Scalable session key construction protocol for wireless sensor networks
access token scope使用实例 -回复
access token scope使用实例-回复什么是访问令牌?在计算机科学和网络安全领域,访问令牌(Access Token)是一种用于身份验证和授权的凭证。
它是一个字符串,表示某个实体(如用户或应用程序)有权访问特定资源(如API端点或文件)。
访问令牌通常与特定的用户或应用程序关联,并且具有一定的有效期。
在使用访问令牌时,应验证其有效性和授权范围,以确保只有授权的实体才能访问资源。
访问令牌的作用是什么?访问令牌起到了许多重要作用,包括但不限于以下几个方面:1. 身份验证:访问令牌可用于验证用户或应用程序的身份。
通过提供正确的访问令牌,实体可以证明其是经过授权的,并且有访问特定资源的权限。
2. 授权访问:访问令牌还包含有关实体所拥有的授权范围的信息。
这些授权范围可以确定实体能够执行的操作或访问的资源的级别。
3. 安全性:访问令牌比传统的用户名和密码身份验证更安全。
由于访问令牌的有效期有限,并且可以通过配置仅限于特定的IP地址或设备进行访问,因此即使令牌被泄露,攻击者仍有限制或短暂的窗口期进行滥用。
4. 减少了服务器的负载:通过使用访问令牌进行身份验证和授权,服务器可以减少对数据库查询的需求,并且可以更容易地缓存和验证令牌的有效性。
这降低了服务器的负载,提高了系统的性能。
那么,如何使用访问令牌的作用域?访问令牌的作用域(Scope)定义了实体在使用令牌时具有的特定权限。
在OAuth 2.0协议中,作用域是通过字符串表示的,可以是简单的名称,也可以是复杂的层次结构。
例如,一个作用域可以是"read",另一个可以是"write",还可以是更复杂的"User:Read Account:Write"。
使用访问令牌的作用域有以下几个关键步骤:1. 定义作用域:首先,需要确定在特定应用程序或API中需要定义的作用域。
作用域应该根据应用程序的需求和资源的访问级别来定义。
ble session key 生成方法
一、概述密码学中的密钥生成是一个重要的技术问题,而基于身份的密码学中的可证安全密钥生成算法中,BLE会话密钥生成方法是其中的一个重要的环节。
本文将介绍BLE会话密钥生成方法及其实现原理。
二、BLE会话密钥生成方法的定义1. BLE是指蓝牙低能耗技术,它是一种短距离无线通信技术,对于BLE通信中的会话密钥生成,其目的是为了确保通信的安全性。
2. BLE会话密钥生成方法是指在BLE通信中,通过特定的算法生成用于加密和解密的会话密钥,从而保障通信的安全和隐私性。
三、BLE会话密钥生成方法的实现原理1. 连接参数交换: 在BLE通信开始时,中央设备和外围设备会进行连接参数交换,其中包含了用于加密通信的会话密钥的生成所需的一些参数。
2. 随机数生成: 中央设备和外围设备各自生成一个随机数,并将其作为输入,用于后续的密钥生成计算。
3. ECDH密钥协商算法: 中央设备和外围设备利用椭圆曲线Diffie-Hellman(ECDH)密钥协商算法,基于各自的私钥和对方的公钥生成共享的会话密钥。
4. 会话密钥确认: 中央设备和外围设备通过一系列验证步骤,确认生成的会话密钥的正确性和安全性。
5. 会话密钥更新: 在BLE通信过程中,会话密钥可能需要定期更新,以确保通信的安全性和可靠性。
四、BLE会话密钥生成方法的安全性分析1. 随机性: 会话密钥生成过程中的随机数生成是基于真随机数或伪随机数算法的,从而保证了会话密钥的随机性和不可预测性。
2. 计算复杂性: 利用ECDH密钥协商算法生成会话密钥涉及到椭圆曲线运算,计算复杂度很高,使得攻击者难以通过穷举搜索或其他计算方法来破解会话密钥。
3. 安全性验证: 会话密钥生成方法中包含了多轮的验证步骤,用于确认会话密钥的正确性和安全性,从而保证了通信的安全性和可靠性。
五、BLE会话密钥生成方法的实际应用1. 低功耗、安全的通信: BLE会话密钥生成方法被广泛应用于蓝牙低能耗设备之间的通信中,保障了通信的安全性和隐私性。
lua session用法 -回复
lua session用法-回复什么是Lua Session?Lua 是一门轻量级的脚本编程语言,被广泛应用于游戏开发、嵌入式系统等领域。
Lua Session是指在Lua程序运行过程中,将程序状态保存下来以便后续恢复执行的一种技术。
通过保存和恢复会话状态,我们可以使程序在断点处继续执行,或在程序意外中断后继续执行未完成的任务。
在本文中,我们将详细介绍Lua Session的用法,包括其实现原理、常用的库和函数,以及一些使用示例。
一、实现原理要了解Lua Session的用法,首先需要了解它的实现原理。
Lua Session 的实现依赖于Lua的协同程序(Coroutine)功能。
协同程序是一种与常规线程类似但更轻量级的多任务处理机制,它可以在一个任务暂停的地方让出执行权,然后在需要的时候恢复执行。
Lua的协同程序使用yield和resume函数控制协同程序的执行流程。
在Lua中,我们可以使用yield函数将协同程序挂起,并将当前协同程序的执行状态保存到一个闭包(Closure)中。
通过保存闭包,我们可以在需要的时候恢复协同程序的执行,使程序从挂起的地方继续执行。
这正是Lua Session的实现原理。
二、常用的库和函数Lua Session的实现相对复杂,但幸运的是有一些成熟的库可以帮助我们简化操作。
下面是几个常用的库和函数:1. Lua Session库(luasession):这是一个为Lua提供Session管理功能的库,它提供了一些用于保存、恢复和删除Session的函数。
使用这个库,我们可以轻松地处理Session相关的操作。
2. Session保存函数(save_session):这个函数用于将当前协同程序的执行状态保存到一个闭包中。
它通常在协同程序需要挂起时调用。
3. Session恢复函数(restore_session):这个函数用于从闭包中恢复协同程序的执行状态,并使程序从指定位置继续执行。
Session key exchange key
专利名称:Session key exchange key发明人:Scott A Konersmann,Patrick J Helland申请号:US10824161申请日:20040414公开号:US07376972B2公开日:20080520专利内容由知识产权出版社提供专利附图:摘要:A system and method for employing a key exchange key to facilitate secure communication is provided. The key exchange key can be employed, for example, to encrypt and/or decrypt dialog session key(s) that are used to encrypt and/or decrypt message(s) that form a dialog between an initiator system and target system. In oneexample, a key exchange key is unique to a service pair, while a dialog session key is unique to a particular dialog between the service pair. The system can facilitate end-to-end encryption of message data in a dialog—the message data is encrypted at one dialog endpoint and not decrypted until it reaches the other dialog endpoint. The system can be employed to facilitate secure dialog with minimal performance overhead when compared with conventional system(s). Optionally, the system can facilitate load balancing (e.g., among deployed instances of a service). In this example, secured dialogs to a service can be location transparent so that a dialog targeted to a service can be able to talk to any instance of the same service transparently without any additional security setup. The system employs both public key/private key asymmetric encryption technique(s) and symmetric encryption technique(s) to authenticate and secure information exchanged between an initiator system and a target system.申请人:Scott A Konersmann,Patrick J Helland地址:Sammamish WA US,Bellevue WA US国籍:US,US代理机构:Amin, Turocy & Calvin, LLP更多信息请下载全文后查看。
keycloaksession 用法
keycloaksession 用法KeycloakSession是一个在Keycloak中用于管理和操作用户会话的对象。
它提供了许多方法,如获取用户信息、执行身份验证、管理权限等。
在许多Keycloak应用程序中,使用KeycloakSession可以帮助您更有效地管理用户会话和权限。
要使用KeycloakSession,首先需要创建一个Keycloak客户端实例,并获取一个KeycloakSession。
您可以通过Keycloak客户端库来完成这一步。
以下是一个简单的示例代码:```java//创建Keycloak客户端实例Keycloakkeycloak=Keycloak.getInstance();//获取KeycloakSessionKeycloakSessionsession=keycloak.getRealm("your-realm").getKeycloakSession();```请注意,您需要将"your-realm"替换为您的实际KeycloakRealm名称。
二、获取用户信息使用KeycloakSession,您可以获取当前会话中的用户信息。
