混凝土温控措施
混凝土温控施工方案
混凝土温控施工方案一、引言混凝土在施工过程中的温度管理对于施工质量和结构性能至关重要。
不合理的温度管理可能会导致混凝土开裂、变形和强度损失等问题。
因此,制定科学合理的混凝土温控施工方案是非常重要的。
二、施工前准备工作1.根据工程要求和施工环境确定混凝土的设计强度等级。
2.根据混凝土配合比确定最佳施工温度和温度控制要求。
3.定义施工过程中需要测量和监控的温度参数,如混凝土的初始温度、最高温度、温度变化曲线等。
三、混凝土材料的温度控制1.控制混凝土原材料的温度。
对于水泥、骨料和混凝土掺合料等材料,要求其温度与环境温度相近,以防止温度差异引起的混凝土温度变化。
2.采用冷却水控制混凝土的温度。
在炎热季节或高温环境中,混凝土中的冷却水可以通过降低混凝土的温度,防止灼伤和过早硬化。
四、混凝土施工温度控制1.控制混凝土浇筑温度。
混凝土的浇筑温度应在规定范围内控制,一般不得超过28°C。
过高的浇筑温度会引起混凝土过早硬化和开裂。
2.采取冷却措施。
在高温季节或高温环境中,可以通过喷水、覆盖湿布等方式降低混凝土的温度。
同时,可以采用遮阳网或搭建临时遮阳棚等方式,减少混凝土暴露在阳光下的时间。
3.使用混凝土加热系统。
在低温环境中,可以采用混凝土加热系统提高混凝土的温度,以加快硬化速度并确保施工质量。
五、混凝土温度监控与记录1.配备温度监测设备。
在施工过程中,应配备温度传感器和数据记录仪等设备,实时监测混凝土的温度变化。
2.温度数据记录与分析。
根据监测所得的温度数据,进行记录和分析,及时发现温度异常和问题,并采取相应的措施予以处理。
六、质量控制与验收标准1.根据混凝土设计强度等级和使用要求,制定相应的温控方案,并将其纳入混凝土施工质量控制体系。
2.对混凝土温度进行验收。
按照规定的温度验收标准,对混凝土温度进行监测和评估。
温度不得超过规定范围,否则需采取相应的补救措施。
七、安全管理措施1.加强现场安全教育。
对施工人员进行安全教育培训,使其理解温度管理的重要性,并掌握相应的安全操作规程。
混凝土温控措施
混凝土温控措施混凝土温控措施是在混凝土施工过程中采取的一系列措施,旨在控制混凝土的温度变化,以促进混凝土的正常硬化和提高混凝土的品质。
混凝土温度的控制对于混凝土的强度、抗裂性能和耐久性能等都有重要影响。
本文将介绍混凝土温度控制的几种常用方法。
1. 混凝土材料的选择混凝土材料的选择是控制混凝土温度的重要一环。
一般而言,使用低热发散混凝土材料可以减少混凝土温度的上升。
低热发散材料的特点是在水泥水化过程中产热较少,从而减少混凝土的温度升高。
此外,选择低水灰比的混凝土也有助于降低混凝土的温度。
2. 控制混凝土施工时间混凝土的温度受施工时间的影响较大。
在夏季高温季节,如果在中午或下午时段进行混凝土浇筑,往往会导致混凝土温度过高。
因此,合理控制混凝土施工时间,选择在早晨或傍晚时段施工,可以有效降低混凝土的温度。
3. 混凝土浇注过程中的降温措施在混凝土浇注过程中,采取降温措施是控制混凝土温度的有效手段之一。
具体的措施包括:•遮荫覆盖:使用遮阳网或覆盖物在混凝土表面形成遮荫,有效降低混凝土的温度。
•喷水降温:在混凝土浇筑过程中,适时喷水冷却混凝土,防止混凝土温度升高过快。
•降温剂添加:在混凝土配制过程中,加入适量的降温剂,可以降低混凝土的温度。
4. 混凝土后期养护措施混凝土浇筑完成后,合理的后期养护也是控制混凝土温度的重要环节。
以下是几种常用的后期养护措施:•保温措施:覆盖保温物,如保温毯、保温棚等,可以防止混凝土温度过快下降,保持较高的温度,促进混凝土的正常硬化。
•湿润养护:在混凝土浇筑表面喷水湿润,使混凝土不易干燥,有利于混凝土的耐久性发展。
•避免干燥环境:混凝土在干燥环境中容易出现开裂,因此要避免混凝土暴露在直接阳光下或干燥的风中。
5. 温度监测和记录为了确保混凝土温度控制措施的有效性,需要进行温度监测和记录。
可以在混凝土浇筑过程中设置温度传感器,监测混凝土的温度变化。
同时,需要及时记录温度数据,以备后续分析和评估。
简述大体积混凝土温度控制措施
简述大体积混凝土温度控制措施大体积混凝土温度控制措施1. 引言大体积混凝土结构由于其体积庞大、内部化学反应热释放较高,易引起温度升高和应力积累,从而影响混凝土的强度和耐久性。
因此,采取适当的温度控制措施对于确保混凝土结构的质量和使用寿命至关重要。
2. 温度控制的目标温度控制的主要目标是确保混凝土中温度的合理控制,避免温度过高引起开裂或者温度过低导致强度下降。
具体目标包括:控制混凝土的最高温度、温度梯度和温度变化速率;控制混凝土的表面温度和环境温度;控制混凝土的降温速度和时间。
3. 温度控制措施3.1 混凝土材料的选择:选择低热释放水泥、矿渣粉等掺合料,减少混凝土的内部热释放。
同时,控制水灰比,选用合适的减水剂,以提高混凝土的流动性和可泵性。
3.2 施工时的温度控制:在混凝土浇筑过程中,采取以下措施控制温度:- 分段浇注:将大体积混凝土结构的浇筑过程划分为若干个段,逐段进行浇筑,以减少热量的积累。
- 使用冷却管道:在混凝土中埋设冷却管道,通过水的循环流动,实现对混凝土温度的控制。
- 预冷处理:在浇筑前,可以采取喷淋水或者铺设湿布等方式对模板进行预冷处理。
3.3 后期养护中的温度控制:在混凝土浇筑完成后,采取以下措施控制温度:- 加强养护措施:及时采取覆盖物、湿润养护、避免阳光直射等措施,防止混凝土水分的蒸发过快。
- 冷却处理:可以采用降温剂进行冷却处理,有效降低混凝土的温度。
4. 监测和评估在大体积混凝土温度控制过程中,应进行温度监测和评估,以确保控制措施的有效性。
监测方法包括使用温度计测量混凝土的温度、应力计测量混凝土的应力等。
5. 附件本所涉及的附件如下:- 附件1:混凝土温度控制计划表- 附件2:大体积混凝土施工工艺图6. 法律名词及注释本所涉及的法律名词及注释如下:- 混凝土结构:指使用混凝土作为主要材料的建造结构。
- 温度梯度:指混凝土中不同部位之间的温度差异。
- 水泥:指用于制备混凝土的粉状胶凝材料。
大体积混凝土施工温控指标
大体积混凝土施工温控指标大体积混凝土施工中,温度的控制是非常重要的。
温度的控制不仅影响着混凝土的强度、耐久性和变形性能,还影响着混凝土的开裂和裂缝的发生。
因此,我们需要对大体积混凝土施工中的温度进行控制。
一、大体积混凝土施工中温度的控制1.控制混凝土的温升速率大体积混凝土的温升速率不能过快,应该控制在3℃/h以下。
