM DM DM⎧⎪∠∠⎨⎪⎩===,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵90CBF CDEBC CDBCF DCE∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,3AN x =,DN=MN=x , ∴331)x x x +=,∴DE=BF=AB-AF=31)231)x x x -=,∴22(31)26BF MD x x x +==,∵BC=AD= 31)6x x ≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.6.C解析:C【分析】①易知AE =AP ,AB =AD ,所以只需证明∠EAB =∠PAD 即可用SAS 说明△APD ≌△AEB ; ②易知∠AEB =∠APD =135°,则∠BEP =∠AEB ﹣∠AEP =135°﹣45°=90°,所以EB ⊥ED ;③在Rt △BEP 中利用勾股定理求出BE 7,根据垂线段最短可知B 到直线AE 的距离7;则③错误;④要求正方形的面积,则需知道正方形一条边的平方值即可,所以在△AEB 中,∠AEB =135°,AE =1,BE 7A 作AH ⊥BE 交BE 延长线于H 点,在Rt △AHB 中利用勾股定理AB 2=BH 2+AH 2即可.【详解】∵四边形ABCD 是正方形,∴AD =AB ,∠DAB =90°.∴∠DAP+∠BAP =90°.又∠EAP+∠BAP =90°,∴∠EAP =∠DAP .又AE =AP ,∴△APD ≌△AEB (SAS ).所以①正确;∵AE =AP ,∠EAP =90°,∴∠APE=∠AEP=45°,∴∠APD=180°﹣45°=135°.∵△APD≌△AEB,∴∠AEB=∠APD=135°,∴∠BEP=135°﹣45°=90°,即EB⊥ED,②正确;在等腰Rt△AEP中,利用勾股定理可得EP=222AE AP+=,在Rt△BEP中,利用勾股定理可得BE=227BP EP-=.∵B点到直线AE的距离小于BE,所以点B到直线AE的距离为7是错误的,所以③错误;在△AEB中,∠AEB=135°,AE=1,BE=7,如图所示,过点A作AH⊥BE交BE延长线于H点.在等腰Rt△AHE中,可得AH=HE=22AE=22.所以BH 27 +.在Rt△AHB中利用勾股定理可得AB2=BH2+AH2,即AB2=(272+)2+(22)2=14,所以S正方形ABCD=14.所以④正确.所以只有①和②、④的结论正确.故选:C.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,解决复杂几何图形时要会分离图形,分离出对解决问题有价值的图形单独解决.7.A解析:A【分析】先利用勾股定理求出AC=5,再令CH x =,则4DH x =-,利用勾股定理求出答案.【详解】∵四边形ABCD 为矩形,∴4AB DC ==,∵3AD =,在Rt ADC 中,由勾股定理得:222AD DC AC +=,得:5AC =,令CH x =,则4DH x =-,由折叠性质可知:4DH HD x '==-,3AD AD '==,故532D C AC AD ''=-=-=,在Rt HD C '△中,由勾股定理得:222HD D C HC ''+=,∴()22242x x -+=, ∴52x =. 故52CH =. 故选:A .【点睛】 此题考查矩形的性质,勾股定理,折叠的性质,涉及直角三角形的边长的计算题时可多次进行勾股定理的计算.8.C解析:C【分析】正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.【详解】①对角线相等且互相平分的四边形是矩形,故该项错误;②四条边相等的四边形是菱形,故该项错误;③一组对边平行且相等的四边形是平行四边形,故该项正确;故选:C.【点睛】此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键. 9.C解析:C【分析】①由翻折知∠ABE=∠AB'E=90º,再证∠M=∠CB'E=∠B'AD即可;②借助轴对称可知;③利用计算,勾股定理求B′D,构造方程,求EB,在构造勾股定理求MB′=55;④由相似CB':BM=CE:BE,BM=103,在计算B'M>5;⑤证△BEG≌△B′PG得BE=B′P,再证菱形即可.【详解】①由折叠性质知∠ABE=∠AB'E=90º,∴∠CB'E+∠AB'D=90º∵∠D=90º∴∠B'AD+∠AB'D=90º∴∠CB'E=∠B'AD,∵CD∥MB,∴∠M=∠CB'E=∠B'AD;②点P在对称轴上,则B'P=BP;③由翻折,AB=AB'=5,AD=4,由勾股定理DB'=3,∴CB'=5-3=2,设BE=x=B'E,CE=4-x,在Rt△B′CE中,∠C=90º,由勾股定理(4-x)2+22=x2,解得x=52,∴CE=4-52=32,在Rt△ABE中,∠ABE=90º,AE=22555+5=22⎛⎫⎪⎝⎭;④由BM∥CB′∴△ECB′∽△EBM,∴CB':BM=CE:BE,∴2:BM=32:52,∴BM=103,则B'M=221020+4=33⎛⎫⎪⎝⎭>5=CD;⑤连接BB′,由对称性可知,BG=B′G,EP⊥BB′,BE∥B′P,∴△BEG≌△B′PG,∴BE=B′P,∴四边形BPB′E为平行四边形,又BE=EB′,所以四边形BPB′E是菱形,所以PB′=B'E.故选择:C.【点睛】此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现△BEG≌△B′PG.10.D解析:D【分析】根据菱形的判定和性质,矩形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】①如图,连接AC,BD交于O,四边形ABCD是菱形,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④如图,当四边形ABCD为正方形时,四边形MNPQ是正方形,故至少存在一个四边形MNPQ是正方形;故④正确;综上,①②③④4个均正确,故选:D.【点睛】本题考查了平行四边形的判定和性质,菱形的判定,正方形的判定,矩形的判定,熟记各定理是解题的关键.二、填空题11.25【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.37【分析】如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.证明BE=DT,BD=DW,把问题转化为求DT+DW的最小值.【详解】解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+AD,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,WK=3CK=33,∴TK=1+3+32=112,∴TW=2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭=37,∴DB+BE=DB+DT=DW+DT≥TW,∴BD+BE≥37,∴BD+BE的最小值为37,故答案为37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.13.102︒【分析】根据菱形的性质求出∠DAB=2∠DAC,AD=CD;再根据垂直平分线的性质得出AF=DF,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB的度数.【详解】连接BD,BF,∵四边形ABCD是菱形,∴AD=CD,∴∠DAC=∠DCA.∵EF垂直平分AB,AC垂直平分BD,∴AF=BF,BF=DF,∴AF=DF,∴∠FAD=∠FDA,∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°.故答案为:102°.【点睛】本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD ,BF ,这是解答本题的突破口.14【分析】先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,OB ∴=四边形ABCD 是菱形,OC ∴垂直平分BD ,OB OD ==点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形, DA OB ⊥,12OA OB ∴==3AD ===,D ∴,又(0,1)E -,DE ∴==即EP BP +【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.15.①②④【分析】①根据平行四边形的性质和等腰三角形的性质即可判断;②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEFDFM ≅△△,得出,FE MF AEFM =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;③由FE MF =,得出EFC CFM SS =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.【详解】①∵点F 是AD 的中点,∴AF FD = .∵在平行四边形ABCD 中,AD =2AB , //,AD BC AF FD CD ∴==,,DFC FCB DFC DCF ∴∠=∠∠=∠ ,FCB DCF ∴∠=∠,∴∠BCD =2∠DCF ,故①正确;②延长EF ,交CD 延长线于点M ,∵四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠,∵点F 是AD 的中点,∴AF FD = .在AEF 和DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEF DFM ASA ∴≅△△,FE MF AEF M ∴=∠=∠.CE AB ⊥ ,90AEC ∴∠=︒,90ECD AEC ∴∠=∠=︒,12CF EM EF ∴==,故②正确; ③∵FE MF =,∴EFC CFM S S = .CFM CDF MDF S S S =+△△△CDF EFC S S ∴<△△,故③错误;④设FEC x ∠= ,则FCE x ∠=,90DCF DFC x ∴∠=∠=︒- ,1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒- .90AEF x ∠=︒- ,3DFE AEF ∴∠=∠,故④正确;综上所述,正确的有①②④,故答案为 :①②④.【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.16.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA ,∠ABF=∠BFC ,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD 中,AB ∥CD ,BC=AD=5,∴∠BAE=∠DEA ,∠ABF=∠BFC ,∵BAD ∠的平分线交CD 于点E ,∴∠BAE=∠DAE ,∴∠DAE=∠DEA ,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.17.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则22OE BE +OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=23,∵222222(23)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形, ∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE,∴112CF EF CE ===, ∴22223122BF BC CF =-=-=∴平行四边形ABCD 的面积为225102BF CD ⋅==.故答案为:【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)AG 2=GE 2+GF 2,理由见解析;(2【分析】(1)结论:AG 2=GE 2+GF 2.只要证明GA=GC ,四边形EGFC 是矩形,推出GE=CF ,在Rt △GFC 中,利用勾股定理即可证明;(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .易证AM=BM=2x ,,在Rt △ABN 中,根据AB 2=AN 2+BN 2,可得1=x 2+(x )2,解得x=4,推出BN=4,再根据BG=BN÷cos30°即可解决问题. 【详解】解:(1)结论:AG 2=GE 2+GF 2.理由:连接CG .∵四边形ABCD 是正方形,∴A 、C 关于对角线BD 对称,∵点G 在BD 上,∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F ,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC 是矩形,∴CF=GE ,在Rt △GFC 中,∵CG 2=GF 2+CF 2,∴AG 2=GF 2+GE 2.(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x ,x ,在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x2+(x )2,解得x=4,∴BN=624+, ∴BG=BN÷cos30°=326+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.22.(1)①6;②结论://P EC A ;(2)为4和16.【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题. ()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥,//EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC =180°﹣∠DCE ﹣∠CDE =50°;(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠BAE =∠BCD ,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.24.(1)见解析;(2)MN2=ND2+DH2,理由见解析;(3)EG=4,MN=52【分析】(1)根据高AG与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x,根据正方形的边长得出CE,CF,EF,在Rt△CEF中利用勾股定理得到方程,求出EG的长,设MN=a,根据MN2=ND2+BM2解出a值即可.【详解】解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL).∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=12∠BAD=45°;(2)MN2=ND2+DH2.∵∠BAM=∠DAH,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN,又∵AM=AH,AN=AN,∴△AMN≌△AHN(SAS).∴MN=HN,∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°,∴NH2=ND2+DH2,∴MN2=ND2+DH2;(3)∵正方形ABCD的边长为12,∴AB=AG=12,由(1)知,BE=EG,DF=FG.设EG=BE=x,则CE=12-x,∵GF=6=DF,∴CF=12-6=6,EF=EG+GF=x+6,在Rt△CEF中,∵CE2+CF2=EF2,∴(12-x)2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt△ABD中,22AB AD2,在(2)中,MN2=ND2+DH2,BM=DH,∴MN2=ND2+BM2.。

八年级数学下册《平行四边形》练习题与答案(人教版)

八年级数学下册《平行四边形》练习题与答案(人教版)

八年级数学下册《平行四边形》练习题与答案(人教版)一、选择题1.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.222.如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )A.16°B.22°C.32°D.68°3.下列条件中,不能判定四边形是平行四边形的是( )A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等4.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE度数为( )A.20°B.25°C.30°D.35°5.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为( )A.6cmB.4cmC.3cmD.2cm6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°7.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b8.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是( )A.正方形B.矩形C.菱形D.都有可能9.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )A.2B. 3C. 2D.110.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D 恰好都落在点G处,已知BE=1,则EF的长为( )A.1.5B.2.5C.2.25D.311.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC12.如图,在四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7的周长为a +b 8; ④四边形A n B n C n D n 的面积为ab 2n . A.①②③ B.②③④ C.①③④ D.①②③④二、填空题13.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD 是平行四边形(填一个即可).14.如图所示,已知▱ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明▱ABCD 是矩形的有(填写序号) .15.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是_________.16.如图,把矩形ABCD 绕着点A 逆时针旋转90°可以得到矩形AEFG ,则图中△AFC 是 三角形.17.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是 .18.如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于M点,则线段AM的长是.三、解答题19.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.20.如图,已知在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.21.如图,在△ABC中,∠A CB=90°,O,D分别是边AC,AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD 是菱形;(2)若四边形AECD 的面积为24,BC :AC =34,求BC 的长.22.如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA ⊥AF.求证:DE =BF.23.已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH(即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足 条件时,四边形EFGH 是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.24.已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.参考答案1.B.2.C3.B4.C.5.C6.A.7.A.8.B.9.B10.B11.C12.B.13.答案为:AD=BC(答案不唯一).14.答案为:①④.15.答案为:AB=AD或AC⊥BD;16.答案为:等腰直角.17.答案为:22.5°.18.答案为13 2.19.证明:(1)如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD∵BE=DF∴OB﹣BE=OD﹣DF,即OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD∴∠ABF=∠CDF=36°∴∠AFB=180°﹣108°﹣36°=36°∴AB=AF∵AF=EF∴△ABF 和△AFE 是等腰三角形同理△EFC 与△CDE 是等腰三角形.20.证明:(1)∵AB =AC∴∠B =∠ACB又∵AD 是BC 边上的中线∴AD ⊥BC ,即∠ADB =90°.∵AE ∥BC∴∠EAC =∠ACB∴∠B =∠EAC.∵CE ⊥AE ,所以∠CEA =90°∴∠ADB =∠CEA.又∵AB =CA∴△ABD ≌△CAE(AAS).(2)解:AB ∥DE 且AB =DE.证明:由△ABD ≌△CAE 可得AE =BD又∵AE ∥BD∴四边形ABDE 是平行四边形∴AB ∥DE 且AB =DE.21.(1)证明:∵点O 是AC 的中点∴OA =OC.∵CE ∥AB∴∠DAO =∠ECO.又∵∠AOD =∠COE∴△AOD ≌△COE(ASA)∴AD =CE∴四边形AECD 是平行四边形.又∵CD 是Rt △ABC 斜边AB 上的中线∴CD =AD =12AB∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形∴AC ⊥ED.在Rt △AOD 中 OD OA 34可设OD =3x ,OA =4x则ED =2OD =6x ,AC =2OA =8x.由题意可得12·6x ·8x =24 ∴x =1∴OD =3.∵O ,D 分别是AC ,AB 的中点∴OD 是△ABC 的中位线∴BC =2OD =6.22.证明:∵∠FAB +∠BAE =90°,∠DAE +∠BAE =90°∴∠FAB =∠DAE∵∠AB =AD ,∠ABF =∠ADE∴△AFB ≌△ADE∴DE =BF.23.解:(1)四边形EFGH 的形状是平行四边形.理由如下:如图1,连结BD . ∵E 、H 分别是AB 、AD 中点∴EH ∥BD ,EH =12BD同理FG ∥BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH 是平行四边形;(2)当四边形ABCD 的对角线满足互相垂直的条件时,四边形EFGH 是矩形.理由如下: 如图2,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC∵AC ⊥BD∴EH ⊥HG又∵四边形EFGH 是平行四边形∴平行四边形EFGH 是矩形;(3)菱形的中点四边形是矩形.理由如下:如图3,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC ,FG ∥BD ,EH =12BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH是平行四边形.∵四边形ABCD是菱形∴AC⊥BD∵EH∥BD,HG∥AC∴EH⊥HG∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直.24.解:(1)AF=CD+CF;(2)AF=CD+CF.。

新人教版初中数学八年级数学下册第三单元《平行四边形》测试(含答案解析)(4)

新人教版初中数学八年级数学下册第三单元《平行四边形》测试(含答案解析)(4)