以下是一个简单的示例代码:```java//获取当前会话的用户信息UserModeluser=session.realms().getUser(username,"your-realm");```在上面的代码中,`username`是您的用户名,`"your-realm"`是您的KeycloakRealm名称。
三、执行身份验证KeycloakSession还提供了执行身份验证的方法。
以下是一个简单的示例代码:```java//执行身份验证booleansuccess=session.login(username,password);```在上面的代码中,`username`和`password`是您的用户名和密码。
cacheable key表达式
cacheable key表达式Cacheable key表达式是用来定义Spring Cache中key的方式。
Spring Cache是一种缓存框架,在存储过程中使用key-value对来存储数据,其中key是表示值的唯一标识符。
Cacheable key表达式的作用就是定义key的生成方式。
Cacheable key表达式的语法如下:```java@Cacheable(value = "exampleCache", key = "#param")public Example getExample(String param) {//...}```其中,value表示缓存的名称,key表示使用的key表达式。
在Cacheable key表达式中,使用#符号和$符号分别表示不同的含义。
#符号表示传入方法的参数值。
例如,#param表示方法中的参数param的值。
$符号表示通过SpEL表达式来生成key。
SpEL是Spring Expression Language的缩写,是一种表达式语言,用于生成复杂的key表达式。
例如,下面是一个使用SpEL表达式生成key的例子:```java@Cacheable(value = "exampleCache", key = "#example.id + '/'+ #")public Example getExample(Example example) {//...}```在这个例子中,生成的key是example的id属性值和name属性值的拼接结果,用“/”分隔。
在使用Cacheable key表达式时,还可以使用其他一些SpEL中的特性。
例如,调用方法、访问对象和类、操作集合和数组等等。
总之,使用Cacheable key表达式可以灵活地定义Spring Cache中使用的key。
bulkhead resilence4j 响应式编程
bulkhead resilence4j 响应式编程Resilience4j是一个轻量级、易于使用的容错库,其灵感来自Netflix Hystrix,但专为Java 8和函数式编程设计。
Bulkhead(舱壁)是Resilience4j中提供的一种用于限制并发执行次数的模式。
Resilience4j提供了两种舱壁模式的实现:SemaphoreBulkhead(信号量舱壁,默认)和FixedThreadPoolBulkhead(固定线程池舱壁)。
SemaphoreBulkhead基于Java并发库中的Semaphore实现,用于限制并发执行的次数。
当信号量存在剩余时,进入系统的请求会直接获取信号量并开始业务处理。
当信号量全被占用时,接下来的请求将会进入阻塞状态。
SemaphoreBulkhead提供了一个阻塞计时器,如果阻塞状态的请求在阻塞计时内无法获取到信号量,则系统会拒绝这些请求。
若请求在阻塞计时内获取到了信号量,那将直接获取信号量并执行相应的业务处理。
FixedThreadPoolBulkhead使用一个固定线程池和一个等待队列来实现舱壁,用于限制并发执行的次数。
当线程池中存在空闲时,进入系统的请求将直接进入线程池开启新线程或使用空闲线程来处理请求。
当线程池无空闲时,接下来的请求将进入等待队列,若等待队列仍然无剩余空间,接下来的请求将直接被拒绝。
在队列中的请求等待线程池出现空闲时,将进入线程池进行业务处理。
可以看到FixedThreadPoolBulkhead和SemaphoreBulkhead一个明显的差别是FixedThreadPoolBulkhead没有阻塞的概念,而SemaphoreBulkhead没有一个队列容量的限制。
dbvisualizer lincense key string -回复
dbvisualizer lincense key string -回复[dbvisualizer license key string] is a series of characters that serves as the activation key for the software application called DbVisualizer. In this article, I will guide you through thestep-by-step process of understanding what a license key is, how it works, and how to properly use it to activate DbVisualizer. So, let's delve into the world of license keys and understand its importance in software activation.To begin with, a license key is a unique string of characters that is provided by the software vendor to the user. This key is required in order to activate and unlock the full functionality of the software. The license key serves as proof of ownership and grants the user the legal right to use the software.When it comes to DbVisualizer, a popular and powerful database management tool, the license key acts as a digital "lock and key" system. Without a valid license key, the software operates in a limited trial mode with certain features disabled or time-limited.Now that we understand the basics, let's go step-by-step on how to obtain and use a license key for DbVisualizer:Step 1: Purchase or Obtain a License KeyTo use DbVisualizer, you need to either purchase a license key or obtain one through other means. Typically, purchasing a license key directly from the software vendor is the most reliable and legal option. Depending on your requirements, DbVisualizer offers different types of licenses, such as personal, professional, orsite-wide licenses.Step 2: Receive License KeyOnce you have completed the purchase or obtained a license, the software vendor will provide you with a license key. This key is typically sent via email or made available in your online account associated with the purchase.Step 3: Install DbVisualizerBefore we can activate the software with the license key, we need to install DbVisualizer. Visit the official website of DbVisualizer and download the appropriate installer for your operating system. Follow the on-screen instructions to complete the installation process.Step 4: Launch DbVisualizerAfter installation, launch DbVisualizer from your desktop or Start Menu. If you are using DbVisualizer for the first time, you will be presented with a prompt to enter the license key. If you have used DbVisualizer before, you can access the license key prompt through the Help menu.Step 5: Enter the License KeyCopy the license key provided by the software vendor and paste it into the license key prompt in DbVisualizer. Make sure to enter the key accurately, as even a single character mistake can result in an invalid license key.Step 6: Activate DbVisualizerOnce you have entered the license key, click on the "Activate" or "Submit" button in the license key prompt. DbVisualizer will then verify the license key and, if it is valid, activate the software with the full functionality unlocked.Step 7: Enjoy