如果温升速率过快,会导致混凝土出现裂缝和变形等问题。
2.控制混凝土的最高温度大体积混凝土的最高温度一般控制在70℃以下。
如果温度过高,会导致混凝土内部的水分蒸发过快,从而引起混凝土的收缩和变形。
3.控制混凝土的温度梯度大体积混凝土的温度梯度应该控制在20℃以下。
如果温度梯度过大,会导致混凝土的收缩和变形,从而引起裂缝的发生。
二、大体积混凝土施工中的温控措施1.冷却措施在大体积混凝土施工中,可以采取冷却措施来控制温度。
例如,在混凝土的配合中添加冰块或冰水,或在混凝土表面喷水冷却等。
2.保温措施在大体积混凝土施工中,可以采取保温措施来控制温度。
例如,在混凝土表面覆盖保温材料,或在混凝土表面喷涂保温材料等。
3.减少混凝土的体积在大体积混凝土施工中,可以采取减少混凝土体积的措施来控制温度。
例如,分段施工,或采用小型模板施工等。
4.控制混凝土配合比在大体积混凝土施工中,可以通过控制混凝土配合比来控制温度。
例如,通过减少水泥用量,增加细集料用量等。
三、大体积混凝土施工中的注意事项1.混凝土施工时要注意天气条件,避免在高温、低温和潮湿的天气条件下施工。
2.混凝土施工时要注意混凝土的浇筑方式,避免浇筑过程中出现温度差异。
3.混凝土施工时要注意混凝土的养护,保持混凝土表面的湿润。
4.混凝土施工时要注意加强施工管理,确保施工质量。
大体积混凝土施工中的温度控制是非常重要的,需要采取相应的措施来控制温度。
同时,施工过程中需要注意一些细节问题,确保施工质量。
混凝土施工对气温的要求
混凝土施工对气温的要求
混凝土施工对气温有一定的要求,主要是因为混凝土的性能受到温度的影响。
以下是一些常见的混凝土施工对气温的要求:
1.混凝土拌合物入模温度不应低于5℃,且不应高于35℃。
当日平均气温达到30度以上时应按高温施工要求采取措施。
2.当室外日平均温度连续五天低于5℃和最低气温低于-3℃时,为冬季施工,浇制混凝土应在室内进行。
3.在混凝土浇筑过程中,所应采取的温控措施主要有:混凝土要求混凝土入仓温度不大于28℃,考虑运输中温升2~3℃,控制混凝土出机口温度不大于25℃。
4.在低温季节施工时,早期允许受冻临界强度不应低于7.0MPa(或成熟度不低于1800℃•h)。
此外,混凝土的浇筑温度还应符合设计要求,温和地区不应低于3℃;严寒和寒冷地区应根据当地气候条件确定浇筑温度。
5.进入夏日施工,不能高于35度。
6.进入冬季施工,室外日平均温度接连5天低于5℃和最低气温低于-3℃时,需要保证混凝土入模温度不能低于5℃。
需要注意的是,混凝土施工对气温的要求会因地区、季节、混凝土类型等因素而有所不同。
因此,在具体施工中,需要根据当地的气候条件和混凝土类型等因素,制定合理的施工方案,并采取必要的措施保证混凝土施工的质量。
大体积混凝土的温控施工技术措施
大体积混凝土的温控施工技术措施1. 混凝土浇筑前,要对混凝土的温度、环境温度、浇筑方式和混凝土配合比进行合理设计和调整,以确保混凝土浇筑后能够控制温度的变化。
2. 采用冻土灌浆混凝土浇筑时,应在混凝土中掺加适量的冰块,以控制混凝土的温度。
3. 在夏季高温季节,可以采用夜间或清晨进行混凝土浇筑,以避免白天高温时对混凝土的影响。
4. 在严寒季节,应采取必要的保温措施,例如棚盖、加热设备等,以保证混凝土浇筑后能够充分凝固。
5. 在地下工程的混凝土浇筑中,应考虑地下水的影响,适当控制混凝土中的水泥用量,同时控制混凝土的水灰比,以避免混凝土出现冷缝等现象。
6. 在混凝土浇筑前应进行试块试验,以确保混凝土的强度符合要求。
7. 在混凝土浇筑时,应采用慢浇淋的方法,避免局部温度过高,影响混凝土的强度和稳定性。
8. 在混凝土浇筑完成后,应及时覆盖塑料薄膜或湿布等,以控制混凝土表面的蒸发,避免过快干燥导致开裂。
9. 对于大体积混凝土浇筑,应控制每次浇筑的体积,避免混凝土温度过高,导致混凝土强度、密实度不良。
10. 大体积混凝土浇筑前,应适当减少混凝土中的冷却剂用量,以避免混凝土温度过低,造成混凝土强度下降。
11. 在混凝土浇筑后应及时进行养护,确保混凝土的强度和稳定性,避免开裂、渗水等现象。
12. 在混凝土浇筑过程中应配合施工人员的操作,控制混凝土的密度,避免混凝土松散,导致混凝土强度下降。
13. 大体积混凝土浇筑时,采用水泥预冷处理,可以有效控制混凝土温度变化,提高混凝土强度和耐久性。
14. 大体积混凝土浇筑前应加装补偿器,避免因混凝土收缩导致混凝土开裂。
15. 混凝土浇筑前应采用布帘等方式保证混凝土充分凝固后,方可拆除布帘等措施,避免混凝土流失。
16. 在混凝土浇筑前应对施工场地进行必要的控制,如加盖遮阳棚等,以防止外部环境对混凝土的影响。
17. 在混凝土浇筑过程中应注意加强施工质量的监督管理,确保混凝土浇筑的质量和速度。
混凝土施工冬季措施
混凝土施工冬季措施现代建筑施工行业中,混凝土是一种常用的建筑材料。
然而,在冬季,低温和湿度的影响对混凝土施工产生了一些挑战。
为了确保混凝土施工的质量和可靠性,施工团队需要采取一些特殊的措施来应对冬季的恶劣气候条件。
本文将介绍一些应对冬季天气条件的混凝土施工措施。
1. 温控措施在冬季施工中,保持混凝土施工现场的温度是至关重要的。
低温会延缓混凝土的凝固和强化过程,导致混凝土强度降低和质量问题的出现。
为了避免这些问题,可以采取以下温控措施:•加热原材料:在混凝土施工过程中,可以加热水和骨料来提高混凝土的温度。
•使用加热系统:在施工现场使用加热系统,如加热毯、加热器等,来保持混凝土施工区域的温度。
•使用保温材料:在混凝土施工区域周围使用保温材料,如保温棚等,来减缓混凝土的温度下降。
2. 温度监测在混凝土施工过程中,监测混凝土的温度是非常重要的。
温度监测可以帮助施工团队及时发现并解决混凝土温度过低或过高的问题。
以下是一些常用的温度监测方法:•使用温度传感器:在混凝土中插入温度传感器,并通过数据记录仪实时监测混凝土的温度变化。
•进行温度试验:在一些重要的混凝土结构上进行温度试验,以评估混凝土的温度发展情况。
3. 控制混凝土配合比在冬季施工中,调整混凝土的配合比可以帮助提高混凝土的强度和抗冻性能。
以下是一些常用的控制混凝土配合比的方法:•使用高强度水泥:在冬季施工中使用高强度水泥可以提高混凝土的强度和耐寒性。
•减少水灰比:减少水灰比可以提高混凝土的坍落度和强度,并减少冷却时间。
4. 防雪措施在冬季施工中,积雪是一个常见的问题,会影响混凝土的施工进度。