一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于EF 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个 3.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对 4.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 5.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 6.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 7.如图,已知四边形ABCD 中,R 、P 分别为BC 、CD 上的点,E 、F 分别为AP 、RP 的中点.当点P 在CD 上从点C 向点D 移动而点R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长不变C .线段EF 的长逐渐减小D .线段EF 的长与点P 的位置有关 8.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形9.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形 10.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2 B .33cm 2 C .3cm D .33cm 11.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º 12.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF .若5AF =,3BE =,则EF 的长为( )A .23B .17C .25D .35二、填空题13.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.14.已知菱形的面积为962cm ,两条对角线之比为3∶4,则菱形的周长为__________. 15.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.16.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.17.如图,矩形纸片ABCD 的长AD =6cm ,宽AB =2cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长______cm .18.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.19.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).20.如图,已知正方形ABCD 的边长为2,延长BC 至E 点,使CE BC =,连结AE 交CD 于点F ,连结BF 并延长与线段DE 交于点G ,则FG 的长是____.三、解答题21.已知:如图,在正方形ABCD 中,点E 为边AB 的中点,连结DE ,点F 在DE 上CF CD =,过点F 作FG FC ⊥交AD 于点G .(1)求证:GF GD =;(2)联结AF ,求证:AF DE ⊥.22.已知:如图,在梯形ABCD 中,//AD BC ,AB CD =,2BC AD =,DE BC ⊥,垂足为点F ,且F 是DE 的中点,联结AE ,交边BC 于点G .(1)求证:四边形ABGD 是平行四边形;(2)如果2AD AB =,求证:四边形DGEC 是正方形.23.如图,在正方形ABCD 中,点P 是对角线AC 上的一点,点E 在BA 的延长线上,且PB PE =,连结DE .(1)求证:PD PE =.(2)试判断DE 和BP 的数量关系,并说明理由.24.已知:AB ⊥CD 于点O ,AB=AC=CD ,点I 是∠BAC ,∠ACD 的平分线的交点,连接IB ,ID(1)求证:IA ID =且IA ID ⊥;(2)填空:①∠AIC+∠BID=_________度;②S IBD ∆______S AIC ∆(填“﹥”“﹤”“=”)(3)将(2)小题中的第②结论加以证明.25.如图,四边形ABCD 是平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)若BF 恰好平分∠ABE ,连接AC 、DE ,求证:四边形ACED 是平行四边形.26.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB)顶端有一根绳子(AC),自然垂下后,绳子底端离地面还有BC ),工作人员将绳子底端拉到离宣传牌3m处(即点E到AB的距离0.7m(即0.7为3m),绳子正好拉直,已知工作人员身高(DE)为1.7m,求宣传牌(AB)的高度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2.D解析:D【分析】求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②.【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,∴45BAD CAD ∠=︒=∠,∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒,∴67.5AFE BFD AEB ∠=∠=∠=︒,∴AF AE =,AM BE ⊥,∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()FBD NAD ASA ≅,∴DF DN =,故①正确;在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =,∵AF AE =,∴AE CN =,故④正确;在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==,∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒,∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠,∴DM MN =,∴DMN 是等腰三角形,故②正确.故选:D .【点睛】 本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.3.C解析:C【分析】因为图形对折,所以首先△CDB ≌△ABD ,由于四边形是长方形,进而可得△ABE ≌△CDE ,如此答案可得.【详解】解:∵△BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∴CD=AB ,AD=BC ,∵BD=BD ,∴△CDB ≌△ABD (SSS ),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE ≌△CDE ,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进. 4.B解析:B【分析】由折叠的性质和平行线的性质可得∠ADB=∠CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证△ABE ≌△CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∴∠CBD=∠DBC',CD=C'D=AB ,AD=BC=BC',∵AD ∥BC',∴∠EDB=∠DBC',∴∠EDB=∠EBD ,故选项C 正确;∴BE=DE ,∵AD=BC ,∴AE=CE ,故选项A 正确;在△ABE 和△CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 5.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.6.A解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.7.B解析:B【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【详解】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选:B.【点睛】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.8.C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.9.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD各边的中点依次为E,F,G,H,∴EF,FG,GH,HE分别是△ABC,△BCD,△CDA,△DAB的中位线,∴EF=12AC,FG=12BD,GH=12AC,EH=12BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.10.C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C .【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.11.C解析:C【分析】由翻折可知:△BDF ≌△BCD ,所以∠EBD=∠CBD ,∠E=∠C=90°,由于△EDF 是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°. 【详解】解:由翻折的性质得,∠DBC=∠EBD ,∵矩形的对边AD ∥BC ,∠E=∠C=90°,∴∠DBC=∠ADB ,∴∠EBD=∠ADB ,∵△EDF 是等腰三角形,∠E=90°,∴△EDF 是等腰直角三角形,∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE ,∴∠DBF=12∠DFE=22.5°, ∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.12.C解析:C【分析】如图,过E 作EM AD ⊥于M ,证明//,AD BC 90B ∠=︒,四边形ABEM 为矩形,再证明5AE AF ==,求解43ME AB AM BE ====,,可得:2MF =,再利用勾股定理可得答案.【详解】解:如图,过E 作EM AD ⊥于M ,矩形ABCD ,53AF BE ==,,//,AD BC ∴ 90B ∠=︒, 四边形ABEM 为矩形,,AFE CEF ∴∠=∠由对折可知:,AEF CEF ∠=∠,AFE AEF∴∠=∠5AE AF∴==,224AB AE BE∴=-=,四边形ABEM为矩形,43ME AB AM BE∴====,,2MF∴=,22+2 5.EF ME MF∴=故选:.C【点睛】本题考查的是轴对称的性质,矩形的判定与性质,等腰三角形的判定,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】先判定△ADF≌△ECF即可得到AF=EF依据平行线的性质以及角平分线的定义即可得出AF⊥DM;再根据等腰三角形的性质即可得到DN=MN=3最后依据勾股定理即可得到AN与NE的长进而得出DE解析:317【分析】先判定△ADF≌△ECF,即可得到AF=EF,依据平行线的性质以及角平分线的定义,即可得出AF⊥DM;再根据等腰三角形的性质,即可得到DN=MN=3,最后依据勾股定理即可得到AN与NE的长,进而得出DE的长.【详解】解:∵点F为边DC的中点,∴DF=CF=12CD=12AB=5,∵AD∥BC,∴∠ADF=∠ECF,∵∠AFD=∠EFC,∴△ADF≌△ECF(ASA),∴AF=EF,∵CD∥AB,∴∠ADC+∠DAB=180°,又∵AF平分∠BAD,DM平分∠ADC,∴∠ADN+∠DAN=90°,∴AF⊥DM,∵AF平分∠BAD,∴∠BAF=∠DAF,又∵DC∥AB,∴∠BAF=∠DFA,∴∠DAF=∠DFA,∴AD=DF=5,同理可得,AM=AD=5,又∵AN平分∠BAD,∴DN=MN=3,∴Rt△ADN中,AN=224AD DN-=,∴AF=2AN=8,EF=8,∴NE=AE-AN=12,∴Rt△DEN中,DE=22317DN EN+=,故答案为:317.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,判定AF⊥DM,利用勾股定理进行计算是解决问题的关键.14.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:1x x=,解得:x=±4(负值舍去)34962∴对角线长分别为12cm、16cm,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长,则菱形的周长为40cm.故答案为:40cm.【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.15.【分析】由ASA可证△ABQ≌△DAP可得AP=BQ列出方程可求t的值【详解】∵四边形ABCD是正方形∴AD=AB∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°且∠DAQ+∠BAQ=解析:8 3【分析】由“ASA”可证△ABQ≌△DAP,可得AP=BQ,列出方程可求t的值.【详解】∵四边形ABCD是正方形∴AD=AB,∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°,且∠DAQ+∠BAQ=90°,∴∠BAQ=∠ADP,且∠B=∠BAD=90°,AD=AB∴△ABQ≌△DAP(ASA)∴AP=BQ∴2t=8−t∴t=83,故答案为:83.【点睛】本题考查了全等三角形判定和性质,正方形的性质,一元一次方程的应用,证明△ABQ≌△DAP是本题的关键.16.【分析】首先利用勾股定理计算出BD的长再根据折叠可得AD=A′D=5进而得到A′B的长再设AE=x则A′E=xBE=12-x再在Rt△A′EB中利用勾股定理得出关于x的方程解出x的值可得答案【详解】解析:10 3【分析】首先利用勾股定理计算出BD的长,再根据折叠可得AD=A′D=5,进而得到A′B的长,再设AE=x,则A′E=x,BE=12-x,再在Rt△A′EB中利用勾股定理得出关于x的方程,解出x的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x,则A′E=x,BE=12-x,在Rt△A′EB中:(12-x)2=x2+82,解得:x=103.故答案为:103.【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x的方程是解此题的关键.17.【分析】由矩形的性质和折叠的性质以及勾股定理得出方程解方程即可【详解】由折叠的性质得:BE=DE设DE长为xcm则AE=(6−x)cmBE=xcm∵四边形ABCD是矩形∴∠A=90°根据勾股定理得:解析:10 3【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】由折叠的性质得:BE=DE,设DE长为xcm,则AE=(6−x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(6−x)2+22=x2,解得:x=103,即DE长为103cm,故答案为:103.【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.18.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故 解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.18-【分析】过A 作AE ⊥y 轴于EAD ⊥x 轴于D 构造正方形AEOD 再证△AEB ≌△ADC (SAS )得BE=CD 由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.20.【分析】用全等三角形的判定AAS得出△ADF≌△ECF进而得出FG是△DCP的中位线得出DG=GP=PE=再利用勾股定理得出BG的长进而得出FG即可【详解】解:如图过点C作CP∥BG交DE于点P∵B5【分析】用全等三角形的判定AAS 得出△ADF ≌△ECF ,进而得出FG 是△DCP 的中位线,得出DG=GP=PE=1223DE =,再利用勾股定理得出BG 的长,进而得出FG 即可. 【详解】解:如图,过点C 作CP ∥BG ,交DE 于点P .∵BC=CE=2,∴CP 是△BEG 的中位线,∴P 为EG 的中点.又∵AD=CE=2,AD ∥CE ,在△ADF 和△ECF 中,AFD EFC ADC FCE AD CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△ECF (AAS ),∴CF=DF ,又CP ∥FG ,∴FG 是△DCP 的中位线, ∴G 为DP 的中点.∵CD=CE=2,∴2,因此DG=GP=PE=1223DE =. 连接BD ,易知∠BDC=∠EDC=45°,所以∠BDE=90°.又∵22BD = ∴2284589BG BD DG =+=+=. ∴115243FG CP BG ===, 5 【点睛】此题主要考查了正方形的性质以及全等三角形的判定和勾股定理应用等知识,根据已知得出正确辅助线是解题关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)由CF CD =可证得CFD CDF ∠=∠,因为90ADC GFC ∠∠==,所以GFD GDF ∠=∠,再由等腰三角形的判定即可得证;(2)因为,CF CD GF GD ==,所以GC 是FD 的垂直平分线,再证DAE CDG △≌△由全等三角形对应边相等可得AE DG =,这样AG GD GF ==即可解决问题;【详解】证明:(1)四边形ABCD 是正方形,90ADC ∴∠=,FG FC ⊥,90GFC ∠∴=,CF CD =CFD CDE ∴∠=∠,GFC CFD ADC CDE ∠∠∠∠∴-=-,即GFD GDF ∠=∠,GF GD ∴=.(2)如图,连结CG .,CF CD GF GD ==∴点G 、C 在线段FD 的中垂线上,GC DE ∴⊥,90CDF DCG ∠∠∴+=,90CDF ADE ∠∠+=,DCG ADE ∠∠∴=.四边形ABCD 是正方形,,90AD DC DAE CDG ∠∠∴===,DAE CDG ∴△≌△,AE DG ∴=,点E 是边AB 的中点,∴点G 是边AD 的中点,AG GD GF ∴==,,DAF AFG GDF GFD ∠∠∠∠∴==180DAF AFG GFD GDF ∠∠∠∠+++=,22180AFG GFD ∠∠∴+=90AFD ∠∴=,即AF DE ⊥.【点睛】本题是正方形的综合题,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的判定等知识,侧重考查了学生的逻辑推理能力和对知识的应用能力.22.(1)见解析;(2)见解析【分析】(1)连接AC 和BE ,根据垂直平分线的性质和等腰三角形的性质证明AB ∥EC 和AB EC =即可得到四边形ABEC 是平行四边形,由平行四边形的性质得12BG CG BC ==,即可证明结论; (2)先由(1)的结论证明四边形DGEC 是平行四边形,再由DC EC =得到四边形DGEC 是菱形,再根据勾股定理的逆定理得90GDC ∠=,即可证明结论.【详解】解:(1)如图,连接AC 和BE ,∵DE BC ⊥,F 是DE 的中点,∴DC EC =,由等腰三角形“三线合一”的性质得DCF ECF ∠=∠,∵AD ∥BC ,AB CD =,∴B DCF ∠=∠,∴B ECF ∠=∠,∴AB ∥EC ,∵AB EC =,∴ 四边形ABEC 是平行四边形,∴12BG CG BC ==, ∵2BC AD =,∴AD BG =,∵AD ∥BG ,∴四边形ABGD 是平行四边形;(2)∵四边形ABGD 是平行四边形,∴AB ∥DG ,AB DG =,∵AB ∥EC ,AB EC =,∴DG ∥EC ,DG EC =,∴四边形DGEC 是平行四边形,∵DC EC =,∴四边形DGEC 是菱形,∴DG DC =,由AD =,即得CG ==,∴222DG DC CG +=,∴90GDC ∠=,∴四边形DGEC 是正方形.【点睛】本题考查平行四边形的性质和判定,正方形的判定,解题的关键是熟练掌握这些性质定理.23.(1)见解析;(2)DE =,见解析 【分析】(1)根据SAS 证明APD APB ≌△△可得PD=PB ,再结合PD=PE 即可得出结论; (2)证明DPE 是等腰直角三角形即可得出结论.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB AD =,∵AC 是正方形ABCD 的对角线,∴=45CAD CAB ∠=∠︒∵AP AP =,∴()APD APB SAS ≌, ∴PD PB =, ∵PB PE =,∴PD PE =.(2)DE =.理由如下: ∵由(1)知,APD APB ≌△△,PD PB PE ==,∴设PEB PBE PDA x ∠=∠=∠=︒,∴1802EPB x ∠=︒-︒,∵45DAP ∠=︒,∴18045135DPA BPA x x ∠=∠=︒-︒-=︒-︒,∴1802(135)45APE EPB BPA x x x ∠=∠-∠=︒-︒-︒-︒=︒-︒,∴135(45)90DPE DPA APE x x ∠=∠-∠=︒-︒-︒-︒=︒.∴DPE 是等腰直角三角形,∴DE ==. 【点睛】本题是四边形综合题目,考查了正方形的性质,全等三角形的判定与性质,熟记正方形的性质,证明三角形全等是解决问题的关键.24.(1)证明见解析;(2)①180;②=;(3)证明见解析.【分析】(1)由角平分线的性质,解得ACI DCI ∠=∠,继而证明△ACI ≌△DCI(SAS),再根据全等三角形的性质可得IA=ID ,AIC DIC ∠=∠,由角平分线性质结合三角形内角和定理可得11=()904522CAI ACI CAO ACO ∠+∠∠+∠=⨯︒=︒,故135AIC DIC ∠=∠=︒,继而可证90AID ∠=︒据此解题;(2)①根据题意,由三线合一的性质可证,45AI ID AIH =∠=︒、CI IB =、45BIG CIG ∠=∠=︒,最后再计算+AIC BID ∠∠的值即可;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG S S S ==,再结合12BDI DIBG S S =即可解题; (3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG SS S ==,再结合12BDI DIBG S S =即可解题. 【详解】证明:(1)由点I 是∠BAC ,∠ACD 的平分线的交点ACI DCI ∴∠=∠在△ACI 和△DCI 中CI CI ACI DCI CA CD =⎧⎪∠=∠⎨⎪=⎩∴ △ACI ≌△DCI(SAS)IA ID ∴= 由点I 是∠BAC ,∠ACD 的平分线的交点11=()904522CAI ACI CAO ACO ∴∠+∠∠+∠=⨯︒=︒ 18045135=AIC DIC ∴∠=︒-︒=︒∠36013513590AID ∴∠=︒-︒-︒=︒即IA ID ⊥;(2)①如图,延长CI 交AD 于点H ,延长AI 交BC 于点GAI ID ⊥90AID DIG ∴∠=∠=︒AC CD CI =,平分ACD ∠,,CH AD AH DH ∴⊥=,45AI ID AIH ∴=∠=︒45CIG ∴∠=︒AC AB AI =,平分BAC ∠,,AG BC CG BG ∴⊥=CI IB ∴=45BIG CIG ∴∠=∠=︒13545180AIC BID ∴∠+∠=︒+︒=︒故答案为:180︒,=;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅12AIC GBI DIBG SS S ∴== 12BDI DIBG SS = AIC BDI S S ∴=故答案为:=;(3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG S S S ∴== 12BDI DIBG SS = AIC BDI S S ∴=.【点睛】本题考查全等三角形的判定与性质、等腰三角形三线合一的性质、角平分线的性质等知识,是重要考点,作出正确的辅助线、掌握相关知识是解题关键.25.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得到AB =CD ,∠DAE =∠AEB ,利用AE 平分∠BAD ,推出∠BAE =∠AEB ,得到BE=AB ,即可得到结论;(2)根据BE =AB ,BF 平分∠ABE ,得到AF =EF ,证明△ADF ≌△ECF ,推出DF =CF ,即可得到结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠DAE =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴BE =AB ,∴BE=CD ;(2)∵BE =AB ,BF 平分∠ABE ,∴AF =EF ,在△ADF 和△ECF 中,DAE AEB AF EFAFD EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△ECF ,∴DF =CF ,又∵AF =EF ,∴四边形ACED 是平行四边形.【点睛】此题考查平行四边形的判定及性质,全等三角形的判定及性质,等腰三角形三线合一的性质,熟记各知识点并应用解决问题是解题的关键.26.5.7m【分析】过点E 作EF AB ⊥于点F ,构造直角三角形,设m AF x =,根据勾股定理列方程,求出AF ,再根据矩形性质,加上DE 长即可.【详解】解:如图,过点E 作EF AB ⊥于点F .由题意,得AC AE =,0.7CB =, 1.7BF DE ==,3EF BD ==,∴ 1.70.71m CF BF BC DE BC =-=-=-=.设m AF x =,则(1)m AE AC x ==+,在Rt AEF 中,90AFE ︒∠=,由勾股定理,得222AE AF EF =+,即222(1)3x x +=+,解得4x =.∴4 1.7 5.7(m)AB AF BF =+=+=.答:宣传牌(AB )的高度为5.7m .【点睛】本题考查了勾股定理的应用和矩形的性质,恰当的作出辅助线,构造直角三角形,应用勾股定理建立方程是解题关键.。

(完整版)八年级数学《平行四边形》练习题

(完整版)八年级数学《平行四边形》练习题

(完整版)八年级数学《平行四边形》练习题一、选择题1. 已知平行四边形ABCD,AB=6cm,BC=8cm,若AB与AC 垂直,则AD的长是多少?A. 6cmB. 8cmC. 10cmD. 12cm2. 平行四边形ABCD中,角B的度数是110°,则角D的度数是多少?A. 70°B. 90°C. 100°D. 130°3. 平行四边形ABCD中,AD的长为12cm,CD的长为8cm,若角A的度数为60°,则角C的度数是多少?A. 60°B. 70°C. 80°D. 100°二、填空题1. 在平行四边形ABCD中,角A的度数是________°,角B的度数是________°。

2. 在平行四边形PQRS中,PR的长为15cm,SQ的长为12cm,若角P的度数为70°,则角Q的度数是________°。

3. 在平行四边形WXYZ中,WX的长为10cm,YZ的长为6cm,若Z的度数为120°,则W的度数是________°。

4. 在平行四边形ABCD中,AB的长为9cm,AD的长为6cm,若角C的度数为90°,则角D的度数是________°。

三、解答题1. 在平行四边形ABCD中,AB的长为10cm,角D的度数为120°,求AD的长。

2. 平行四边形ABCD中,AD的长为8cm,角D的度数为110°,求角B的度数。

3. 平行四边形ABCD中,AB的长为12cm,BC的长为16cm,角A的度数为60°,求角C的度数。

4. 平行四边形ABCD中,AB的长为3cm,AD的长为7cm,求角D的度数。

四、应用题1. 甲、乙两人同时走出一个矩形田径场,乙比甲多绕一圈,并走了500m。

如果甲用时12分钟,乙用时15分钟,求矩形田径场的长和宽。

完整版)初二数学平行四边形练习题

完整版)初二数学平行四边形练习题

完整版)初二数学平行四边形练习题初二数学平行四边形练题一、填空题1.2.∠D = 140°,AB = 24cm,AD = 22cm。

3.90°。

4.较短的边长为 10cm。

5.∠EAF = 60°,ABCD的周长为 13cm。

6.12cm。

7.AD = 2.56cm,CD = 6.08cm,∠D = 110°,∠A = 70°,∠C = 70°。

8.AB = 15cm,BC = 10cm,CD = 15cm,DA = 10cm。

9.AB = 10cm,BC = 20cm。

10.两对。

二、选择题11.C。

12.B。

13.C。

14.C。

15.B。

16.B。

17、四边形ABCD中,AD∥BC,要判定四边形ABCD是平行四边形,还应满足∠A+∠C=180°或∠B+∠D=180°。

18、根据下列条件,能得到平行四边形的是AB=CD,AD∥BC或AB∥CD,AD∥BC。

19、根据周长关系,AC的长为(40-27)/2=6.5cm。

20、平行四边形的对角线长分别是x和y,一边长为12,则可能是x与y的值的组合有10与14,18与20,10与36.22、根据题意可得DE=BF,又因为AD∥BC,所以∠A=∠C,∠D=∠B,因此∠AFD=∠CED,所以AF∥CE。

又因为DE=BF,所以AE=CD,因此四边形AFCE是平行四边形。

23、①因为ABCD是平行四边形,所以∠ECD=∠FBA,又因为∠EAD=∠BAF,所以∠ECD=∠FAB,因此∠XXX∠C+∠FAB=180°-∠EAB-∠BAF=∠EAF,同理可得∠XXX∠XXX,因此ΔCEF是等腰三角形。

②因为ABCD是平行四边形,所以AB+CD=AD+BC,又因为∠EAD=∠BAF,所以ΔADE∽ΔABF,因此AE/AB=AD/AF,即AE=(AB×AD)/AF,同理可得CF=(CD×BC)/BF,因此AE+CF=AB+CD,即ΔCEF的两边之和等于ABCD的周长。

浙江省台州温岭市第三中学八年级数学 平行四边形练习

浙江省台州温岭市第三中学八年级数学 平行四边形练习

浙江省台州温岭市第三中学八年级数学平行四边形练习人教新课标版3.□ABCD中,两邻边的比为3:2,且周长为40c m,则此四边形的四边长分别为______.4.在平行四边形及其两条对角线所组成的图形中,共有______•对面积相等的三角形.5.在下列图形的性质中,平行四边形不一定具有的是()A.对角相等 B.内角和为360° C.邻角互补 D.对角互补6.如图1,在□ABCD中,已知对角线AC和BD相交于O,且AC+BD=18,△AOB的周长为15,则AB 的长是_______.8.如图2,在□ABCD中,AE⊥BC于E,AF⊥CD于F,AE=3cm,AF=4cm,AD=8cm,•则CD的长为______cm.9.如图3,在□ABCD中,AE垂直BC,AF垂直CD,垂足分别是E、F,∠EAF=60°,则∠B 的度数是______.10.在□ABCD中,点O为对角线AC和BD的交点,若S△AOB=3,则ABCD的面积为_______.11.若□ABCD的一边AB=8cm,一条对角线AC=6cm,那么另一条对角线BD的取值范围是_______.12.如图4,E是ABCD内任一点,若S ABCD =6,则图中阴影部分的面积为()A.2 B.3 C.4 D.513.□ABCD中∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.2:3:3:2 C.2:3:2:3 D.2:2:3:314.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有()A.1种 B.2种 C.4种 D.无数种15、如图,一个四边形花坛,被两条线段分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是,若,,则有()A.B.C.D.都不对16.如图,在□ABCD中,∠ABC的平分线交AD于E,且点E把AD分成5cm与4cm的两部分,求□ABCD的周长.17、如图,在□ABCD中,E在AC上,AE=2EC,F在AD上,DF=2AF,如果△DEF的面积为2,求□ABCD的面积.18.如图,□ABCD的周长为60cm,AC与BD相交于点O,△BOC•的周长比△AOB的周长多8cm,求AB,BC的长.※19.图3是某城市部分街道示意图,图中AF∥BC,EC⊥BC,BA∥DE,BD∥AE,EF=FC.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F.假设两车速度相同,途中耽误时间相同,那么谁先到达F点,•请说明理由.。