DbVisualizerCongratulations! You have successfully activated DbVisualizer using the license key. You can now explore and utilize all thepowerful features of DbVisualizer for your database management needs.It is important to note that license keys are unique to each user or organization and are not meant to be shared or distributed. Software vendors employ various methods to ensure that license keys are not misused or pirated. Violating license terms can lead to legal consequences and loss of software access.In conclusion, a license key plays a crucial role in activating and unlocking the features of software applications like DbVisualizer. By following the step-by-step process outlined above, you can properly activate DbVisualizer using your license key and fully utilize its capabilities for efficient and effective database management.。
cacheable key为对象
cacheable key为对象
Cacheable key 可以是一个对象,在缓存中用于唯一标识缓存的对象。
为了使一个对象能够作为 cacheable key,它必须满足两个条件:
1.唯一性:cacheable key 必须能够唯一地标识一个对象,以便在缓存中进行查找和比较。
2.可序列化:cacheable key 必须能够序列化和反序列化,以便存储在缓存中和从缓存中读取。
例如,一个 cacheable key 可以是一个包含多个属性的 Java 对象,其中每个属性都是唯一的,而且对象本身实现了Serializable 接口,以便能够在缓存中进行序列化和反序列化。
在使用 cacheable key 时,需要注意的是,为了确保缓存的正确性和一致性,缓存的 key 应该是不可变的,即不可改变的对象。
这是因为如果一个对象在缓存中被修改了,而它又作为缓存的 key,那么在进行查找和比较时会出现问题,导致缓存的不一致性。
同时,在设计 cacheable key 时,还需要考虑到对象的hashCode() 和 equals() 方法的正确实现,以确保对象在缓存中能够正确地被比较和查找。
scopekey的使用
scopekey的使用In English.Understanding Scope Keys.In SAP HANA, scope keys are used to identify and manage data within a tenant database. They are unique identifiers that are assigned to each tenant and used to ensure data isolation and security.Scope keys are typically used in conjunction with other mechanisms, such as row-level security (RLS) and virtual tables, to implement multi-tenancy and control access to data.Types of Scope Keys.There are two types of scope keys:Explicit Scope Keys: These are explicitly defined bythe database administrator (DBA) and are used to identify a specific tenant.Implicit Scope Keys: These are automatically generated by the system and are used to identify the tenant that is currently logged in.Creating Scope Keys.Explicit scope keys can be created using the following syntax:sql.CREATE SCOPE KEY <scope_key_name> AS <value>;For example, to create a scope key named "tenant_1"with the value "12345", you would use the following command:sql.CREATE SCOPE KEY tenant_1 AS 12345;Using Scope Keys.Scope keys can be used in a variety of ways, including:Row-Level Security: Scope keys can be used to implement row-level security by restricting access to data based on the scope key of the logged-in user.Virtual Tables: Scope keys can be used to create virtual tables that provide a unified view of data from multiple tenants.Data Isolation: Scope keys can be used to ensure data isolation between tenants by preventing tenants from accessing data that belongs to other tenants.Best Practices for Using Scope Keys.When using scope keys, it is important to follow best practices to ensure optimal performance and security. These best practices include:Use unique scope key values: Scope key values shouldbe unique for each tenant to avoid conflicts.Use short and concise scope key values: Scope key values should be short and concise to minimize the impacton performance.Avoid using special characters in scope key values: Special characters in scope key values can cause performance issues.Use scope keys consistently: Scope keys should be used consistently throughout the database to ensure dataisolation and security.In Chinese.范围键的使用。
.keystore文件用法 -回复
.keystore文件用法-回复【.keystore文件用法】一、什么是.keystore文件?.keystore文件是Java开发中用于管理和存储密钥对的文件。
它包含了用于加密和解密数据的公钥和私钥。
通过使用.keystore文件,Java开发人员可以实现数据加密和数字签名等安全操作。
二、创建.keystore文件1. 打开命令行窗口。
2. 切换到Java的安装目录下的bin文件夹。
3. 执行以下命令来生成一个新的.keystore文件:keytool -genkeypair -alias mykey -keyalg RSA -keysize 2048-keystore mykeystore.keystore在执行命令时,你需要提供一些信息,如keystore的别名(alias)、密钥算法(keyalg)、密钥长度(keysize)以及keystore文件的名称。
4. 生成.keystore文件后,系统会提示你输入密钥库口令(keypass)和密钥口令(storepass)。
这两个口令用于保护.keystore文件和其中的密钥。
请确保记住这两个口令,因为它们将在之后的使用中用到。
5. 完成上述步骤后,你将在当前目录下找到一个名为mykeystore.keystore的文件,这就是你的.keystore文件。
三、.keystore文件的使用1. 加载.keystore文件在Java程序中,你可以使用密钥库工具类KeyStore来加载.keystore 文件。
以下是加载.keystore文件并获取密钥对的示例代码:KeyStore keyStore = KeyStore.getInstance("JKS");InputStream inputStream = newFileInputStream("mykeystore.keystore");keyStore.load(inputStream, storepass.toCharArray());PrivateKey privateKey = (PrivateKey) keyStore.getKey("mykey", keyPass.toCharArray());以上代码首先获取了KeyStore的实例,然后通过输入流加载.keystore文件,并输入相应的口令。
bouncy-castle blake2b用法 -回复
bouncy-castle blake2b用法-回复Blake2b是BouncyCastle密码库中的一个哈希算法,它是针对Blake2系列哈希函数的变种之一。
在本文中,将详细介绍BouncyCastle中使用Blake2b的用法,并从安装到使用的每个步骤进行逐步解释。
第一步:安装BouncyCastle要使用BouncyCastle的Blake2b算法,必须首先安装BouncyCastle 密码库。
可以通过以下步骤进行安装:1. 在官方网站2. 将下载的JAR文件添加到您的项目中的类路径中。