以下是一些常用的防雪措施:•清除积雪:及时清除施工区域的积雪,以确保施工的正常进行。
•使用防雪剂:在施工区域使用防雪剂,如盐类或化学防雪剂,来防止积雪的形成。
5. 加速养护措施在冬季施工中,加快混凝土的养护过程可以帮助提高混凝土的强度和质量。
以下是一些常用的加速养护措施:•使用加热系统:在养护过程中使用加热系统,如加热毯、加热器等,来提高混凝土的温度。
大体积混凝土的温控方法
大体积混凝土的温控方法大体积混凝土(Mass Concrete)是指靠自身重力和内部温度控制来抵抗龟裂和温度变形的混凝土结构。
由于其较大的体积和热量积累效应,大体积混凝土在硬化过程中产生的温度升高会导致内部温度应力的产生,并可能引发龟裂,从而影响结构的安全性和可持续性。
为了解决大体积混凝土的温度控制问题,本文将介绍几种常用的温控方法。
1.预冷技术预冷技术是通过在混凝土浇筑前对骨料和水进行冷却处理,以降低混凝土的浇筑温度,减缓混凝土的升温速度,从而控制混凝土的内部温度变化。
预冷技术可以采用冰水或冰块将骨料和水进行预冷,也可以借助冷却剂的作用来实现。
预冷技术能有效降低大体积混凝土的温度升高速度,减小混凝土的温度差异,从而减少龟裂和变形的产生。
2.降温剂的应用降温剂是一种添加剂,可以通过改变混凝土内部的物理和化学反应,减少产热反应,降低混凝土的温度。
常用的降温剂包括冰冻盐水、冰冻融雪剂等。
在混凝土浇筑过程中适量添加降温剂,可以有效地降低混凝土的温度升高速度,控制内部温度差异,减少龟裂的风险。
3.隔热措施隔热措施是通过在混凝土结构的外部表面或内部设置隔热材料,减缓混凝土的热量传递速度,从而控制混凝土的温度升高。
常用的隔热材料包括聚苯板、泡沫混凝土等。
在大体积混凝土结构的外表面或内部适当安装隔热材料,可以有效减少外界温度对混凝土的影响,降低混凝土的温度升高速度。
4.冷却系统冷却系统是一种通过向混凝土结构中引入冷却剂或者水来降低混凝土温度的方法。
冷却系统通常由冷却管线、冷凝器和水泵等组成。
通过冷却系统,可以将冷却剂或水循环导入混凝土结构内部,降低混凝土的温度,有效控制混凝土的温度升高速度。
综上所述,大体积混凝土的温控方法包括预冷技术、降温剂的应用、隔热措施和冷却系统。
这些方法旨在减缓混凝土的温度升高速度,控制内部温度差异,降低龟裂和变形的风险。
在实际工程中,应根据具体情况选择适合的温控方法,并综合考虑材料成本、施工条件和项目要求等因素,以确保大体积混凝土结构的安全性和可持续性。
大体积混凝土温控计算
大体积混凝土温控计算大体积混凝土是指单次浇筑体积较大的混凝土,常用于大型基础工程、水利工程以及特殊结构工程中。
由于在混凝土凝固过程中,水化反应会释放热能,如果无法适当控制混凝土的温度,可能会导致温度裂缝的产生,严重影响结构的安全和使用寿命。
因此,对大体积混凝土的温控计算十分重要。
1. 温控目标大体积混凝土温控的首要目标是避免温度裂缝的产生。
通过合理的温控计算,可以保证混凝土的温度变化在一定范围内,避免过高的温度应力,从而减少裂缝的发生。
2. 温控计算方法大体积混凝土的温控计算方法通常有三种:经验公式法、数值模拟法和试验测定法。
2.1 经验公式法经验公式法是根据历史数据和实践经验得出的简化计算方法。
通常根据混凝土的浇筑时间、外界环境温度、混凝土配合比等参数,使用经验公式计算得出混凝土的最大温度变化和温度梯度。
然后根据具体情况,采取降低温度梯度的措施,如增加冷却设备、降低浇筑体积等。
2.2 数值模拟法数值模拟法利用计算机软件,通过建立混凝土的热-力耦合模型,模拟混凝土的温度变化和应力分布。
这种方法需要进行详细的工程参数输入和复杂的计算过程,能够更精确地预测混凝土的温度变化和应力情况。
但由于计算量大和参数输入的不确定性,对计算机软件的使用和工程参数的准确把握要求较高。
2.3 试验测定法试验测定法是通过对实际测温数据的分析和比较,确定混凝土的温度变化规律和温度梯度。
通常会在混凝土浇筑时进行温度的实时监测,然后根据测得的数据进行分析,得出合适的温控措施。
3. 温控措施基于温控计算结果,需要采取相应的温控措施。
3.1 冷却措施冷却措施是指通过降低混凝土的温度来减少温度应力和裂缝的发生。
常用的冷却措施包括喷水冷却、内外冷却管道、降低骨料温度等。
3.2 隔热措施隔热措施是指通过增加混凝土的绝热性能,减少外界热量对混凝土的影响。
常用的隔热措施包括增加绝热材料的使用、加装遮阳棚等。
4. 温控监测在温控过程中,需要进行实时的温度监测,及时掌握混凝土的温度变化情况,调整温控措施。
砼温度控制工程方案
砼温度控制工程方案引言:砼温度控制是指在砼浇筑及养护过程中,通过采取一系列措施和工程技术手段,有效控制砼的温度,以确保砼的质量和性能满足设计要求。
本文将介绍砼温度控制工程的方案,包括预热准备、保温措施、冷却措施和监测方法等。
一、预热准备1.检查环境温度和湿度:在施工前应检查施工现场的环境温度和湿度,并根据气象预报进行合理的安排。
如果气温过高或太低,可以考虑调整施工时间或采取降温措施。
2.预热砼原材料:在冷季施工或低温地区施工时,应提前预热水、水泥、沙子和骨料等原材料,以避免温差对砼质量的影响。
3.调整混凝土材料配方:根据温度条件,适当调整混凝土材料的水灰比和配合比,以减少温度升高。
二、保温措施1.覆盖保护层:在浇筑砼后,及时覆盖保护层,例如使用塑料薄膜或麻袋等材料,防止水分蒸发过快和温度过快下降。
2.外加保温材料:在寒冷季节或低温地区施工时,可以使用外加保温材料,如保温棉、保温板等,将其覆盖在砼表面上,减少温度损失。
3.加热器:在极寒季节或特殊情况下,可以使用电热器或火焰加热器进行加热,以保持砼的温度在一定范围内。
4.人工保温:如果施工时间较长或砼结构特殊,可以考虑使用人工保温措施,例如使用温度传感器监测砼温度,并采取相应措施加热或保温。
三、冷却措施1.喷水降温:在高温季节或大体积砼浇筑时,可以进行喷水降温,即利用水的蒸发吸收砼的热量,降低温度。
2.冷却剂:在高温季节或大体积砼浇筑时,可以在混凝土中掺入冷却剂,如冰块、冰片等,以降低砼温度。
3.冷却管道:在大体积砼浇筑时,可以预埋冷却管道,通过循环流动冷却介质,降低砼的温度。
四、监测方法1.温度传感器:在砼浇筑过程中,可以设置温度传感器来实时监测砼的温度变化,以及判断是否需要采取进一步的温度控制措施。
2.红外线测温仪:通过红外线测温仪可以非接触式地监测砼表面的温度,快速了解砼的温度分布情况,以及是否达到设计要求。