人教版八年级初二数学下学期平行四边形单元质量专项训练

人教版八年级初二数学下学期平行四边形单元质量专项训练

人教版八年级初二数学下学期平行四边形单元质量专项训练一、选择题1.如图,▱ABCD 中,对角线AC ,BD 相交于O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点,下列结论①BE ⊥AC②四边形BEFG 是平行四边形③EG=GF④EA 平分∠GEF其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.如图,已知直线l //AB ,l 与AB 之间的距离为2.C 、D 是直线l 上两个动点(点C 在D 点的左侧),且AB =CD =5.连接AC 、BC 、BD ,将△ABC 沿BC 折叠得到△A ′BC .下列说法:①四边形ABDC 的面积始终为10;②当A ′与D 重合时,四边形ABDC 是菱形;③当A ′与D 不重合时,连接A ′、D ,则∠CA ′D +∠BC A′=180°;④若以A ′、C 、B 、D 为顶点的四边形为矩形,则此矩形相邻两边之和为35或7.其中正确的是( )A .①②③④B .①③④C .①②④D .①②③3.如图,在ABCD 中,已知6AB =,8AD =,60B ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为F ,与DC 的延长线相交于点H ,则DEF ∆的面积是( )A .3B .123C .143D .1834.如图,111A B C ∆中,114A B =,115AC =,117B C =.点2A 、2B 、2C 分别是边11B C 、11A C 、11A B 的中点;点3A 、3B 、3C 分别是边22B C 、22A C 、22A B 的中点;;以此类推,则第2019个三角形的周长是( )A .201412B .201512 C .201612 D .2017125.已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件( ) 可以得到结论: “四边形ABCD 是平行四边形”.A .AB =CD B .∠BAD=∠BCDC .∠ABC=∠ADCD .AC= BD6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.如图,点,,A B E 在同一条直线上,正方形ABCD 、正方形BEFC 的边长分别为23,、H 为线段DF 的中点,则BH 的长为( )A .212B 26C.332D.2928.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2 B.52C.332D.59.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5 B.2.5 C.2D.110.如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF=12∠BCD;(2)EF=CF;(3)S△BEC= 2S△CEF;(4)∠DFE=3∠AEF;其中正确的结论是()A.(1)(2)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)二、填空题11.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为_____.12.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).13.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________14.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)15.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.16.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.17.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.18.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______19.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .20.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.三、解答题21.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ;(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时;情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .22.综合与实践.问题情境:如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '. 独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.23.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.24.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.25.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .26.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.27.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.28.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.29.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?探究问题:(1)首先考察点的两个特殊位置:①当点与点重合时,如图1所示,____________②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD是平行四边形,∴BO=DO=1BD,AD=BC,AB=CD,AB∥BC,2又∵BD=2AD,∴OB=BC=OD=DA,且点E 是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=1CD,2∵点G是Rt△ABE斜边AB上的中点,∴GE=1AB=AG=BG,2∴EG=EF=AG=BG,无法证明GE=GF,故③错误,∵BG=EF,BG∥EF∥CD,∴四边形BEFG是平行四边形,故②正确,∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,故选B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.2.A解析:A【解析】【分析】①根据平行四边形的判定方法可得到四边形ABCD为平行四边形,然后根据平行四边形的面积公式计算;②根据折叠的性质得到AC=CD,然后根据菱形的判定方法可判断四边形ABDC是菱形;③连结A′D,根据折叠性质和平行四边形的性质得到CA′=CA=BD,AB=CD=A′B,∠1=∠CBA=∠2,可证明△A′CD≌△A′BD,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A′D∥BC;④讨论:当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A′CBD=10,根据勾股定理和完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,于是得到结论.【详解】①∵AB=CD=5,AB∥CD,∴四边形ABCD为平行四边形,∴四边形ABDC的面积=2×5=10;故①正确;②∵四边形ABDC是平行四边形,∵A′与D重合时,∴AC=CD,∵四边形ABDC是平行四边形,∴四边形ABDC是菱形;故②正确;③连结A′D,如图,∵△ABC沿BC折叠得到△A′BC,∴CA′=CA=BD ,AB=CD=A′B ,在△A′CD 和△A′BD 中CA BD CD BA A D A D ==='⎧⎪'⎨⎪''⎩,∴△A′CD ≌△A′BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A′D ∥BC ,∴∠CA′D+∠BCA′=180°;故③正确;④设矩形的边长分别为a ,b ,当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A′CB =S △ABC =12×2×5=5, ∴S 矩形A′CBD =10,即ab=10,而BA′=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45, ∴当∠BCD=90°时,∵四边形ABDC 是平行四边形,∴∠CBA=90°,∴BC=3,而CD=5,∴(a+b )2=(2+5)2=49,∴a+b=7,∴此矩形相邻两边之和为或7.故④正确.故选A .【点睛】本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.3.A解析:A【分析】根据平行四边形的性质得到6AB CD ==,8AD BC ==,求出BE 、BF 、EF ,根据()BFE CHE ASA 得出2CH =,23EH ,根据三角形的面积公式求DFH ∆的面积,即可求出答案. 【详解】解:四边形ABCD 是平行四边形,8AD BC ∴==,//AB CD ,6AB CD ==,E 为BC 中点,4BE CE ∴==,60B ∠=︒,EF AB ⊥,30FEB ∴∠=︒,2BF ∴=,由勾股定理得:EF =,//AB CD ,BECH , 在BFE ∆和CHE ∆中, BECH BE CE BEF CEH ,()BFE CHE ASA , 23EF EH ,2CH BF , ∴111622323163222DHF SDH FH DC CH FE HE , 1832DEF DHF S S .故选:A .【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.4.A解析:A【分析】根据三角形的中位线可得,B 2C 2,A 2B 2,A 2C 2分别等于12B 1C 1,12A 1B 1,12A 1C 1,所以△A 2B 2C 2的周长等于△A 1B 1C 1周长的一半.进而推出第n 个三角形的周长【详解】 解:∵114A B =,115AC =,117B C =,∴△A 1B 1C 1的周长是16,∵点2A 、2B 、2C 分别是边11B C 、11A C 、11A B 的中点,∴B 2C 2,A 2B 2,A 2C 2分别等于12B 1C 1,12A 1B 1,12A 1C 1, 以此类推,则△A 4B 4C 4的周长是31×16=22 , ∴△A n B n C n 的周长是4n 122, ∴当n=2019时,第2019个三角形的周长是=42018201421=22, 故选:A.【点睛】本题主要考查了三角形的中位线,解题的关键是找出题目的规律.5.B解析:B【分析】设BD 与AC 交于O 点,已知条件为BO=DO ,∠AOB=∠COD,结合选项条件应证出能判断平行四边形的条件,或举出反例证明不成立.【详解】解:A 、BO=DO ,∠AOB=∠COD, AB=CD 不能证出四边形ABCD 是平行四边形, 反例如图,故本选项错误;B 、如图,在直线AC 上任取一点C ´,使OA=OC ´,∵BO=DO ,∴四边形ABC ´D 是平行四边形,∴AD ∥BC ´,AB ∥C ´D,∴∠BC ´A=∠C ´AD, ∠AC ´D=∠BAC ´,∴∠BC ´A+∠AC ´D=∠C ´AD+∠BAC ´,即∠BC ´D=∠BAD,∵∠BAD=∠BCD∴∠BC´D=∠BCD,∴点C与点C´重合,∴四边形ABCD是平行四边形.故本选项正确;C、当BO=DO,∠ABC=∠ADC不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;D、当BO=DO,AC=BD, 不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误.故选:B.【点睛】本题考查平行四边形的判定,根据已知条件证出判定平行四边形的条件及举出反例图形是解答此题的关键.6.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=35GCE S即可得出结论.【详解】①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG =BG ,BG =GF ,∴CG =GF ,∴∠GFC =∠GCF .又∵Rt △ABG ≌Rt △AFG ,∴∠AGB =∠AGF ,∠AGB +∠AGF =2∠AGB =∠GFC +∠GCF =2∠GFC =2∠GCF ,∴∠AGB =∠AGF =∠GFC =∠GCF ,∴AG ∥CF ;⑤正确.理由:∵S △ECG =12GC •CE =12×6×8=24. ∵S △FCG =35GCE S ∆=3245⨯=725. 故选D .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.7.B解析:B【分析】连接BD 、BF ,由正方形的性质可得:∠CBD=∠FBG=45°,∠DBF=90°,再应用勾股定理求BD 、BF 和DF ,最后应用“直角三角形斜边上中线等于斜边一半”可求得BH . 【详解】如图,连接BD 、BF ,∵四边形ABCD 和四边形BEFG 都是正方形,∴AB=AD=2,BE=EF=3,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,∴∠DBF=90°,2,2,∴在Rt △BDF 中,22BD BF +()()22223226+=,∵H为线段DF的中点,∴BH=12DF=26.故选B.【点睛】本题考查了正方形的性质、等腰直角三角形边的关系、勾股定理、直角三角形性质等,解题关键添加辅助线构造直角三角形.8.D解析:D【分析】根据正方形的性质得到AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出∠ACF=90°,得到CH=12AF,根据勾股定理求出AF的长度即可得到答案.【详解】∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=12 AF,在Rt△AMF中,由勾股定理得:AF=22224225AM MF+=+=,∴CH=5,故选:D.【点睛】此题考查了正方形的性质,勾股定理,直角三角形斜边上的中线等于斜边一半的性质,正确引出辅助线得到∠ACF=90°是解题的关键.9.B解析:B【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,如图,将ΔEFB绕点E旋转60°,使EF与EG重合,得到ΔEFB≅ΔEHG,从而可知ΔEBH为等边三角形,点G在垂直于HE的直线HN上,如图,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则1351=2.5222CM MP CP HE EC=+=+=+=.故选B.【点睛】本题考查了线段极值问题,构造图形计算,是极值问题中比较典型的类型.分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是解本题的关键.10.B解析:B【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△AEF≌△DMF(ASA),利用全等三角形的性质得出对应线段之间关系进而得出答案.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=12∠BCD ,故正确; (2)延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;(4)设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°-x ,∴∠EFC=180°-2x ,∴∠EFD=90°-x+180°-2x=270°-3x ,∵∠AEF=90°-x ,∴∠DFE=3∠AEF ,故正确,故选:B .【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF ≌△DME .二、填空题11.45【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点, ∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5,Rt △BNM 中,由勾股定理得:BN2=BM2+MN2,即22215()2x x =+解得,x=25,∴BC=2x=45.故答案为:45.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.12.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=12EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF 和△DMF 中,A FDM AF DF AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF(ASA),∴EF=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=12EM=EF , ∴∠FEC=∠ECF ,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC ,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB ∥CD ,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°, ∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF ≌△DMF 是解题关键.13.①②④⑤【分析】根据∠B=90°,AB=BE ,△ABE 绕点A 逆时针旋转45°,得到△AHD ,可得△ABE ≅△AHD ,并且△ABE 和△AHD 都是等腰直角三角形,可证AD//BC ,根据DC ⊥BC ,可得∠HDE=∠CDE ,根据三角形的内角和可得∠HDE=∠CDE ,即DE 平分∠HDC ,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD 是矩形,有∠ADC=90°,∠HDC=45°,由①有DE 平分∠HDC ,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH ,利用 AE=AD 易证∠OHE=∠HEO=67.5°,则有OE=OH ,OD=OE ,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC,∴∠ADE=∠DEC,∴∠AED=∠DEC,又∵DC⊥BC,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE,即:DE平分∠HDC,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE平分∠HDC,∴∠HDO=12∠HDC=12×45°=22.5°,∵∠BAE=45°,AB=AH,∴∠OHE=∠AHB= 12(180°−∠BAE)=12×(180°−45°)=67.5°,∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,在△AED中,AE=AD,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°,∴∠OHE=∠HEO=67.5°,∴OE=OH,∴OD=OE,所以②正确;在△DHE和△DCE中,DHE DCE HDE CDE DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE ≅ΔDCE(AAS),∴DH=DC ,∠HDE=∠CDE=12×45°=22.5°, ∵OD=OH ,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF 不是直角三角形,并DH≠HF ,即有:CD≠HF ,所以③不正确;如图,过H 作HJ ⊥BC 于J ,并延长HJ 交AD 于点I ,∵△ABE 是等腰直角三角形,JH ⊥JE ,∴JH=JE ,又∵J 是BC 的中点,H 是BF 的中点,∴2JH=CF ,2JC=BC ,JC=JE+CE ,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC ,即有:BC−CF=2CE ,所以④正确;∵AD//BC ,∴IJ ⊥AD ,又∵△AHD 是等腰直角三角形,∴I 是AD 的中点,∵四边形ABCD 是矩形,HJ ⊥BC ,∴J 是BC 的中点,∴H 是BF 的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键.14.①②④【分析】①根据平行四边形的性质和等腰三角形的性质即可判断;②延长EF ,交CD 延长线于点M ,首先根据平行四边形的性质证明AEFDFM ≅△△,得出,FE MF AEFM =∠=∠,进而得出90ECD AEC ∠=∠=︒,从而利用直角三角形斜边中线的性质即可判断;③由FE MF =,得出EFC CFM SS =,从而可判断正误; ④设FEC x ∠= ,利用三角形内角和定理分别表示出∠DFE 和∠AEF ,从而判断正误.【详解】①∵点F 是AD 的中点,∴AF FD = .∵在平行四边形ABCD 中,AD =2AB , //,AD BC AF FD CD ∴==,,DFC FCB DFC DCF ∴∠=∠∠=∠ ,FCB DCF ∴∠=∠,∴∠BCD =2∠DCF ,故①正确;②延长EF ,交CD 延长线于点M ,∵四边形ABCD 是平行四边形,//AB CD ∴,A MDF ∴∠=∠,∵点F 是AD 的中点,∴AF FD = .在AEF 和DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEF DFM ASA ∴≅△△,FE MF AEF M ∴=∠=∠.CE AB ⊥ ,90AEC ∴∠=︒,90ECD AEC ∴∠=∠=︒,12CF EM EF ∴==,故②正确; ③∵FE MF =,∴EFC CFM S S = .CFM CDF MDF S S S =+△△△CDF EFC S S ∴<△△,故③错误;④设FEC x ∠= ,则FCE x ∠=,90DCF DFC x ∴∠=∠=︒- ,1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒- .90AEF x ∠=︒- ,3DFE AEF ∴∠=∠,故④正确;综上所述,正确的有①②④,故答案为 :①②④.【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,三角形内角和定理,掌握这些性质和定理是解题的关键.15.①②③④【分析】根据正方形的性质和SAS 可证明△ABG ≌△AEC ,然后根据全等三角形的性质即可判断①;设BG 、CE 相交于点N ,AC 、BG 相交于点K ,如图1,根据全等三角形对应角相等可得∠ACE =∠AGB ,然后根据三角形的内角和定理可得∠CNG =∠CAG =90°,于是可判断②;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,根据余角的性质即可判断④;利用AAS 即可证明△ABH ≌△EAP ,可得EP =AH ,同理可证GQ =AH ,从而得到EP =GQ ,再利用AAS 可证明△EPM ≌△GQM ,可得EM =GM ,从而可判断③,于是可得答案.【详解】解:在正方形ABDE 和ACFG 中,AB =AE ,AC =AG ,∠BAE =∠CAG =90°,∴∠BAE +∠BAC =∠CAG +∠BAC ,即∠CAE =∠BAG ,∴△ABG ≌△AEC (SAS ),∴BG =CE ,故①正确;设BG 、CE 相交于点N ,AC 、BG 相交于点K ,如图1,∵△ABG ≌△AEC ,∴∠ACE =∠AGB ,∵∠AKG =∠NKC ,∴∠CNG =∠CAG =90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.16.9或31).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA交DC于点F,∵菱形ABCD的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC是等边三角形,∴∠BAC=60°,当EA⊥BA时,△ABE是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE,AF=CF=22AC=32∵AB=BE=6,∴AE=2∴2236AE AF-=∴EC=EF+FC=3632则△ACE的面积为:12EC×AF=1(3632)329(31)2⨯⨯=.故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.17.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,S△ABC=1242=12cm2,∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,∴点B,点A,点B'三点共线,∵AB∥CD,AB'∥CD,∴四边形ACDB'是平行四边形,∴B'E=CE,∴S△ACE=12S△AB'C=6cm2,故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B,点A,点B'三点共线是本题的关键.18.120 13【分析】设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,根据等腰三角形的性质和勾股定理可求AO和OH长,若MN最小,则MO最小即可,而O点到AC的最短距离为OH 长,所以MN最小值是2OH.【详解】解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,∵四边形MCNB是平行四边形,∴O为BC中点,MN=2MO.∵AB=AC=13,BC=10,∴AO⊥BC.在Rt△AOC中,利用勾股定理可得AO=12.利用面积法:AO×CO=AC×OH,即12×5=13×OH,解得OH=60 13.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是60 13.所以此时MN最小值为2OH=120 13.故答案为:120 13.【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.19.2或14【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.20.5【分析】先判断四边形BCEF 的形状,再连接FM FC 、,利用正方形的性质得出AFG 是等腰直角三角形,再利用直角三角形的性质得出12MN FC =即可. 【详解】∵四边形ABCP 是边长为4的正方形,//EF BC ,∴四边形BCEF 是矩形,∵1PE =,∴3CE =,连接FM FC 、,如图所示:∵四边形ABCP 是正方形,∴=45BAC ∠ ,AFG 是等腰直角三角形,∵M 是AG 的中点,即有AM MG = ,∴FM AG ⊥,FMC 是直角三角形,又∵N 是FC 中点,12MN FC =, ∵225FC BF BC =+=∴ 2.5MN =,故答案为:2.5 .【点睛】本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.。

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试题(含答案解析)(2)

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试题(含答案解析)(2)