现在,您已经安装了BouncyCastle,可以开始使用Blake2b算法。
第二步:导入必要的类在使用Blake2b算法之前,需要导入一些必要的类。
首先导入以下类:javaimport org.bouncycastle.crypto.digests.Blake2bDigest;import org.bouncycastle.util.encoders.Hex;这些类将使您能够使用Blake2bDigest类创建哈希对象,并且Hex类使得哈希结果以十六进制字符串的形式进行展示。
第三步:创建Blake2b哈希对象要使用Blake2b算法,需要创建一个Blake2bDigest对象。
可以按照以下方法创建它:javaBlake2bDigest blake2bDigest = new Blake2bDigest();第四步:提供输入数据在执行哈希之前,需要提供要进行哈希的输入数据。
可以使用以下方法进行设置:javabyte[] inputData = "example input".getBytes(); 将example input 替换为您自己的输入数据blake2bDigest.update(inputData, 0, inputData.length);这将使用给定的输入数据并将其更新到Blake2bDigest对象中。
百川大模型 secret key 获取方法
百川大模型 secret key 获取方法
《百川大模型 secret key 获取方法》
在百川大模型中,secret key 是用来加密和解密数据的重要参数。
它起着保护数据安全的作用,只有拥有正确的 secret key 才能对数据进行解密并查看其中的内容。
要获取 secret key,首先需要登录到百川大模型的系统中,具有相应的权限。
然后,通过指定
的通道和流程,按照规定的步骤进行操作。
一般来说,secret key 是由系统管理员通过特定的
算法生成的,同时也会进行有效期限制和权限控制。
只有经过授权的用户才能获取到有效的secret key。
在获取 secret key 的过程中,用户需要注意保护好自己的账号和密码信息,避免泄露给他人。
同时,对于 secret key 本身也需要妥善保管,避免被不法分子获取,导致数据泄露和严重的安
全问题。
总之,获取 secret key 是百川大模型中非常重要的一环,需要严格按照规定的流程和权限进行
操作,确保数据的安全和保密性。
starrock的连接参数
StarRocks(之前被称为Apache Doris)是一款极速统一的Lakehouse产品,具备水平在线扩缩容、金融级高可用、兼容MySQL 5.7协议和MySQL生态、提供全面向量化引擎与多种数据源联邦查询等重要特性。
以下是StarRocks的连接参数的详细介绍:连接参数概述StarRocks支持多种连接方式,包括JDBC、Thrift等。
连接参数用于配置与StarRocks服务器的连接,包括连接地址、端口、认证方式等。
连接地址连接地址是StarRocks服务器的IP地址或主机名。
可以通过配置文件或环境变量指定连接地址。
端口StarRocks默认使用8030端口进行通信。
可以通过配置文件或环境变量指定端口号。
认证方式StarRocks支持多种认证方式,包括用户名/密码认证、Kerberos认证等。
可以通过配置文件或环境变量指定认证方式。
其他参数其他参数包括连接超时时间、重试次数等,用于配置连接的稳定性和可靠性。
这些参数可以根据实际需求进行配置。
示例代码以下是一个使用JDBC连接StarRocks的示例代码:javaimport java.sql.*;public class StarRocksExample {public static void main(String[] args) throws SQLException {String url = "jdbc:mysql://<host>:<port>/<database>?user=<username>&password=<password>";Connection conn = DriverManager.getConnection(url);Statement stmt = conn.createStatement();rs.close();stmt.close();conn.close();}}在上述示例代码中,需要替换以下参数:<host>:StarRocks服务器的主机名或IP地址。
Sessionkey
Sessionkey经常在不同的场合, 如Keyladder , RSA, DRM 等等⽂章中看到session key,但是⼀直没有⼀个清晰的理解. 很迷惑什么时候的key可以称之为session key. 后⾯在⼀处看到关于session key的描述中,觉得描述的⾮常好,能够很好的解决我的很疑惑.A session key is an encryption and decryption key that is randomly generated to ensure the security of a communications session between a user and another computer or between two computers. Session keys are sometimes called symmetric keys, because the same key is used for both encryption and decryption. A session key may be derived from a hash value, using the CryptDeriveKey function (this method is called a session-key derivation scheme). Throughout each session, the key is transmitted along with each message and is encrypted with the recipient's public key. Because much of their security relies upon the brevity of their use, session keys are changed frequently. A different session key may be used for each message.我们知道对称加密的速度⾮常快,但是会有key交换的问题。
@Cacheable拼接key的操作
@Cacheable拼接key的操作我就废话不多说了,⼤家还是直接看代码吧~@Cacheable(value = "page_user",key ="T(String).valueOf(#page).concat('-').concat(#pageSize)",unless = "#result=null")//由于page是int型,concat要求变量必须为String,所以强转⼀下@Overridepublic List<SysUserEntity> page(int page, int pageSize) {return userMapper.page(page,pageSize);}补充:记⼀个spring缓存Cacheable注解key设置问题spring的Cacheable注解⽤来设置缓存,其中的key属性为spel表达式,如果要设置常量,则需要⽤''包裹,如:@Cacheable(value = CacheConstant.APPLICATION,key = "'id_map'")此处的"'id_map'"代表key设置了⼀个常量,如果没有'',则会报错org.springframework.expression.spel.SpelEvaluationException: EL1008E: Property or field 'lang_code_map' cannot be found on object of type 'org.springframework.cache.interceptor.CacheExpressionRootObject' - maybe not public or not valid?意思为在缓存表达式根对象上找不到指定属性,说明如果不加'',则id_map作为属性解析以上为个⼈经验,希望能给⼤家⼀个参考,也希望⼤家多多⽀持。
keycloak token 存储机制
keycloak token 存储机制Keycloak是一个开源的身份和访问管理解决方案,它使用JSON Web Token (JWT)来传递和验证身份令牌。
以下是Keycloak中的Token存储机制:1. 访问令牌(Access Token):Access Token是用于向受保护资源请求授权的令牌。
Keycloak生成的Access Token具有一定的有效期,并包含有关用户身份和访问权限的信息。
默认情况下,Keycloak将Access Token编码为JWT并将其返回给客户端。
2. 刷新令牌(Refresh Token):Refresh Token是用于获取新的Access Token 的令牌。
当Access Token过期时,客户端可以使用Refresh Token向Keycloak 申请刷新令牌。
Keycloak会验证Refresh Token的有效性并生成一个新的Access Token。
Refresh Token通常具有更长的有效期,以便持久保存并用于定期获取新的Access Token。
3. 令牌存储方式:默认情况下,Keycloak将生成的令牌(Access Token 和Refresh Token)存储在客户端的会话中。
这样可以确保令牌在客户端与Keycloak之间进行安全的传输。
4. 令牌校验:在客户端使用令牌时,需要对令牌进行校验以验证其合法性和完整性。
使用Keycloak提供的库或工具,可以对令牌进行解码并验证签名。
Keycloak还提供了各种API和端点,用于校验令牌、刷新Access Token和管理令牌相关的操作。
需要注意的是,Token存储机制可能受到Keycloak的配置和部署方式的影响。
可以通过Keycloak的配置参数来调整Token的存储方式和持久化机制,以满足特定需求和安全要求。
keycloaksession 用法 -回复
keycloaksession 用法-回复Keycloak是一个开源的身份和访问管理解决方案,可以用来保护和管理应用程序的用户身份验证、授权和单点登录。
Keycloak Session (keycloaksession) 是一个Java客户端库,它提供了与Keycloak服务器进行交互的方法和功能。
在本篇文章中,我们将详细介绍如何使用keycloaksession,以及它的用法和功能。
第一步是建立与Keycloak服务器的连接。
要使用keycloaksession,首先需要在应用程序中创建一个Keycloak配置,包含Keycloak服务器URL、领域、客户端ID和客户端密钥等信息。