3.钢筋温度计:在大体积砼浇筑时,可以在钢筋上安装温度计,监测钢筋的温度变化,从而判断砼的温度变化。
大体积混凝土温控措施及监控技术
大体积混凝土温控措施及监控技术简介大体积混凝土在施工中具有以下优点:可以减少施工接缝,减少材料浪费,减少施工人员数量。
但是大体积混凝土在施工过程中会产生大量的热量,热应力容易引起混凝土开裂,影响结构的力学性能和耐久性。
因此,需要采取一些措施来控制混凝土的温度,防止混凝土裂缝的产生。
温控措施常用的混凝土温控措施包括以下几种:1. 降低混凝土拌合物温度降低混凝土拌合物温度可以减少混凝土的初期升温速率,并使混凝土的凝结热迟迟不散发,从而降低混凝土的峰值温度和最终温度。
常用的方法包括:使用低温水或冰来调节拌合物温度,控制水灰比,采用更慢的水泥类型等。
2. 冷却混凝土通过在混凝土表面喷淋水或冷却管道冷却混凝土,可以使混凝土表面温度降低,缩短混凝土的升温时间,从而降低混凝土的峰值温度和最终温度。
3. 控制混凝土温度升高速率采用先期放置或分层浇筑等施工工艺控制混凝土的升温速率,减少混凝土生热量的堆积,从而减小混凝土的温度应力。
4. 预应力混凝土筋布置钢筋的预应力张拉对混凝土的温度应力有着明显的缓解作用。
预设的预应力张拉应继续在混凝土制品的周围形成较小的温度应力区域,使整块混凝土的温度应力最小化。
温度监控技术温度监控技术是对混凝土温度进行实时监测和管理,可以实时反馈混凝土的温度变化情况,从而及时采取相应措施来控制混凝土的温度。
目前,常用的混凝土温度监控技术包括以下几种:1. 温度计监控法通过在混凝土中设置温度计,实时监测混凝土的温度变化,判断混凝土的温度升高速率和温度分布状况,从而调整施工措施,控制混凝土的温度。
2. 声发射技术通过检测混凝土内部的声波变化,可以判断混凝土裂缝的出现和扩展情况,及时采取措施来控制混凝土的裂缝,保证结构的安全性和稳定性。
3. 微波检测技术微波检测技术基于混凝土的介电常数与温度的关系来实时监测混凝土的温度状态,适用于大体积混凝土的温度控制和监测。
4. 激光测量技术激光测量技术可以测量混凝土内部的位移和应力状态,通过捕捉混凝土的应力变化情况,可以实时监测混凝土裂缝的出现和发展情况,并采取相应的措施控制混凝土的破坏。
混凝土温度控制
混凝土温度控制夏季降温措施包括加冰拌合,风冷骨料,料堆搭设防晒棚,从料堆底部取料,运输车辆覆盖篷布等。
1.1降低混凝土浇筑温度的措施1、粗骨料预冷可采用风冷、浸水、喷洒冷水等措施。
采用水冷法时,配备脱水措施,使骨料含水量保持稳定。
采用风冷法时,采取措施防止骨料(尤其是小石)冻仓。
2、为防止温度回升,骨料从预冷仓到拌和楼,采取隔热、保温措施。
3、混凝土拌和时,采用冷水、加冰等降温措施。
加冰时,采用片冰或冰屑,并适当延长拌和时间。
4、缩短混凝土运输及等待卸料时间,入仓后及时进行平仓振捣,加快覆盖速度,缩短混凝土的暴露时间;5、混凝土运输工具配备隔热遮阳措施;6、采用喷雾等方法降低仓面气温;7、混凝土浇筑安排在早晚、夜间及利用阴天进行;8、当浇筑块尺寸较大时,采用台阶式浇筑法,浇筑分层厚度为0.5m;9、混凝土平仓振捣后,采用隔热材料及时覆盖。
1.2降低混凝土的水化热温升1、在满足施工图纸要求的混凝土强度、耐久性和和易性的前提下,改善混凝土骨料级配,加优质的掺和料和外加剂以减少单位水泥用量。
进行混凝土配合比设计时,掺入35%的粉煤灰,来有效降低水化热。
2、混凝土入仓方式采用布料机,可以运送低坍落度混凝土,减少水泥用量。
3、严格控制浇筑层最大高度和浇筑层间间歇时间。
为有利于混凝土浇筑块的的散热,基础和老混凝土约束部位浇筑层高度一般为1~2m,上下层浇筑间歇时间为3~7天,大面积表面采用流水冷却的方法进行散热。
4、基础混凝土和老混凝土约束部位浇筑层厚以1.5m ,上下层浇筑间歇时间7d。
高温季节,采用表面流水养护混凝土,有利于表面散热。
大体积混凝土施工的温控措施
大体积混凝土施工的温控措施在现代建筑工程中,大体积混凝土的应用越来越广泛。
由于其体积大、结构厚实,水泥水化热释放比较集中,内部温升较快,如果不采取有效的温控措施,容易产生温度裂缝,影响结构的安全性和耐久性。
因此,在大体积混凝土施工中,做好温控工作至关重要。
一、大体积混凝土温度裂缝产生的原因要有效地控制大体积混凝土的温度,首先需要了解温度裂缝产生的原因。
1、水泥水化热水泥在水化过程中会释放出大量的热量,使得混凝土内部温度迅速升高。
由于混凝土的导热性能较差,热量在内部积聚,形成较大的内外温差,从而产生温度应力。
当温度应力超过混凝土的抗拉强度时,就会产生裂缝。
2、外界气温变化大体积混凝土在施工过程中,外界气温的变化对其温度场有较大影响。
特别是在混凝土浇筑初期,混凝土的抗拉强度较低,如果遇到气温骤降,混凝土表面的温度迅速下降,而内部温度变化相对较小,从而形成较大的内外温差,导致裂缝的产生。
3、混凝土的收缩混凝土在硬化过程中会发生收缩,包括化学收缩、干燥收缩和自收缩等。
收缩受到约束时,会产生拉应力,当拉应力超过混凝土的抗拉强度时,也会产生裂缝。
4、约束条件大体积混凝土在结构上通常会受到基础、钢筋、相邻构件等的约束,限制了混凝土的自由变形。
当温度变化引起的膨胀或收缩受到约束时,就会产生温度应力,从而导致裂缝的产生。
二、大体积混凝土施工的温控措施为了控制大体积混凝土的温度,减少温度裂缝的产生,需要采取一系列的温控措施。
1、优化混凝土配合比(1)选用低水化热的水泥品种,如矿渣硅酸盐水泥、粉煤灰硅酸盐水泥等,以降低水泥水化热的释放。
(2)减少水泥用量,通过掺入适量的粉煤灰、矿渣粉等掺和料,替代部分水泥,不仅可以降低水化热,还可以改善混凝土的工作性能和耐久性。
(3)控制骨料的级配和含泥量,选用粒径较大、级配良好的骨料,减少骨料之间的空隙,降低水泥浆的用量,从而降低水化热。
(4)掺入适量的缓凝剂、减水剂等外加剂,延缓水泥的水化速度,降低水化热的峰值,同时提高混凝土的工作性能。
混凝土温控措施