一、选择题1.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .392.下列说法正确的是( )A .有一个角是直角的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .有一组邻边相等的菱形是正方形D .各边都相等的四边形是正方形 3.下列命题中,错误的是( )A .一组对边平行的四边形是梯形;B .两组对边分别相等的四边形是平行四边形;C .对角线相等的平行四边形是矩形;D .一组邻边相等的平行四边形是菱形.4.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243 D .12535.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 6.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形 7.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠8.如图,以AB 为斜边的Rt ABC 和Rt ABD △位于直线AB 的同侧,连接CD .若135,6BAC ABD AB ∠+∠=︒=,则CD 的长为( )A .3B .4C .32D .339.如图,直线L 上有三个正方形,,a b c ,若,a c 的边长分别为1和3,则b 的面积为( )A .8B .9C .10D .1110.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .611.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .412.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .24二、填空题13.如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,E 、F 分别为DB 、BC 的中点,若AB =8,则EF =_____.14.如图,在菱形ABCD 中,13cm AB =,24cm AC =,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为________cm .15.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.16.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.17.如图,在ABC 中,45BAC ∠=︒,4AB AC ==,点D 是AB 上一动点,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是________.18.如图,A B 、两点分别位于山脚的两端,小明想测量A B 、两点间的距离,于是想了个主意,先在地上取一个可以直接达到A B 、两点的点C ,找到AC BC 、的中点D 、E ,并且测出DE 的长为15m ,则A B 、两点间的距离为_________m .19.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.20.如图,在正方形ABCD 中,AB=6,E 是CD 上一点,BE 交AC 于点F ,连接DF .过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G .∠ABE 的平分线交AD 于点M ,当满足四边形AGDF 面积2BCE S =△时,线段AM 的长度是_______.三、解答题21.在ABC 中,AB AC =,点D 在边BC 所在的直线上,过点D 作//DF AC 交直线AB 于点F ,//DE AB 交直线AC 于点E .(1)当点D 在边BC 上时,如图①,求证:DE DF AC +=.(2)当点D 在边BC 的延长线上时,如图②,线段DE ,DF ,AC 之间的数量关系是_____,为什么?(3)当点D 在边BC 的反向延长线上时,如图③,线段DE ,DF ,AC 之间的数量关系是____(不需要证明).22.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.23.如图,在四边形ABCD 中,,E F 分别是,AD BC 的中点,,G H 分别是对角线,BD AC 的中点,依次连接,,,E G F H 连接,EF GH .(1)求证:四边形EGFH 是平行四边形;(2)当AB CD =时,EF 与GH 有怎样的位置关系?请说明理由;(3)若,20,70AB CD ABD BDC =∠=︒∠=︒,则GEF ∠= ︒.24.如图,点E 在正方形ABCD 的边AB 上,点F 在边BC 的延长线上,且90EDF ∠=︒.求证:DE DF =.25.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.26.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长;(2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设平行四边形AB 边上的高为h ,分别表示出△ACE 的面积和平行四边形ABCD 的面积,从而求出结果.【详解】解:∵四边形ABCD 是平行四边形,12CE CD =, 设平行四边形AB 边上的高为h ,∴△ACE 的面积为:12CE h ⋅,平行四边形ABCD 的面积为2CE h ⋅, ∴△ACE 的面积为平行四边形ABCD 的面积的14, 又∵□ABCD 的面积为52cm 2,∴△ACE 的面积为13cm 2.故选C .【点睛】 本题考查平行四边形的性质,比较简单,解答本题的关键是根据图形的形状得出△ACE 的面积为平行四边形ABCD的面积的14.2.B解析:B【分析】根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.【详解】解:A.有一个角是直角的平行四边形是正方形,说法错误,应是矩形,不符合题意;B.对角线互相垂直的矩形是正方形,说法正确,符合题意;C.一组邻边相等的矩形是正方形,说法错误,不合题意;D.各边都相等的四边形是菱形,不是正方形,不合题意.故选B.【点睛】本题主要考查了正方形的判定,关键是掌握正方形的判定方法.3.A解析:A【分析】根据梯形,平行四边形,矩形,菱形的判定进行判断即可.【详解】解:A、一组对边平行,另一组对边不平行的四边形是梯形,故错误,符合题意;B、两组对边分别相等的四边形是平行四边形,正确,不符合题意;C、对角线相等的平行四边形是矩形,正确,不符合题意;D、一组邻边相等的平行四边形是菱形,正确,不符合题意;故选:A.【点睛】主要考查梯形,平行四边形,矩形,菱形的判定,注意梯形的定义应从两组对边的不同位置关系分别考虑.4.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A .【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.5.A解析:A【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】解:作PM ⊥AD 于M ,交BC 于N ,∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP SS =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM=AE=1,PF=NC=3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】 本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 6.B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.7.D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.8.C解析:C【分析】取AB 的中点O ,连结OD ,OC ,根据直角三角形的性质可得OA OD OB OC ===,可得BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,根据四边形的内角和为360︒,135BAC ABD ∠+∠=︒,可得出90OCD ODC ∠+∠=︒,由OC OD =,可证得COD ∆是等腰直角三角形,由6AB =,根据勾股定理,即可得出CD 的长.【详解】取AB 的中点O ,连结OD ,OC ,∵Rt ABD ∆和Rt ABC ∆的斜边为AB , ∴12OD AB =,12OC AB =, ∴OA OD OB OC ===, ∴BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,360BAC OCA ABD ODB OCD ODC ∠+∠+∠+∠+∠+∠=︒, ∵135BAC ABD ∠+∠=︒,∴90OCD ODC ∠+∠=︒,∵OC OD =,∴45OCD ODC ∠=∠=︒,∴COD ∆是等腰直角三角形,∵6AB =,∴3OC OD ==,∴22223332CD OC OD =+=+=,故选:C.【点睛】本题主要考查了直角三角形斜边上的中线,等腰三角形的性质和以及勾股定理,解题的关键是正确做出辅助线.9.C解析:C【分析】运用正方形边长相等,再根据同角的余角相等可得BAC DCE ∠=∠,然后证明ACB DCE ∆≅∆,再结合全等三角形的性质和勾股定理来求解即可.【详解】解:如图:由于a 、b 、c 都是正方形,所以AC CD =,90ACD ∠=︒;90ACB DCE ACB BAC ,即BAC ECD ∠=∠,在ABC ∆和CED ∆中,90ABC CED ACB CDEAC DC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()ACB CDE AAS ,AB CE ∴=,BC DE =; 在Rt ABC ∆中,由勾股定理得:22222221310AC AB BC AB DE , 即10b S , 则b 的面积为10,故选:C .【点睛】本题主要考查对全等三角形和勾股定理的综合运用,证明ACB DCE ∆≅∆是解题的关键. 10.A解析:A【分析】由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 11.C解析:C【分析】根据HL证明△ADG≌△FDG,根据角的平分线的意义求∠GDE,根据GE=GF+EF=EC+AG,确定△BGE的周长为AB+AC.【详解】根据折叠的意义,得△DEC≌△DEF,∴EF=EC,DF=DC,∠CDE=∠FDE,∵DA=DF,DG=DG,∴Rt△ADG≌Rt△FDG,∴AG=FG,∠ADG=∠FDG,∴∠GDE=∠FDG+∠FDE=12(∠ADF+∠CDF)=45°,∵△BGE的周长=BG+BE+GE,GE=GF+EF=EC+AG,∴△BGE的周长=BG+BE+ EC+AG=AB+AC,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.12.C解析:C【分析】根据角平分线的性质以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出平行四边形ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵在平行四边形ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在平行四边形ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴平行四边形ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形的性质,角平分线的性质,准确识图并熟练掌握性质是解题的关键.二、填空题13.2【分析】根据直角三角形的性质求出再根据三角形中位线定理计算即可【详解】解:在中是斜边上的中线分别为的中点是的中位线故答案为:2【点睛】本题考查的是直角三角形的性质三角形中位线定理掌握三角形的中位线 解析:2【分析】根据直角三角形的性质求出CD ,再根据三角形中位线定理计算即可.【详解】解:在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,8AB =,118422CD AB ∴==⨯=, E 、F 分别为DB 、BC 的中点,EF ∴是BCD ∆的中位线,114222EF CD ∴==⨯=, 故答案为:2.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.10【分析】连接对角线BD 交AC 于点O 证四边形BDEG 是平行四边形得EG =BD 利用勾股定理求出OD 的长BD =2OD 即可求出EG 【详解】解:连接BD 交AC 于点O 如图:∵菱形ABCD 的边长为13cm ∴A解析:10【分析】连接对角线BD ,交AC 于点O ,证四边形BDEG 是平行四边形,得EG =BD ,利用勾股定理求出OD 的长,BD =2OD ,即可求出EG .【详解】解:连接BD ,交AC 于点O ,如图:∵菱形ABCD 的边长为13cm ,∴AB//CD ,AB =BC =CD =DA =13cm ,∵ 点E 、F 分别是边CD 、BC 的中点,∴ EF//BD ,∵AC 、BD 是菱形的对角线,AC =24cm ,∴AC ⊥BD ,AO =CO =12AC =12cm ,OB =OD , 又∵AB//CD ,EF//BD ,∴DE//BG ,BD//EG ,∴四边形BDEG 是平行四边形,∴BD =EG , 在△COD 中,∵OC ⊥OD ,CD =13cm ,CO =12cm ,∴OB =OD 2213125-=cm ,∴BD =2OD =10cm ,∴EG =BD =10cm ;故答案为:10.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.15.【分析】过点M 作于N 则可得MN 是的中位线利用三角形中位线定理可得MN=AC=3BN=CN=BC=4设CF=x 则NF=4-x 由折叠的性质可得MF=CF 在中利用勾股定理即可求解【详解】解:过点M 作于N ∵ 解析:258【分析】过点M 作MN BC ⊥于N ,则//MN AC ,可得MN 是Rt ABC △的中位线,利用三角形中位线定理可得MN=12AC=3,BN=CN=12BC=4,设CF=x ,则NF=4-x ,由折叠的性质可得MF=CF ,在Rt MNF △中,利用勾股定理即可求解.【详解】解:过点M 作MN BC ⊥于N ,∵90ACB ∠=︒,MN BC ⊥,∴//MN AC ,∵M 是AB 的中点,∴MN 是Rt ABC △的中位线,∴MN=12AC=3,BN=CN=12BC=4, 设CF=x ,则NF=4-x ,∵将CEF △沿EF 翻折,使C 与AB 的中点M 重合,∴MF=CF=x ,在Rt MNF △中,222MN NF MF +=,∴()22234x x +-=,解得258x =, ∴CF=258. 故答案为:258. 【点睛】本题考查折叠的性质,三角形的中位线定理,勾股定理等知识,熟练掌握三角形的中位线定理,利用勾股定理建立方程求解是解题的关键.16.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=8,∴△GEF的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.17.2【分析】平行四边形ADCE的对角线的交点是AC的中点O当OD⊥AB时OD最小即DE最小根据直角三角形勾股定理即可求解【详解】解:如图∵平行四边形ADCE的对角线的交点是AC的中点O又AB=AC=4解析:22【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥AB时,OD最小,即DE最小,根据直角三角形勾股定理即可求解.【详解】解:如图∵平行四边形ADCE的对角线的交点是AC的中点O,又AB=AC=4∴OC=OA=1AC=22当OD⊥AB时,OD最小,即DE最小.∵OD⊥BA,∠BAC=45°,∴∠AOD=45°∴△ADO为等腰直角三角形在Rt△ADO由勾股定理可知22∴2故答案为:2【点睛】本题考查了勾股定理,平行四边形的性质,即平行四边形对角线互相平分,正确理解DE最小值的条件是关键.18.30【分析】由DE 分别是边ACAB 的中点首先判定DE 是三角形的中位线然后根据三角形的中位线定理求得AB 的长即可【详解】解:∵DE 分别是ACBC 的中点∴DE 是△ABC 的中位线根据三角形的中位线定理得:解析:30【分析】由D ,E 分别是边AC ,AB 的中点,首先判定DE 是三角形的中位线,然后根据三角形的中位线定理求得AB 的长即可.【详解】解:∵D 、E 分别是AC 、BC 的中点,∴DE 是△ABC 的中位线,根据三角形的中位线定理,得:AB=2DE=30m .故答案为:30.【点睛】本题考查了三角形中位线定理的运用;熟记三角形中位线定理是解决问题的关键. 19.【分析】连接并延长交于Q 由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q ∵矩形全等于矩形∴∴∵点H 为的中点 解析:42 【分析】连接GH 并延长GH 交CD 于Q ,由矩形的性质得出20AB CD BG ===,12BC FG ==,////,90FG AE CD GCQ ∠=,由平行线的性质得出HFG HDQ ∠=∠,由ASA 证得HFG HDQ ≌,得出12DQ FG ==,HG HQ =,8CG BG BC =-=,8CQ CD DQ =-=,则GCQ 是等腰直角三角形,得出282GQ CQ ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH 并延长GH 交CD 于Q ,∵矩形ABCD 全等于矩形BEFG ,∴20AB CD BG ===,12BC FG ==,////FG AE CD ,90GCQ ∠=, ∴HFG HDQ ∠=∠,∵点H 为DF 的中点,∴HF HD =,在HFG 和HDQ 中,HFG HDQ HF HD GHF QHD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA ≌,∴12DQ FG ==,HG HQ =,20128CG BG BC =-=-=,20128CQ CD DQ =-=-=,∴GCQ 是等腰直角三角形,∴GQ == 在Rt GCQ 中,HG HQ =,∴1122CH GQ ==⨯=故答案为:【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.20.【分析】根据正方形ABCD 得结合题意推导得通过证明得从而得到正方形面积结合四边形面积计算得到;过点M 作交BE 于点N 连接ME 根据正方形ABCD 通过计算即可完成求解【详解】∵正方形ABCD ∴∴∵过点D 且解析:3【分析】根据正方形ABCD ,得90ADC BAD ∠=∠=,BAC ACD ∠=∠,AB BC CD AD ====CDF ADG ∠=∠、FCD DAG ∠=∠,通过证明CDF ADG △≌△,得CDF ADG S S =△△,从而得到12ACD S =正方形ABCD 面积,结合四边形AGDF面积BCE =△,计算得到CE ;过点M 作MN BE ⊥交BE 于点N ,连接ME ,根据ABM NBM BCE NME EDM SS S S S ++++=正方形ABCD ,通过计算即可完成求解.【详解】∵正方形ABCD∴90ADC BAD ∠=∠=,//AB CD,AB BC CD AD ====∴90CDF ADF ∠+∠=,90BAC CAD ∠+∠=,BAC ACD ∠=∠∵过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G∴90FDG ADF ADG ∠=∠+∠=,90CAG CAD DAG ∠=∠+∠=∴CDF ADG ∠=∠,BAC DAG ∠=∠ ∴ACD DAG ∠=∠,即FCD DAG ∠=∠ ∴FCD DAG CDF ADG CD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CDF ADG △≌△∴CDF ADG S S =△△∵四边形AGDF 面积=12ADF ADG ADF CDF ACD S S S SS +=+==△△△△△正方形ABCD 面积 ∴四边形AGDF 面积=16632⨯⨯= ∵11622BCE S BC CE CE =⨯=⨯△,且满足四边形AGDF 面积2BCE S =△ ∴12632CE ⨯⨯= ∴3CE = ∴22633BE BC CE =+=+=如图,过点M 作MN BE ⊥交BE 于点N ,连接ME∵∠ABE 的平分线交AD 于点M∴ABM NBM ∠=∠∵BM BM =,90BAM BNM ∠=∠= ∴ABM NBM △≌△∴6BN AB ==,MN AM =设AM x = 162ABM NBM S S AB x ==⨯=△△ 113632222BCE S BC CE =⨯==△()(1113222NME S NE MN BE BN MN x =⨯=-⨯=-△ ()())111222EDM S ED DM CD CE AD AM x =⨯=-⨯-=△ ∵ABM NBM BCE NME EDM S S S S S ++++=正方形ABCD∴()1123222x x x ⨯+=∴3x ==故答案为:3.【点睛】本题考查了正方形、全等三角形、一元一次方程、二次根式、三角形角平分线、勾股定理的知识;解题的关键是熟练掌握正方形、全等三角形、三角形角平分线的性质,从而完成求解.三、解答题21.)(1)见解析;(2)DF AC DE =+,见解析;(3)DE AC DF =+【分析】(1)证明四边形AFDE 是平行四边形,且△DEC 和△BDF 是等腰三角形即可证得;(2)结论:当点D 在边BC 的延长线上时,在图②中,DF AC DE =+,证明方法类似(1);(3)结论:当点D 在边BC 的反向延长线上时,在图③中,DE AC DF =+.证明方法类似(1).【详解】证明:(1)∵//DF AC ,//DE AB .∴四边形AFDE 是平行四边形.∴DF AE =.∵AB AC =.∴B C ∠=∠.∵//DE AB .∴EDC B ∠=∠.∴EDC C ∠=∠.∴DE EC =.∴DE DF EC AE AC +=+=.(2)DF AC DE =+.理由:∵//DF AC ,//DE AB ,∴四边形AFDE 是平行四边形.∴AE DF =.∵//DE AB ,∴B BDE ∠=∠.∵AB AC =,∴B ACB ∠=∠.∵DCE ACB ∠=∠,∴BDE DCE ∠=∠.∴DE CE =.∴AC DE AC CE AE DF +=+==.(3)DE AC DF =+理由:∵DF ∥AC ,DE ∥AB ,∴四边形AEDF 是平行四边形,∴DF=AE ,∠EDC=∠ABC ,又∵∠AB=AC ,∴∠ABC=∠C∴∠EDC=∠C ,∴DE=EC ,∴DE EC AE AC AC DF ==+=+.【点睛】本题考查平行四边形的判定与性质、等腰三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)见解析;(2)AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC =,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD =,1CD ∴=,∴AC ==.【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 23.(1)见解析;(2)GH EF ⊥,见解析;(3)25︒【分析】(1)利用中位线性质得//EG AB ,且12GE AB =,//HF AB ,且12HF AB =,可推出//EG HF ,且EG HF =,可证四边形EGFH 是平行四边形;(2由G F 、分别是BD BC 、的中点,可得12GF CD =,由(1)知12GE AB =,由AB CD =,可证GE GF =,由(1)知四边形EGFH 是平行四边形,可证四边形EGFH 是菱形即可;(3)先证四边形EGFH 是平行四边形;再证四边形EGFH 是菱形,由EG ∥AB ,GF ∥CD ,可求∠EGD=∠ABD=20°,∠BGF=∠BDC=70°利用平角可求∠DGF=180°-∠BGF=110°,利用两角和求∠EGF=130°利用菱形性质求∠GEH=180°-∠EGF=50º,由FE 平分∠GEH ,∠GEF=25︒即可.【详解】证明:(1)E G 、分别是AD BD 、的中点,//EG AB ∴,且12GE AB =, 同理可证://HF AB ,且12HF AB =, //EG HF ∴,且EG HF =,∴四边形EGFH 是平行四边形;(2)GH EF ⊥,理由:G F 、分别是BD BC 、的中点,12GF CD ∴=, 由(1)知12GE AB =, 又AB CD =,GE GF ∴=,又四边形EGFH 是平行四边形,∴四边形EGFH 是菱形,GH EF ∴⊥;(3)E G 、分别是AD BD 、的中点,F H 、分别是BC AC 、的中点,//EG AB ∴,//HF AB ,12GE AB =, //EG HF ∴,同理可证//EH GF ,12GF CD =, ∴四边形EGFH 是平行四边形,∵AB CD =,GE GF ∴=,∴四边形EGFH 是菱形,20,70ABD BDC ∠=︒∠=︒,EG ∥AB ,GF ∥CD ,∴∠EGD=∠ABD=20°,∠BGF=∠BDC=70°,∴∠DGF=180°-∠BGF=110°,∴∠EGF=∠EGD+∠DGF=20°+110°=130°,∴∠GEH=180°-∠EGF=50º,∵FE 平分∠GEH ,∴∠GEF=11502522GEH ∠=⨯︒=︒. 故答案为:25︒.【点睛】 本题考查平行四边形,菱形判断与性质,求菱形内角,掌握平行四边形的判定方法,菱形的判定与性质,会利用菱形的性质求角度是解题关键.24.见解析【分析】利用ASA 证明△ADE ≌△CDF 即可得到结论.【详解】 证明:四边形ABCD 是正方形,AD CD ∴=,90A DCF ADC ∠=∠=∠=︒,又90EDF ∠=︒,ADC EDC EDF EDC ∴∠-∠=∠-∠.ADE CDF .在ADE 与CDF 中,ADE CDF AD CDA DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴△≌△.DE DF ∴=.【点睛】此题考查全等三角形的判定及性质,正方形的性质,熟记正方形的性质是解题的关键. 25.(1)见解析;(2)120°【分析】(1)根据直角三角形斜边上的中线等于斜边的一半求证;(2)根据补角定义和直角三角形性质可得∠MDA+∠MCB=120°,∠MDB+∠MCA=60°,再由等边三角形的性质得到∠BDC+∠ACD=60°,最后由对顶角相等和三角形内角和定理可得∠AOB=120° .【详解】(1)证明:由已知可得:1122MC AB MD AB ==,, ∴MC=MD ;(2)∵△MCD 是等边三角形,∴∠DMC=60°,∴∠AMD+∠BMC=180°-60°=120°,与(1)同理有:MA=MD ,MC=MB ,∴∠MAD=∠MDA ,∠MCB=∠MBC ,∴2(∠MDA+∠MCB )=360°-(∠AMD+∠BMC )=360°-120°=240°,∴∠MDA+∠MCB=120°,∵∠ADB+∠BCA=180°,∴∠MDB+∠MCA=(∠ADB+∠BCA )-(∠MDA+∠MCB )=180°-120°=60°,∴∠BDC+∠ACD=(∠MDC+∠MCD)-(∠MDB+∠MCA)=120°-60°=60°,∴∠AOB=∠DOC=180°-(∠BDC+∠ACD)=180°-60°=120° .【点睛】本题考查等边三角形和直角三角形的综合应用,熟练掌握等边三角形和直角三角形的性质、补角定义、三角形内角和定理是解题关键.26.(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒,∴BC=2AB=4,60B ∠=︒,∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒,∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE ,∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∵90EAD ∠=︒,EAN DAF ∠=∠,∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠,∴,MAN BAF ANM AFB ∠=∠∠=∠,∵AN=AF ,∴AMN ABF △≌△,∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+; (3)解:由题意可得AD=AE ,90EAD ∠=︒,∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.。