然后,我们可以使用这些配置创建一个Keycloak客户端,并与服务器建立连接。
javaKeycloakConfig config = new KeycloakConfig();config.setServerUrl("config.setRealm("myrealm");config.setClientId("myclient");config.setClientSecret("mysecret");KeycloakClient client = new KeycloakClient(config);client.connect();第二步是进行身份验证。
一旦与Keycloak服务器建立了连接,我们可以使用keycloaksession进行用户身份验证。
用户可以提供用户名和密码进行身份验证,或者使用其他认证方法,如OAuth、OpenID Connect等。
javaString username = "myusername";String password = "mypassword";KeycloakToken token = client.authenticate(username, password);第三步是获取用户信息。
jcekeystore方法 -回复
jcekeystore方法-回复jcekeystore方法是Java密码扩展(JCE)框架提供的一种工具,用于创建和管理密钥存储。
密钥存储是一个安全的存储器,用于保存应用程序中使用的加密密钥和数字证书。
这篇文章将一步一步地介绍jcekeystore方法的使用及其功能。
第一步,介绍JCE框架和密钥存储的背景和作用。
JCE是Java平台的一个组件,它允许开发者使用标准的Java API来实现和使用各种加密算法和协议。
密钥存储是JCE框架中的一个重要组成部分,它提供了一个安全的容器来存储和管理加密密钥和数字证书。
密钥存储通过密码保护和访问控制,确保密钥的安全性。
第二步,介绍如何使用jcekeystore方法创建密钥存储。
在Java中,可以使用KeyStore类来创建和管理密钥存储。
首先,需要实例化一个KeyStore 对象,然后使用其load()方法加载现有的密钥存储文件或创建一个新的密钥存储文件。
一旦完成加载或创建,可以使用KeyStore对象的其他方法来管理密钥存储中的密钥和证书。
第三步,介绍如何使用jcekeystore方法添加和删除密钥。
通过KeyStore 对象的setKeyEntry()方法可以向密钥存储中添加密钥。
该方法需要提供密钥的别名、密钥本身和与其关联的密码。
类似地,可以使用deleteEntry()方法从密钥存储中删除密钥。
这些方法可以帮助开发者管理密钥存储中的密钥,确保只有授权的用户可以访问。
第四步,介绍如何使用jcekeystore方法获取和检查密钥。
通过KeyStore 对象的getKey()方法可以获取密钥存储中的密钥。
该方法需要提供密钥的别名和与其关联的密码。
可以使用containsAlias()方法来检查密钥存储中是否存在指定别名的密钥。
这些方法可以帮助开发者在需要时获取和检查密钥。
第五步,介绍如何使用jcekeystore方法生成和导出数字证书。
通过KeyStore对象的setCertificateEntry()方法可以向密钥存储中添加数字证书。
solidity safemath 用法 -回复
solidity safemath 用法-回复Solidity 是一种用于编写智能合约的编程语言,而SafeMath 则是Solidity 中一种常用的库,用于处理数学运算中可能出现的溢出和下溢问题。
本文将详细介绍Solidity SafeMath 的用法,并且逐步回答该主题。
1. 溢出和下溢问题在计算机科学中,溢出和下溢是常见的问题。
当某个数值超过了它所能表示的最大值时,就会发生溢出;而当某个数值低于它所能表示的最小值时,就会发生下溢。
这些问题不仅会导致计算结果出现错误,还可能导致安全漏洞。
2. SafeMath 库的作用SafeMath 是Solidity 中一个常用的库,旨在解决溢出和下溢问题。
SafeMath 提供了一系列安全的数学操作,如加法、减法、乘法和除法,确保计算结果始终在合理的范围内,避免发生溢出和下溢问题。
3. 导入SafeMath 库要使用SafeMath 库,首先需要将其导入到Solidity 合约中。
在合约的开头,使用`import` 关键字导入SafeMath 库:soliditypragma solidity ^0.8.0;import "这里使用了OpenZeppelin 中的SafeMath 实现,你也可以将SafeMath.sol 文件保存在本地并导入。
4. 使用SafeMath 进行数学运算一旦导入了SafeMath 库,就可以在合约中使用其提供的函数进行数学运算。
SafeMath 的函数和操作符都采用了`uint256` 类型,因为溢出和下溢问题主要出现在整数操作中。
下面是SafeMath 提供的几个函数的用法示例:- `add(a, b)` 函数用于将a 和b 相加并返回结果。
要确保结果不会产生溢出,可以像下面这样使用SafeMath 的`add` 函数:solidityfunction safeAdd(uint256 a, uint256 b) public pure returns (uint256) {return SafeMath.add(a, b);}- `sub(a, b)` 函数用于将a 和b 相减并返回结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Scalable Session Key Construction Protocol for Wireless Sensor NetworksBocheng Lai Sungha Kim Ingrid Verbauwhede bclai@ yevgeny@ Ingrid@Department of Electrical EngineeringUniversity of California, Los AngelesLos Angeles, CA-90095AbstractThe security of sensor network s is ever moreimportant nowadays. In this paper we propose a new protocol BROSK to construct link-dependent keys by broadcasting key negotiationmessages. The link-dependent key will be negotiated in an ad-hoc scheme. Most of the proposed security protocols in sensor ne tworks are based on point-to-point handshakingprocedures to negotiate link-dependent keys,but this will influence the scalability of the network. The simulation shows that the scalability of BROSK is better than two other security protocols of sensor network, SPINS and SNAKE, and is reasonably secure. This new protocol consumes less energy by reducing the number of transmissions used for key negotiation among sensor nodes.1 IntroductionDistributed sensor networks can be used in awide range of applications, such asenvironment monitoring, rescue missions, and smart houses. A lot of interest and effort are being focused on this new network topic. The sensor network s are constructed by a large number of nodes with ultra-low power computation and communication units [2].Security is an important issue for sensornetworks. Stajano and Anderson are the first to point out the battery exhaustion attack [1]and this attack can easily be triggered on the sensor nodes with limited energy supply. A more detailed discussion on energy exhaustion attack s will be conducted in section 5.3.We propose a new idea to solve the authentication problem by constructing trust level s among the nodes. Nodes start off at an equal low trust level, and trust between nodes will gro w over time after authenticated communication among nodes. A similar idea of distribution of trust is also proposed by Zhou and Hass [3]. However how to construct the security among large scale sensor network in an ad-hoc and distributed scheme is still an open question.Most of the security algorithms are based on sharing a secret key between two parties. They use this shared-secret key to verify each other and even use the key to encrypt and decrypt the data. In a distributed sensor network, constructing and negotiating this secret key is very hard, because of their limited