审核:校核:编制:4.1 坝体允许基础温差............................................................................................................................2............4.2 新老混凝土控制标准....................................................................................................................... ..........4.3 新老混凝土控制标准....................................................................................................................... ..........4.4 容许最高温度....................................................................................................................................3............6.1、入仓温度计算...............................................................................................................................4.............6.2、混凝土出机口温度的计算..............................................................................................................5..........6.3、根据配合比计算出机口温度.........................................................................................................6..........7.1 拌和机及出机口温度控制...............................................................................................................7...........7.2 混凝土运输过程中的温度控制........................................................................................................8..........7.3 混凝土分层(分块)及间歇期........................................................................................................8..........7.4 混凝土浇筑温度要求及相应措施.................................................................................................... ........7.5 混凝土养护和表面保护....................................................................................................................9...........7.6 温度测量.........................................................................................................................................1.0............一、工程概况南欧江二级水电站以发电为主,工程等别为二等大( 2)型工程,电站装机容量3×40MW,正常蓄水位(设计洪水位)325.00m,死水位323.00m,校核洪水位327.01m,总库容1.217×108m3。
混凝土温度控制措施
混凝土温度控制措施
一、混凝土原材料温度控制
1、选用优化的配合比,使用中低热水泥及高效减水缓凝剂、掺加20%左右的粉煤灰,降低水泥用量,以降低混凝土内水化热温升。
二、混凝土运输过程温度控制
要求混凝土供应商提供出机口温度为12℃的混凝土,采用搅拌车运输,在运输混凝土前对机械运输设备喷雾或冲洗预冷。
运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。
并把混凝土入仓温度控制在12~14℃以内。
三、混凝土浇筑温度控制措施
进水口底板、尾调室底板、尾水出口闸体底板混凝土等有温控要求的混凝土,故安排低温时段施工。
高温时段,新浇混凝土表面覆盖1cm厚聚乙烯卷材进行保温,减少太阳辐射及温度倒灌。
高温时段施工,混凝土浇筑仓内安装喷雾机喷水雾。
喷雾装置采用喷头通过轻型耐压管与主机连接,沿模板设置喷雾头。
在局部位置采用人工手持喷雾装置的方式对仓面进行局部喷雾增湿处理。
在大风、干燥气候条件下施工时,加强仓面喷雾工作及其喷雾效果,以达到降低仓面小环境气温,增加仓面空气湿度,控制混凝土浇筑过程中的混凝土温度回升的目的。
仓面喷雾必须呈雾状,避免小水珠出现。
通过以上手段,把浇筑温度控制在15℃以内。
混凝土温度控制及质量控制措施
混凝土温度控制及质量控制措施引言概述:混凝土是建筑工程中常见的建筑材料,其质量受到温度的影响很大。
因此,混凝土温度控制及质量控制措施是确保混凝土施工质量的重要环节。
本文将从混凝土温度控制及质量控制的角度,分别介绍相关措施。
一、混凝土温度控制1.1 温度监测:在混凝土浇筑过程中,需要对混凝土的温度进行监测,以确保其在合适的温度范围内。
常用的监测方法包括表面温度计、内部温度计等。
1.2 冷却措施:当混凝土温度过高时,需要采取冷却措施,以避免混凝土早期龄期过快,影响混凝土的强度和耐久性。
常用的冷却措施包括水淋、覆盖绝热材料等。
1.3 预热措施:在寒冷季节施工时,需要对混凝土进行预热,以确保混凝土的温度在适宜的范围内。
预热措施包括加热拌合料、加热模板等。
二、混凝土质量控制2.1 原材料控制:混凝土的质量受到原材料的影响很大,因此需要对原材料进行严格的控制。
包括水泥、骨料、水等原材料的质量控制。
2.2 配合比控制:混凝土的配合比直接影响混凝土的强度和耐久性,因此需要对配合比进行严格的控制。
配合比控制包括水灰比、骨料粒径分布等。