新人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(答案解析)(2)

新人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(答案解析)(2)

一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒ 2.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 3.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B .2240064-C .2240064-D .40064+ 4.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S=.其中正确结论的个数是( )A .1B .2C .3D .45.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .106.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .47.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD )433a b + 8.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 9.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125310.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形 11.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 12.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C .13D .6二、填空题13.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF 和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .14.如图,在矩形ABCD 中,连接AC ,按以下步骤作图:分别以点A ,C 为圆心,以大于12AC 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN 交BC 于点E ,连接AE .若AB =1,BC =2,则BE =_____.15.如图,在平面直角坐标系中,点A 、点B 分别在x 轴和y 轴的正半轴上运动,且AB =4,若AC =BC =5,△ABC 的形状始终保持不变,则在运动的过程中,点C 到原点O 的最小距离为____________.16.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.17.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.18.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).19.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.20.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.三、解答题21.已知:线段,a b ,α∠(如图),用直尺和圆规作一个平行四边形,使它的两条对角线长分别等于线段,a b ,且两条对角线所成的一个角等于α∠.22.已知:如图,ABCD 中,AE 、CF 分别是BAD ∠和BCD ∠的角平分线,分别交边DC 、AB 于点E 、F ,求证:AE CF =.23.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM 的角平分线CN ,过点B 作CN 的垂线,垂足为E ;(2)求证:四边形BECD 是矩形;(3)AB 与AC 满足怎样的数量关系时,四边形BECD 是正方形?证明你的结论. 24.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.25.如图,在Rt ABC △中,90BAC ∠=︒,中线BD ,CE 相交于点O ,点F ,G 分别为OB ,OC 的中点.(1)求证://EF DG ,EF DG =;(2)若3AB =,4AC =,求四边形EFGD 的面积.26.正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,连结CE .(1)若AB BE =,求DAE ∠度数;(2)求证:CE EF =【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.D解析:D【分析】当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.3.A解析:A【分析】要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M的边长为a,直角三角形斜边的长为c,另一直角边为b,则2400b=,已知斜边和一直c=,264角边的平方,由勾股定理即可求出2a,即可得到答案.【详解】设M的边长为a,直角三角形斜边的长为c,另一直角边为b,b=,则2400c=,264如图所示,在该直角三角形中,由勾股定理得:22240064=-=-,a c b故选:A.【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.4.C解析:C【分析】由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确;设BG=x,则CG=BC−BG=6−x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;根据三角形的特点及面积公式求出△FGC的面积,即可求证④.【详解】∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG ∥CF ,∴③正确;∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同. ∴35CFG CEG S FG S GE ==, ∵S △GCE =12×3×4=6, ∴S △CFG =35×6=185, ∴④不正确;正确的结论有3个,故选:C .【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.5.C解析:C【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=6, ∵DE=3DF ,∴EF=4,∵∠AFC=90°,E 是AC 的中点,∴AC=2EF=8,故选:C . 【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6.B解析:B【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形, ∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线, ∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 7.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.8.A解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.9.A解析:A【分析】由题意可得对角线EF ⊥AD ,且EF 与平行四边形的高相等,进而利用面积与边的关系求出BC 边的高即可.【详解】解:如图,连接AD 、EF ,则可得对角线EF ⊥AD ,且EF 与平行四边形的高相等.∵平行四边形纸片ABCD 的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.10.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD各边的中点依次为E,F,G,H,∴EF,FG,GH,HE分别是△ABC,△BCD,△CDA,△DAB的中位线,∴EF=12AC,FG=12BD,GH=12AC,EH=12BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.11.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.12.A解析:A【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=12AB,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;故选:A.【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12 BD.二、填空题13.【分析】如图连接OAOBOC设平行四边形的面积为4S求出S1S2(用s表示)即可解决问题【详解】解:如图连接OAOBOC设平行四边形的面积为4S∵点O 是平行四边形ABCD 的对称中心∴S △AOB=S △ 解析:32【分析】如图,连接OA ,OB ,OC .设平行四边形的面积为4S .求出S 1,S 2(用s 表示)即可解决问题.【详解】解:如图,连接OA ,OB ,OC .设平行四边形的面积为4S .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =S , ∵EF=12AB ,GH=13BC , ∴S 1=12S ,S 2=13S , ∴12132123S S S S ==, ∴1232S S =; 故答案为:32. 【点睛】本题考查中心对称,平行四边形的性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 14.【分析】根据作图过程可得MN 是AC 的垂直平分线可得EA=EC 再根据矩形性质和勾股定理即可得到结论【详解】解:在矩形ABCD 中∠B=90°根据作图过程可知:MN 是AC 的垂直平分线∴EA=EC ∴EA=C解析:34【分析】根据作图过程可得MN 是AC 的垂直平分线,可得EA=EC ,再根据矩形性质和勾股定理即可得到结论.【详解】解:在矩形ABCD 中,∠B=90°,根据作图过程可知:MN 是AC 的垂直平分线,∴EA=EC ,∴EA=CE=BC-BE=2-BE ,在Rt △ABE 中,根据勾股定理,得222EA AB BE =+,∴22221BE BE -=+(),解得BE=34, 故答案为34. 【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,矩形的性质,解决本题的关键是掌握基本作图方法.15.【分析】如图过作于证明求解结合三角形的三边的关系可得:>当三点共线时可得从而可得答案【详解】解:如图过作于由三角形三边的关系可得:>当三点共线时的最小值是:点C 到原点O 的最小距离为故答案为:【点睛】2【分析】如图,过C 作CG AB ⊥于,G 4AB =,证明2,GB GA ==求解2,CG OG == 结合三角形的三边的关系可得:OC >,CG OG - 当,,C O G 三点共线时,,OC CG OG =-可得2,CO CG OG ≥-=从而可得答案.【详解】解:如图,过C 作CG AB ⊥于,G 4AB =, 5,CB CA ==2,GB GA ∴==CG ∴== 90AOB ∠=︒,122OG AB ∴==, 由三角形三边的关系可得:OC >,CG OG -当,,C O G 三点共线时,,OC CG OG =-2,CO CG OG ∴≥-=∴CO 2.∴ 点C 到原点O 的最小距离为21 2.-21 2.【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,三角形三边之间的关系,掌握以上知识是解题的关键.16.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线 解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线,∴12GF AE =∵4AE =, ∴2GF =;故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF是ABE△的中位线是解题的关键.17.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,8∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键18.18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.19.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC 交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a ,∴a 2=22+(6-a )2, 解得103a =,即103DE =. 故答案为:5或103. 【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的. 20.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm . 【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解.【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =,由勾股定理得,2222435AB AC BC cm =+=+=,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形, ∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称,∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时,由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125∴P 3E=CD 又P 3E ⊥AB ,CD ⊥AB ,∴P 3E//CD ,∴四边形P 3CDE 是平行四边形,又∠CDE=90°∴四边形P 3CDE 是矩形,∴P 3C=DE∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA 又∠P 3EA=∠CDB=90°∴△P 3AE ≌△CBD∴AE=BD∴P 3C=AB-2BD=5-2×95=75, 综上所述,PC 的长为5cm 或245cm 或75cm . 故答案为:5cm 或245cm 或75cm . 【点睛】 本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.三、解答题21.见解析【分析】先作线段a 、b 的垂直平分线得到12a 和12b ,再作∠AOB=∠α,且OA=12a ,OB=12b ,然后在OA 的反向延长线上截取OD=12a ,在OB 的反向延长线上截取OC=12b ,则利用平行四边形的判定方法可判断四边形ABCD 为平行四边形.【详解】解:如图,四边形ABCD 为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.见解析【分析】根据平行四边形的性质及角平分线的定义,证明ADE CBF ∆≅∆即可判断AE CF =.【详解】解:四边形ABCD 是平行四边形,DAB DCB ∴∠=∠,D B ∠=∠,AD BC =.AE ∵、CF 分别是BAD ∠和BCD ∠的角平分线,DAE BCF ∴∠=∠.()ADE CBF ASA ∴∆≅∆.AE CF ∴=.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定和性质.证明线段相等的技巧一般是找到两个线段的相关三角形,通过全等求解.23.(1)如图所示,见解析;(2)见解析;(3)当AB 2AC 时,矩形BECD 是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD 是AB 的垂直平分线,推出∠CDB =90°,AC =BC ,利用CN 平分∠BCM 求出∠DCN =∠DCB +∠BCN =90°,由BE ⊥CN 求得∠BEC =90°,即可得到结论;(3)当AB 2时,矩形BECD 是正方形,由AD =BD ,AB 2AC ,求得BD 2AC ,根据AD ⊥CD ,∠CDB =90°,推出BD =CD ,由此得到矩形BECD 是正方形.【详解】(1)解:如图所示,(2)证明:∵ CD 是AB 的垂直平分线,∴ CD ⊥BD ,AD =BD ,∴ ∠CDB =90°,AC =BC ,∴ ∠DCB =12∠ACB , ∵ CN 平分∠BCM , ∴∠BCN =12∠BCM , ∵∠ACB +∠BCM =180°, ∴∠DCN =∠DCB +∠BCN =12(∠ACB +∠BCM )=90°, ∵ BE ⊥CN ,∴ ∠BEC =90°,∴ 四边形BECD 是矩形;(3)当AB 2时,矩形BECD 是正方形∵ AD =BD ,AB 2AC ,∴ BD 2, ∵ AD ⊥CD ,∠CDB =90°,∴ BD =CD ,∴ 矩形BECD 是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.24.(1)见解析 (2)392 【分析】(1)Rt ABC ∆中,由斜边上的中线等于斜边的一半得出12CD BD AD AB ===,根据已知条件证明△CEF ≌△CDE (SAS )得出CE CD =,等量转换得出AD CE =. (2)由(1)求得12ADBD CD CE AB ====,在等腰三角形BCD 中,过D 作DG BC ⊥于G ,由等腰三角形的性质得出12CG BG BC ==,由勾股定理求出DG ,然后用三角形的面积公式计算BDE ∆的面积为12BE DG ⋅即可. 【详解】证明:()190,ACB CD ∠=︒是斜边AB 上的中线12CD BD AD AB ∴===,CF ED DF EF ⊥=∴在△CEF 和△CDE 中,90o EF DF EFC DFC CF CF =⎧⎪∠=∠=⎨⎪=⎩∴△CEF ≌△CDE (SAS ),CE CD ∴=AD CE ∴=.()2由()1知:5,210CE AD AB AD ====,90,6ACB AC ∠=︒=228,BC AB AC ∴=-=13BE BC CE ∴=+=.过D 作DG BC ⊥于G,CD BD DG BC =⊥,142CG BG BC ∴=== 223DG BD BG ∴=-=,DBE ∴∆的面积为:1139133222BE DG ⋅=⨯⨯= .【点睛】本题考查了直角三角形中,斜边的中线等于斜边的一半,三角形全等的判定,等腰三角形的性质和判定,勾股定理,三角形的面积公式,熟练掌握各性质是解题的关键. 25.(1)见解析;(2)2【分析】(1)利用中位线性质可得12ED BC =,//ED BC .12FG BC =,//FG BC .可证四边形EFGD 是平行四边形.由平行四边形性质可得EF DG =,//EF DG .(2)由EFGD 和OG GC =,可推得EO OG CG ==.求13462ABC S =⨯⨯=△由点D 是AC 中点,1322DEC AEC S S ==△△.由三等分可求2231332DEG DEC S S ==⨯=△△.根据平行四边形性质可得四边形DEFG 的面积22DEG S ==△.【详解】(1)证明:∵点E ,D 分别是AB ,AC 的中点, ∴12ED BC =,//ED BC . ∵点F ,G 分别是OB ,OC 的中点, ∴12FG BC =,//FG BC . ∴FG ED =,//FG ED .∴四边形EFGD 是平行四边形.∴EF DG =,//EF DG ;(2)解:∵EFGD ,∴EO OG =.又∵OG GC =,∴EO OG CG ==. ∵3AB =,4AC =, ∵13462ABC S =⨯⨯=△, ∵点D 是AC 中点, ∴1322DEC AEC S S ==△△. ∴2231332DEG DEC S S ==⨯=△△. ∴四边形DEFG 的面积22DEG S ==△.【点睛】本题考查中位线性质,平行四边形的判定与性质,中线的性质,掌握中位线性质,平行四边形的判定与性质,中线的性质,注意中线与中位线的区别以及它们性质是解题关键. 26.(1)22.5︒;(2)见解析.【分析】(1)用正方形对角线平分对角,等腰三角形性质计算即可;(2)借助正方形的性质,证明三角形全等,运用等角对等边证明即可.【详解】(1)∵ABCD 为正方形,∴45ABE ∠=︒.又∵AB BE =, ∴()11804567.52BAE ∠=⨯︒-︒=︒. ∴9067.522.5DAE ∠=︒-︒=︒(2)证明:∵正方形ABCD 关于BD 对称,∴ABE CBE △△≌,∴BAE BCE ∠=∠.又∵90ABC AEF ∠=∠=︒,∴BAE EFC ∠=∠,∴BCE EFC ∠=∠,∴CE EF =.【点睛】本题考查了正方形的性质,等腰三角形的性质,三角形的全等,等腰三角形的判定,运用正方形的性质,证明三角形的全等是解题的关键.。

最新人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(含答案解析)(2)

最新人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(含答案解析)(2)