resources. A key server solution has been proposed [4], but that will limit the scalability of the network.In this paper, we propose a new protocol to construct this share d-secret key among sensor nodes. The shared-secret key is also known as shared-session key or link-dependent key. The reason is that different links will use different shared-secret key s. For ABCK A BK A CFigure 1 : Link-dependent Keyexample, as shown in Figure 1, node A has a link to node B and also has a link to node C. If node A wants to talk to node B, it should use key K AB. If node A wants to talk to node C, it should use key K AC. These two keys are independent, therefore even if the adversary can compromise one link key, the rest of the netwo rk is still safe. For rest of the paper, we will refer to this as the shared-session key.In section 2, we will briefly introduce two related security protocols for sensor network. We will mainly focus on the protocol to establish the shared-session key among sensor nodes. We will use it as a basis for comparison. In section 3, we will propose a new protocol, BROSK, that can negotiate the key more efficiently. Simulation resul ts will be showed in section 4 and s ection 5 will evaluate this new protocol and compare the performance and scalability with other protocols.2 Related WorkThis section will briefly introduce two shared-session key negotiation protocols for sensor network, SPINS[4] and SNAKE[5]. These two protocols have sets of steps to establish the security of sensor network, but here we will mainly focus on the protocol they use to establish the shared-session key among sensor nodes.2.1NotationFollowing is the convention we used to describe the protocol in this paper.• A | B: data A concatenates with data B•{A}K AS: encryption of data A by keyK AS•MAC K[A] : MAC ( message authentication code) of data A createdby key K.•N A: the nonce generated by node A.Nonce is a one-time random bit-string,usually used to achieve freshness.•ID A: the name of node A.2.2SPINSSPINS is a security suite for sensor network s. It includes two protocols, SNEP and µTESLA. The former is for confidentiality, two-partydata authentication, integrity, and freshness andthe latter provides authentication for databroadcasting. Here we focus on the key negotiation protocol. As shown in Figure 2,assume that node A wants to establish a shared-session key SK A B with node B through a trusted third party S, the central key distribution center (KDC). This is a server that can perform authentication and key distribution.Node A will send a request message tonode B(Figure 2-a). Node B receives this message and sends a message to the key server (Figure 2-b). Key server S will perform the authentication and generate the shared-session key and send the key back to node A and node B respectively (Figure 2-c and 2-d). The use of the central key server limits the scalability of the sensor networks.2.3SNAKESNAKE is a protocol that can negotiate the session key in an ad-hoc scheme. Nodes do not need a key server to perform the key management.First, node A will send a request to node B (Figure 3-a). Node B will reply a message as a challenge to node A (Figure 3-b). When node A receives this message, it will prove its authenticity and send the message back to node B (Figure 3-c). This is a mutual challenge and authentication procedure. After this three handshaking and mutual authentication procedures, node A and node B will use K AB as their shared-session key.3 BROadcast Session Key (BROSK) Negotiation Protocol BROSK is a new protocol : each node can negotiate a session key with its neighbors by broadcasting the key negotiation message. BROSK uses a fully ad-hoc scheme to negotiate the session key and can perform this key negotiating process efficiently. Moreover the scalability of BROSK is significant especially when applied to large scale sensor networks.3.1 AssumptionsHere we will describe the basic assumptions that we made to construct our protocol.Assumption 1.Nodes are resource constrained.Typical large scale sensor network applications distribute the small sensor nodes in area and power constrained environment s. The resource of each node is extremely limited [2].Assumption 2.Nodes are static or have a low mobility Allowing all the nodes to be mobile at the same time will make the problem much more complicated. Actually in many applications, the nodes are fixed in one position for the whole life time. For example, building climate control information is collected by the nodes in the source area, say a cubicle area, and relayed by other nodes to the destination, say the central control room. Of course it is possible that nodes are mobile, this will be related to other netwo rk layers, protocols and algorithms. The exploration to