2.3 搅拌控制:混凝土的搅拌过程也是影响混凝土质量的关键环节,因此需要对搅拌过程进行严格控制。
包括搅拌时间、搅拌速度等。
三、施工现场管理3.1 施工人员培训:施工现场的管理人员需要接受相关的培训,以了解混凝土温度控制及质量控制的相关知识,确保施工质量。
3.2 施工现场检查:施工现场需要定期进行检查,对混凝土的温度和质量进行监测,及时发现问题并进行处理。
3.3 施工记录管理:对混凝土温度和质量的相关数据需要进行记录管理,以便日后的查阅和分析,确保施工质量。
四、质量验收4.1 温度检测:在混凝土浇筑完成后,需要对混凝土的温度进行检测,确保其符合规定的要求。
4.2 强度检测:混凝土的强度是其质量的重要指标,因此需要对混凝土的强度进行检测,以确保其符合设计要求。
4.3 质量验收报告:对混凝土的温度和质量进行验收后,需要出具相应的质量验收报告,以证明混凝土的质量符合要求。
混凝土施工采取的温控措施
①降低砼浇筑温度
a、运输砼车辆采用隔热、遮阳措施,缩短砼暴晒时间;高温及较高温季节,运输砼的混凝土搅拌运输车在路途中尽可能缩短运输时间,在装运砼前用水冲淋罐体,降低罐体热量;
b、采用喷水雾等措施降低仓面的气温,并将砼浇筑尽量安排在早晚和夜间施工。
②降低砼入仓温度
a、收仓后在砼面上覆盖保温材料,减少冷砼与外界热交换;
b、加快运、吊、平仓、振捣砼的速度,减少砼暴露时间,以尽量减少砼在被覆盖前的温度回升。
C、拌和砼时采取加冰的方法降低砼温度;
d、采取盖遮阳棚、控制骨料堆高等措施降低骨料温度。
③降低砼水化热温升
a、选用水化热低的水泥;
b、在满足砼设计强度、耐久性和和易性的前提下,改善砼骨料级配,加优质的掺和料和外加剂以适当减少单位水泥用量;
c、控制浇筑层(段)最大高度(长度)和间歇时间;
d、对高温季节浇筑的砼在浇筑完毕后,当硬化到不会因洒水而破坏时,一般在浇筑完后12~18h就采取洒水养护的措施,使混凝土表面经常保持湿润状态。
以削减混凝土水化热温升,确保混凝土最高温升在允许的范围之内。
④基础约束区温控措施
a、降低浇筑层厚,分层高度1.5m;
b、延长层间间歇时间,层间间隔7~10天,充分保证浇筑块散热;
c、采用表面流水养护,在浇筑块四周用砌石砌筑,留进水口和出水口,采用河中下部水通入冷却。
大体积混凝土的温控措施
大体积混凝土的温控措施在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,由于其体积大、水泥水化热释放集中等特点,容易产生温度裂缝,从而影响混凝土的质量和结构的耐久性。
因此,采取有效的温控措施对于保证大体积混凝土的质量至关重要。
一、大体积混凝土温度裂缝产生的原因大体积混凝土在浇筑后,水泥会发生水化反应,释放出大量的热量。
由于混凝土的导热性能较差,内部热量难以迅速散发,导致内部温度升高。
而混凝土表面与外界环境接触,散热较快,从而形成较大的内外温差。
当温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力。
当拉应力超过混凝土的抗拉强度时,就会产生温度裂缝。
此外,混凝土的收缩也是导致温度裂缝的一个重要原因。
混凝土在硬化过程中会发生体积收缩,而大体积混凝土由于内部约束较大,收缩受到限制,从而产生拉应力,引发裂缝。
二、大体积混凝土的温控措施1、优化混凝土配合比选用低水化热的水泥品种,如矿渣水泥、粉煤灰水泥等,可以减少水泥水化热的产生。
同时,适当降低水泥用量,增加粉煤灰、矿粉等掺合料的用量,不仅可以降低水化热,还能改善混凝土的和易性和耐久性。
控制骨料的级配和含泥量,选用粒径较大、级配良好的骨料,可以减少水泥浆的用量,从而降低水化热。
此外,严格控制骨料的含泥量,避免因含泥量过高导致混凝土收缩增大。
添加缓凝剂和减水剂,可以延长混凝土的凝结时间,使水泥水化热的释放更加均匀,同时减少用水量,降低水灰比,提高混凝土的强度和耐久性。
2、控制混凝土的浇筑温度降低混凝土原材料的温度是控制浇筑温度的关键。
在炎热的夏季,应对骨料进行遮阳、洒水降温,水泥应避免在高温时段进场,必要时可在搅拌水中加入冰块。
合理安排浇筑时间,尽量避开高温时段进行浇筑,选择在夜间或气温较低的时段施工。
采用分层浇筑的方法,每层厚度不宜过大,以便于混凝土内部热量的散发。
分层浇筑时,应在前一层混凝土初凝前浇筑下一层,避免出现冷缝。
3、加强混凝土的养护混凝土浇筑完成后,应及时进行保湿养护,保持混凝土表面湿润,防止水分蒸发过快导致混凝土收缩开裂。
混凝土温度控制措施必背建造师考试
宜采用冷却水管通水冷却、表面流水冷却、表面蓄水降温等措施
坝体有接缝灌浆要求时应采用水管通水冷却方法
高温季节,常态混凝土终凝后可采用表面流水冷却或表面蓄水降温措施
养护
常态混凝土应在初凝后3h开始保湿养护
碾压混凝土可在收仓后进行喷雾养护,并尽早开始保湿养护
养护期内应始终使混凝土表面保持湿润状态
混凝土宜养护至设计龄期,养护时间不宜少于28d,闸墩、抗冲磨混凝土等特殊部位宜适当延长养护时间
2.施工期温度监测与分析
监测分析内容
详细要求
原材料温度监测
原材料的温度应至少每4h测量1次,低温季节施工宜加密至每1h测量1次
插入深度不小于10cm,粗集料(且大于集料粒径的1.5倍)
出机口、入仓和浇筑温度监测
通水冷却监测
进行进出口水温、流量、压力测量,宜每6~12h测量1次
水管闷水测温时间5~7d,记录闷水开始日期、结束日期及测温结果
浇筑仓气温及保温层温度监测
在混凝土最高温度出现前每8h观测1次
最高温度出现至28d每24h观测1次
28d至保温材料拆除前每周观测1次
气温骤降期间,宜增加监测频次
1.混凝土温度控制措施
温控过程
内容
总体要求
提出出机口温度、浇筑温度、浇筑层厚度、间歇期、表面冷却、通水冷却和表面保护等主要温度控制指标
气候温和地区宜在气温较低月份浇筑基础混凝土;高温季节宜利用早晚、夜间气温低时段浇筑混凝土
常态混凝土浇筑应采取短间歇均匀上升、分层浇筑的方法
基础约束区的浇筑层厚度宜为1.5-2.0m,有初期通水冷却的浇筑层厚度可适当加厚
拌合楼宜采用加冰、加制冷水拌合混凝土
加冰时宜采用片冰或冰屑,常态混凝土加冰率不宜超过总水量的70%,碾压混凝土加冰率不宜超过总水量的50%
混凝土温控措施
混凝土温度控制1概述温控措施要求(2)常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。
(3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。