一、选择题1.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 2.下列命题为假命题的是( )A .直角三角形斜边上的中线等于斜边的一半.B .两边及其一边的对角对应相等的两个三角形全等.C .等边三角形一边上的高线与这边上的中线互相重合.D .到线段两端点距离相等的点在这条线段的垂直平分线上.3.如图,点D 和点E 分别是BC 和BA 的中点,已知AC =4,则DE 为( )A .1B .2C .4D .84.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .5B .5C .45D .105.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205 6.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤ 7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .68.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则CP 的最小值是( )A .1.2B .1.5C .2.4D .2.59.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2010.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .2011.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .3C .43D .423+ 12.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案二、填空题13.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.14.如图,正方形ABCD 的边长为2,O 是对角线BD 上一动点(点O 与端点B ,D 不重合),OM ⊥AD 于点M ,ON ⊥AB 于点N ,连接MN ,则MN 长的最小值为_____.15.如图,点E 是矩形ABCD 的边AD 上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若4AB =,6BC =,则EDF 的周长为__________.16.把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若38CDF ∠=︒,则EFD ∠ 的度数是_________.17.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.18.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE =BF ;分别以E ,F 为圆心,以大于12EF 的长为半径作弧,两弧在∠ABD 内交于点G ,作射线BG 交AD 于点P ,若AP =3,则点P 到BD 的距离为_______.19.在长方形ABCD 中,52AB =,4BC =,CE CF =,CF 平分ECD ∠,则BE =_________.20.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.三、解答题21.如图,六个完全相同的小长方形拼成了一个大长方形,A 、B 是如图所示小长方形的顶点,请在大长方形中按下列要求完成画图:(1)请你仅用无刻度直尺在图1中画一个等腰Rt ABC △,其中90ABC ∠=︒; (2)请你仅用无刻度直尺在图2作出线段AB 的垂直平分线.22.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.23.如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,A F ∠=∠,12∠=∠.(1)求证:BC DE =.(2)已知2DE =,连接BN ,若N 平分DBC ∠,求CN 的长.24.如图,ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,并且AE CF =,连接DE ,BF .(1)求证:△≌△DOE BOF ;(2)若BD EF =,连接EB ,DF ,判断四边形EBFD 的形状,并说明理由. 25.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.26.在ABC 中,23,AB CD AB =⊥于点,2D CD =.(1)如图1,当点D 是线段AB 的中点时,①AC 的长为________;②延长AC 至点E ,使得CE AC =,此时CE 与CB 的数量关系是_______,BCE ∠与A ∠的数量关系是_______;(2)如图2,当点D 不是线段AB 的中点时,画BCE ∠(点E 与点D 在直线BC 的异侧),使2BCE ∠=,A CE CB ∠=,连接AE .①按要求补全图形;②求AE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】解:A 、∵AE CF =,∴AO=CO ,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.2.B解析:B【分析】根据直角三角形斜边的中线的性质,三角形全等的判定,等边三角形的性质以及线段垂直平分线的性质对各选项分析判断即可得解.【详解】A、直角三角形斜边上的中线等于斜边的一半,是真命题,不符合题意;B、两边及其一边的对角对应相等的两个三角形全等,是假命题,符合题意.C、等边三角形一边上的高线与这边上的中线互相重合,是真命题,不符合题意;D、到线段两端点距离相等的点在这条线段的垂直平分线上,是真命题,不符合题意;故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B解析:B【分析】根据三角形中位线定理解答即可.【详解】解:∵点D和点E分别是BC和BA的中点,∴DE是△ABC的中位线,∴DE=12AC=124=2,故选:B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.A解析:A【分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=12BC,求得DF=12AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=12BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=12AH,∵△DFE的面积为1,∴12DE•DF=1,∴D E•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=12AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴22222425AB AC+=+=故选:A.【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.5.B解析:B【分析】结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B由题意,以此类推,21C B =22C B =∴第3个正方形1234C C C C 25==…∴第n 个正方形的边长为1n -∴第2020个正方形的边长为2019故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.D解析:D【分析】根据平行四边形性质得出∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,根据等腰直角三角形得出BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,求出∠HAE=∠HDG=∠FCG=∠FBE=90°+α,证△FBE ≌△HAE ≌△HDG ≌△FCG ,推出∠BFE=∠GFC ,EF=EH=HG=GF ,求出∠EFG=90°,根据正方形性质得出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,∵平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,∴BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,∵AB ∥CD ,∴∠BAD=∠BCD=180°-α,∴∠EAH=360°-45°-45°-(180°-α)=90°+α,∠GCF=360°-45°-45°-(180°-α)=90°+α, ∴①错误;②正确;∠HDG=45°+45°+α=90°+α,∠FBE=45°+45°+α=90°+α,∴∠HAE=∠HDG=∠FCG=∠FBE ,在△FBE 、△HAE 、△HDG 、△FCG 中,BF AH DH CF FBE HAE HDG FCG BE AE DG CG ===⎧⎪∠=∠=∠=∠⎨⎪===⎩,∴△FBE ≌△HAE ≌△HDG ≌△FCG (SAS ),∴∠BFE=∠GFC ,EF=EH=HG=GF ,③正确;∴四边形EFGH 是菱形,∵∠BFC=90°=∠BFE+∠EFC=∠GFC+∠CFE ,∴∠EFG=90°,∴四边形EFGH 是正方形,⑤正确;∴EH ⊥GH ,④正确;故选:D .【点睛】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形的判定,平行四边形的性质,菱形的判定的应用,主要考查学生的推理能力.7.A解析:A【分析】由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;故选:A.【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12 BD.8.A解析:A【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【详解】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴2222345AC BC++=,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=12EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=12AB×CM=12AC×BC,∴CM=•AC BCAB=342.45⨯=,∴CP=12EF=12CM=1.2, 故选:A .【点睛】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.9.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】 本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.10.A解析:A【分析】由矩形的性质和已知条件求出,BC=10,即可得出答案.【详解】解:∵四边形ABCD 是矩形,∴AO=CO=DO=BO ,AD=BC ,∠ABC=90°,AB ∥CD ,∴∠BAC=∠ACD=30°,∴,∵△ABC 的周长=AB+AC+BC=AB+AO+OC+BC ,△AOB 的周长=AB +AO +BO ,又∵ABC 的周长比△AOB 的周长长10,∴AB+AC+BC-(AB +AO +BO )=BC=10,∴故选:A .【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC 的长是解题的关键.11.D解析:D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE最小=,BEF ∴∆的周长最小值为4+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.10【分析】由菱形的性质和勾股定理求出CD=20证出平行四边形OCED为矩形得OE=CD=10即可【详解】解:∵DEACCEBD∴四边形OCED为平行四边形∵四边形ABCD是菱形∴AC⊥BDOA=O解析:10【分析】由菱形的性质和勾股定理求出CD=20,证出平行四边形OCED为矩形,得OE=CD=10即可.【详解】解:∵DE//AC,CE//BD,∴四边形OCED为平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90︒,CD22OC OD+2268+=10,∴平行四边形OCED为矩形,∴OE=CD=10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.14.1【分析】连接AO可证四边形AMON是矩形可得AO=MN当AO⊥BD时AO有最小值即MN有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO∵四边形ABCD是正方形∴AB=AD=BD=AB=解析:1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD2BD2=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=1BD=1,2∴MN的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN的最小值转化为线段AO的最小值是解题的关键. 15.【分析】由矩形ABCD证明求解再证明证明再利用勾股定理求解从而可得答案【详解】解:矩形ABCD故答案为:【点睛】本题考查的是勾股定理的应用等腰三角形的判定与性质矩形的性质掌握以上知识是解题的关键解析:4+22【分析】由矩形ABCD ,4AB =,6BC =,12DE AE =,证明6,AD BC == 90,A ADC ∠=∠=︒求解4AB AE ==,再证明45FED AEB ∠=∠=︒,证明2DE DF ==, 再利用勾股定理求解,EF 从而可得答案.【详解】 解: 矩形ABCD ,4AB =,6BC =6,AD BC ∴== 90,A ADC ∠=∠=︒ 12DE AE =,,AE DE AD += 42AE DE ∴==,,4AB AE ∴==,45,AEB ∴∠=︒45,FED ∴∠=︒90ADC ∠=︒,90EDF ,∴∠=︒ 45DEF DFE ∴∠=∠=︒,2DE DF ∴==,EF ∴===224DEF C ∴=++=+故答案为:4+【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形的性质,掌握以上知识是解题的关键.16.64°【分析】先根据矩形的性质求出∠CFD 的度数继而求出∠BFD 的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD 即可得出结论【详解】解:∵ABCD 是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD 的度数,继而求出∠BFD 的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD ,即可得出结论. 【详解】解:∵ABCD 是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA 1由四边形EFBA 翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°. 故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.17.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=.∴在Rt MND △中,222MN MD ===【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键. 18.3【分析】首先结合作图的过程确定BP 是∠ABD 的平分线然后根据角平分线的性质求得点P 到BD 的距离即可【详解】结合作图的过程知:BP 平分∠ABD ∵∠A =90°AP =3∴点P 到BD 的距离等于AP 的长为3解析:3【分析】首先结合作图的过程确定BP 是∠ABD 的平分线,然后根据角平分线的性质求得点P 到BD 的距离即可.【详解】结合作图的过程知:BP 平分∠ABD ,∵∠A =90°,AP =3,∴点P 到BD 的距离等于AP 的长,为3,故答案为:3.【点睛】考查了尺规作图的知识及角平分线的性质、矩形的性质等知识,解题的关键是根据图形确定BP 平分∠ABD .19.【分析】延长CF 交EA 的延长线于点G 连接EF 过点F 作FH ⊥CE 于点H 过点E 作EM ⊥CF 于点M 由题意易得FH=FDFH=EMEC=EG 进而可得△CDF ≌△CME 然后可得CM=CD=由勾股定理可得BG= 解析:76【分析】延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,由题意易得FH=FD ,FH=EM ,EC=EG ,进而可得△CDF ≌△CME ,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解.【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线,∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5, ∴在Rt △CBG 中,223BG CG CB =-=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =, ∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.20.【分析】如详解图:作垂足为F 的延长线垂足为G 可证可得四边形AFOG 为正方形BF=CGAF=AG=进而可求得答案【详解】如图所示:作垂足为F 的延长线垂足为G 则四边形AFOG 为矩形四边形BCDE 是正方形解析:623-【分析】如详解图:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,可证OFB OGC △≌△,可得四边形AFOG 为正方形,BF=CG ,AF=AG=32,进而可求得答案.【详解】如图所示:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,则四边形AFOG 为矩形,四边形BCDE 是正方形,∴OB=OC ,90BOC ∠=°,9090COG COF BOF COF BOF COG∠+∠=︒∠+∠=︒∴∠=∠,,OFB OGC OB OC OFB OGCOF OG∠=∠=∴∴=△≌△ S ∴四边形AFDG 为正方形632332332332623AO AF AG AC CG AG AC BF CGAB AF BF AG CG =∴===∴=-=-=∴=+=+=-+=-故答案为:623-.【点睛】本题考查了正方形的性质和判定,全等三角形的性质,关键是构造全等三角形证明. 三、解答题21.(1)见解析;(2)见解析.【分析】(1)如图1所示,取点C ,连接AC 、BC ,然后找出图中全等的三角形,依据全等三角形的性质可证明AB=BC ,最后再结合全等三角形的性质和直角三角形的性质即可证明90ABC ∠=︒;(2)先确定出AB 的中点D ,然后再确定出AC 的中点E ,依据直角三角形斜边上中线的性质可得到AE=BE ,则DE 为AB 的垂直平分线.【详解】解:如图:(1)三角形ABC 即为所求;(2)直线DE 即为所求.【点睛】本题考查了尺规作图,熟练掌握矩形的性质、直角三角形的性质、线段垂直平分线的判定方法是解题的关键.22.(1)见解析;(2)3AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC =,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD =,1CD ∴=,∴223AC AD CD =-=..【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 23.(1)见解析;(2)2【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB 与EC 平行,再由内错角相等两直线平行得到DE 与BC 平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC ,再由平行四边形对边相等即可确定出所求.【详解】解:(1)证明:∵∠A=∠F ,∴DE ∥BC ,∵∠1=∠2,且∠1=∠DMF ,∴∠DMF=∠2,∴DB ∥EC ,则四边形BCED 为平行四边形;(2)解:∵BN 平分∠DBC ,∴∠DBN=∠CBN ,∵EC ∥DB ,∴∠CNB=∠DBN ,∴∠CNB=∠CBN ,∴CN=BC=DE=2.【点睛】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.24.(1)见解析;(2)矩形,见解析【分析】(1)已知四边形ABCD 是平行四边形,根据平行四边形的性质可得OA =OC ,OB =OD ,由AE =CF 即可得OE =OF ,利用SAS 即可证明△BOE ≌△DOF ;(2)四边形BEDF 是矩形.由(1)得OD =OB ,OE =OF , 根据对角线互相平方的四边形为平行四边形可得四边形BEDF 是平行四边形, 再由BD =EF ,根据对角线相等的平行四边形为矩形即可判定四边形EBFD 是矩形.【详解】(1)证明:四边形ABCD 是平行四边形, OB OD ∴=,OA OC =. 又AE CF =,OA AE OC CF ∴-=-,即OE OF =,在DOE △和BOF 中,OE OF DOE BOF OD OB =⎧⎪∠=∠⎨⎪=⎩,∴△≌△DOE BOF .(2)四边形EBFD 是矩形,理由如下: BD ,EF 相交于点O ,OD OB =,OE OF =,∴四边形EBFD 是平行四边形.又BD EF =,∴四边形EBFD是矩形.【点睛】本题考查了三角形全等的性质和判定,平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.25.(1)见解析(2)39 2【分析】(1)Rt ABC∆中,由斜边上的中线等于斜边的一半得出12CD BD AD AB===,根据已知条件证明△CEF≌△CDE(SAS)得出CE CD=,等量转换得出AD CE=.(2)由(1)求得12AD BD CD CE AB====,在等腰三角形BCD中,过D作DG BC⊥于G,由等腰三角形的性质得出12CG BG BC==,由勾股定理求出DG,然后用三角形的面积公式计算BDE∆的面积为12BE DG⋅即可.【详解】证明:()190,ACB CD∠=︒是斜边AB上的中线12CD BD AD AB∴===,CF ED DF EF⊥=∴在△CEF和△CDE中,90oEF DFEFC DFCCF CF=⎧⎪∠=∠=⎨⎪=⎩∴△CEF≌△CDE(SAS),CE CD∴=AD CE∴=.()2由()1知:5,210CE AD AB AD====,90,6ACB AC∠=︒=228,BC AB AC∴=-=13BE BC CE ∴=+=.过D 作DG BC ⊥于G,CD BD DG BC =⊥, 142CG BG BC ∴=== 223DG BD BG ∴=-=,DBE ∴∆的面积为:1139133222BE DG ⋅=⨯⨯= . 【点睛】本题考查了直角三角形中,斜边的中线等于斜边的一半,三角形全等的判定,等腰三角形的性质和判定,勾股定理,三角形的面积公式,熟练掌握各性质是解题的关键. 26.(1)①5;②CE=CB ;∠BCE=2∠A ;(2)①补全的图形见解析;②25.【分析】(1)①由D 是BC 的中点及CD ⊥AB ,根据勾股定理即可求解;②证明△ADC ≌△BDC ,继而得到BC=CE ,根据∠BCE=∠CAB+∠CBA ,∠CAB=∠CBA ,即可得到∠BCE=2∠A ; (2)①根据题干补全图形即可;②作∠ACM=∠BCE ,在射线CM 上截取CF=CA ,连接BF 、AF ,过点C 作CG ⊥AF 于点G ,利用已知条件先证△ACE ≌△FCB ,得到AE=BF ,然后再证四边形ADCG 是矩形,可求得AG=CD=2AF ,Rt △BAF 中,利用勾股定理即可求出BF ,继而可得AE 的长.【详解】解:(1)①∵D 是BC 的中点,CD ⊥AB ,∴AD=BD=3,∠ADC=∠BDC =90°,∴在Rt △ADC 中,可得:225AC AD CD =+=;②如图,延长AC 至点E ,使CE=AC ,在△ADC 和△BDC 中,DC DC AD BDADC BDC =⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BDC ,∴AC=BC ,又∵AC=CE ,∴CB=CE ,∵∠BCE=∠CAB+∠CBA ,∠CAB=∠CBA ,∴∠BCE=∠CAB+∠CAB=2∠CAB ,即∠BCE=2∠A ;(2)①补全的图形见下图:②如图,作∠ACM=∠BCE ,在射线CM 上截取CF=CA ,连接BF 、AF ,过点C 作CG ⊥AF 于点G ,∴∠ACM+∠FCE=∠BCE+∠FCE ,即∠ACE=∠FCB ,∵CE=CB,∴△ACE≌△FCB,∴AE=BF,又∵CG⊥AF,∴∠CGF=90°,∵CF=CA,∴∠ACF=2∠ACG,AF=2AG,又∵∠BCE=2∠BAC,∠ACF=∠BCE,∴∠ACG=∠BAC,∴CG∥AD,∴∠AGC=∠BAF=∠ADC=90°,∴四边形ADCG是矩形,∴,∴AF=,在Rt△BAF中,∠BAF=90°,AB=,AF=∴BF===又∵AE=BF,∴AE=即AE的长为【点睛】本题考查全等三角形、等腰三角形、矩形的判定和性质、勾股定理及尺规作图,解题的关键是综合运用这些知识.。

新人教版初中数学八年级数学下册第三单元《平行四边形》测试(含答案解析)(1)

新人教版初中数学八年级数学下册第三单元《平行四边形》测试(含答案解析)(1)