all mobile nodes is a topic of further research.Assumption 3.Nodes share a master keyEvery node in the same network has a shared master key that is never disclosed. This is the key on which the node can tell whether another node is in the same network or not. Also nodes will use this key to authenticate other nodes and negotiate the session key. Of course this master key should be kept in secret. We also assume that the master key will not be extracted from the captured node.3.2 Broadcast the key negotiation messageA s ensor node will try to negotiate a shared-session key by broadcasting the key negotiation message. Each node tries to broadcast the following message:Here ID A is the name of node A and differentK AB = MAC K[N A|N B]ID A|N A||MAC K(ID A|N A)A|N A)Figure 4 : Node A broadcasts the keynegotiation messagenodes have different ID. Once a node receives the introducing message broadcasted by its neighbor, it can construct the shared-session key by generating the MAC of two nonces. For example, in Figure 4, node B will receive the broadcast m essage from node A. N ode A will also receive the broadcast message from node B (Figure 5-a ). They can use K AB as their shared -session key (Figure 5-b ).3.3Re-negotiate the keyWhen the sensor network has been working for a while, nodes might run out of session key s. It is insecure to reuse the same key for data transmission and will be easily compromised. Therefore nodes in sensor network need to re-negotiate new session key s.4 Simulation ResultsOur simulation is conducted on a sensor network simulator developed by NESL [7] at UCLA. The simulator uses a c-based discrete-event simulation language PARSEC [8].We set up our simulation by constructing a grid topology with N by N sensors as shown in Figure 6. In the simulator, the sensor n odes use the wireless media in a CSMA (Carrier Sense Multiple Access) scheme and each transmission needs one time slot.Here we tried two different situations. Firstis that sensor nodes know nothing about their neighbors, so they just try to broadcast the key negotiation message in a simple distributed random scheme. We ran 20 simulations for different number of nodes and get the average. Each node can only receive signals transmitted by nodes next to it, and these nodes are defined as neighbors . How many neighbors does one node have is the node density . Collisions between transmissions happen because of simultaneous transmissions in the same time slot and cau se the average number of neighbors that one node can really recognize to be only 60% of the actual number of neighbors one node has. We will use neighbor recognition rate (NRR) to refer to this rate.The second situation is that sensor nodes know their neighbors and they have already constructed an optimum schedule policy to access the wireless media without causing collisions. Figure 7 shows the simulation results for BROSK. It shows how many time slots are needed to finish the key negotiation process for different number of nodes. From the simulation result at Figure 7, we can realize that this protocol is very scalable. The timeFigure 7 : Number of time slots needed by BROSK to finish key negotiation NNID B |K B ||MAC K (ID B |N B ) (a) K AB =MAC K (N A |N B ) (b) Figure 5:(a) message broadcasted by node B(b)shared session key of node A and node B Figure 6: Grid topologyneeded for a sensor network with 16 sensor nodes is close to the time needed for a sensor network with 1,024 sensor nodes. This property remains in both random schedule and optimum schedule.The next set of simulations show how many time slots are needed to transmit data from the lower-right node to the upper-left node (Figure 6). This simulation includes key negotiation among sensor nodes and transmitting data. Figure 8 shows the number of time slots needed to transmit data from the lower-right node to upper-left node when NRR is 60%, which means each node can recognize 60% of its neighbors. Here we can see that SPINS and SNAKE perform better than BROSK when the number of sensor nodes is smaller than 64. But BROSK outperforms other two protocol s when the number of nodes is large. This is because BROSK needs a certain number of time slots to finish the key negotiation, and this number depends on node density.Some transmissions fail because of the time slot collisions. But the problem of collision can be mitigated wh en the sensor network has constructed a good schedule for allocating time slots. T he same simulation with NRR is 90% is showed in Figure 9. It shows the results of the three protocols. BROSK outperforms the other two protocols when the number of nodes is larger than 64 nodes and improves for larger networks.5.Evaluation5.1ScalabilityFrom the protocol and the simulation results, we can conclude that