4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。
(4)为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。
15.14.5.3 合理的层厚及间歇期(1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用1。
5~2m,加高混凝土浇筑层厚采用2~3m.若需变动,应经监理人书面批准.(2) 大体积混凝土层间间歇应满足表15—7的要求,墩、墙浇筑层厚3~4m,层间间歇时间4~9天。
表15-7 大体积混凝土浇筑层间间歇时间单位:天注:低温季节浇筑取下限值。
(3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。
(4)对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。
15。
14.5.4 合理的施工程序和进度主体建筑物施工程序和进度安排,应满足以下几点要求:(1)混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。
(2)贴坡混凝土安排在10月至次年4月施工。
(3)贴坡混凝土相邻坝段之间高差不宜大于4~6m。
15。
14.5。
5 混凝土表面保护(1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。
(2)应根据设计表面保护标准确定不同部位、不同条件的表面保温要求.尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。
应重视防止气温骤降及寒潮的冲击.所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏.浇筑块的棱角和突出部分应加强保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土温度控制1概述温控措施要求(2) 常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。
(3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。
4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。
(4) 为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。
15.14.5.3 合理的层厚及间歇期(1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用 1.5~2m,加高混凝土浇筑层厚采用2~3m。
若需变动,应经监理人书面批准。
(2) 大体积混凝土层间间歇应满足表15-7的要求,墩、墙浇筑层厚3~4m,层间间歇时间4~9天。
表15-7 大体积混凝土浇筑层间间歇时间单位:天注:低温季节浇筑取下限值。
(3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。
(4) 对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。
15.14.5.4 合理的施工程序和进度主体建筑物施工程序和进度安排,应满足以下几点要求:(1) 混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。
(2) 贴坡混凝土安排在10月至次年4月施工。
(3) 贴坡混凝土相邻坝段之间高差不宜大于4~6m。
15.14.5.5 混凝土表面保护(1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。
(2) 应根据设计表面保护标准确定不同部位、不同条件的表面保温要求。
尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。
应重视防止气温骤降及寒潮的冲击。
所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏。
浇筑块的棱角和突出部分应加强保护。
各部位主要保温要求如下:1) 保温材料:保温材料应选择保温效果好且便于施工的材料,保温后表面等效放热系数:一般部位混凝土≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位≤1.5~2.0w/m2·℃。
2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。
施工期的永久保温指保温至本标工程完工前。
值取15.14.5.5(2) 1)中下限值。
3) 每年入秋(9月底),应将竖井、廊道及其他所有孔洞进出口进行封堵。
4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)必须进行表面保温保护。
值取15.14.5.5(2) 1)中上限值。
5) 低温季节如拆模后混凝土表面温降可能超过6~9℃以及气温骤降期间,须在拆模后立即采取表面保护措施。
6) 当气温降到冰点以下,龄期短于7天的混凝土应覆盖满足要求的保温材料作为临时保护层。
7)应采用耐久性较好的保温材料作为施工期的永久性保温措施。
8)应在投标文件中,作出详细的保温设计。
在混凝土开始浇筑前,应将选用的保温材料、保温措施报监理人批准。
15.14.5.6 其它(1) 所有混凝土冬季浇筑时浇筑温度不得低于5℃。
当外界气温低于低温季节标准时,应采取有效措施满足冬季混凝土施工要求。
(2) 各部位混凝土浇筑时,如果已入仓的混凝土浇筑温度不能满足有关要求时,应立即通知监理人,根据监理人指示进行处理,并立即采取有效措施控制混凝土浇筑温度。
15.14.6 通水冷却15.14.6.1 一般要求在混凝土浇筑前2个月应制订通水冷却有关材料、管道安装及埋设系统配制、施工工艺等报监理人审批;在每年6月份以前将本年9月至次年3月的中、后期通水冷却供水总、干管布置设计文件及冷却通水计划等报监理人审批。