一、选择题1.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .42.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 3.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .一组对边平行,另一组对边相等的四边形是平行四边形C .对于所有自然数n ,237n n -+的值都是质数D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等4.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE = C .EBD EDB ∠=∠ D .△ABE ≌△CDE5.下列命题中,错误的是( )A .一组对边平行的四边形是梯形;B .两组对边分别相等的四边形是平行四边形;C .对角线相等的平行四边形是矩形;D .一组邻边相等的平行四边形是菱形.6.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个7.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2 B .33cm 2 C .3cm D .33cm 8.如图,以AB 为斜边的Rt ABC 和Rt ABD △位于直线AB 的同侧,连接CD .若135,6BAC ABD AB ∠+∠=︒=,则CD 的长为( )A .3B .4C .32D .339.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .610.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2011.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=12.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .322二、填空题13.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.14.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.15.如图,点E 是矩形ABCD 的边AD 上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若4AB =,6BC =,则EDF 的周长为__________.16.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.17.如图在矩形ABCD 中,对角线,AC BD 相交于点O ,若30,2ACB AB ︒∠==,则BD 的长为_______.18.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.19.如图,正方形ABCD 中,点E ,F 分别在BC 和AB 上,BE=2,AF=2,BF=4,将△BEF 绕点E 顺时针旋转,得到△GEH ,当点H 落在CD 边上时,F ,H 两点之间的距离为______.20.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.三、解答题21.综合与实践:问题情境:数学活动课上,老师和同学们一起以“矩形的旋转”开展数学活动.具体操作如下:第一步:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.第二步:固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止.问题解决:(1)奋进小组发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,请写出线段AM 与CN 始终存在的数量关系,并利用图2说明理由.(2)奋进小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形MRNQ 时,如图3所示,请你猜测四边形MRNQ 的形状,并试着证明你的猜想.探索发现:(3)奋进小组还发现在问题(2)中的四边形MRNQ 中MQN ∠与旋转角AOE ∠存在着特定的数量关系,请你写出这一关系,无需说明理由.22.如图,在ABCD 中,AP 、BP 分别是DAB ∠和CBA ∠的角平分线,已知5AD =.(1)求线段AB 的长;(2)延长AP ,交BC 的延长线于点Q .①请在答卷上补全图形;②若6BP =,求ABQ △的周长.23.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.24.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得到GFC .(1)求证:BE DG =(2)若四边形ABFG 是菱形,且60B ︒∠=,求:AB BC 的值.25.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.26.“半角型”问题探究:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:(2)如图2,在四边形ABCD 中,AB =AD ,∠B+∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由. (3)如图3,边长为4的正方形ABCD 中,点E 、F 分别在AB 、CD 上,AE =CF =1,O 为EF 的中点,动点G 、H 分别在边AD 、BC 上,EF 与GH 的交点P 在O 、F 之间(与O 、F 不重合),且∠GPE =45°,设AG =m ,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC−BG=6−x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6−x,CE=4,EG=x+2∴(6−x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④不正确;正确的结论有3个,故选:C.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.2.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】解:A、∵AE CF=,∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.3.D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A进行判断;根据平行四边形的判定对B进行判断;取n=6可对C进行判断;根据三角形全等的知识可对D进行判断.【详解】解:A、钝角三角形的三条高线相交于三角形外一点,所以A选项错误;B、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B选项错误;C、当n=6时,n2-3n+7=25,25不是质数,所以C选项错误;D、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D选项准确.故选:D.【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.4.B解析:B【分析】由折叠的性质和平行线的性质可得∠ADB=∠CBD,可得BE=DE,可证AE=CE,由“SAS”可证△ABE≌△CDE,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∴∠CBD=∠DBC',CD=C'D=AB ,AD=BC=BC',∵AD ∥BC',∴∠EDB=∠DBC',∴∠EDB=∠EBD ,故选项C 正确;∴BE=DE ,∵AD=BC ,∴AE=CE ,故选项A 正确;在△ABE 和△CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 5.A解析:A【分析】根据梯形,平行四边形,矩形,菱形的判定进行判断即可.【详解】解:A 、一组对边平行,另一组对边不平行的四边形是梯形,故错误,符合题意; B 、两组对边分别相等的四边形是平行四边形,正确,不符合题意;C 、对角线相等的平行四边形是矩形,正确,不符合题意;D 、一组邻边相等的平行四边形是菱形,正确,不符合题意;故选:A .【点睛】主要考查梯形,平行四边形,矩形,菱形的判定,注意梯形的定义应从两组对边的不同位置关系分别考虑.6.B【分析】判断出△ABE 是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB =30°,再判断出△ABO ,△DOC 是等边三角形,可判断①;根据等边三角形的性质求出OB =AB ,再求出OB =BE ,可判断②,由直角三角形的性质可得BC AB ,可判断③,由等腰三角形性质求出∠BOE =75°,再根据∠AOE =∠AOB +∠BOE =135°,可判断④;由面积公式可得AOE COE SS =可判断⑤;即可求解. 【详解】解:∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴∠AEB =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠CAE =15°,∴∠ACE =∠AEB−∠CAE =45°−15°=30°,∴∠BAO =90°−30°=60°,∵矩形ABCD 中:OA =OB =OC =OD ,∴△ABO 是等边三角形,△COD 是等边三角形,故①正确;∴OB =AB ,又∵ AB =BE ,∴OB =BE ,∴△BOE 是等腰三角形,故②正确;在Rt △ABC 中∵∠ACB=30°∴BC,故③错误;∵∠OBE =∠ABC−∠ABO =90°−60°=30°=∠ACB ,∴∠BOE =12(180°−30°)=75°, ∴∠AOE =∠AOB +∠BOE =60°+75°=135°,故④错误;∵AO =CO ,∴AOE COE S S =,故⑤正确;故选:B .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.7.C解析:C根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形. ∵菱形的边长是3cm ,∴这个菱形的较短的对角线长是3cm .故选:C .【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.8.C解析:C【分析】取AB 的中点O ,连结OD ,OC ,根据直角三角形的性质可得OA OD OB OC ===,可得BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,根据四边形的内角和为360︒,135BAC ABD ∠+∠=︒,可得出90OCD ODC ∠+∠=︒,由OC OD =,可证得COD ∆是等腰直角三角形,由6AB =,根据勾股定理,即可得出CD 的长.【详解】取AB 的中点O ,连结OD ,OC ,∵Rt ABD ∆和Rt ABC ∆的斜边为AB , ∴12OD AB =,12OC AB =, ∴OA OD OB OC ===, ∴BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,360BAC OCA ABD ODB OCD ODC ∠+∠+∠+∠+∠+∠=︒, ∵135BAC ABD ∠+∠=︒,∴90OCD ODC ∠+∠=︒,∵OC OD =,∴45OCD ODC ∠=∠=︒,∴COD ∆是等腰直角三角形,∵6AB =,∴3OC OD ==,∴CD =,故选:C.【点睛】本题主要考查了直角三角形斜边上的中线,等腰三角形的性质和以及勾股定理,解题的关键是正确做出辅助线.9.A解析:A【分析】由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 10.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.11.A解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键. 12.C解析:C【分析】连接CE ,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG 的长;【详解】连接CE ,如图所示:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD ∥BC ,∴∠CBE=∠AEB ,∵BE 平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt △CDE 中 22221310DE CD +=+∵点F 、G 分别为BC 、BE 的中点,∴FG 是△CBE 的中位线,FG=1210 故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC的长度是解题的关键.二、填空题13.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB再以E为圆心EA为半径作圆与正方形的交点即为满足条件的P点分类讨论即可【详解】如图所示在正方形ABCD中∠AEB=105°∵点P在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB,再以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,分类讨论即可.【详解】如图所示,在正方形ABCD中,∠AEB=105°,∵点P在正方形的边上,且AE=EP,∴可以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,①当P在AD上时,如图,AE=EP1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP1=60°,△EAP1为等边三角形,∴此时∠AEP1=60°;②当P在CD上时,如图,AE=EP2,AE=EP3,由①可知∠DEP1=180°-105°-60°=15°,∴此时∠DEP1=∠DEP2=15°,∠CEP2=∠AEP1=60°,∴此时∠AEP2=60°+15°+15°=90°;∠AEP3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.14.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线, ∴12GF AE =∵4AE =, ∴2GF =;故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF 是ABE △的中位线是解题的关键.15.【分析】由矩形ABCD 证明求解再证明证明再利用勾股定理求解从而可得答案【详解】解:矩形ABCD 故答案为:【点睛】本题考查的是勾股定理的应用等腰三角形的判定与性质矩形的性质掌握以上知识是解题的关键解析:【分析】由矩形ABCD ,4AB =,6BC =,12DE AE =,证明6,AD BC == 90,A ADC ∠=∠=︒求解4AB AE ==,再证明45FED AEB ∠=∠=︒,证明2DE DF ==, 再利用勾股定理求解,EF 从而可得答案.【详解】 解: 矩形ABCD ,4AB =,6BC =6,AD BC ∴== 90,A ADC ∠=∠=︒ 12DE AE =,,AE DE AD += 42AE DE ∴==,,4AB AE ∴==,45,AEB ∴∠=︒45,FED ∴∠=︒90ADC ∠=︒,90EDF ,∴∠=︒ 45DEF DFE ∴∠=∠=︒,2DE DF ∴==,EF ∴===224DEF C ∴=++=+故答案为:4+【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形的性质,掌握以上知识是解题的关键.16.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠F=∠BAE=50°,.∵AB=AE ,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键. 17.4【分析】根据30度所对的直角边等于斜边的一半求出AC=4利用矩形的性质得到BD=AC=4即可【详解】在矩形中∵四边形是矩形故答案为:4【点睛】此题考查矩形的性质直角三角形30度角的性质熟记各性质是解析:4【分析】根据30度所对的直角边等于斜边的一半求出AC=4,利用矩形的性质得到BD=AC=4即可.【详解】在矩形ABCD 中,90ABC ︒∠=,30,2ACB AB ︒∠==,2224AC AB ∴==⨯=,∵四边形ABCD 是矩形,4BD AC ∴==.故答案为:4.【点睛】此题考查矩形的性质,直角三角形30度角的性质,熟记各性质是解题的关键. 18.【分析】连接并延长交于Q 由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q ∵矩形全等于矩形∴∴∵点H 为的中点 解析:42【分析】连接GH 并延长GH 交CD 于Q ,由矩形的性质得出20AB CD BG ===,12BC FG ==,////,90FG AE CD GCQ ∠=,由平行线的性质得出HFG HDQ ∠=∠,由ASA 证得HFG HDQ ≌,得出12DQ FG ==,HG HQ =,8CG BG BC =-=,8CQ CD DQ =-=,则GCQ 是等腰直角三角形,得出282GQ CQ ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH 并延长GH 交CD 于Q ,∵矩形ABCD 全等于矩形BEFG ,∴20AB CD BG ===,12BC FG ==,////FG AE CD ,90GCQ ∠=, ∴HFG HDQ ∠=∠,∵点H 为DF 的中点,∴HF HD =,在HFG 和HDQ 中,HFG HDQ HF HD GHF QHD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA ≌,∴12DQ FG ==,HG HQ =,20128CG BG BC =-=-=,20128CQ CD DQ =-=-=,∴GCQ 是等腰直角三角形, ∴GQ ==在Rt GCQ 中,HG HQ =,∴1122CH GQ ==⨯=故答案为:【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.19.【分析】根据旋转的可证明△BEF ≌△CHE 作FM ⊥CD 于M 分别求出FMMH 的长利用勾股定理即可求解【详解】∵将△BEF 绕点E 顺时针旋转得到△GEH 点H 落在CD 边上∵BE=2AF=2BF=4∴GH=B解析:【分析】根据旋转的可证明△BEF ≌△CHE ,作FM ⊥CD 于M ,分别求出FM,MH 的长,利用勾股定理即可求解.【详解】∵将△BEF 绕点E 顺时针旋转,得到△GEH ,点H 落在CD 边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,=∴在Rt △HEC 中,2=∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF ≌△CHE作FM ⊥CD 于M ,故四边形AFMD 是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴=故答案为:【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.20.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等 解析:8【分析】过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中,AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==, 12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般.三、解答题21.(1)AM CN =,理由见解析;(2)四边形MRNQ 为菱形,证明见解析;(3)MQN ∠=AOE ∠【分析】(1)结论:AM=CN .先证明(AAS)AOS COT ≌△△,推出AS CT =,OS OT =,34∠=∠,再证明(ASA)ESM GTN ≌△△即可解决问题.(2)过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .首先证明四边形QMRN 是平行四边形,再证明QM=QN 即可.(3)结论:∠MQN=∠AOE .理由三角形的外角的性质以及平行线的性质即可解决问题.【详解】(1)关系:AM CN =理由:如图:设EG 分别与AB 、CD 相交于点S 、T ;∵四边形ABCD 与EFGH 都是矩形,且点O 为对角线的中点;∴//AB CD ,//EF GH ,OA OC =,OE OG =;∴12∠=∠;又AOS COT ∠=∠∴(AAS)AOS COT ≌△△∴AS CT =,OS OT =;∴ES GT =;又//EF GH ,∴56∠=∠;又12∠=∠;∴34∠=∠∴(ASA)ESM GTN ≌△△ ∴SM TN =,则AS SM CT TN +=+即AM CN =(2)四边形MRNQ 为菱形.证明:过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .由题可知:矩形ABCD ≌矩形EFGH∴AD=EH ,AB ∥CD ,EF ∥HG∴四边形QMRN 为平行四边形,∵QK ⊥EF ,QL ⊥CD ,∴QK=EH ,QL=AD ,∠QKM=∠QLN=90°∴QK=QL ,又∵AB ∥CD ,EF ∥HG ,∴∠KMQ=∠MQN ,∠MQN=∠LNQ ,∴∠KMQ=∠LNQ ,∴△QKM ≌△QLN (AAS )∴MQ=NQ∴四边形MRNQ 为菱形.(3)结论:∠MQN=∠AOE .理由:如图中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.【点睛】本题属于四边形综合题,考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找确定的三角形解决问题,属于中考压轴题.22.(1)10;(2)①见解析;②36【分析】(1)依据平行线的性质以及角平分线的定义即可得到DP=AD=5,CP=BC=5,进而得出AB的长;(2)①根据题意画出图形;②依据平行线的性质以及角平分线的定义即可得到AB=QB,再根据BP平分∠ABQ,即可得出BP⊥AQ,AP=QP,依据勾股定理得出AP的长,进而得到△ABQ的周长.【详解】解:(1)∵在□ABCD中,AD=5,∴BC=5,∵AB∥CD,∴∠BAP=∠DPA,∵AP平分∠BAD,∴∠BAP=∠DAP,∴∠DAP=∠DPA,∴DP=AD=5,同理可得,CP=BC=5,∴CD=10,∴AB=10;(2)①如图所示:②∵AD ∥BQ ,∴∠Q =∠DAP ,又∵∠DAP =∠BAP ,∴∠Q =∠BAP ,∴AB =QB =10,又∵BP 平分∠ABQ ,∴BP ⊥AQ ,AP =QP ,∴Rt △ABP 中,AP=22AB BP -=8,∴AQ =16,∴△ABQ 的周长为:16+10+10=36.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对边平行,对边相等.23.(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)见详解;(2)AB :BC=2:3.【分析】(1)根据平移的性质,可得:AE=CG ,再证明Rt △ABE ≌Rt △CDG 即可得到BE=DG ;(2)根据四边形ABFG 是菱形,得出AB=BF ;根据条件找到满足AB=BF 的AB 与BC 满足的数量关系即可.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD .∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成.∴CG ⊥AD .∴∠AEB=∠CGD=90°.∵AE=CG ,AB=CD ,∴Rt △ABE ≌Rt △CDG (HL ).∴BE=DG ;(2)∵四边形ABFG 是菱形∴AB ∥GF ,AG ∥BF ,∵Rt △ABE 中,∠B=60°,∴∠BAE=30°,∴BE=12AB .(直角三角形中30°所对直角边等于斜边的一半) ∵四边形ABFG 是菱形,∴AB=BF .∴BE=CF ,∴EF=12AB , ∴BC=32AB ,∴AB :BC=2:3.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等和平行四边形的性质以及菱形的性质.25.(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH ,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH 为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.26.(1)见详解;(2)见详解;(3)4833m <≤ 【分析】(1)根据旋转变换及三角形全等即可得解;(2)延长FD 到点G ,使DG=BE ,连接AG ,通过,ABE ADG △≌△AEF AGF ≌即可得解;(3)根据题意分两种情况∶P 与O 重合,H 与C 重合,通过构造全等三角形,求得MN=NQ ,再设BM=a ,则CM=4-a ,MN=QN=a+2,根据222MN CM CN =+,得出222(2)(4)2a a +=-+,进而得到a=43,求得AG 的长为于43;根据BM=43,可得48'433AG CM ==-=,进而分析计算即可得出m 的取值范围 . 【详解】解∶ (1)结论∶ EF=BE+FD .理由如下 ∶由旋转及题意知,F ,D ,G 三点共线,BE=DG ,AE=AG ,∠BAE=∠DAG ,∠EAF=12∠BAD, ∴∠GAF=∠DAF+∠DAG=∠DAF+∠BAE=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中, AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF AGF ≌∴.EF=FG , 又∵FG=DG+DF=BE+DF ,∴EF=BE+DF.(2)结论EF=BE+DF 仍然成立.理由如下 ∶延长FD 到点G ,使DG=BE ,连接AG ,如图所示∶∵∠B+∠ADC =180°,180ADF ADG ∠+∠=︒ ,∴B ADG ∠=∠,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,,ABE ADG ∴△≌△∴AE=AG ,∠BAE=∠DAG ,12EAF BAD ∠=∠ GAF DAF DAG FAD BAE BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠ , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴,AEF AGF △≌△∴.EF=FG.又 ∴FG=DG+DF=BE+DF ,∴EF=BE+DF .(3)①假设P 与O 重合, 如图,∵O 为EF 的中点,∴O 为正方形ABCD 的对称中心,过A 作AN //EF 交CD 于N ,则NF=AE=1,∴DN=CN=2,过O 作''//G H GH 交AD 于'G ,交BC 于'H ,''AG CH ∴=,''DG BH = ,过A 作//''AM G H 交BC 于M ,∴''AG MH = ,'45G OE ∠=︒ ,∴∠MAN=45°,延长CD 到Q ,使DQ=BM ,由AB=AD ,∠B=∠ADQ ,BM=DQ ,可得△ABM ≌△ADQ ,∴AM=AQ,∠BAM=∠DAQ∵∠MAN=45°,∠BAD=90°,∴∠BAM+∠DAN=45°=∠DAQ+∠DAN=∠QAN,∴∠MAN= ∠QAN由AM=AQ ,∠MAN=∠QAN ,AN=AN ,可得△MAN ≌△QAN ,∴MN=NQ设BM=a ,则CM=4-a ,MN=QN=a+2,∵222MN CM CN =+,()()222242a a ∴+=-+ ,解得∶a=43,∴ BM=43, CM=83又∵'''AG CH MH ==, 814'323AG ∴=⨯=, ②当H 与C 重合时,如图由①知BM=4348''433AG CM ==-=∴, ∴m 的取值范围为∶4833m <≤ . 【点睛】 本题考查了全等三角形的判定和性质,旋转变换以及正方形的性质,熟练掌握相关各个性质并作辅助线构造出全等三角形是解题的关键.。

新人教版初中数学八年级数学下册第三单元《平行四边形》检测题(答案解析)

新人教版初中数学八年级数学下册第三单元《平行四边形》检测题(答案解析)
B.一组对边平行,另一组对边相等的四边形是平行四边形
C.对于所有自然数n, 的值都是质数
D.三角形一条边的两个顶点到这条边上的中线所在直线的距离相等
4.如图,已知正方形ABCD的边长为4,点Р是对角线BD上一动点(不与D,B重合), 于点F, 于点E,连接AP,EF.则下列结论错误的是()
A. B. ,且
(1)求证: ;
(2)顺次连接点 、 、 、 ,求证:四边形 是菱形.
22.已知:线段 , (如图),用直尺和圆规作一个平行四边形,使它的两条对角线长分别等于线段 ,且两条对角线所成的一个角等于 .
23.如图所示,在平行四边形 中, , 分别为 , 上的高,且 .求平行四边形 各内角的度数.
24.如图,在四边形 中, 分别是 的中点, 分别是对角线 的中点,依次连接 连接 .
17.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=___________
18.如图,边长分别为 和 的两个正方形 和 并排放在一起,连结 并延长交 于点 ,交 于点 .则线段 的长是__________.
19.如图,正方形ABCD的顶点B在直线l上,作 于E,连结CE,若 , ,则 的面积________.
20.如图,△ABC是边长为1的等边三角形,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的周长记作C1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2.照此规律作下去,则C2020=__.
参考答案
三、解答题
21.如图,过 对角线 与 的交点 作两条互相垂直的直线,分别交边 、 . 、 于点 、 、 、 .

人教版初中数学八年级数学下册第三单元《平行四边形》测试题(答案解析)(2)

人教版初中数学八年级数学下册第三单元《平行四边形》测试题(答案解析)(2)