the BROSK is highly scalable,because the time needed to finish the key negotiation process depends only on the average number of neighbors rather than the total number of nodes. This property holds not only when we use a simple random distributed algorithm but also when nodes have already constructed a good schedule policy to allocate the time slots for key negotiation.5.2 Power SavingTransmission of data consumes energy. Therefore the more the transmissions in the network, the more energy will be consumed.SPINS needs four data transmissions to finish the key negotiation process. In SNAKE, three data transmissions are needed. In BROSK, each node only needs to broadcast once in order to finish the key negotiation process. This situation will be significant when the scale of the network is large, say thousands of nodes.Figure 8 : Number of time slots needed to transmit data when NRR is 60% Figure 9: Number of time slots needed to transmit data when NRR is 90%5.3 Security AnalysisSPINS and SNAKE do not provide a solution for denial of service (DoS) attacks when the malicious node keep s sending the request to negotiate a session key. Both protocols can achieve authentication requirement. But they cannot detect or prevent the DoS attacks, because one adversary can easily trigger a REPLAY attack [9] and exhaust the energy in the sensor nodes.In SPINS, the malicious node can simply send the request message for key negotiation continuously, and Node B will keep asking the server about session key with the malicious node. Therefore node B will eventually run out of the energy. However, the base-station may have the ability to detect and try to prevent this attack.In SNAKE, DoS attacks can be triggered by the same mechanism and SNAKE does not provide the detection of DoS when a malicious node tries to send the message to request key negotiation. In SNAKE there is no base-station to perform attack detection for sensor nodes, every node has to detect this attack by itself and this function is a heavy burden for resource constrai ned sensor nodes.However, in BROSK, there is no DoS attack issue when nodes are broadcasting, because each node only broadcasts once and will not response to false request for key negotiation generated by a malicious node. For example, if one malicious node keeps sending the key-negotiation message to its neighbors, nodes in BROSK only need to update the shared-session key to this “m alicious node”and do not need to transmit signal like SNAKE or SPINS do. This will eliminate the chance of malicious node to achieve battery exhaustion attack by triggering radio transmission of nodes.6 ConclusionIn this paper we proposed a new protocol, BROSK, to construct the shared session key in wireless sensor network. BROSK shows great scalability in simulation because the time needed to finish key negotiation does not depend on the number the sensor nodes. We also show that this new protocol can save power by reducing the number of transmissions. 7 Future WorkOur next step is to develop a complete security protocol for sensor network, including authentication, data integrity and confidentiality. Also we are trying to integrate BROSK with other protocol s of sensor network in different layers, e.g. media access control layer and network layer.We already implemented BROSK on 8-bit 8051 processor, which takes under 1 KB including MAC generation. Also we plan to implement BROSK on AVR processor and test the performance on a real platform.8 AcknowledgementThe authors would like to acknowledge the support of the National Science Foundation research part CCR-0098361. The authors also want to thank the helpful comments from Mani Srivastava and help of NESL group at UCLA.References[1] F.Stajano and R.Anderson, “The Resurrect ingDuckling: Security Issues for A d-hoc WirelessNetworks,”B.Christianson, B.Crispo and M.Roe(Eds.) Security Protocols, 7th InternationalWorkshop proceedings, LNCS,1999.[2] D.Estrin L.Girod, G.Pottie, M.Srivastava,“Instrumenting the World with Wireless SensorNetworks,” IEEE ICASSP 2001, p.2033-2036,vol.4, 2001.[3] L.Zhou and Z.Hass, “Securing ad hoc network,”1999.IEEE Networks Special Issue on NetworkSecurity, Dec, 1999.[4] Adrian Perrig ,Robert Szewczyk, VictorWen,David Culler,and J.D.Tygar SPINS:Security Protocols for Sensor Networks,MobiCom, July 2001.[5] S.Seys, “Key Establishment and AuthenticationSuite to Counter DoS Attacks in DistributedSensor Networks,”unpublished manuscript,COSIC[6] W.Diffie and M.E.Hellman. New directions incryptography. IEEE trans, Inform. Theory, IT-22:644-654, Nov 1976.[7] Network &Embedded Systems Laboratory(NESL), [8]Parallel Simulation E nvironment for ComplexSystems (PARSEC),/project/parsec[9] Bruce Schneier, “Applied Cryptography,”Katherine Schowalter publish, 1996.。