15.14.6.2 冷却水管布置(1) 埋设部位:需要进行接缝灌浆的临时施工缝两侧坝体部位、大坝所有贴坡混凝土部位以及有中期通水冷却要求的加高部位均需埋设冷却水管,冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。
(2) 承包人应在各仓冷却水管埋设前2个月向监理人递交冷却水管、供水管的材料类型、制造厂家及各仓冷却水管埋设图等资料报监理人批准后执行。
冷却水管埋设时应作好施工记录。
(3) 冷却水管及供水管的规格、类型、间距长度等应满足坝体设计最高允许温度、填塘陡坡通水降温及坝体初、中、后期通水降温各项要求,并报监理人批准。
(4) 冷却水管的布置要求1) 供水管按两套布置,在坝外布置进回水交换设施,以满足通水冷却的要求,制冷水应考虑回收。
2) 供水管布置应自成系统,冷却通水供水管的布置应尽可能利用现有的廊道布置,避免相互干扰,如现场施工条件限制需要穿过其它标段时,承包人应采取一定的措施减少相互之间的干扰,承包各方应相互理解、相互配合,如引起纠纷由监理人协商解决。
3) 贴坡部位的蛇形水管一般按 1.5m(浇筑层厚)×2.0m(水管间距)或者2.0m(浇筑层厚)×1.5m(水管间距)布置,埋设时要求水管距上游老混凝土1.0m、距下游坝面2.5m~3.0m,水管距接缝面、坝内孔洞周边1.0~1.5m。
对仅有中期通水的大坝加高混凝土,蛇形水管一般按2.0m(浇筑层厚)×2.0m(水管间距)布置,埋设时要求距接缝面、坝内孔洞周边的距离与贴坡部位埋设的蛇形水管相同,距上游面2.0m~2.5m,距坝顶的距离控制在3~5m,通水单根水管长度不宜大于250m。
坝内蛇形水管按接缝灌浆分区范围结合坝体通水计划就近引入廊道。
引入廊道的水管应排列有序,作好标记记录。
应注意引入廊道的水管布置不得过于集中,以免混凝土局部超冷,引入廊道的水管间距一般不小于1m、距廊道底板50~100cm。
管口应朝下弯,管口长度不应小于15cm,并对管口妥善保护,防止堵塞。
(5) 采用黑铁管作冷却水管时宜预先加工成弯管段和直管段两部分,在仓内拼装成蛇形管圈。
埋设的冷却水管不能堵塞,并应固定和清除表面的鳞锈、油漆和油渍等物。
管道的连接可用丝扣、法兰、焊接等方法,并应确保接头连接牢固,不得漏水。
混凝土浇筑前和在浇筑过程中应对已安装好的冷却水管各进行一次通水检查,通水压力0.3~0.4MPa,如发现堵塞及漏水现象,应立即处理。
在混凝土浇筑过程中,应注意避免水管受损或堵塞。
(6) 中、后期冷却通水前1个月应对埋设的冷却水管进行检查。
对于不通或微通的水管,承包人应采取有效措施进行处理,要求处理至满足设计有关文件要求和使监理人认可为止。
15.14.6.3 通水冷却(1) 初期通水:贴坡混凝土在混凝土浇筑后一个月内进行初期通水将浇筑块温度降温至16~18℃,对于高温季节采用预冷混凝土浇筑的加高部位坝体混凝土最高温度仍可能超过设计允许最高温度时应采取初期通水冷却削减混凝土最高温度,初期通水可采用水温10~12℃的制冷水或水库低温水,在混凝土浇筑收仓后12小时内开始通水,黑铁管单根通水流量不小于18升/分,塑料水管单根通水流量不小于20升/分。
(2) 中期通水:每年9月初开始对当年5~8月浇筑的加高部位混凝土、10月初开始对当年4月及9月浇筑的加高部位混凝土、11月初开始对当年10月浇筑的加高部位混凝土进行中期通水冷却,削减混凝土内外温差。
中期通水一般采用水库低温水进行,通水时间1.5~2.5个月,以混凝土块体温度达到20~22℃为准,水管通水流量应达到20~25升/分。
(3) 后期通水:需进行坝体接缝灌浆部位,在灌浆前,必须进行后期通水冷却,后期通水冷却要求如下:1) 承包人应根据坝体接缝灌浆进度和坝体温度计算确定各部位通水类别和通水时间,通水时间以坝体达到灌浆温度为准。
2) 坝体应保证连续通水,坝体混凝土与冷却水之间的温差不宜超过20~25℃,控制坝体降温速度不大于1℃/天。
水管通水量通制冷水时黑铁管不小于18升/分,塑料水管不小于20升/分,通江水时应达到20~25升/分。
3) 坝体通水冷却后的温度应达到设计规定的坝体接缝灌浆温度。
控制坝体实际接缝灌浆温度与设计接缝灌浆温度的差值在+1℃和-2℃范围内,应避免较大的超温和超冷。
坝体温度主要考虑控制四个环节,即混凝土浇筑温度控制、混凝土最高温度控制、内外温差控制、接缝灌浆前温度控制等。
混凝土浇筑温度主要由拌和厂制冷设施和混凝土浇筑过程进行控制;混凝土最高温度主要由混凝土配合比、浇筑层厚、层间间歇期及一期冷却措施进行控制;内外温差由中期通水冷却控制;接缝灌浆前温度主要由后期通水冷却措施进行控制。
(一)凝土浇筑温度控制(1)严格控制混凝土出机口温度。
4、5、9、10月生产7~10℃混凝土,6~8月生产14℃混凝土;4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。
(2)高温季节施工时,混凝土运输机具采取遮阳保温措施,减少转运次数减少预冷混凝土温度回升,满足浇筑温度要求。
尽可能避免高温时段浇筑混凝土,充分利用低温季节和高温季节早晚及夜间气温低的时段,加大浇筑强度。
(3)高温季节浇筑混凝土时,在仓面进行表面喷雾,降低仓面环境温度,保持混凝土表面湿润和降低水分蒸发损失,但水分不能过量,雾滴直径40μm~80μm,以防混凝土表面泛出水泥浆液。
(4)高温季节浇筑时,避开高温时段,减小浇筑层厚,混凝土收仓后,采取流水养护直至上层混凝土开浇,避免出现干湿交替;(5)严格控制混凝土浇筑层厚和层间间歇时间。
混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用1.5~2m,加高混凝土浇筑层厚采用2~3m。
大体积混凝土层间间歇满足招标文件和其他有关规定要求,墩、墙浇筑层厚3~4m,层间间歇时间4~9天。
大体积二期混凝土部位,浇筑层厚按1.5~2.5m控制,对于门槽等结构尺寸较小的二期混凝土浇筑层厚为3~5m。
(6)贴坡部位混凝土1~4月通水库32M处的低温水进行初期冷却, 10~12月通10℃冷水进行初期冷却,通水时间按15~20天考虑。
加高部位混凝土9~12月通水库60M处的低温水进行中期冷却,通水时间按1.5~2.5个月考虑。
(7)为减少预冷混凝土温度回升,严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。
(8)所有混凝土冬季浇筑时浇筑温度不得低于5℃。
当外界气温低于低温季节标准时,采取有效保温等温控措施满足冬季混凝土施工要求。