一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .153.如图,在ABC 中,点D 在边BC 上,过点D 作//DE AC ,//DF AB ,分别交AB ,AC 于E ,F 两点.则下列命题是假命题的是( )A .四边形AEDF 是平行四边形B .若90BC ∠+∠=︒,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD BD =,则四边形AEDF 是矩形4.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )A .90D ∠=;B .AB CD =;C .AD BC =; D .BC CD =. 5.如图,点D 和点E 分别是BC 和BA 的中点,已知AC =4,则DE 为( )A .1B .2C .4D .86.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .12537.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形8.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .3229.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .510.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( )①BDF 是等腰三角形 ②12DE BC =③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠A .1B .2C .3D .411.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A 3B 423C .2D 35212.矩形不一定具有的性质是( )A .对角线互相平分B .是轴对称图形C .对角线相等D .对角线互相垂直参考答案二、填空题13.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)14.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.15.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.16.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.17.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.18.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.19.如图,在Rt △ABC 中,∠ACB =90°,D 是斜边AB 中点,若∠B =30°,AC =2,则CD =_____.20.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.三、解答题21.综合与实践:问题情境:数学活动课上,老师和同学们一起以“矩形的旋转”开展数学活动.具体操作如下:第一步:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.第二步:固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止.问题解决:(1)奋进小组发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,请写出线段AM 与CN 始终存在的数量关系,并利用图2说明理由.(2)奋进小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形MRNQ 时,如图3所示,请你猜测四边形MRNQ 的形状,并试着证明你的猜想.探索发现:(3)奋进小组还发现在问题(2)中的四边形MRNQ 中MQN ∠与旋转角AOE ∠存在着特定的数量关系,请你写出这一关系,无需说明理由.22.已知:如图,ABCD 中,AE 、CF 分别是BAD ∠和BCD ∠的角平分线,分别交边DC 、AB 于点E 、F ,求证:AE CF =.23.已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠、CF 平分GCD ∠,//EF BC 交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.24.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.但人们可以通过折纸把一个角三等分,今天我们就通过折纸把一个直角三等分.操作如下:第一步:如图①,对折长方形纸片ABCD ,使AD 与BC 重合,沿EF 对折后,得到折痕EF ,把纸片展平;第二步:如图②,再一次折叠纸片,使点A 落在EF 上(标记为点O ),并使折痕经过点B ;第三步:如图③,再展开纸片,得到折痕BR ,同时连接BO RO 、.这时就可以得到BR BO 、把直角ABC 三等分.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是由BAR ∆沿BR 折叠后得到的三角形 ,求证:25.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.26.如图,在四边形ABCD 中,90B D ∠=∠=︒,60C ∠=°,5AB =.2AD =.(1)求CD 的长;(2)求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.C解析:C【分析】根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.C解析:C【分析】根据平行四边形判定定理,矩形的判定定理,菱形的判定定理判断即可.【详解】//,//DE AC DF AB∴四边形AEDF 是平行四边形,故A 选项正确;四边形AEDF 是平行四边形,90B C ∠+∠=︒90BAC ∴∠=︒∴四边形AEDF 是矩形,故B 选项正确;12DE BD AC BC ∴==12DE AC ∴= 同理12DF AB =要想四边形AEDF 是菱形,只需DE DF =,则需AC AB =显然没有这个条件,故C 选项错误;AD BD =,则B DAB ∠=∠,DAC C ∠=∠,180B C BAC ∠+∠+∠=︒90BAC ∴∠=︒∴∴四边形AEDF 是矩形,故D 选项正确;故选:C .【点睛】本题考查了平行四边形的判定,矩形的判定,菱形的判定,熟练掌握平行四边形判定定理,矩形的判定定理,菱形的判定定理是解题关键.4.D解析:D【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】解:由∠A=∠B=∠C=90°可判定四边形ABCD 为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD 为正方形,故选:D .【点睛】本题考查正方形的判定.掌握相关判定定理正确推理论证是解题关键.5.B解析:B【分析】根据三角形中位线定理解答即可.【详解】解:∵点D 和点E 分别是BC 和BA 的中点,∴DE 是△ABC 的中位线,∴DE =12AC =12⨯4=2, 故选:B .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.7.C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.8.C解析:C【分析】连接CE ,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG 的长;【详解】连接CE ,如图所示:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD ∥BC ,∴∠CBE=∠AEB ,∵BE 平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt △CDE 中 22221310DE CD +=+∵点F 、G 分别为BC 、BE 的中点,∴FG 是△CBE 的中位线,FG=1210 故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC 的长度是解题的关键. 9.A解析:A【分析】根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1221A D CD -=8,故选A.【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q与D重合时,A1B最小是解题的关键.10.C解析:C【分析】根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.【详解】解:①∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,又∵△ADE≌△FDE,∴∠ADE=∠EDF,AD=FD,AE=CE,∴∠B=∠BFD,∴△BDF是等腰三角形,故①正确;同理可证,△CEF是等腰三角形,∴BD=FD=AD,CE=FE=AE,∴DE是△ABC的中位线,∴DE=1BC,故②正确;2∵∠B=∠BFD,∠C=∠CFE,又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,∴∠BDF+∠FEC=2∠A,故④正确.而无法证明四边形ADFE是菱形,故③错误.所以一定正确的结论个数有3个,故选:C.【点睛】本题考查了菱形的判定,中位线定理,等腰三角形的判定和性质,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.11.D解析:D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∵AB=4,AD=3,∴BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∠DA′G=∠A=90°,∴∠BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt△A′BG中,A′G2+A′B2=BG2,∴x2+22=(4-x)2,解得:x=32,∴AG=32,∴在Rt△ADG中,DG=.故选:D.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.12.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题13.①②【分析】先证明∠ACD=∠BCE根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE,根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得OB=OC;利用三角形三边关系可得DE BC≥;根据OB=OC可知点O在BC的垂直平分线上,找到点O的起始位置及终点位置,即可求出OA的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB = 故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O的运动路线.14.或2【分析】根据菱形有一个内角为60°可以得到等边三角形分两种情况画出图形结合勾股定理求出AC的长【详解】解:∵四边形ABCD是菱形∴AC⊥BDOA=OCOB=ODAD=AB=2若∠BAD=60°∴解析:23或2【分析】根据菱形有一个内角为60°可以得到等边三角形,分两种情况,画出图形,结合勾股定理求出AC的长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AD=AB=2,若∠BAD=60°,∴△ABD是等边三角形,∴BD=2,∴OD=1,∴OA=22-=,213∴AC=23;若∠ABC=60°,∴△ABC是等边三角形,∴AC=2;故答案为:32.【点睛】此题考查了菱形的性质和勾股定理,等边三角形的判定和性质,要记住菱形的对角线互相平分且垂直,菱形的四条边都相等.15.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线 解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线, ∴12GF AE =∵4AE =,∴2GF =; 故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF 是ABE △的中位线是解题的关键.16.5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG 分别是的中点∴∵分别是BEBC 的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF 、GH 的长度,根据勾股定理计算,即可得到答案.【详解】F ,G 分别是DE ,BE 的中点, ∴142GF BD ==, ∵G ,H 分别是BE ,BC 的中点,∴132GH CE ==, ∵∠FGH =90°,∴由勾股定理得,5FH ===,故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【分析】由题意和图示可知将两个边长为1的正方形沿对角线剪开将所得的四个三角形拼成一个大正方形大正方形的边长恰好是小正方形的对角线的长根据正方形的性质利用勾股定理求出小正方形对角线的长即可【详解】∵如【分析】由题意和图示可知,将两个边长为1的正方形沿对角线剪开,将所得的四个三角形拼成一个大正方形,大正方形的边长恰好是小正方形的对角线的长,根据正方形的性质,利用勾股定理求出小正方形对角线的长即可.【详解】∵如图是两个边长为1的小正方形,∴其对角线的长度==, ∴【点睛】本题主要考查正方形的性质和勾股定理,熟练运用和掌握以上两个知识点是解题的关键. 18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于1【分析】连接FE ,根据题意得CD=2,BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+ ∴222252)(2)1x x +=-+解得:=51x ,即51, 51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.【分析】先由所对的直角边是斜边的一半求解再利用直角三角形斜边上的中线等于斜边的一半可得答案【详解】解:∠ACB =90°∠B =30°AC =2D 是斜边AB 中点故答案为:【点睛】本题考查的是含的直角三角形解析:2.【分析】先由30所对的直角边是斜边的一半求解,AB 再利用直角三角形斜边上的中线等于斜边的一半可得答案.【详解】 解: ∠ACB =90°,∠B =30°,AC =2,24AB AC ∴==,D 是斜边AB 中点,1 2.2CD AB ∴== 故答案为:2.【点睛】本题考查的是含30的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,掌握以上知识是解题的关键.20.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等 解析:8【分析】过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==,12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般.三、解答题21.(1)AM CN =,理由见解析;(2)四边形MRNQ 为菱形,证明见解析;(3)MQN ∠=AOE ∠【分析】(1)结论:AM=CN .先证明(AAS)AOS COT ≌△△,推出AS CT =,OS OT =,34∠=∠,再证明(ASA)ESM GTN ≌△△即可解决问题.(2)过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .首先证明四边形QMRN 是平行四边形,再证明QM=QN 即可.(3)结论:∠MQN=∠AOE .理由三角形的外角的性质以及平行线的性质即可解决问题.【详解】(1)关系:AM CN =理由:如图:设EG 分别与AB 、CD 相交于点S 、T ;∵四边形ABCD 与EFGH 都是矩形,且点O 为对角线的中点;∴//AB CD ,//EF GH ,OA OC =,OE OG =;∴12∠=∠;又AOS COT ∠=∠∴(AAS)AOS COT ≌△△ ∴AS CT =,OS OT =;∴ES GT =;又//EF GH ,∴56∠=∠;又12∠=∠;∴34∠=∠∴(ASA)ESM GTN ≌△△ ∴SM TN =,则AS SM CT TN +=+即AM CN =(2)四边形MRNQ 为菱形.证明:过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .由题可知:矩形ABCD≌矩形EFGH∴AD=EH,AB∥CD,EF∥HG∴四边形QMRN为平行四边形,∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS)∴MQ=NQ∴四边形MRNQ为菱形.(3)结论:∠MQN=∠AOE.理由:如图中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB ∥CD ,∴∠MQN=∠QND ,∴∠MQN=∠AOE .【点睛】本题属于四边形综合题,考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找确定的三角形解决问题,属于中考压轴题. 22.见解析【分析】根据平行四边形的性质及角平分线的定义,证明ADE CBF ∆≅∆即可判断AE CF =.【详解】 解:四边形ABCD 是平行四边形,DAB DCB ∴∠=∠,D B ∠=∠,AD BC =.AE ∵、CF 分别是BAD ∠和BCD ∠的角平分线,DAE BCF ∴∠=∠.()ADE CBF ASA ∴∆≅∆.AE CF ∴=.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定和性质.证明线段相等的技巧一般是找到两个线段的相关三角形,通过全等求解.23.(1)见解析;(2)见解析【分析】(1)由角平分线的定义及平行线的性质可证得DCE FEC ∠=∠,EFC DCF ∠=∠,得OE OC =,OF OC =,即可得出结论;(2)先证得四边形DECF 是平行四边形,再利用角平分线的定义可求得90ECF ∠=︒,则可证得四边形DECF 为矩形.【详解】证明:(1)∵CE 平分BCD ∠、CF 平分GCD ∠∴BCE DCE ∠=∠,DCF GCF ∠=∠∵EF ∥BC ,∴BCE FEC ∠=∠,EFC GCF ∠=∠∴DCE FEC ∠=∠,EFC DCF ∠=∠∴OE OC =,OF OC =,∴OE OF =.(2)∵点O 为CD 的中点,∴OD OC =,又OE OF =,∴四边形DECF 是平行四边形∵CE 平分BCD ∠、CF 平分GCD ∠, ∴12DCE BCD ∠=∠,12DCF DCG ∠=∠∴()11=9022DCE DCF BCD DCG BCG ∠+∠=∠+∠∠=︒ ∵DCE DCF ECF ∠+∠=∠, ∴90ECF ∠=︒∵四边形DECF 是平行四边形,∴平行四边形DECF 是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及平行线的性质等知识,掌握相关性质定理正确推理论证是解题关键.24.点O 在折痕EF 上,BR BO 、把ABC ∠三等分,见解析【分析】如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上;连接AO , 根据折叠的性质可得△AOB 为等边三角形,然后结合矩形的性质即可求证所求问题.【详解】解:已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上.求证:BR BO 、把ABC ∠三等分证明:连接AO线段EF 是长方形ABCD 对折后的折痕∴EF 垂直平分AB 又点O 在对称轴EF 上AO BO ∴=BOR ∆是BAR ∆沿BR 折叠后得到的三角形,12BO AB ∴=∠=∠AO BO AB ∴==ABO ∴∆是等边三角形60ABO ︒∴∠=又12ABO ∠+∠=∠1230︒∴∠=∠=又90ABC ︒∠=330ABC ABO ︒∴∠=∠-∠=123∴∠=∠=∠BR BO ∴、把ABC ∠三等分.【点睛】本题主要考查矩形的性质及等边三角形的性质和判定,还考查了学生的观察力和动手能力,动手操作一下,问题更容易解决.25.(1)见解析;(2)等边三角形,理由见解析【分析】(1)由菱形ABCD 边长与对角线都是2,知ABD △和BCD △都是等边三角形.可得60BDE BCF ∠=∠=︒,BD BC =,可证BDE BCF △≌△;(2)由BDE BCF △≌△,得DBE CBF ∠=∠,BE BF =,利用=60DBF DBE DBF CBF ∠+∠=∠+∠︒.可证BEF 为等边三角形.【详解】(1)证明:∵菱形ABCD 的边长为2,2BD =,∴ABD △和BCD △都是等边三角形.∴60BDE BCF ∠=∠=︒,BD BC =,∵2AE DE AD +==,而2AE CF +=,∴DE CF =,∴BDE BCF △≌△;(2)解:BEF 为等边三角形.理由如下:∵BDE BCF △≌△,∴DBE CBF ∠=∠,BE BF =,∵60DBC DBF CBF ∠=∠+∠=︒°,∴60DBF DBE ∠+∠=︒.即60EBF ∠=︒.∴BEF 为等边三角形.【点睛】 本题考查菱形的性质,等边三角形的判定与性质,三角形全等判定与性质,掌握菱形的性质,等边三角形的判定与性质,三角形全等判定与性质是解题解题关键.26.(1)32233 【分析】(1)作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N ,易知四边形MNAB 是矩形,分别在Rt △ADN 中求出DN ,利用含60°的直角三角形求CD 即可;(2)由(1)可知,四边形ABCD 的面积就是△DCM 与梯形ADMB 的面积和.【详解】解:(1)如图作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N .∵∠B =∠NMB =∠MNA =90°,∴四边形MNAB 是矩形,∴MN =AB =5,AN =BM ,∠BAN =90°,∵∠C +∠B +∠ADC +∠BAD =360°,∠C =60°,∠B =∠ADC =90°,∴∠DAN =∠BAD ﹣∠BAN =30°,在RT △AND 中,∵AD =2,∠DAN =30°,∴DN =12AD =1,AN =2222213AD DN -=-=, 在RT △DMC 中,∵DM =DN +MN =6,∠C =60°,∴∠CDM =30°,∴CD =2MC ,设MC =x ,则CD =2x ,∵CD 2=DM 2+CM 2,∴4x 2=x 2+62,∵x >0∴x =23,∴CD =43.(2)由(1)得,112366322DCM S CM DM =⨯⨯=⨯⨯=, 1111()3113222ADMB S AN DM AB =⨯⨯+=⨯⨯=梯形, 1123633322DCM ABCD ADMB S S S =+=+=四边形梯形.【点睛】本题考查了勾股定理和含有30°角的直角三角形的性质,通过作辅助线,构建特殊的直角三角形是解题关键.。

浙江省温岭市第三中学八年级数学《特殊平行四边形》测试(无答案)

浙江省温岭市第三中学八年级数学《特殊平行四边形》测试(无答案)

浙江省温岭市第三中学八年级数学《特殊平行四边形》测试(无答案)班级_________ 姓名____________ 学号______一、选择题:(30分)1、正方形具有而菱形不一定具有的性质是 ( )A 、四条边都相等B 、对角线相等C 、对角线互相垂直平分D 、每条对角线平分一组对角 2、下列命题正确的是( )A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等且垂直的四边形是正方形。

3、如图,在△ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )A. DE 是△ABC 的中位线B. AA '是BC 边上的中线C. AA '是BC 边上的高D. AA '是△ABC 的角平分线 4、下列命题中,真命题是( )A 、一组对边平行且有一组邻边相等的四边形是平行四边形B 、顺次连结四边形各边中点所得到的四边形是矩形C 、平行四边形既是轴对称图形又是中心对称图形D 、对角线互相垂直平分的四边形是菱形5、如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( ) A .32 B . 33 C .34 D . 36、如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是( ) A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠27、在平面直角坐标系中,已知点A (0,2),B (,0),C (0,),D (,0),则以这四个点为顶点的四边形是( )ACDE 错F AD E BCABCODE(图第1图8题)A 1A 2 A 3 A 4A .矩形B .菱形C .正方形D .梯形8、如图,矩形ABCD 中,AD=2AB ,E 点在AD 上,且BE=BC ,则∠ECD 的度数是( )A 、36oB 、18oC 、30oD 、15o9、如图,矩形ABCD 的周长是20cm ,以AB 、CD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和68cm 2, 那么矩形ABCD 的面积是 ( )A .21cm 2B .16cm 2C .24cm 2D .9cm210、如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2 B .4n cm 2C .41-n cm 2D .n )41( cm2二、填空题:(33分)11、如图,在矩形ABCD 中,对角线AC,BD 相交于点O ,若∠AOB =60°,AB =4cm ,则AC 的长为_______cm .12、已知菱形ABCD 的面积是212cm ,对角线4AC =cm ,则菱形的边长是 cm ; 13、如图,四边形ABCD 是一张矩形纸片,AD = 2AB ,若沿过点D 的折 痕DE 将A 角翻折,使点A 落在BC 上的A 1处,则∠EA 1B=________度. 14、顺次连接菱形各边中点所得的四边形一定是___________形。

浙江省台州温岭市第三中学八年级数学 平行四边形单元测试(无答案) 人教新课标版

浙江省台州温岭市第三中学八年级数学 平行四边形单元测试(无答案) 人教新课标版

班级_______ 姓名_________ 学号______一、选择题:1、下列判断四边形是平行四边形的是( ).A .两组角相等的四边形;B .对角线平分的四边形;C .一组对边相等,一组对角相等的四边形;D .两组对边分别相等的四边形 2、□ABCD 中,∠A=55°,则∠B 、∠C 的度数分别是( ).A .135°,55°B .55°,135°C .125°,55°D .55°,125° 3、平行四边形一组对角的平分线( )A .在同一条直线上;B .平行;C .相交;D .平行或在同一直线上 4、如图E 是ABCD 内任一点,若S □ABCD =6,则图中阴影部分的面积为( )A .2B .3C .4D .5 5、□ABCD 中∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .2:3:3:2C .2:3:2:3D .2:2:3:3 6、在平行四边形ABCD 中,60B ∠=,那么下列各式中,不能..成立的是( ) A .60D ∠= B .120A ∠= C .180C D ∠+∠= D .180C A ∠+∠= 7、若三角形三边的比为6:5:4,周长为45cm ,那么此三角形中最长的中位线长为( ) A 、18cm B 、15cm C 、12cm D 、9cm8、 □ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12,BD=10,AB=m ,• 那么m 的取值范围是( ).A .1<m<11B .2<m<22C .10<m<12D .5<m<6 9、如图,在△MBN 中,BM=6,点A 、C 、D 分别在MB ,NB ,MN•上,•四边形ABCD 为平行四边形,∠NDC=∠MDA ,那么□ABCD 的周长是( ). A .24 B .18 C .16 D .1210、某人设计装饰地面的图案,拟以长为22 cm ,16 cm ,18 cm 的三条线段中的两条为对角线,另一条为边,画出不同形状的平行四边形,他可以画出形状不同的平行四边形个数为( ) A. 1 B. 2 C. 3 D. 4二、填空题:11、□ABCD 中,若∠A ∶∠B =2∶3,则∠C =_________,∠D =_________. 12、若平行四边形的周长为40cm ,对角线AC 、BD•相交于点O ,•EDCBA△BOC•的周长比△AOB 的周长大2cm ,则AB=________.13.若平行四边形的周长为56cm ,相邻两边的长度比为3:4,则四边形的四边长分别为_____________.14、如图,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB=6,BC=4,则AE :EF :FB=________.15、□ABCD 中,∠B =30°,AB =4 cm ,BC =8 cm ,则四边形ABCD 的面积是_____.16、如图,在平行四边形ABCD 中,DB =DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE = 度.17、若□ABCD 的一边AB=8cm ,一条对角线AC=10cm ,那么另一条对角线BD 的取值范围是_______.18、如图,在□ABCD 中,AE 平分∠BAD 交DC 于E ,AD=5cm ,AB=8cm ,则EC=______。

人教版八年级数学(下)平行四边形练习题(2021年整理)

人教版八年级数学(下)平行四边形练习题(2021年整理)

(完整word)人教版八年级数学(下)平行四边形练习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)人教版八年级数学(下)平行四边形练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)人教版八年级数学(下)平行四边形练习题(word版可编辑修改)的全部内容。

人教版八年级数学(下)平行四边形练习题1.如图1,四边形ABCD 是平行四边形,则:1)∠ADC= , ∠BCD = ; 2)边AB = , BC = .2.求如图2所示的四边形ABCD 的面积= .图1 图23.平行四边形ABCD 中,AB = 25cm ,BE ⊥CD 于E ,且BE =37cm ,四边形ABCD 的面积 . 4.从平行四边形的一个锐角的顶点做两条高线,如果这两条高线的夹角是135°,这个平行四边形的锐角的度数是 .5.在四边形ABCD 中,AC 、BD 相交于点O ,(1)若AD =8cm,AB =4cm ,那么 当BC =__ _cm ,CD =__ _cm 时,四边形ABCD 为平行四边形;(2)若AC =10cm ,BD =8cm ,那么当AO =__ _cm,DO =_ __cm 时,四边形ABCD 为平行四边形.6。

(1)在ABCD 中,∠A= 50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD 中,∠A —∠B=40度,则∠A= 度,∠B= 度,∠C= 度,∠D= 度. (3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm,CD= cm, DA= cm .7如图:在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C)8个 (D )9个8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省台州温岭市第三中学八年级数学平行四边形练习人教新课标版
3.□ABCD中,两邻边的比为3:2,且周长为40c m,则此四边形的四边长分别为______.
4.在平行四边形及其两条对角线所组成的图形中,共有______•对面积相等的三角形.
5.在下列图形的性质中,平行四边形不一定具有的是()
A.对角相等 B.内角和为360° C.邻角互补 D.对角互补
6.如图1,在□ABCD中,已知对角线AC和BD相交于O,且AC+BD=18,△AOB的周长为15,则AB 的长是_______.
8.如图2,在□ABCD中,AE⊥BC于E,AF⊥CD于F,AE=3cm,AF=4cm,AD=8cm,•则CD的长为______cm.
9.如图3,在□ABCD中,AE垂直BC,AF垂直CD,垂足分别是E、F,∠EAF=60°,则∠B 的度数是______.
10.在□ABCD中,点O为对角线AC和BD的交点,若S△AOB=3,则ABCD的面积为_______.
11.若□ABCD的一边AB=8cm,一条对角线AC=6cm,那么另一条对角线BD的取值范围是_______.12.如图4,E是ABCD内任一点,若S ABCD =6,则图中阴影部分的面积为()A.2 B.3 C.4 D.5
13.□ABCD中∠A:∠B:∠C:∠D的值可以是()
A.1:2:3:4 B.2:3:3:2 C.2:3:2:3 D.2:2:3:3
14.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有()
A.1种 B.2种 C.4种 D.无数种
15、如图,一个四边形花坛,被两条线段分成四个部分,分别种上红、黄、紫、
白四种花卉,种植面积依次是,若,,则有()
A.B.
C.D.都不对
16.如图,在□ABCD中,∠ABC的平分线交AD于E,且点E把AD分成5cm与4cm的两部分,求□ABCD的周长.
17、如图,在□ABCD中,E在AC上,AE=2EC,F在AD上,DF=2AF,如果△DEF的面积为2,求□ABCD
的面积.
18.如图,□ABCD的周长为60cm,AC与BD相交于点O,△BOC•的周长比△AOB的周长多8cm,求AB,BC的长.
※19.图3是某城市部分街道示意图,图中AF∥BC,EC⊥BC,BA∥DE,BD∥AE,EF=FC.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路
线是B→D→C→F.假设两车速度相同,途中耽误时间相同,那么谁先到达F
点,•请说明理由.。

相关文档
最新文档